It is known that if a rotating magnetic star emits a stellar wind during part of its lifetime, the consequent magnetic torque not only brakes the star, but in general causes the instantaneous axis of rotation to precess through the
star, in particular altering the angle χ between the rotation and magnetic axes. This suggests that the same magnetic coupling may be responsible for
 reversal. χ a In this paper, the magnitude and sign of the precessional torque com-
ponent are computed for the special case with the magnetic field outside the
 equatorial current-sheet, a perturbation field, of order ϵ, due to a small angle-
dependent flux distribution over the stellar surface, and further perturbations due to the stellar rotation α, of order α and $\epsilon \alpha$ respectively. The field of order α yields a braking torque, but has too much symmetry to yield a precessional component, which results only from the part of order $\alpha \epsilon$. If the
surface flux distribution is symmetric about the magnetic axis, the precessurface flux distribution is symmetric about the magnetic axis, the preces-
sional torque vanishes when χ is either o or $\pi / 2$; while if the flux has a non-

 flux distribution also determine whether χ approaches the larger or the

 series, we may expect this torque ratio to be big enough for the process to
be significant.
NoILDOGOYLNI •
 controlled stellar wind, developed e.g. in Paper I (Mestel 1968a) for axisymmetric geometry, was partially extended to the essentially non-axisymmetric oblique rotator model. It was shown that in general the magnetic field-as distorted by the wind and the consequent non-uniform rotation-lacks the degree of symmetry

 of these two states is unstable, in the sense that a small departure yields a magnetic

 0 and $\pi / 2$.
 rotations of the magnetic stars are to be explained by excess magnetic braking, then the same process may simultaneously account for the observed magnetic field reversals, by spontaneously leading to a large angle of inclination between magnetic and rotation axes, whatever the initial value of χ. We shall confirm that the details of the flux distribution over the stellar surface are crucial in deciding whether the angle χ approaches a large or small value. It is therefore clear
 which flux distributions will yield large angles, as required by observation. The
 of the star, and is outside the scope of this paper.

 be made (Selley 1970 in preparation). However, there remained an undetermined pressure integral over the Alfvénic surface, and although plausible arguments
 construct rigorously at least one detailed model, which can then be a guide to

The difficulties of the non-axisymmetric theory arise principally from there no longer being an integral describing the steady transport of one component of angular momentum along field-streamlines. Instead, all three components of
 pressures, so that the angular momentum integral-equation (42) of Paper II-is replaced by a partial differential equation. However, a comparatively simple

I99

No. 3, 1970

 (Pacini 1968; Ostriker \& Gunn 1969; Davis 1969 private communication). It would be of great interest if radiation from pulsars could be shown to exhibit a secular change consistent with a steady change in the obliquity.
TVYDALNI GคOYOL GGZITVY'GNGD GHL • Z
 inviscid gas is

[^0]where $\epsilon_{i j k}$ is the alternating tensor, V_{i} the velocity in this frame, ϕ the gravitational potential, ρ the density, p the pressure, and $T_{i k}$ the magnetic part of the Maxwell stress tensor:
$$
T_{i k}=\frac{\mathbf{H}^{2}}{8 \pi} \delta_{i k}-\frac{H_{i} H_{k}}{4 \pi}
$$

The first term in equation (1) incorporates the continuity equation

$$
\frac{\partial}{\partial x_{k}}\left(\rho V_{k}\right)=0 ;
$$

the second is the Coriolis force $2 \alpha \mathbf{k} \times \rho \mathbf{V}$; and the last is the centrifugal force $\rho\{\alpha \mathbf{k} \times(\mathbf{r} \times \alpha \mathbf{k})\}=\rho \alpha^{2}\{\mathbf{r}-\mathbf{k}(\mathbf{r} . \mathbf{k})\}$. The velocity \mathbf{V} also satisfies the equation $\nabla \times(\mathbf{V} \times \mathbf{H})=0$ in the magnetohydrodynamic approximation. In an axisymmetric system the analogous equation in the inertial frame has the general solution (Chandrasekhar 1956; Mestel 1961)

$$
\mathbf{v}=\kappa \mathbf{H}+\varpi \alpha \mathbf{t}
$$

 of the rotational velocity, w the perpendicular distance from the axis, κ a scalar

(6)
 equations only if we use the rotating frame; and although it is not now immediately obvious that (6) is the only relevant solution of equation (4), we shall in fact adopt the solution (6), so that the continuity equation (3) implies
(7)

and so is proportional to the tension terms in $T_{i k}$. As ρ will decrease outwards in

$$
\mathbf{I}=\mathbf{V}^{2} /\left(\mathbf{H}^{2} / 4 \pi \rho\right)=4 \pi \rho \kappa^{2}=4 \pi \eta^{2} / \rho
$$

By equation (8), the Reynolds and magnetic tension tensors coincide on S_{A}. Consider now a volume τ, fixed in the rotating frame, surrounded by a surface
S with outward normal n_{l}. We form the quantity
> (10)
With the origin of coordinates fixed on the rotation axis-e.g. at the mass-centre of the star-this is the outflow across S of the i-component of angular momentum about the origin, due respectively to the magnetic stresses, the thermal pressure, and the macroscopic gas flow. Since the first three terms in the brackets are symmetric tensors, they can be written
$\int_{\tau} d \tau \epsilon_{i j k} x_{j} \frac{\partial}{\partial x_{l}}\left(T_{k l}+p \delta_{k l}+\rho V_{k} V_{l}\right)$

by the equation of motion (1). The centrifugal term in expression (ix) reduces
at once to

(12)

$$
\left(\mathcal{E}_{\mathbf{I}}\right)
$$

(14)

(I6)
 (17)
 is the angular momentum of the gas flowing instantaneously through τ. The

 first term on the right of equation (16) is the integrated moment of the gravitational force density; it will vanish if we ignore distortions of the star from sphericity. The last term implies that in order to rotate the 'flywheel' of angular momentum \mathbf{h} at the rate $\alpha \mathbf{k}$, the matter within τ must be given angular momentum at the S_{A} (defined by equation (9)) and an inner surface S_{1} surrounding the star at

$-L_{i}=\int_{S_{1}} F_{i l} \tilde{n}_{l} d S$

where $\tilde{n}_{l} \equiv-n_{l}$ is the normal drawn into volume τ, i.e. out of the surface S_{1}. Since the wind speed decreases exponentially below the sonic point (Parker 1963), the only important motion within S_{1} is the stellar rotation. The torque \mathbf{L} in general

 ‘Кџן and the last has a non-zero component only in the direction \mathbf{k}. The total torque in the axisymmetric case is seen to be equivalent to that given by assuming the

 the inertial frame (cf. equation (43) of Paper II). The transformed expression for the torque on the star does not involve explicitly either the poloidal or toroidal

Vol. 149 star can be computed from the transform (18) in terms of the flow and magnetic fields the absence of rotation.
There are easily-defin
There are easily-defined analogues of poloidal and toroidal vectors for the
oblique rotator problem, called $\overline{\mathbf{V}}$ and $\mathbf{V}^{\prime}, \overline{\mathbf{H}}$ and \mathbf{H}^{\prime} in Paper II, but they are not
 (9) for S_{A}. In Paper II the problem was simplified by assuming that ρ and κ were invariant under the reflection $\{$ in the plane defined by the two axes. Even so, the equation (67) of Paper II that yields the two principal components of torque-essentially an analogue of the present equation (I8)-required knowledge of \mathbf{H}^{\prime} in order to compute the moment of $\left(\overline{\mathbf{H}} . \mathbf{H}^{\prime}\right) / 4 \pi$ over the Alfvénic surface. There seems therefore little virtue in prior assumptions about ρ and κ; in order to get trustworthy results for the magnitude and sign of the precessional torque on the star, we must find a self-consistent method of approximation.
The general problem is formidable. However, we can make progress by means of a double perturbation procedure. We consider first a non-rotating star, with a magnetic field that has the form of a split monopole: the field-lines are strictly radial and the field-strength independent of angle, but the sign of the field changes at the magnetic equator. The star is supposed to have a corona, taken as isothermal
 lines, as described by Parker's critical solution (1963). With the pole-strength the field fixed, the zero-order Alfvenic surface S_{A} is a sphere of known radius r_{c}

 the perturbed magnetic field brake the star, but exert no precessional torque.

 field exerts stresses that take no cognizance of the magnetic axis*.
The magnetic flux emerging from a non-rotating star is then supposed to have a small angular dependence of order ϵ, and the mutually self-consistent magnetic-velocity fields are computed (Section 5). If the star is then given a slow rotation α, the corrections of order $\alpha \epsilon$ to the first-order rotational distortion \mathbf{H}^{\prime}

 perturbed field \mathbf{H}^{\prime} to this order. Analogously to the result quoted for the axisymmetric case, the transform (18) yields the torque to order $\alpha \epsilon$ in terms of the
magnetic and wind fields of order ϵ. 3. The rotating star with a split monopole field
 where $O Z$ is the rotation axis, $O X=O x, O x z$ is the magnetic equator and the angle $y \widehat{O} Z$ between the rotation and magnetic axes is called χ. We introduce

(a) The magnetic and rotation axes parallel

When $\chi=0, O y$ coincides with $O Z$, and $O z$ with $O(-Y)$. The solution

 Also, $p^{\prime}, \rho^{\prime}, \kappa^{\prime}$ all vanish: the only effect the rotation has on the radial velocity and so on the density-pressure field in the axisymmetric problem is through
 identically and equations (32) and (33) yield

$\left.\left(H_{\theta}{ }^{\prime}\right)_{0}\right) \quad\left(\bar{\rho} \bar{V} r^{2}\right) \frac{\left(r^{2}-r_{c}^{2}\right)}{(\mathrm{I}}(\sin \lambda$,

where we have used the condition that there be no singularity at the Alfvénic

 based on $O Z$, such that
$(X, Y, Z) \underset{(x=0)}{\equiv} r(-\sin \theta \sin \lambda,-\cos \theta, \sin \theta \cos \lambda)$

$$
\equiv r(\sin \Theta \cos \Lambda, \sin \Theta \sin \Lambda, \cos \Theta),
$$

$$
\left(3^{6}\right)
$$

\qquad
 and \mathbf{H}^{\prime} are orthogonal; and as $p^{\prime}=0$, there is no unacceptable discontinuity in the total pressure at the cut. The tangential components of the magnetic stresses at the magnetic equator are zero on either side of the cut, and so automatically satisfy the continuity condition.

(b) The magnetic and rotation axes perpendicular

Now consider the case with $\chi=\pi / 2$. The θ-equation (32) becomes homogeneous, and the λ-equation reduces to
$\frac{\mathbf{I}}{r \sin \theta} \frac{\partial}{\partial \lambda}\left(p^{\prime}+\frac{\bar{H} H_{r}^{\prime}}{4 \pi}\right)+\frac{\mathrm{I}}{4 \pi r^{3}} \frac{\partial}{\partial r}\left[r^{3} \bar{H} H_{\lambda}{ }^{\prime}\left(\mathrm{I}-\frac{4 \pi \bar{\eta}^{2}}{\bar{\rho}}\right)\right]=2 \alpha \bar{\rho} \bar{V} \sin \theta$.
 $\cos (n \lambda)$ consists of only the term ' $c_{0} / 2$ ' in standard notation. Also, the perturbed

 series. We arrive at the solution

$$
\begin{aligned}
H_{r}^{\prime}=H_{\theta}^{\prime} & =0 \\
p^{\prime}, \rho^{\prime}, \kappa^{\prime} & =0
\end{aligned}
$$(6E)Thus the perturbed pressure is in fact zero everywhere, and not just at the cut.The tangential magnetic stress at the cut is radial and equal to $\bar{H} H_{\lambda}{ }^{\prime} / 4 \pi$; its

 on the cut, originally at $(r, \theta, \pm \pi / 2)$, be now $(r, \theta, \pm \tilde{\lambda})$ with

$$
\left(\chi^{\prime} \theta{ }^{\prime} \iota\right) \cdot{ }^{\prime} x+\underset{\sim}{\chi}=\frac{2}{\mu} \mp
$$

and $\mu(r, \theta, \tilde{\lambda})$ a function to be determined. The coordinates $(d r, d \theta, d \tilde{\lambda})$ of an
No. 3, i970 Magnetic braking by a stellar wind-III
arbitrary displacement on one sheet of the cut are related by

\[\)| $d \tilde{\lambda}$ |
| :---: |\(=-\left(\alpha \frac{\partial \mu}{\partial r} d r+\alpha \frac{\partial \mu}{\partial \theta} d \theta\right) /\left(1+\alpha \frac{\partial \mu}{\partial \tilde{\lambda}}\right)

\]

$\simeq-\alpha \frac{\partial \mu}{\partial r} d r-\alpha \frac{\partial \mu}{\partial \theta} d \theta$
to the first order in α. This displacement coincides with a line of the distorted magnetic field

\[\)| $\mathbf{H}=\left\{\boldsymbol{H}(r), \circ, H_{\lambda}{ }^{\prime}(r, \theta)\right\}$ |
| :--- |
| if |
| $\qquad \frac{d r}{\bar{H}}=\frac{r d \theta}{o}=\frac{r \sin \theta d \bar{\lambda}}{H_{\lambda}{ }^{\prime}}$ |
| Thus the shape of the distorted cut is given by |
| yielding |
| $H_{\lambda}{ }^{\prime}+\alpha \overline{H r} \sin \theta(\partial \mu / \partial r)=0$ |

\]

$$
\alpha \mu=4 \pi \frac{\left(\bar{\rho} \bar{V} r^{2}\right)}{\left(\overline{H r} r^{2}\right)^{2}} \alpha r_{c}{ }^{2} \int_{0}^{r} \frac{\left(\mathrm{I}-\frac{r^{2}}{2}\right)}{\left(\mathrm{I}-\frac{\bar{\rho}_{c}}{\bar{\rho}}\right)} d r
$$

where the choice of zero for the lower limit ensures that the cut coincides with the plane $O X Z$ in the limit $r \rightarrow 0$, when $\left|H_{\lambda}{ }^{\prime}\right| \bar{H} \mid \rightarrow 0$. An upper limit to the integral
 wind, the speed increases slowly after passing through the sonic point, so the approximation is good in the supersonic region.) Thus

$$
\frac{\alpha \mu}{\pi / 2}<\frac{2}{\pi} \frac{4 \pi\left(\bar{\rho}_{c} \bar{V}_{c} r_{c}^{2}\right)}{\bar{H}_{c}^{2} r_{c}^{4}} \alpha r_{c}^{2} r=\frac{2}{\pi}\left(\frac{\alpha \bar{r}_{c}}{\bar{V}_{c}}\right)\left(\frac{r}{r_{c}}\right)
$$

and this is necessarily small compared with unity in an approximation where the centrifugal force terms in the Bernoulli equation are assumed small. But equally if one tries to build a model with a centrifugally-driven wind, and with a split monopole for the zero-order field, one is likely to find large distortions to the field, at least near the Alfvénic surface.

> (c) The magnetic and rotation axes arbitrarily inclined

$$
(9 t) \quad\left\{\begin{array}{c}
\gamma(x \operatorname{sos} \gamma \operatorname{sos} \theta \operatorname{soc}-\chi \\
+ \\
\theta \chi \operatorname{sos} \gamma \text { uis }-
\end{array}\right.
$$

for this satisfies both the equations (26-3I) and the conditions at the cut. $S u c h$ a decomposition is always possible, whatever the structure of the basic field $\overline{\mathbf{H}}$ as

[^1]$$
\text { Vol. } 149
$$

 the basic field a split monopole, the perturbation field (46) is recognizable as a
 $O z$ due to a rotation $\alpha \sin \chi$.

By successive scalar multiplication of the field (46) with $\mathbf{i}, \mathbf{j}, \mathbf{k}$, given by equations
(20), we reduce \mathbf{H}^{\prime} to Cartesian components along $O(X, Y, Z)$:

It will be seen that the (X, Y) components in the integrand are anti-symmetric in Z, so that only the Z-component survives, to yield

$$
(6 t)
$$

The same calculation can be performed for each of the fields $\cos \chi\left(\mathbf{H}^{\prime}\right)_{\chi=0}$ and $\sin \chi\left(\mathbf{H}^{\prime}\right)_{\chi=\pi / 2}$ separately. It is easily shown that they yield (Y, Z) components

$$
(\mathrm{OS})
$$

 are zero. The integral (17) for \mathbf{h} vanishes by symmetry, so there remains just the flow integral across the sphere S_{A} :
(5I)
 metric problem. The perturbation in the magnetic pressure $\overline{\mathbf{H}} . \mathbf{H}^{\prime} / 4 \pi$ vanishes, and the magnetic stresses carry the Z-component of angular momentum without any mutual interchange between the zero-order field-lines. But although the

2 II
where the term in $\overline{\mathbf{V}}_{0}, t_{1}$ vanishes by condition (60), and the zero-order continuity
condition (22) has been used. Thus the integral (58) becomes

By definition $(9), \bar{\gamma}_{1}$ is given by
$4 \pi\left\{\bar{\rho}_{0}\left(r_{c}+\epsilon \bar{r}_{1}\right)+\epsilon \bar{\rho}_{1}\left(r_{c}\right)\right\}\left\{\overline{\mathbf{V}}_{0}\left(r_{c}+\epsilon \bar{r}_{1}\right)+\epsilon \overline{\mathbf{V}}_{1}\left(r_{c}\right)\right\}^{2}=\left\{\overline{\mathbf{H}}_{0}\left(r_{c}+\epsilon \bar{r}_{1}\right)+\epsilon \overline{\mathbf{H}}_{1}\left(r_{c}\right)\right\}^{2}, \quad$ (65)

> (66)
Since r_{c} is the zero-order Alfvénic radius, this reduces with the help of equation

$$
\text { Э घुGYO OL बT'IA BHL AO NOILVLOdNOD } \Im
$$

 әоиәдәџ! [е!

 - 'əorfins

 $x=r \sin \theta \sin \lambda$
(89)
it being clearly understood that the angles θ and λ differ from those used in

[^2]$$
-a^{2} \frac{d \bar{\rho}_{1}}{d r}-\frac{G M}{r^{2}} \bar{\rho}_{1}=\bar{\rho}_{1} \bar{V}_{0} \frac{d \bar{V}_{0}}{d r}+\bar{\rho}_{0} \frac{d}{d r}\left(\bar{V}_{0} \bar{V}_{1 r}\right)
$$
where a is the isothermal sound speed. The comparative simplicity of the righthand side is due to $\overline{\mathrm{V}}_{0}$ and $\overline{\mathbf{H}}_{0}$ both being radial and with zero curl. Use of the zero-order radial equation reduces equation (69) to

214
L. Mestel and C. S. Selley
whence from equations (76) and (92)
and from equation (84)
$\bar{\psi}_{n}(x)+\overline{\bar{\psi}}_{n}(x)=-\mathrm{I}$,

$\bar{\psi}_{n}(x)=\frac{\bar{M}^{2}\left(\mathrm{I}-\phi_{n}(x)\right)}{\left(\mathrm{I}-\bar{M}^{2}\right)}$.
No. 3, 1970 Magnetic braking by a stellar wind_III 215

$$
\begin{aligned}
& 216 \\
& \text { where }
\end{aligned}
$$

$$
\text { L. Mestel and C. S. Selley Vol. } 149
$$

$$
r_{c} \quad \bar{\rho}_{0}
$$

$$
\text { s defined by the normalized solution } \phi_{n}(x) \text { of equation (103), and the cor- }
$$ responding functions for the radial parts of $\bar{\rho}_{1} / \bar{\rho}_{0}$ etc. Thus the Y-component (58) of the flow integral consists of terms such as

$-\alpha \epsilon \bar{\rho}_{c} \bar{V}_{c} r_{c}{ }^{4} F_{n}(\mathrm{I}) \Phi_{n}\left(x_{a}\right) \iint(\cos \theta \sin \chi-\sin \theta \cos \lambda \cos \chi)$

$$
\times(\cos \theta \cos \chi+\sin \theta \cos \lambda \sin \chi) Y_{n}(\theta, \lambda) \sin \theta d \theta d \lambda . \quad \text { (III) }
$$

By use of the orthogonality relations for trigonometric and associated Legendre
functions, it is readily seen that only the $P_{2}, P_{2}{ }^{1} \cos \lambda$ and $P_{2}{ }^{2} \cos 2 \lambda$ terms survive
integration, so that the expression (III) reduces to

$$
-\frac{4 \pi}{5} \alpha \epsilon\left(\bar{\rho}_{c} \bar{V}_{c} r_{c}{ }^{4}\right) F_{2}(\mathrm{I}) \Phi_{2}\left(x_{a}\right)\left\{\sin 2 \chi\left(\frac{1}{2} a_{0}(2)-a_{2}(2)\right)-\cos 2 \chi\left(a_{1}(2)\right)\right\} \text {. (II2) }
$$

A similar treatment shows that the X-component of the flow integral-given
by equation (64) with (r.i) replacing ($\mathbf{r} . \mathbf{j})$-reduces to
(II3)

$$
\begin{aligned}
& \left(\mathcal{S}_{\text {II }}\right) \\
& \left(\text { DII }^{\prime}\right)
\end{aligned}
$$

Of the terms in the expansion (91) of Y_{n}, only those in $a_{1}(n)$ survive the λ-integration. A typical term is then

$$
a_{1}(n) \iint\left(\sin \theta \frac{\partial}{\partial \theta} P_{n}{ }^{1} \cos ^{2} \lambda+\sin ^{2} \lambda \cos \theta P_{n}^{1}\right) d \theta d \lambda
$$

$$
\text { (9II) } \cdot \circ=\left(\tau^{u} d \theta \text { u!s) } \frac{\theta \ell}{e} \theta p_{x}^{0} \int \mu(u) \mathrm{I} p=\right.
$$We are left with expressions (i12) and (II3) for the negative precessional torques, computed to order $\alpha \epsilon$. A direct computation of the field $\mathrm{H}_{1}{ }^{\prime}$ is laborious

 coronal base, agrees satisfactorily with the expression (II2).
As noted in Paper II, the X-component of torque causes a rotation of the
 the coefficients $a_{k}(n), b_{k}(n)$, since the plane through the rotation axis and the

No. 3, 1970 Magnetic braking by a stellar wind-III
plane $O Y Z$ - 17-symmetric, in the terminology of Paper II-then all the $b_{k}(n)$ plane $O Y Z-x^{2}$-symmetric, in the terminology of Paper II-then all the $b_{k}(n)$
coefficients would automatically vanish. In general, the effect of the X-torque

We now express the Y-torque on the star--the negative of expression (II2)-

 Once $\phi_{2}(x)$ is known, then $F_{2}(1)$ is given from the definitions (IO9) and (IIO) and equations (86), (87) etc., as
(II8) $\left[\bar{M}^{2}(\mathrm{x})\left\{\phi_{2}(\mathrm{I})+\mathrm{I}\right\}-2\right]$.

equations (103) form a one-parameter family: once the ratio

 magnetic to thermal energy is known at all points:
$\bar{H}_{0}{ }^{2}=\frac{\left(\bar{H}_{c}^{2} / x^{4}\right)}{=\frac{4 \pi \bar{\rho}_{c}}{M_{c}^{2} a^{2}}}=\left(\frac{\bar{\rho}_{c}}{-}\right) \frac{\bar{M}_{c}^{2}}{2 \pi}=\frac{\bar{M}_{c} \bar{M}}{2} \quad$ (119) $\overline{8 \pi \rho_{0} a^{2}} \quad 8 \pi\left(\frac{\bar{\rho}_{0}}{\bar{\rho}}\right) \bar{\rho}_{c} a^{2} \quad 8 \pi\left(\frac{\bar{\rho}_{0}}{\bar{\rho}_{0}}\right) x^{4} \bar{\rho}_{c} a^{2} \quad-\left(\frac{\bar{\rho}_{0}}{2 x^{4}}=\overline{2 x^{2}}\right.$
In particular, when we choose a radius $x_{s}<x_{a}$ which we can identify with the coronal base of density $\bar{\rho}_{s}$ and field-strength \bar{H}_{s}, then the ratio (II9) becomes the parameter ζ introduced in Paper I. The associated parameter $l=G M / r_{s} a^{2}$ relates the coronal base and the sonic point (ozI)
 x_{a}, and so to the same solution of equation (IO3) and to the same torque ratio
 Series expansions were employed near the two singularities, and the integrations
 presented in Table I. The suffix 2 on $\phi, F, \bar{\psi}$ has been dropped for short. The suffix N on $\left[\bar{\rho}_{1}(\mathrm{I}) / \bar{\rho}_{0}(\mathrm{I})\right]_{N}$ etc., implies that we are selecting the normalized Y_{2}
component in e.g., equation (94), without the factor $\epsilon \Phi_{2}\left(x_{a}\right)$. Except when $r_{c} / r_{a} \simeq 1$
 some way beyond the sonic point.
 in Section 4 of Paper II. Since it is unlikely that in any realistic star the magnetic forces over the bulk are comparable with the gravitational or even the centrifugal

> $$
\begin{aligned} & \mathbf{K}=C \alpha \mathbf{k}, \\ & \text { with the rotation axis: } \\ & \text { (121) } \\ & \frac{d}{d t}(C \alpha)=L_{Z}, \\ & \dot{\chi}=-L_{Y} / C \alpha .\end{aligned}
$$

These equations are identical with equations (71), (81) and (87) of Paper II, forces (e.g., Wright
to the rotation axis:
No. 3, 1970 Magnetic braking by a stellar wind-III
The maximum that the present theory can yield is $|\Delta \chi| \simeq 0.04 \epsilon \log \left\{(C \alpha)_{i} /(C \alpha)_{f}\right\} . \quad$ (125)
(We here assume that $a_{0}(2)$ etc., are of order unity-their absolute order of magni-

 gravity of $\simeq 5 \times 10^{-4}$ _typical of a magnetic star with a mass $\simeq 2 M_{\odot}$ and a presumed

 ratio the effect will be at least a factor 10 smaller.

 $\left|L_{Y}\right| L_{Z} \mid$ that are $\simeq 0.2$ (Selley 1970).
From equation (124), the sign of
From equation (I24), the sign of $\dot{\chi}$ is the same as that of L_{Y} / L_{Z}. With
$F_{2}(\mathrm{I}) / \phi_{2}\left(x_{s}\right)$ positive (certainly for that limited range of ratios r_{c} / r_{a} for which $\dot{\chi}$ \qquad

$$
\begin{gathered}
\dot{\chi}<0 \\
{\left[\frac{1}{2} a_{0}(2)-a_{2}(2)\right] \sin 2 \chi-a_{1}(2) \cos 2 \chi>0}
\end{gathered}
$$

Thus if $a_{1}(2)=0$-the Y_{2} part of the radial field $\bar{H}_{1 r}$ strictly antisymmetric in the equator-then χ approaches \circ or $\pi / 2$ according as $\left[\frac{1}{2} a_{0}(2)-a_{2}(2)\right] \gtrless 0$. In particular, if the star has an axisymmetric field, with its P_{2} part more concentrated
 more concentrated to the equator, χ will approach $\pi / 2$. With $a_{1}(2) \neq 0$, the states әлеч әnb.iot- X оләz ЧІІм
say. If $\tan 2 \chi_{0}>0$, the two equilibria $\chi_{0}, \chi_{0}+\pi / 2$ lie respectively between 0 and
 equilibria lie between $\pi / 4$ and $\pi / 2$ and $3 \pi / 4$ and π respectively, the former case
 шоду słf!
 it fails in general to give a sufficiently large torque ratio $\left|L_{Y}\right| L_{Z} \mid$, and more basically, because the field $\overline{\mathrm{H}}$ is more likely to approximate near the star to a curl-free rather than a split monopolar structure. However, we can expect that solution of the problem with a more realistic field $\overline{\mathbf{H}}$ will again yield a sign for the Y-torque that depends critically on the flux distribution over the stellar
 field that is dipolar near the star do predict asymptotic alignment of the rotation and magnetic axes, in agreement with the corresponding results for $a_{1}(2), a_{2}(2)$ both zero and $a_{0}(2)>0$ (i.e. for an axisymmetric field \bar{H}_{1} with a P_{2}-flux distribution that is more concentrated towards the magnetic pole).
 magnetic processes that are presumably responsible for the distribution of flux
 wind, for the large mutual inclination of the two axes. One requires a convincing dynamical theory of the flux distribution. It may also be possible to make semi-

 in the stellar wind theory is clearly a generalization to more realistic external
ACKNOWLEDGMENTS
 and F. Ursell and Mr I. Gladwell. One of us (C. S. S.) is indebted to the Science
Research Council for a research grant.

Department of Mathematics, The University, Manchester M13 ${ }_{9} P L$.

Received in original form 1970 February 3.

REFERENCES

Chandrasekhar, S., 1956. Astrophys. $\mathfrak{J} ., 148,905$. Gold, T., 1968. Nature, 218, 731 Goldreich, P. \& Julian, W. H., Mestel, L., I961. Mon. Not. R Mestel, L., 1968b. Mon. Not Pacini, F., I968. Nature, 219, 145.
Parker, E. N., 1963. Interplanetary Dynamical Processes. Interscience, New York. Schatten, K. H., 1969. Nature, 223, 652.
Weber, E. J. \& Davis, Jr., L., 1967. Astrophys. F., 148, 271.

[^0]: $\frac{\partial}{\partial x_{k}}\left(\rho V_{i} V_{k}\right)+\mathbf{2} \alpha \epsilon_{i j k} k_{j} \rho V_{k}=-\frac{\partial p}{\partial x_{i}}+\rho \frac{\partial \phi}{\partial x_{i}}-\frac{\partial T_{i k}}{\partial x_{k}}+\rho \epsilon_{i j k}\left(\alpha k_{j}\right) \epsilon_{k l m} x_{l}\left(\alpha k_{m}\right), \quad$ (1)

[^1]:

[^2]: Section 3 and indicated in Fig. I.

 The perturbed radial equation of motion becomes

