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Abstract 

This paper describes the modular magnetic assembly of reconfigurable, pneumatically 

actuated robots composed of soft and hard components and materials. The soft components of 

these hybrid robots are actuators fabricated from silicone elastomers using soft lithography, 

and the hard components are acrylonitrile-butadiene-styrene (ABS) structures made using 

three-dimensional (3D) printing. Neodymium-iron-boron (NdFeB) ring magnets are 

embedded in these components to make and maintain the connections between components. 

The reversibility of these magnetic connections allows the rapid reconfiguration of these 

robots using components made of different materials (soft and hard) that also have different 

sizes, structures, and functions; in addition, it accelerates the testing of new designs, the 

exploration of new capabilities, and the repair or replacement of damaged parts. This method 

of assembling soft actuators to build soft machines addresses some limitations associated with 

using soft lithography for the direct molding of complex 3D pneumatic networks. Combining 

the self-aligning property of magnets with pneumatic control makes it possible for a 

teleoperator to modify the structures and capabilities of these robots readily in response to the 

requirements of different tasks. 
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1. Introduction 

Interest in bio-mimetic robots (e.g., flying insects,[1] caterpillar,[2] earthworms,[3] 

octopi,[4] and jellyfish[5]) has led to rapid development of a new class of robots that exploit 

magnetic,[6] electrical,[7,8] chemical,[9] and mechanical[10,11] properties of soft materials for 

unconventional strategies of actuation and control. Soft robots and machines (e.g., grippers,[12] 

tentacles,[13] walkers,[14] rollers,[15,16] and swimmers[17]) fabricated from elastomers, or from 

composites based on them[18] using soft lithography have demonstrated that a wide range of 

functions and capabilities⎯compliant gripping,[12] sampling and delivery of fluids,[13] 

visualization,[19,20] multi-spectral camouflage,[20] jumping,[21] and multi-modal 

locomotion[14,22]⎯can be realized through the use of microfluidics in robotic design.  

Previously reported soft robots and machines have not been reconfigurable: Their 

structures, once generated, were fixed and not amenable to reversible changes that modify 

capabilities. In addition, devices that are composed of multiple materials and contain 

networks of channels perpendicular to each other vertically and horizontally can  be 

exceedingly difficult to produce in single step; soft lithography⎯an efficient technique for 

rapid prototyping and replication of planar and quasi-two-dimensional elastomeric 

structures⎯is insufficient to tackle all challenges associated with the fabrication of complex 

3D microfluidic networks in advanced systems. As such, methods that impart re-

configurability, simplify the fabrication of actuators with complex designs, or facilitate the 

integration of non-elastomeric materials (e.g. metals, thermoplastics) and electronics (e.g. 

sensors and communication units) will greatly accelerate the development of soft robotics. 

 Reversible modular assembly has been a widely used strategy for fabricating complex 

hard robots as it enables reconfiguration to suit new tasks, rapid testing of new designs, and 

easy repair and replacement of damaged parts. This strategy, together with advances in the 

fabrication and miniaturization of sensors, actuators, power sources, and units for control and  
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communications, has led to the emergence of autonomous, compact hard robots capable of 

self-assembly[23] and self-reconfiguration.[24,25] Although inter-modular connections made 

from mechanical joinery (e.g., hooks-and-grooves interlock[23]) are sturdy and reversible, they 

require either manual orientation and assembly, or the precise alignment for docking of the 

matching pieces; the latter necessitates the use of elaborate systems of sensors, with feedback 

and control, for the remote or automated assembly and disassembly of the components.[23] In 

contrast, magnetic connectors can self-align and assemble;[26-28] hence, they relieve the need 

for precise spatial control in assembling two complementary units, while preserving the 

strength and reversibility of mechanical connectors. 

This paper describes the modular assembly of hybrid[29] reconfigurable 

robots/machines using magnets. Although non-magnetic, modular assembly of soft robotic 

snakes has been explored by Onal et al., the reconfigurability of the reported robots has not 

been demonstrated.[30] In the following study, our hybrid robots were assembled from two 

types of modules—soft actuators (e.g., grippers, legs, tentacles) fabricated from elastomers 

using soft lithography, and hard scaffolds and connectors (e.g., frame and containers) made of 

acrylonitirile-butadiene-styrene (ABS) thermoplastics using 3D printing. We embedded 

neodymium-iron-boron (NdFeB) ring magnets in these actuators and structural elements to 

connect them, and to maintain the integrity of the assembly. These connections could be 

reversibly assembled by hand, or modified by a teleoperator using pneumatic controls. Using 

our approach, we assembled multi-functional, difficult-to-mold hybrid robots (e.g., the robots 

what we call “surveyor” and “porter” in the following) from soft actuators that are easy to 

make structures, and combined with hard structural elements.  
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2. Experimental Methods and Designs 

2.1. Design and Fabrication of Soft Actuators  

We adopted the basic design of the pneumatic networks described in our previous 

reports,[12-14] and fabricated soft actuators (e.g., legs, grippers, tentacles) using soft 

lithography. The molds required for these procedures were made of ABS thermoplastics, and 

prepared using 3D printing. We poured the liquid pre-polymer into the fabricated mold, 

degassed to remove bubbles, and thermally cured it. To introduce a magnetic interface into a 

soft actuator, we embedded a magnet of appropriate size, with correct orientation of the 

magnetic pole, into the actuator, and sealed the magnet with silicone elastomer (see S.I. for 

detailed description of their fabrication).  

2.2. Actuation of Soft Robots 

We actuated the soft modules by pressurizing the hollow chamber of the pneumatic 

network (which we and others call “pneu-nets”) with air, which has negligible contribution to 

the overall mass of the robots and minimizes the burden of mass required to be moved during 

actuation. To simplify the coordination and timing of actuation necessary for the locomotion 

of quadrupeds or multi-legged robots, we connected the air inlets of these robots to 

compressed air source gated by computer-controlled solenoid valves, and programmed the 

opening and closing of these valves to pressurize each pneu-net (or soft leg) according to the 

sequences described in our previous reports.[14, 20] 

2.3. Design and Fabrication of Hard Components 

We used 3D printing for prototyping the hard modules from ABS thermoplastics 

because it enables the rapid fabrication of 3D structures with complicated internal networks of 

pneumatic channels, and structural supports. Although the entire hard body is printable as a 

monolithic structure, we chose to assemble the hard bodies of these robots manually from 

individual hard components using mechanical or magnetic connectors (see S.I.). This strategy 
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accelerated 1) the testing of designs, 2) the replacement of damaged components with new 

parts, and 3) the removal of non-essential units for a particular task to maximize the power-to-

weight ratio of the robot. 

2.4. Design of Magnetic Connectors and Choice of Magnets 

We chose to use NdFeB ring magnet in our designs (Figure 1a–c), rather than 

magnets of other geometries, because the hollow center of a ring magnet self-aligns with that 

of other ring magnets of the same inner and outer diameters. Open channels passing through 

the axially aligned ring magnets then form a continuous conduit for transporting fluid  (e.g., 

air and other gases in the designs described here, but liquids in other designs) between the 

modules (Figure 1d, e); these fluids can be used for actuation, sampling, and delivery of 

chemicals. We used NdFeB magnets because they have the highest remanence per unit mass 

among all permanent magnets that are commercially available, and are commercially 

available in many geometries. Using NdFeB magnets maximizes the strength of connection, 

while minimizing the mass of the assembled device. Electromagnets could, in principle, be 

used; however, they would be too complex for our current intended uses as they require a 

supply of electrical current, and additional circuitry, to maintain or alter the connectivity of an 

assembly. 

2.5. Design of Inflatable Connector for Pneumatic Disassembly of Modules 

We designed and integrated a pneumatic trigger into the magnetic connectors for 

remote disassembly of modules (Figure 1c). The capability to disconnect modules remotely 

provides a teleoperator additional flexibility in tailoring the functions of assembled robots or 

machines in response to the requirement of a specific job.  

Our strategy for disassembly of magnetically assembled components was to inflate a 

bladder sandwiched between two components. We used pneumatics for disassembly because 
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it could be readily implemented into our existing soft-actuator designs, which also utilized 

pressurized air for actuation. The side channel of the connector delivered pressurized gas to  

inflate the bladder (Figure 1f), while the central channel connected and operated the 

pneumatic network of a magnetically coupled soft actuator (see S.I.). Inflating the bladder 

increased the distance between two modules and weakened the magnetic force between their 

embedded magnets. At some distance of separation of the magnets (here, ~1.3 cm), 

torque⎯from gravity⎯overcame the weakened magnetic attraction and disconnected the two 

adjoining units.  

2.6. Determining Tensile and Shear Strengths of Magnetic Connectors 

We performed uniaxial pull-force measurements (see SI) to determine the attraction 

force of different magnetic connections against tensile and shear load. Two modules 

embedded with ring magnets that had their opposite magnetic poles facing each other were 

mounted on force-measurement instrument, and aligned parallel to the axis of magnetization 

(Z-axis) of the ring magnets. Maximum attraction force between the modules was determined 

as the difference between the highest applied load and the load when magnetic force was 

negligible (<0.01 N). 

 

3. Results and Discussion 
 
3.1. Determining Magnetic Attraction Force between Magnets against Tensile and Shear 

Load 

We varied the dimensions of the ring magnets and the elasticity of the materials in 

which they were embedded, and determined the magnetic attraction force between these 

magnets as a function of displacement parallel (tensile) or perpendicular (shear) to their axes 

of magnetization (z-axis). The tensile load supported by the magnetic connection between two 
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hard modules (graphs of hM_hL and hM_hM, see inset of Figure 2a) decayed rapidly with 

increasing separation (Figure 2a and Figure S16). In contrast, the membrane, (thickness:  

0.6−1.0 mm) required to seal the magnet inside of a soft actuator in a soft-hard connection, 

guaranteed that the two magnets involved in this connection would never be in direct contact, 

and thus increased the initial separation between the two magnets. As a result, the maximum 

tensile loads supported by the magnetic attraction forces within soft-hard connections (hM_sL 

and sM_hM) were similar to that of hard-hard connections separated by an air gap of similar 

distance (defined by the membrane, 0.6−1.0 mm)⎯approximately 60% lower than when the 

two magnets embedded in hard modules were in direct contact (0 mm) (Figure 2a).  

The plots of tensile load versus displacement (Figure 2a) in soft-hard connections also had 

different shape than the equivalent plots of hard-hard connections. In a soft-hard connection, 

the force initially increased gradually with displacement because the tensile force stretched 

the soft actuator while the two modules remained in contact. When the applied load exceeded 

the attractive force for keeping two modules together, the connection severed and the soft 

module recoiled to its original length. The sudden increase in gap between the magnets led to 

the rapid reduction of magnetic force that resisted the displacement of the hard module. 

In addition to tensile load, we also quantified these magnetic connections against shear 

load. Similarly to what was observed in the tensile studies, the resistance against shear load 

decreased rapidly with increasing distance of separation (air gap) between two hard modules 

(Figure 2b and Figure S17). With an air gap of 0.6 mm (or 1.0 mm), magnets embedded in 

hard modules, however, showed a 50−60% lower resistance to shear than the same magnetic 

pair separated by a silicone membrane, instead of air, of similar thickness (0.6−1.0 mm) in a 

soft-hard connection (Figure 2b). We attributed the higher resistance of soft-hard connection 

against shear to the friction between the magnet embedded in the hard module and the surface 

of the soft actuator. 
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3.2. Magnetic Connections Enable Pneumatic Actuation of Soft Machines Assembled 

from Soft Actuators 

To test whether the magnetic connection was capable of supporting pneumatic 

actuations of machines assembled from soft modules, we connected two soft actuators 

(Figure 3a), which we called “soft legs”, and inserted a poly(ethylene) tube as an air inlet into 

one of them (Figure 3b). Each leg had an extensible layer and a strain-limiting layer (SLL). 

Pressurizing the pneumatic channel with air (20−22 kPa) led to preferential expansion of the 

extensible layer, and caused the anisotropic bending of the legs towards the strain-limiting 

layers. Actuation of the entire assembly occurred regardless of whether it was suspended 

vertically or horizontally (Figure 3c−e). These results demonstrated the embedded NdFeB 

magnets provided a stable connection between two soft legs, and the channels at the hollow 

centers of the rings formed a well-sealed (but not perfectly-sealed), continuous network that 

supported pneumatic actuation of the assembly. With this proof of concept, we applied this 

method to assemble soft machines and robots (e.g., a soft tentacle-gripper) that had complex 

3D architectures of pneumatic networks, from structurally simpler soft actuators that can be 

readily fabricated via soft lithography. As an example, we connected a soft tentacle and a soft 

gripper using magnets (Figure 3f, g and Figure S5, S10 for details of their internal structures); 

the assembled tentacle-gripper had overhanging pneumatic channels that were difficult to 

mold in a single step (Figure S11). Pneumatic actuation (38−42 kPa) through the tubing 

embedded in central channel of the tentacle enabled the vertically-suspended tentacle-gripper 

to pick up a sphere (weight, 9.5 g) and hold it in the air (Figure 3h−j).  

3.3. Reconfiguration and Locomotion of Hybrid Robots  

Having demonstrated the ability of our magnetic connection for assembling functional 

soft machines, we proceeded to apply the design of our magnetic couplers, as demonstrated in 

soft actuators, to hard structural elements, and combined the resulting hard, magnetic 
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connectors to build hybrid robots made of hard and soft materials. We manually attached the 

soft legs to the hard magnetic connectors, and used the magnetic attraction between the soft 

legs and the hard modules to maintain the structural integrity of the assembly (Figure 4a−f). 

The reversibility of the magnetic connection allowed the robot to be reconfigured manually, 

and made it possible to vary the number (Figure 4a, b) and the distribution of soft legs (Figure 

4b, c), exchange and combine legs of different size (Figure 4d), material (Figure 4e), and 

shape (Figure 4f), or replace damaged legs with new ones rapidly. 

To test whether the magnetic connections would remain sufficiently stable to support 

pneumatic actuation of a walking robot, we operated a hybrid quadruped—a robot assembled 

from four soft legs and a hard body (weighing 63 g, excluding the tethers)—using a 

computer-controlled compressed air source. Sequential pneumatic actuation[14] of the legs 

(400 ms actuation at ~50–70 kPa for each leg in every cycle) directed the robot to walk on a 

flat, rigid, non-slippery surface for a distance of 0.3 m at a speed of ~17 m/h (Figure 4g–k and 

video S1). The ability of the soft legs to support the continuous movement of the robot 

highlighted the stability of these magnetic connections in meeting the mechanical and 

structural demands associated with locomotion. 

To demonstrate the feasibility of modifying the structure of a soft robot using remote 

control, we replaced two of the hard connectors on the opposite side of the hexaped in Figure 

4a with inflatable connectors. We first tested the ability of the inflatable connectors to support 

actuation of the attached soft legs (L and R) by pressurizing these legs with compressed air 

delivered through the central channels of the connectors (Figure 4l, m). We then stopped the 

locomotion of the robots, and actuated the integrated bladders of these connectors via the side 

channels to detach the two legs (Figure 4n, o). The pneumatically triggered disassembly 

transformed the hexapedal robot into a pentapedal (Figure 4o), and subsequently into a 
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quadrupedal (Figure 4p), walker without physical contact between the operator and the 

modules of the robot (Video S2).   

3.4. Multi-functional Robot Constructed Using Modular Assembly  

One major advantage of modular assembly is the integration of additional modules to 

provide new capabilities. For instance, a modular hybrid robot⎯comprising an optical 

hard/soft sensor, and soft legs for walking⎯can function as a mobile unit for monitoring its 

surrounding environment.  

To assemble a mobile surveyor, we inserted a small video camera at the top opening 

of the central channel of a soft tentacle and anchored the base of the flexible optical sensor to 

the center of a hybrid quadruped (Figure 5a, b). The connections between the tentacle and the 

central hub consisted of four pairs of ring magnets (4 × sS_hS) arranged in C2 symmetry as 

shown in Figure 5b. The use of multiple pairs of ring magnets in anisotropic configurations 

provided a self-checking mechanism for engaging two modules in correct orientation. Apart 

from the central channel, the tentacle had four independently addressable side channels for 

pneumatic actuation. Adjusting the internal pressure and the number of actuated side channels 

enabled a high level of control for bending and rotating the flexible optical sensor (Figure 

5c−g and video S3). 

Once assembled, the surveyor was directed toward a specific location (Figure 5h−i) to 

inspect a target. After the robot reached its destination (a Styrofoam® cup) (Figure 5j), we 

stopped the actuation of its soft legs. We then actuated the side channels of the soft tentacle to 

position the camera embedded in the tentacle to view through a window cut into the side wall 

of the Styrofoam® cup; the video camera on the tentacle captured the image of a message, 

“GMW Gp,” hidden inside the container (Figure 5j and Video S3). 
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3.5. Remote Assembly of Soft Robot Assisted by Self-alignment of Ring Magnets  

The functions and capabilities of earlier examples of robots were constrained by the 

connectivity of modules that were pre-assembled manually. Although using pneumatically 

triggered disassembly allows subtractive modification of these robots, a complementary 

method for remote assembly will significantly expand the number of options available to a 

teleoperator in adjusting the functions of robots according to the situation.  

To test the combination of pneumatic actuators and magnetic connectors for remote 

assembly of a robot, we equipped a hybrid quadruped with two hard containers, each 

magnetically coupled to an inflatable connector (Figure 6a). This robot, which we called a 

“porter,” was equipped with a left container for carrying a magnet-embedded soft gripper, and 

a right container that held two spheres to balance the weight of the gripper. A modified soft 

tentacle with a ring magnet at the apex and a poly(ethylene) tube through the central channel 

was assembled at the center of the porter. 

We directed the robot to walk towards its target (a green sphere) using pneumatic 

actuation (Fig. 6a). Inflating the side channel on the right (Figure 6b) of the soft tentacle 

pneumatically caused the soft tentacle to bend towards the left container carrying the soft 

gripper. Attractive magnetic force between the gripper and the magnet at the apex of the bent 

tentacle pulled the two soft units together at close range, and self-aligned the central, open 

pneumatic channel of the soft tentacle with that of the soft gripper (Video S4). 

To test the function of the remotely assembled soft tentacle-gripper in manipulating 

centimeter-sized object, we used the tentacle to position the gripper above the target (Figure 

6c), actuated the gripper to pick up the sphere (Figure 6d), re-positioned the gripper with the 

tentacle using pneumatic control, and released the object into the empty container on the left 

(Figure 6e). After the robot moved forward over a short distance, we remotely disconnected 
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the magnetically attached containers from the quadruped by inflating the integrated bladders, 

and thus completed the delivery of its cargo (Figure 6h−j and Video S4). 

4. Conclusions 

This work demonstrates the practicality of using magnetic connectors to assemble and 

disassemble pneumatically actuated soft robots that have components with similar or different 

material properties (soft and hard), and to assemble those that have complex internal 3D 

networks of pneumatic channels that are difficult to fabricate as a monolith. These magnetic 

connections enable rapid, reversible reconfiguration of hybrid soft-hard robots for repair and 

for testing new designs, and equip these robots with multiple capabilities (e.g., locomotion, 

surveillance, and transport and manipulation of centimeter-sized objects). Combining 

pneumatic actuators and self-aligning magnetic connectors enables a teleoperator to assemble 

and disassemble more complicated robots on demand. We envision that the capability to 

modify robots remotely using pneumatics and magnetic connectors will be useful in 

advancing the design, control, and operation of soft-hard robots and machines (systems that 

are hybrid of soft and hard components), and provide an alternative to modular assembly 

using electromagnets or mechanical connectors.  

With further development of the control system and power source, and improved 

design of the soft actuator and magnetic connectors, these modularly assembled hybrid soft-

hard robots have the potential to decrease the difficulty, time, and expense of fabrication of 

soft robots, to enable rapid interchange of components (e.g. legs, tentacles, sensors) to build 

prototypes and iterate designs, and to repair damaged or defective components. 

 

5. Experimental Section 

See supporting information. 

Supporting Information  
Supporting Information is available online from the Wiley Online Library or from the author. 



 Submitted to  

���14������14�� 

 
Acknowledgements 
The design and fabrication of magnetic couplers, and the funding for S.W.K., J.-H.S., and 
F.C.M. were supported by the U.S. Department of Energy under award DE-FG02-00ER45852. 
The development of other aspects of the soft machines, and the funding for S.A.M., A.A.S., 
and R.F.S. were supported by the Defense Advanced Research Planning Agency under award 
W911NF-11-1-0094. B.M. and B.S.R. acknowledge funding by Wyss Istitute for 
Biologically-Inspired Engineering at Harvard University. R.V.M. acknowledges funding by 
the European Commission (FP7 People program) under the project Marie Curie IOF-275148. 
We thank Dr. James C. Weaver for providing a sample of 3D-printed spikes embedded in an 
elastomeric sheet, and Mr. Jacob Freake for his initial work on modular assembly of soft 
robots.  
 
 

Received: ((will be filled in by the editorial staff)) 
Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 
 

[1] K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Science 2013, 340, 603. 
 
[2] H.-T. Lin, G. G. Leisk, B. Trimmer, Bioinspir. Biomim. 2011, 6, 026007. 
 
[3] A. Menciassi, S. Gorini, G. Pernorio, P. Dario, in IEEE International Conference on 
 
Robotics and Automation New Orleans, LA, April 2004, pp. 3282. 
 
[4] L. Margheri, C. Laschi, B. Mazzolai, Bioinspir. Biomim. 2012, 2012, 025004. 
 
[5] J. C. Nawroth, H. Lee, A. W. Feinberg, C. M. Ripplinger, M. L. MaCain, A. Grosberg, 
 
J. O. Dabiri, K. K. Parker, Nat. Biotechnol. 2012, 30, 792. 
 
[6] P. Garstecki, P. Tierno, D. B. Weibel, F. Sagués, G. M. Whitesides, J. Phys.: Condens. 
 
Matter 2009, 21, 204110. 
 
[7] I. A. Anderson, T. A. Gisby, T. G. McKay, B. M. O'Brien, E. P. Calius, J. Appl. Phys. 
 
2012, 112, 041101. 
 
[8] M. Follador, M. Cianchetti, A. Arienti, C. Laschi, Smart Mater. Struct. 2012, 21,  
 
115029. 
 
[9] S. Maeda, Y. Hara, T. Sakai, R. Yoshida, S. Hashimoto, Adv. Mater. 2007, 19, 3480. 
 
[10] C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Soft Matter 2012, 8, 285. 
 
[11] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, H.  



 Submitted to  

���15������15�� 

 
M. Jaeger, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 18809. 
 
[12] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, G. M. Whitesides, Angew. Chem.  
 
Int. Ed. 2011, 50, 1890; Angew Chem. 2011, 123, 1930. 
 
[13] R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd, R. M. D. Nunes, Z.  
 
Suo, G. M. Whitesides, Adv. Mater. 2013, 25, 205. 
 
[14] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X.  
 
Chen, M. Wang, G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 20400. 
 
[15] C. D. Onal, X. Chen, G. M. Whitesides, D. Rus, in International Symposium on  
 
Robotics Research (ISRR), Flagstaff, Az, USA, 2011. 
 
[16] A. D. Marchese, C. D. Onal, D. Rus, in 2011 IEEE/RSJ International Conference on 
 
Intelligent Robots and Systems, San Francisco, CA, USA, 2011, pp. 756. 
 
[17] K. Suzumori, S. Endo, T. Kanda, N. Kato, H. Suzuki, in IEEE International  
 
Conference on Robotics and Automation Roma, Italy, 2007, pp. 4975. 
 
[18] R. V. Martinez, C. R. Fish, X. Chen, G. M. Whitesides, Adv. Funct. Mater. 2012, 22,  
 
1376. 
 
[19] I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, J. A. Rogers,  
 
Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 1788. 
 
[20] S. A. Morin, R. F. Shepherd, S. W. Kwok, A. A. Stokes, A. Nemiroski, G. M.  
 
Whitesides, Science 2012, 337, 828. 
 
[21] R. F. Shepherd, A. A. Stokes, J. Freake, J. Barber, P. W. Snyder, A. D. Mazzeo, L.  
 
Cademartiri, S. A. Morin, G. M. Whitesides, Angew. Chem. Int. Ed. 2013, 52, 1; Angew. 
 
Chem. 2013, 125, 2964. 
 
[22] B. A. Trimmer, H.-T. Lin, A. Baryshyan, G. G. Leisk, D. L. Kaplan, in The Fourth  
 
IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechanics, Roma,  
 
Italy, June 2012, pp. 599. 



 Submitted to  

���16������16�� 

 
[23] H. Wei, Y. Chen, J. Tan, T. Wang, IEEE/ ASME Transactions on Mechatronics 2011,  
 
16, 745. 
 
[24] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G. S.  
 
Chirikjian, in IEEE Robotics & Automation Magazine, 2007, pp. 43. 
 
[25] V. Zykov, E. Mytilinaios, B. Adams, H. Lipson, Nature 2005, 435, 163. 
 
[26] Z. Nagy, R. Oung, J. J. Abbott, B. J. Nelson, IEEE/ RSJ International Conference on  
 
Intelligent Robots and Systems 2008, 1915. 
 
[27] M. Boncheva, S. A. Andreev, L. Mahadevan, A. Winkleman, D. R. Reichman, M. G.  
 
Prentiss, S. Whitesides, G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3924. 
 
[28] C. Pawashe, E. Diller, S. Floyd, M. Sitti, in IEEE International Conference on  
 
Robotics and Automation, Shanghai, China, 2011. 
 
[29] A. A. Stokes, R. F. Shepherd, S. A. Morin, F. Ilievski, G. M. Whitesides, Soft  
 
Robotics 2013, 1, 70. 
 
[30] a) C. D. Onal, D. Rus, in The Fourth IEEE RAS/EMBS International Conference on  
 
Biomedical Robotics and Biomechantronics, Roma, Italy, 2012, pp. 1038; b) C. D. Onal, D.  
 
Rus, Bioinspir. Biomim. 2013, 8, 026003. 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Submitted to  

���17������17�� 

Figure 1 

N

N
S

S

Elastomer

Side
 Channel 
(Air OFF)

Elastomer

Magnetic 
Pole

Thermo-
plasticsPneumatic

Channel
Pneumatic

Channel

Thermo-
plastics Central

Channel

Side
 Channel 
(Air ON)

NdFeB 
Ring

Magnets

NdFeB 
Ring

Magnets

a b c

d e f

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 Submitted to  

���18������18�� 

Figure 1. Basic design of magnetic connectors: (a) a soft connector, (b) a hard connector, and 

(c) a hybrid inflatable connector. Each connector contains a NdFeB ring magnet and a 

pneumatic channel passing through the center of the embedded magnet. Self-alignment of the 

hollow centers of the ring magnets forms a continuous conduit between modules. (d) 

Alignment of two soft modules by the magnetic fields. (e) Alignment of a soft and a hard 

module. (f) Pneumatic actuation of the integrated bladder of an inflatable connector (c) via the 

side channel. 
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Figure 2 
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Figure 2. Magnetic attraction force against tensile and shear load as a function of distance of 

separation between two NdFeB ring magnets. Legends show the various combinations of the 

magnetic pair used in each measurement. S, M, and L represent ring magnets of the following 

dimensions (O.D. × I.D. × thickness): 1/4" × 1/8” × 0.1”, 3/8" × 1/8” × 0.06”, and 3/8" × 1/8” 

× 0.1” respectively. Prefixes h (hard) and s (soft) indicate the material of the module in which 

a ring magnet was embedded. Shown on the right of each panel is a simplified schematic of 

the relative displacement between two  magnets under applied load. (a) Magnetic attraction 

force against tensile load. (b) Magnetic attraction force against shear load. “Tentacle” 

represents the magnetic connection between a soft tentacle and a hard central connector and it 

contained four pairs of ring magnets (i.e. 4 × sS_hS). 
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Figure 3 
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Figure 3. Assembly of soft modules using ring magnets. (a, f) Individual soft actuators before 

assembly.  (b) A vertically suspended assembly of two soft legs, each embedded with the 

same but oppositely oriented NdFeB ring magnet. (c–e) Pneumatic actuation of an assembly 

of two soft legs. (c, d) Strain-limiting layers (SLL) located on the opposite face of a vertically 

(c) and a horizontally (d) suspended assembly. (e) SLL on the same face of an assembly 

suspended horizontally. (g) A vertically suspended soft machine comprising a soft tentacle 

and a soft gripper. (h–j) Introducing compressed air through the tubing embedded in the 

central channel of soft tentacle actuated the magnetically attached gripper to pick up a sphere. 
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Figure 4 
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Figure 4. Re-configuration and locomotion of hybrid robots. (a) A hexapedal robot. (b, c) 

Quadrupeds with different distribution of soft legs around a hexagonal body. (d-f) Quadruped 

assembled from (d) legs of different sizes, (e) legs made of silicone-paper composite, or (f) 

legs with spikes. Inset of (f) shows an expanded view of a portion of a spiky leg.  (g–k) 

Locomotion of a tethered hybrid quadruped on a flat, rigid, non-slippery surface. Time (t) is 

indicated at the bottom left of each panel. (l–p) Locomotion and remote disassembly of a 

hybrid hexpedal robot. Insets at the top and the bottom right corners of panels l–p correspond 

to the top view and the schematic of the state of actuation of the various modules respectively. 

Soft legs (L and R) in contact with the inflatable connectors are colored: non-actuated states 

are blue and actuated states are red; these legs were actuated via the central channels of the 

inflatable connectors. The actuated states of the front and back legs (white rectangular blocks) 

during locomotion are omitted for clarity. The integrated bladders of the inflatable connectors 

were pneumatically actuated via the side channels: a cross at the center of small rectangle 

represents non-actuated state of the integrated bladder while a circle represents its actuated 

state. 
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Figure 5 
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Figure 5. A quadruped walker equipped with a hybrid flexible optical sensor surveys its 

surrounding environment. Each inset at the top right corner of Panels c–g shows the schematic 

representation of the state of actuation of the side channels of the soft tentacle. Each colored 

rectangle represents a side channel: non-actuated channels are blue and actuated channels are 

red. (a) Modules of a mobile surveyor. (b) An assembled mobile surveyor. Inset of (b) shows 

the top expanded view of the central connector and the magnetic configuration of the four 

embedded ring magnets towards the center. (c–f) Inflating a side channel individually caused 

the tentacle to bend towards the non-actuated channel on the opposite end (maximum degree 

of bending from the longitudinal axis ~120°). (g) Simultaneous actuation of two neighboring 

side channels with equal pressure bent the tentacle along the plane bisecting the angle formed 

between the two channels and the central channel. (h–i) The surveyor moved towards a white 

Styrofoam® cup. (j) Actuation of the soft tentacle positioned the video camera to view the 

interior of the cup. Bottom left inset of Panel j shows a message, “GMW Gp”, hidden inside 

the cup as viewed from the video camera mounted at the central channel of the soft tentacle.  
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Figure 6 
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Figure 6. Self-alignment of ring magnets enabled remote assembly of soft actuators, and 

connection of pneumatic channels for actuation of a soft-hard porter. Panels a–h show the top 

perspective view of the robot. Insets at the bottom left corner of panels b–h show the state of 

actuation of side and central channels of the soft tentacle. The colored circle at the center 

represents the central channel while each colored rectangle represents one of the four side 

channels of the soft tentacle. Non-actuated states are blue while actuated states are red. 

Notations F, B, R, L denote the front, back, right, and left of the robot. Insets at the top right 

corner of panels b–g show the expanded front view of the robot. (a) A pneumatically actuated 

quadrupedal porter moved towards its target (green sphere). (b) Pneumatically actuated soft 

tentacle positioned its apex to connect a soft gripper embedded with a ring magnet. (c–e): The 

assembled tentacle-gripper picked up, and placed the green sphere into the left container for 

transport. (f, g): After moving forward for a short distance, the robot stopped. Actuations of 

the inflatable adaptors unloaded the cargo together with the containers. (h):  Robot continued 

its forward trajectory after the delivery of cargo had been completed. 
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Reconfigurable, hybrid robots are modularly assembled from soft actuators and hard 
structural elements using magnetic couplers. These robots can be modified manually by hand, 
or remotely using pneumatic controls. This method simplifies the integration of soft actuators 
of different structural designs and material composition, and thus, it enables rapid prototyping 
more advanced robots. 
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