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Magnetic-Based Motion Control of Paramagnetic

Microparticles with Disturbance Compensation

Islam S. M. Khalil∗, Leon Abelmann† and Sarthak Misra‡

Magnetic systems have the potential to control the motion of microparticles and microrobots during targeted drug delivery.
During their manipulation, a nominal magnetic force-current map is usually derived and used as a basis of the control system
design. However, the inevitable mismatch between the nominal and actual force-current maps along with external disturbances affect
the positioning accuracy of the motion control system. In this work, we devise a control system which allows for the realization of the
nominal magnetic force-current map and the point-to-point positioning of paramagnetic microparticles. This control is accomplished
by estimating and rejecting the two-dimensional disturbance forces using an inner-loop based on a disturbance force observer. In
addition, an outer-loop is utilized to achieve stable dynamics of the overall magnetic system. The control system is implemented
on a magnetic system for controlling microparticles of paramagnetic material, which experience magnetic forces that are related to
the gradient of the field-squared. We evaluate the performance of our control system by analyzing the transient- and steady-state
characteristics of the controlled microparticle for two cases. The first case is done without estimating and rejecting the mismatch
and the disturbance forces, whereas the second case is done while compensating for these disturbance forces. We do not only obtain
17% faster response during the transient-state, but we are also able to achieve 23% higher positioning accuracy in the steady-state
for the second case (compensating disturbance forces). Although the focus of this paper is on the wireless magnetic-based control
of paramagnetic microparticle, the presented control system is general and can be adapted to control microrobots.

Index Terms—Wireless, magnetic, micromanipulation, model mismatch, disturbance force observer, disturbance compensation.

I. INTRODUCTION

PARAMAGNETIC microparticles and nanoparticles have

the potential to perform localized drug delivery by se-

lectively targeting diseased tissue [1]-[6]. These particles are

steered under the influence of the applied magnetic fields. In

manipulating these particles, a magnetic force-current map has

to be determined and used as a basis of the control system

design [7], [8]. Derivation of the correct force-current map

is not simple since weak magnetic field (less than 3 mT)

results in constant susceptibility and permeability, whereas

stronger magnetic fields do not guarantee the same result [9].

The most often cited force-current map under weak magnetic

field is proven not to match the experimental data due to the

absence of the initial magnetization [10]. However, accounting

for the non-zero initial magnetization corrects the expression

of the magnetic force experienced by microparticles under the

influence of weak magnetic fields.

Some researchers preferred the utilization of spherical

microparticles (Fig. 1) since the direction of magnetization

does not have to be specified [11]-[15]. Microparticles with

irregular shapes under uniform applied fields have magne-

tization force which differs throughout their bodies in an

unknown manner. This irregularity has a disadvantage for

microparticles or microrobots whose surface is not of second

degree (ellipsoid has surface with second degree) [16], [17].

Material also affects the relation between the applied field and
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Fig. 1. Magnetic-based manipulation system with inner- and outer-loops:
The input disturbance force (d(P)) represents the model mismatch and
external disturbance forces on the system. The output of the disturbance
force observer (D(s)) compensates for the model mismatch and the external
disturbances, whereas the output of the control system (C(s)) stabilizes
the overall dynamics of the system. The inset shows a 100 µm spherical
paramagnetic microparticle moving towards a reference position (small blue
circle) under the influence of the applied magnetic fields. The large blue
circle indicates the microparticle and is assigned by our feature tracking
software [12]. The red line represents the velocity vector of the microparticle.
The actual and reference position vectors are represented by P and Pref ,
respectively. The electromagnets are labeled with the letters A, B, C and D.

the magnetization of the microparticle. Microparticles with

soft-magnetic material for instance have non-linear relation

between the applied magnetic field and the magnetization.

Designing a microparticle or a microrobot to be satisfactory

under all conditions is almost impossible. Fabrication of

soft-magnetic microparticles for instance is relatively easy.
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However, its magnetization is non-linearly proportional to the

applied magnetic fields. Therefore, the governing equations

relating the applied magnetic field and the magnetization (or

the resulting magnetic force and torque) are not accurate. It

would be natural to devise control systems with relatively

large stability margins to tolerate the model mismatch and

the dynamical uncertainties.

This work is concerned with the design of a control system

for magnetically-guided paramagnetic microparticles. First the

governing equation in terms of magnetic force-current map

is derived. This equation depends on the field-current map

of our magnetic system, shown in Fig. 1. We model this

map using finite element (FE) analysis, then this model is

verified by measuring the actual fields within the workspace of

our magnetic system. This verification results in an inevitable

mismatch for the field-current map, which in turn results in a

mismatch for the force-current map. The mismatch between

the governing equation and the actual system along with the

external disturbances and drag forces are modeled as an input

disturbance force to the governing motion equation of the

paramagnetic microparticle. An inner-loop is devised to esti-

mate this disturbance force and convert it into a compensating

control input [18], [19]. This inner-loop compensates only for

the disturbance forces along x- and y-axis, since our magnetic

system is designed for the manipulation of microparticles in

a two-dimensional workspace. In addition, an outer-loop is

devised to achieve stability of the overall magnetic system

based on specific transient- and steady-state characteristics.

The experimental work provided in this paper is performed

on a magnetic system which has a similar configuration to

the lower set of OctoMag [7]. The merits and novelty of our

work are due to the design of a closed-loop control system for

microparticles of paramagnetic material. This system allows

for the point-to-point positioning of these microparticles and

the simultaneous rejection of the disturbance forces.

The remainder of this paper is organized as follows: In

Section II, we discuss the theoretical background pertaining

to the modeling of paramagnetic microparticles under the

influence of external magnetic fields. Section III provides the

model mismatch and disturbance estimation analysis, and the

design of a disturbance force observer [20]. In Section IV, a

motion control strategy is presented, based on the estimation

and compensation of the disturbance force using an inner-

loop, along with achieving stability of the magnetic system

using an outer-loop. Description of the magnetic system and

the experimental results are provided in Section V. Finally,

discussion about the presented control strategy, conclusions

and future work are provided in Section VI.

II. MAGNETIC FORCE MODELING

The planar magnetic force (F(P) ∈ R
2×1) acting on a

magnetic dipole is given by

F(P) = ∇(m(P) ·B(P)), (1)

where m(P) ∈ R
2×1 and B(P) ∈ R

2×1 are the permanent

or induced magnetic dipole moment of the microparticle and

the induced magnetic field at point (P ∈ R
2×1), respec-

tively [21], [22]. The microparticles we consider in this work

have spherical geometry. Therefore, their induced magnetic

dipole moment can be determined as the volume integral of

the induced magnetization (M(P)) [23]

m(P) =

∫

V

M(P)dV =
4

3
πr3pM(P), (2)

where V and rp are the volume and radius of the spherical mi-

croparticle, respectively. The induced magnetization is related

to the magnetic field strength (H(P)) by M(P) = χmH(P),
where χm is the magnetic susceptibility constant [24]. The

induced magnetization vector (M(P)) always aligns itself

with the applied field since there is no shape anisotropy for the

spherical microparticles. This observation simplifies the model

as the microparticles will be subjected to pure force and zero

magnetic torque. However, the control system we consider in

this work is fairly general and can be implemented on non-

spherical microparticles which experience magnetic force and

torque. Rewriting (2) as

m(P) =
4

3
πr3pχmH(P) =

1

µ

4

3
πr3pχmB(P), (3)

where µ is the permeability coefficient given by, µ = µ0(1 +
χm), and B(P) = µH(P). Further, µ0 is the permeability

of vacuum (µ0 = 4π × 10−7T.m/A). Substitution of (3) in

(1) yields

F(P) =
4

3

1

µ
πr3pχm∇

(
BT(P)B(P)

)
. (4)

In this work, the magnetic field is generated using air-

core electromagnets, and does not allow the microparticles

to reach saturation. Therefore, the magnetic field can be

determined by the superposition of the contribution of each

of the electromagnets [7]

B(P) =
e∑

i=1

Bi(P), (5)

where e is the number of electromagnets within the magnetic

system. The magnetic field (Bi(P)) is linearly proportional

to the applied current (Ii) at the ith electromagnet. Therefore,

(5) can be rewritten as

B(P) =
e∑

i=1

B̃i(P)Ii = B̃(P)I, (6)

where B̃(P) ∈ R
2×e is a matrix which depends on the position

at which the magnetic field is evaluated and I ∈ R
e×1 is a

vector of the applied current. The magnetic field due to each

electromagnet is related to the current input by B̃i(P).
The FE analysis of the field-current map (6) is provided

in Fig. 2. This map has to be constructed to determine the

gradient of the magnetic field-squared (∇(BT(P)B(P))),
which is used in the determination of the magnetic force-field

map (4). The FE model is developed for a magnetic system

with four orthogonally-oriented air-core electromagnets. As

shown in Fig. 2, the FE model provides the magnetic fields,

the field-squared and the gradients of the field-squared in a

workspace of 40 × 40 mm2 within the center of our magnetic
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Fig. 2. Results of the finite element (FE) analysis for the gradients of the field-squared in our magnetic system. This system consists of four orthogonally-
oriented air-core electromagnets. The FE analysis describes the magnetic field, the field-squared and the gradient of the field-squared within an area of
40× 40 mm2 when a representative current vector of [0 0 0 1]T A is applied. The entries of the representative current vector are applied to electromagnets
A, B, C and D, respectively. The FE results are utilized in the realization of the force-current map (10) and its inverse (13). The gradients of the magnetic
field-squared are almost constant within the center of the workspace of our magnetic system (2.4 × 1.8 mm2). This observation simplifies the realization
of the disturbance force observer and the overall control system since the gradients of the field-squared do not have to be calculated at each point of the
workspace. Bx, By and Ω are the components of the magnetic field along x-axis, y-axis and the sum of the square of these components, respectively. The
FE model is created using Comsol Multiphysicsr (COMSOL, Inc., Burlington, U.S.A).

system, shown in Fig. 1. The FE model is verified experi-

mentally, and the deviation between the calculated data of the

FE model and the measured values are provided in Table. I.

The deviation in the magnitude and angle are calculated for

12 representative points (Fig. 3) that span the workspace of

our magnetic system [7], [8]. We consider this deviation as a

model mismatch which has to be estimated and compensated

by the control system.

The two-dimensional components of the magnetic field can

be written, with respect to a basis of orthogonal vectors (x̂

and ŷ), as

B(P) = Bxx̂+Byŷ. (7)

The gradient of the magnetic field-squared
(
BT(P)B(P)

)
can

be calculated as follows:

∇
(
BT(P)B(P)

)
= ∇

(
B2

x +B2
y

)
= ∇(Ω) (8)

=
∂Ω

∂x
x̂+

∂Ω

∂y
ŷ, (9)

where Ω = B2
x + B2

y is a scalar function. Substituting (6) in

(4) yields

F(P) = β∇
(
ITB̃T(P)B̃(P)I

)
, (10)

where β is a constant and is given by

β ,
4

3

1

µ
πr3pχm. (11)

Therefore, the components of the magnetic force along x- and

y-axis are given by

Fj(P) = βIT

(
∂(B̃T(P)B̃(P))

∂j

)

︸ ︷︷ ︸
,Ψj

I for j = x, y. (12)

where Fj(P) is the magnetic force component for (j = x, y).
The forward force-current map (12) provides the magnetic

force experienced by the microparticle due to a set of applied

currents. The proposed control system utilizes this map along

with its inverse (given a set of reference forces, we have to

solve (12) for I). The gradients along x- and y-axis within

the center of the workspace are almost constant, as shown

in Figs. 2(c) and (f), respectively. This observation simplifies

the force-current map (12). Nevertheless, the inverse of the

quadratic matrix equation ((10) or (12)) has to be solved for

the current vector (I).
Necessary and sufficient conditions for the existence of a

particular solution for quadratic matrix equations are reported

by Shurbet et al. [25]. These conditions provide a solution

for the inverse of our force-current map (12) of the follow-

ing form:

X = Ψ
†
j (FjΨj)

1

2 + (Π−Ψ
†
jΨj)

[
Fj((FjΨj)

1

2 )†

+U
(
Π− (FjΨj)

1

2 ((FjΨj)
1

2 )†
)]

,

(13)
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TABLE I
EXPERIMENTAL VALIDATION OF THE FINITE ELEMENT (FE) ANALYSIS BY CALCULATING THE MAGNITUDES (∥ · ∥) AND ANGLE (∠(·)) DEVIATIONS

BETWEEN THE MAGNETIC FIELDS PROVIDED BY THE FE ANALYSIS (BF) AND THE MEASURED MAGNETIC FIELDS (BM). MEASUREMENTS ARE CARRIED

OUT AT 12 REPRESENTATIVE POINTS (Pl FOR (l = 1, . . . , 12)) WHICH SPAN THE WORKSPACE OF THE MAGNETIC SYSTEM USING A CALIBRATED

THREE-AXIS HALL MAGNETOMETER (SENTRON AG, DIGITAL TESLAMETER 3MS1-A2D3-2-2T, SWITZERLAND). PLANAR COMPONENTS OF THE

MAGNETIC FIELD ARE ONLY PROVIDED SINCE THIS WORK ADDRESSES MOTION CONTROL OF MICROPARTICLES IN A TWO-DIMENSIONAL WORKSPACE.

Point P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

BF
[mT]

[
55.2

−33.6

] [
25

−11.5

] [
12.5

−4.8

] [
6.5

−2.1

] [
82.3

0.1

] [
31.4

−0.6

] [
14.4

−0.4

] [
7.5

0.0

] [
55.2

33.6

] [
25

11.5

] [
12.5

4.8

] [
6.5

2.1

]

BM
[mT]

[
48.4

−28.1

] [
22.9

−9.9

] [
12.0

−4.1

] [
7.0

−1.8

] [
73.6

0.2

] [
29.4

0.1

] [
14.2

0.1

] [
7.9

0.1

] [
56.2

27.1

] [
24.8

9.4

] [
12.8

3.9

] [
7.4

2.1

]

∥BF∥
∥BM∥

1.15 1.10 1.05 0.94 1.11 1.06 1.01 0.94 1.03 1.03 1.00 0.86

∠(BF,BM) 1.24◦ 1.38◦ 2.24◦ 3.64◦ 0.09◦ 1.35◦ 2.08◦ 0.75◦ 5.84◦ 4.13◦ 4.25◦ 2.15◦

where Π ∈ R
e×e is the identity matrix. Further, U ∈ R

e×e is

arbitrary matrix. The last column of the matrix (X ∈ R
e×e)

represents a solution of the inverse force-current map (12).

The square root in (13) is calculated by the diagonalization

of (Ψj) using a matrix Vj , where Vj ∈ R
e×e is a matrix

of the eigenvectors of Ψj . The square root of (Ψj) is

then calculated using V−1
j D

1

2

j Vj , where Dj is a diagonal

matrix of the eigenvalues of Ψj . Simulation results of the

inverse map are provided in Fig. 4. Given an arbitrary force

component (Fj for j = x, y), we calculate the corresponding

current vector using (13). In order to verify that (13) indeed

provides correct results (vector of current values at each of

the electromagnets), the given arbitrary force component is

compared to the calculated force using the forward force-

current map when the calculated currents are provided as

inputs to (12). The difference between the input and the

calculated forces for 20 arbitrary force components are shown

in Fig. 4(a). We observe that the maximum error between

the calculated and input magnetic forces is 0.35 nN (index

of simulation 18). Moreover, the inverse force-current map is

evaluated for a sinusoidal magnetic force with an exponential

envelope
(
Fj =

1
βn

(0.01 + 0.01 sin(2t) exp(−0.12t))
)

. The

input force is plotted against the calculated force, as shown

in Fig. 4(b). The calculated currents at each of the electro-

magnets (e = 4) are shown in Fig. 4(c). The error between

the input and calculated force has maximum value of 0.01 nN

(force error of 0.01 nN is equivalent to norm-2 of current

error of 0.037 A) when a sinusoidal force input is provided.

The quadratic matrix equation (12) is solvable if the matrix

(FjΨj)
1

2 exists [25]. Therefore, we attribute the maximum

error in Fig. 4(a) to this condition. In this simulation, the e×e
matrix (B̃T(P)B̃(P)) is provided by the FE model.

III. MODEL MISMATCH AND DISTURBANCE

COMPENSATION: INNER-LOOP

During the navigation of a microparticle in a fluid, it

experiences drag forces and external forces. We model these

forces as a disturbance force input (d(P)). The estimation

and compensation this disturbance force would allow for the

realization of the nominal model of the magnetic system. The

Fig. 3. Measurement of the magnetic field within a grid which spans the
workspace of the magnetic system (b = 10 mm) to validate the finite element
model. The components of the magnetic field are measured at each point of
the grid using a calibrated three-axis Hall magnetometer (Sentron AG, Digital
Teslameter 3MS1-A2D3-2-2T, Switzerland).

dynamics of the microparticle is given by

F(P)− d(P) = MP̈, (14)

where M is the mass of the microparticle. Further, d(P) ∈

R
2×1 is the planar disturbance force input. This disturbance

force can be calculated using the inverse of the nominal model

(Gn(s)) and the nominal magnetic force input (Fn(P)) as fol-

lows:

do(P) = Fn(P)−G−1
n (s)P = ∆G(s)P+ d(P); (15)

where do(P) ∈ R
2×1 is the calculated disturbance force based

on the nominal model and the nominal magnetic force. Further,

Gn(s) =
1

Mns2
and ∆G(s) = G−1(s)−G−1

n (s). (16)

In (16), Mn is the nominal mass of the microparticle. The

nominal magnetic force is given by

Fn(P) = βn∇

(
ITB̃T

n (P)B̃n(P)I
)
, (17)

where the subscript (n) denotes the nominal values of the

parameter (β) and the matrix (B̃T(P)B̃(P)), respectively.

The calculated disturbance force (do(P)) consists not only

of the disturbance force (d(P)) but also of the perturbation

(∆G(s)) between the actual system and the nominal model

based on (15). The inverse of the nominal model (G−1
n (s))

cannot be realized since it includes derivatives. Therefore,
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(a) Input versus calculated forces (b) Input versus calculated forces (c) Calculated currents

Fig. 4. Calculation of the current vector using the inverse of the force-current map (12). The quadratic matrix equation is used to determine the current at
each of the four electromagnets [25]. (a) The current vector (I ∈ R

4×1) is calculated for 20 arbitrary force components. The input forces are compared to the
computed forces using the calculated current vector to verify the result of the inverse force-current map. The black circles represent the values of the arbitrary
input forces, whereas the red squares represent the calculated forces from the computed current vectors. (b) Input versus calculated force values. The dashed
black lines represent the input values of the force, whereas the red line represents the calculated force using the currents which are determined by the inverse
force-current map. The deviation between the input and calculated forces has maximum calculation error of 0.01 nN which corresponds to norm-2 of current
error of 0.037 A. The input force has the following representation: Fj = 1

βn
(0.01 + 0.01 sin(2t) exp(−0.12t)) (c) Currents are calculated by the solution

(13) of the inverse of the force-current map for the time-varying force with an exponential envelope. Ii for (i = 1, . . . , e) represents the current at the ith
electromagnet of our magnetic system.

the disturbance force must be determined through a low-pass

filter (Q(s))

d̂(P) = Q(s)do(P) = Q(s)
(
Fn(P)−G−1

n (s)P
)
, (18)

where d̂(P) ∈ R
2×1 is the estimated disturbance force through

the low-pass filter. Degree of Q(s) depends on the order

of the nominal plant (Gn(s)). Integrating the disturbance

force observer (18) with a feedback control system affects

its stability and performance. This effect can be shown by

analyzing the frequency response of [26]

Z(s) =
Q(s)

1−Q(s)
G−1

n (s), (19)

In (19), Z(s) is a transfer function that determines the

characteristics of the observer-based feedback control system.

Fig. 5 provides the frequency response of Z(s) for different

orders of Q(s). Increasing the order of Q(s) allows for the

realization of the nominal model for different types of plants.

However, the corresponding stability deteriorates due to the

increased phase lag, as shown in the phase diagram of Fig. 5.

This tradeoff between stability and performance has to be

considered during the design of (18) by selecting the proper

order and gains of its associated low-pass filter (Q(s)).
The purpose of estimating the disturbance forces (experi-

enced by the microparticle) is to achieve robustness of the

motion control system by rejecting these disturbances using

an inner-loop (Fig. 6). This robustness can be achieved by

converting the estimated disturbance force into compensating

control input at each of the electromagnets of the magnetic

system. The force-current map (12) is derived in Section II.

Therefore, the compensating current input can be determined

by solving (10) when F(P) is set to d̂(P).
Implementation of the observer (18) requires measuring one

of the outputs of the magnetic system based on the available

measurement (position of the microparticle). In addition, the

input current or force has to be known and used in the

realization of (18). In the previous analysis, the measurement

noise is ignored. However, in practice it has a significant

influence on the performance of the observer-based feedback

system. Therefore, we rewrite (18) by accounting for the

measurement noise (ξ)

d̂(P) = Q(s)
(
Fn(P)−G−1

n (s)(P− ξ)
)
. (20)

Feeding the estimated disturbance force into a feedback con-

trol system would result in the following output position [26]:

P =
Gn(s) (Iref − (1−Q(s))d(P)) +Q(s)ξ

1 + (1−Q(s))∆G(s)Gn(s)
, (21)

where Iref is the control input of an outer-loop which will

be determined. Equation (21) shows that, Q(s) represents a

sensitivity function to the sensor noise, whereas (1 − Q(s))
represents a sensitivity function to the mismatch between the

system and the nominal model. Therefore, due to the presence

of inevitable measurement noise (ξ), the bandwidth of the

observer (20) is limited by the bandwidth of the measurement

noise. The tradeoff (between stability and performance) and

constraint (limits on the bandwidth) analyzed by (19) and (21),

respectively, must be considered during the design of the

disturbance force observer. This can be accomplished by

selecting a proper order of Q(s) and calculating its associated

gains. We observe that a first-order low-pass filter with a

cut-off frequency of 30 rad/s, satisfies the tradeoff between

stability and performance. We benefit from the low frequency

range at which manipulation of microparticles generally oc-

curs by filtering the high frequency noise without affecting

the performance. Since the effect of the measurement noise

is determined by (21), we ignore its effect in the following

analysis for simplicity. Rewriting (18) using a first-order low-

pass filter for Q(s) [20]

˙̂
d(P) = −gd̂(P) + g

(
Fn(P)−MnP̈

)
, (22)
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Fig. 5. Characteristics of the observer-based feedback control system for
different orders of Q(s). The order of the observer affects the stability of
the observer-based feedback control system. The frequency response of Z(s)
is plotted for different degrees of Q(s). The index of the transfer function
Zk(s) stands for the order of Q(s) (k = 1 indicates that Q(s) is a first-order
transfer function).

where Mn and g are the nominal mass of the microparticle and

the cut-off frequency of the first-order low-pass filter. Nominal

parameters and variables (denoted with the subscript n) are

used in the realization of the disturbance force observer. The

disturbance force estimation error (ed = d(P) − d̂(P)) can

be determined using (14) and (18). Therefore, the estimation

error dynamics is given by

ėd = ḋ(P)−
˙̂
d(P). (23)

We further assume that the disturbance force varies slowly

(ḋ(P) = 0). Therefore, the estimation error is

ėd + ged = 0. (24)

This error dynamics indicates that the estimated disturbance

force will converge to the actual one in finite time. Neverthe-

less, we define auxiliary functions to avoid the realization of

the estimated disturbance force through the acceleration of the

microparticle [14]

Γ = d̂(P)− Φ(Ṗ), (25)

where Γ and Φ(Ṗ) are auxiliary functions. In (25), Γ provides

a change of variables to avoid measuring the acceleration

of the microparticle, whereas Φ(Ṗ) is a function of the

velocity of the microparticle (to be determined). The time

derivative of (25) yields

Γ̇ =
˙̂
d(P)−

∂Φ(Ṗ)

∂Ṗ
P̈. (26)

Substituting (25) and (26) in (22)

Γ̇+
∂Φ(Ṗ)

∂Ṗ
P̈ = g

(
Fn(P)−MnP̈

)
−g
(
Γ+Φ(Ṗ)

)
. (27)

Setting the derivative of the auxiliary function,
∂Φ(Ṗ)

∂Ṗ
=

−gMn, yields the following representation of the disturbance

Fig. 6. Disturbance force estimation and compensation. The force-current
map along with its inverse are utilized to determine the estimated disturbance
force and provide a compensating current input (Ic) to reject the disturbance
force input (d(P)). The observer is based on the nominal values of the
parameters of the magnetic system denoted with the subscript n. The matrix

(B̃T
n (P)B̃n(P)) does not have to be evaluated at each point of the workspace

since it has almost a constant value based on the finite element analysis

of our magnetic system. d(P), do(P) and d̂(P) represent the input
disturbance force, calculated disturbance force using the nominal model of
the system and the estimated disturbance force through the low-pass filter
(Q(s)), respectively. The turquoise blocks indicate that the input is evaluated
based on (17).

force observer using (Γ):

Γ̇ = −g
(
Γ+Φ(Ṗ)

)
+ gFn(P). (28)

where the auxiliary function Φ(Ṗ) is

Φ(Ṗ) = −gMnṖ. (29)

Taking the Laplace transform of (28) without changing the

notations of the variables

Γ =
g

s+ g

(
Fn(P)− Φ(Ṗ)

)
. (30)

Finally, substituting (30) in (25) yields

d̂(P) =
g

s+ g

(
Fn(P)− Φ(Ṗ)

)
+Φ(Ṗ). (31)

Estimating the disturbance force (d̂(P)) requires measur-

ing the velocity of the microparticle and the input current

vector. In (31), the nominal magnetic force (Fn(P)) can be

represented explicitly in terms of the input current (I) using

the nominal forward force-current map (17). The disturbance

force observer is shown in Fig. 6. The force-current map is

used to convert the estimated disturbance force into equivalent

currents to simultaneously attenuate the disturbance forces. As

shown in Fig. 6, the disturbance force observer depends on the

nominal values of the parameters of the magnetic system. The

deviation between these parameters and their actual values is

modeled as a disturbance force in the magnetic system. The

disturbance force observer just represents an inner-loop for the

control system. Stability of the overall control system must be

achieved by an outer-loop.
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Fig. 7. Overall structure of the control system: The control system consists of
inner- and outer-loops to compensate for the disturbances and achieve stability,
respectively. The outer-loop control transfer function (C(s)) is determined
using (35). The disturbance force observer is based on the nominal values
of the parameters of the magnetic system denoted with the subscript n. The

matrix (B̃T
n (P)B̃n(P)) does not have to be evaluated at each point of the

workspace since it has almost a constant value based on the finite element

analysis of our magnetic system. d(P), do(P) and d̂(P) are the input
disturbance force, calculated disturbance force using the nominal model of
the magnetic system and the estimated disturbance force through the low-
pass filter (Q(s)), respectively. The turquoise blocks indicate that the input
is evaluated based on (17) and (35).

IV. MOTION CONTROL DESIGN: OUTER-LOOP

Dynamics of our magnetic system has to be stabilized by

an outer-loop control input. The outer-loop is necessary since

a stable equilibrium point under static magnetic forces cannot

be achieved [27]. This claim can be verified by calculating

the divergence of the magnetic force given by (4) at a point

within the workspace of our magnetic system. By considering

a point (P) under static force, i.e., F(P) = 0, the necessary

condition for this point to be a stable equilibrium point is

∇ ·

(
4

3

1

µ
πr3pχm∇

(
BT(P)B(P)

))
< 0. (32)

Since all the arguments of (32) are positive (with the exception

of χm for diamagnetic materials, which are not considered in

our work) [24], stable equilibrium point cannot be achieved

without feedback control inputs. Therefore, we devise a control

law of the following form:

I = Ic + Iref , (33)

where Ic and Iref are the control inputs of the inner- and outer-

loops, respectively. Using the estimated disturbance force

(d̂(P)) by (31), we can calculate Ic using

d̂(P)− βn∇

(
ITc B̃

T
n (P)B̃n(P)Ic

)
= 0. (34)

The estimated disturbance force-current map (34) is solved us-

ing (13) and the two-dimensional components of the estimated

disturbance force.

The control input of the outer-loop has to achieve stability

for the overall magnetic system. Therefore, we devise an outer-

Fig. 8. Microparticle moving towards a reference position under the influence
of the controlled fields generated by the control law (33). The microparticle
tracks the given reference position at velocity of 98 µm/s and settling time of
3.15 s. In the steady-state, the position tracking error is 10 µm. The large blue
circle indicates the tracked microparticle by our feature tracking software [12],
whereas the small blue circle indicates the reference position. The velocity
vector of the microparticle is represented by the red line. The controller gains
are: kp1 = kp2 = 0.1 s−2 and kd1 = kd2 = 0.5 s−1. The cut-off frequency
of the low-pass filter associated with the disturbance force observer is 30 rad/s.

loop of the following form:

Fref(P) = Mn

(
P̈ref −Kdė−Kpe

)
, (35)

where Fref(P) and P̈ref are the outer-loop force and the

reference acceleration input, respectively. Further, ė = Ṗref −

Ṗ, is the velocity tracking error of the microparticle and

similarly, e = Pref − P, is the position tracking error. The

reference position vector (Pref ) and velocity vector (Ṗref ) are

known beforehand. The controller gain matrices (Kp > 0
and Kd > 0) must achieve stable tracking error dynamics.

The gain matrices of (35) are

Kp =

[
kp1 0

0 kp2

]
and Kd =

[
kd1 0

0 kd2

]
, (36)

where kpi and kdi, for (i = 1, 2), are the proportional and

derivative gains, respectively. The outer-loop control input

(Iref) can be calculated by

Fref(P)− βn∇

(
ITrefB̃

T
n (P)B̃n(P)Iref

)
= 0. (37)

The control input (33) results in the following magnetic force:

F(P) = d̂(P) + Fref(P). (38)

Substituting (31), (35) and (38) into (14), we obtain

ë+Kdė+Kpe = 0. (39)

Compensating for the model mismatch and disturbances along

with selecting positive definite control gain matrices (Kp > 0
and Kd > 0), enforces the position tracking error to zero in

finite time based on (39). We assume that the estimated dis-

turbance force converges to the actual one based on (24). The

overall structure of the control system is provided by Fig. 7.
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TABLE II
EXPERIMENTAL PARAMETERS AND CONTROLLER GAINS. THE

CONTROLLER GAINS ARE SELECTED SUCH THAT THE MATRICES (KP)
AND (Kd) ARE POSITIVE DEFINITE.

Parameter Value Parameter Value

max Ii [A] 1.0 max |B(P)| [mT] 15
η [mPa.s] 1.0 max |∇(BT

B)| [mT2/m] 5
rp [µm] 50 µ0 [T.m/A] 4π × 10−7

kp1,2 [s−2] 0.1 χm 0.075

kd1,2 [s−1] 0.5 Mn [kg] 7.33×10−10

g [rad/s] 30 Workspace [mm2] 2.4× 1.8

V. EXPERIMENTAL RESULTS

The experiments are done using a magnetic system with

four orthogonally-oriented air-core electromagnets [12]-[13].

The electromagnets surround a water reservoir, as shown in

Fig. 1. The microparticles utilized throughout our experiments

are super-paramagnetic particles made by embedding mag-

netite (Fe3O4) in a matrix of poly(D,L-lactic acid). According

to the manufacturer (PLAParticles-M-redF-plain from Mi-

cromod Partikeltechnologie GmbH, Rostock-Warnemuende,

Germany), their average diameter is 100 µm , magnetization at

100 mT is approximately 4.3 Am2/kg and they do not saturate

until 1 T. Since the density of the particles is 1.4 ×103 kg/m3,

we estimate the susceptibility χm to be 0.075 (Table II). The

position of the microparticle is tracked using a vision system

embedded to a microscope.

In order to implement our control system, the inner- and

outer-loops are realized. The inner-loop depends on the dis-

turbance force observer (31), whereas the outer-loop stabilizes

the dynamics of the magnetic system using (35). These loops

depend on the position and velocity of the microparticle. The

disturbance force observer depends on the availability of the

outputs of the magnetic system (position or velocity of the

microparticle) along with assuming that the nominal model of

the magnetic force is known a priori. We calculate the velocity

of the microparticle along with the input currents to realize

the disturbance force observer (31). Presence of measurement

noise could deteriorate the performance of the disturbance

force observer and limit its bandwidth, as explained in Sec-

tion III. Therefore, velocity of the microparticle is calculated

using a low-pass filter with a cut-off frequency of 30 rad/s.

The disturbance force observer estimates the components

of the disturbance force along x- and y-axis. Velocities along

these axes are fed into the observer along with the magnetic

force input calculated based on the nominal model (17).

Hereafter, the compensating currents (Ic) is determined by

solving (34). The transfer function of the outer-loop control

system (C(s)) is determined using the control law (35).

The experimental result of the motion control law (33) is

provided in Fig. 8. This control law allows for the tracking

of a reference position within the workspace of the system

while simultaneously compensating for the disturbance force

experienced by the microparticle. As shown in Fig. 8, the

controlled microparticle tracks a 300 µm reference position

(distance between the initial position of the microparticle

and the given reference position) at a velocity of 98 µm/s

TABLE III
CHARACTERISTICS OF THE CONTROL SYSTEM IN THE TRANSIENT- AND

STEADY-STATES. THE TRANSIENT-STATE IS REPRESENTED BY THE

AVERAGE SETTLING TIME AND AVERAGE VELOCITY, WHEREAS THE

STEADY STATE IS REPRESENTED BY THE MAXIMUM ERROR. THE AVERAGE

IS CALCULATED FROM 10 CLOSED-LOOP CONTROL TRIALS WHEN

DISTURBANCE FORCES ARE UNCOMPENSATED AND COMPENSATED.

Criterion Uncompensated Compensated

Average settling time [s] 3.6± 0.4 3.0± 0.3
Average speed [µm/s] 45± 5.8 60± 7.8

Maximum error [µm] 18 14

and settling time of 3.15 s. In the steady-state, the position

tracking error is 10 µm. In order to show that the proposed

control system indeed compensates for the disturbance force,

we investigate its performance in the presence and absence

of the contribution of the inner-loop (this loop estimates the

disturbance force and provides a compensating control input).

Characteristics of the transient- and steady-states are used to

evaluate the performance of the control system in each case.

The experimental validation of the disturbance force com-

pensation by the inner-loop is provided in Figs. 9. Mul-

tiple reference positions are given within the workspace

of our magnetic system. Figs. 9(a), (b) and (c) provide a

representative motion control trial when the output of the

inner-loop is not supplied to the magnetic system, whereas

Figs. 9(a), (b) and (c) provide a representative motion control

trial of the overall control law (33). The position tracking

along x- and y-axis provided in Figs. 9(a) and (b), respectively,

indicate that the control system achieves average settling time

of 3.6 s in the absence of the contribution of the inner-loop.

On the other hand, Figs. 9(d) and (e) indicate that the average

settling time is 3.0 s when the contribution of the inner-loop

is added to the overall control input. In addition, the average

velocity of the microparticle is 45 µm/s in the absence of the

contribution of the inner-loop, whereas the average velocity is

60 µm/s when the disturbance force is compensated using (31).

The average is calculated from 10 motion control trails for

each case. The position tracking errors along x- and y-axis

for the aforementioned two cases are provided in Fig. 9(c)

and Fig. 9(f), respectively. These results show the effect of

the inner-loop on the characteristics of the steady-state. The

control system achieves maximum position tracking error of

18 µm in the absence of the contribution of the inner-loop,

whereas the overall control system (33) achieves maximum

position tracking error of 14 µm in the steady-state. Table III

summarizes the experimental results. We observe that the

microparticle exhibits oscillatory response in the steady-state

as shown in Figs. 9(a) and (b) and Figs. 9(d) and (e). This

response can be explained by (32), which indicates that a

stable equilibrium point cannot be achieved for microparticles

of paramagnetic material without a feedback control system.

VI. DISCUSSION

During the design of controllers for magnetic-based manip-

ulation systems, a magnetic force-current map (and magnetic

torque-current map) has to be realized and used as a basis of

the control system design. This magnetic force-current map
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(a) Position along x-axis (Uncompensated) (b) Position along y-axis (Uncompensated) (c) Position tracking errors (Uncompensated)

(d) Position along x-axis (Compensated) (e) Position along y-axis (Compensated) (f) Position tracking errors (Compensated)

Fig. 9. Representative motion control experimental results of the microparticle under the influence of the applied magnetic fields in the absence and presence of
the contribution of the inner-loop (with disturbance compensation). The microparticle tracks four different points within the planar workspace of the magnetic
system. The reference positions are indicated with ①, ② and ③. The black lines represent the reference set points along x-axis and y-axis, whereas the blue
dashed lines represent the path taken by the microparticle. (a and d) Controlled motion of the microparticle along x-axis. (b and e) Controlled motion of the
microparticle along y-axis. (c and f) Position tracking errors along x- and y-axis. This motion control result is accomplished by the control law (33).

depends on a field-current map. We model this field-current

map by a FE model, and calculate the deviations between

its fields and the actual fields measured by a calibrated Hall

magnetometer. The average deviation in the magnitude and

direction of the magnetic field are 2.3% and 0.7%, respectively.

This average is calculated from a grid of 12 points which

span the workspace of our magnetic system (Table I). The

mismatch between the actual magnetic system and our FE

model, along with the drag forces and any unmodeled dynam-

ics are considered as an input disturbance force on the nominal

magnetic force-current map. Using this map, a disturbance

force observer is designed. This observer allows the estimated

disturbance to converge to the actual disturbance force in finite

time based on (24). The disturbance force observer is further

utilized in the realization of the control system. The control

system employs the disturbance force observer in an inner-loop

to compensate simultaneously for the disturbance force input

(which represents the sum of the aforementioned forces). In

addition, overall stability of the magnetic system is achieved

by an outer-loop. Realization of the proposed control system

relies on the nominal force-current map along with its inverse

map (we have shown through simulation results the solution of

the inverse map). Furthermore, our FE analysis shows that the

gradients of the field-squared do not have to be evaluated at

each point of the workspace of our magnetic system since they

are almost uniform. This observation along with the solution

of the inverse force-current map allows for the realization of

the proposed control system.

The order of the low-pass filter (Q(s)) associated with the

disturbance force observer depends on the nature of the input

disturbance force. This force is a function of time and can be

modeled by the following polynomial [26]:

dl

dtl
d(P, t) = 0, (40)

where d(P, t) is the input disturbance force and l is the order

of the low-pass filter (Q(s)) associated with the disturbance

force observer. Approximating the input disturbance force

using a step function (l = 1) allows us to use a first-order low-

pass filter in (31). Further, approximating the input disturbance

force using a ramp function (l = 2) allows us to use a second-

order low-pass filter, and so forth. Therefore, our disturbance

force observer can be adapted to estimate disturbance force

inputs of higher orders.

Even though the experimental work is done using param-

agnetic microparticles of spherical geometry, the presented

control system is fairly general and can be modified to

control super-paramagnetic particles, ferromagnetic particles,

microparticles of irregular shapes, and microrobots. This ne-

cessitates the incorporation of the magnetic torque-current map

with the control system. The magnetic force- and torque-

current maps can be used in the realization of the inner-

and outer-loops of the control system. Further, the proposed

magnetic-based control strategy can be adapted to control

microparticles in the three-dimensional space.
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A. Conclusions

The mismatch between the actual and nominal field-current

map of magnetic-based manipulation systems, which can be

as high as 20%, affects the governing force-current map which

is necessary for the realization of the magnetic-based control

system. In this study, a control system is investigated based

on estimating the mismatch and the drag forces. These forces

are considered as a disturbance force input to the governing

equation of the magnetic system. The outlined control sys-

tem compensates for this force by an inner-loop. This loop

estimates the disturbance force and converts it into a control

input for the realization of the nominal model of the magnetic

system. In addition, the control system achieves stable position

tracking error dynamics for the microparticles using an outer-

loop. Compensating the mismatch and the drag forces results

in 17% faster response and 23% higher positioning accuracy

of the microparticle by the proposed control system in the

transient- and steady-states, as opposed to the same control

system without compensation.

B. Future Work

Future work in the field of wireless magnetic-based control

will be extended to achieve targeted drug delivery. Our mi-

croparticles will be coated with drugs and the physiological

conditions of the release process will be studied experimen-

tally. Clusters of nanopaticles will be used as magnetic drug

carriers owing to their low toxicity and excellent magnetic

saturation [28]. Further, we will investigate the possibilities to

modify our system to be integrated with a clinical imaging

modality, such as magnetic resonance imaging [29]. In vivo

experiments need to be done to investigate important aspects

such as time-varying fluid viscosity and flow. Further, our

magnetic system will be modified to incorporate controlled

disturbance inputs, such as time-varying fluid flow, to verify

the effectiveness of the control technique.
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