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Abstract
The bulk photovoltaic effect (BPVE) is a second-order optical process in noncentrosymmetric materials that converts
the light into DC currents. BPVE is classified into shift current and injection current according to the generation
mechanisms and their dependence on the polarization of light is sensitive to the spatial and time-reversal symmetry
of materials. In this work, we present a comprehensive study on the BPVE response of EuSn2As2 with different
magnetic structures through symmetry analysis and first-principles calculation. We demonstrate that the interlayer
antiferromagnetic (AFM) EuSn2As2 of even-layer breaks the inversion symmetry and has the second-order optical
responses. Moreover, the bilayer AFM EuSn2As2 not only displays distinct BPVE responses when magnetic moments
align in different directions, but also shows symmetry-related responses in two phases which have mutually
perpendicular in-plane magnetic moments. Due to the dependence of BPVE responses on the polarization of light
and magnetic symmetry, these magnetic structures can be distinguished by the circular polarized light with
well-designed experiments. Our work demonstrates the feasibility of the BPVE response as a tool to probe the
magnetic structure.
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1 Introduction
Nonlinear optical phenomena play an essential role in con-
densed matter physics to advance fundamental knowledge
about materials and stimulate the development of tech-
nological applications. For instance, the second harmonic
generation (SHG) has been applied to probe the elec-
tronic, magnetic and crystallographic structures of mate-
rials [1–8]. The high-harmonic generation (HHG) recently
has been intensively studied to reveal the electron dynam-
ics [9], band structures [10] and topological phase tran-
sitions [11]. Among various nonlinear optical processes,
the bulk photovoltaic effect (BPVE) in noncentrosymmet-
ric materials converting light into a DC current has gained
numerous interests [12–18]. As it surpasses the Shockley–
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Queisser limit and generates above-band-gap photovolt-
ages, the BPVE is expected to be a replacement for the
conventional solar cell [19, 20]. Besides, BPVE can be uti-
lized to develop promising photodetectors because it does
not require a bias voltage which would cause the dark cur-
rent. Furthermore, due to the close relationship with geo-
metric quantities such as quantum metric and Berry cur-
vature [21–24], the BPVE is employed to obtain the band
geometry and topology information of materials [25–27].

The photocurrent in BPVE consists of the shift current
and the injection current, which are induced by the change
in the charge center and group velocity of electrons during
the interband transitions, respectively [23, 28]. The study
on the BPVE photocurrents has been confined to nonmag-
netic materials for decades [17, 28–32]. In systems with
time-reversal symmetry (T ), these two currents could be
distinguished by their dependence on the polarization of
incident photons. While the injection current is excited
only by the circular polarized light, the shift current can
be generated by light regardless of polarization [28, 33].
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Besides, the circular injection current alters its direction
when the helicity of incident light changes while the linear
shift current does not [34].

In recent years, a series of works [21, 33, 35–37] have
shown the growing interests in the BPVE response of mag-
netic materials, which has a contrast dependence on the
polarization of light compared to nonmagnetic ones. In
magnetic materials where T is broken and the space-time
inversion symmetry PT is preserved, shift current excited
by the linear polarized light is prohibited while injection
current excited by light of any polarization is allowed. It
results in the linear injection current and circular shift
current in the PT magnetic materials [35, 36]. Moreover,
in system with neither T nor PT , both BPVE photocur-
rents can be induced by either linear or circular polarized
light [21, 33].

Due to the sensitivity to the crystalline symmetry and the
polarization of light, BPVE responses could be employed
to probe the magnetic structure of materials. We take
the magnetic material EuSn2As2 as an example and ana-
lyze the BPVE in three magnetic structures of EuSn2As2.
The symmetry analysis demonstrates that BPVE is allowed
to exist only in even-layer EuSn2As2 with antiferromag-
netic (AFM) order. BPVE in three AFM phases of bilayer
EuSn2As2 are investigated through group representation
theory and first-principles calculation. The result shows
that both linear injection current and circular shift current
can be generated in AFM bilayer EuSn2As2 with the in-
plane magnetic moments, while only linear injection cur-
rent exist when the magnetic moments are out of plane.
Besides, the two magnetic structures with mutually per-
pendicular in-plane magnetic moments has the similar
BPVE responses, which can be explained by the connec-
tion between their magnetic symmetry groups, namely
their magnetic moments alignment is related by the C4z
rotation. By exploiting the discrepancies among their non-
linear optical responses, we provide an experimental pro-
tocol to distinguish the magnetic structures by two circular
polarized light beams with the opposite helicity.

2 Results
2.1 The bulk photovoltaic effect
When illuminated by the monochromatic light Ẽ(t) =
E(ω)e–iωt + c. c, noncentrosymmetric materials can give
rise to a DC photocurrent described by the following rela-
tion [28],

Ja = σ abc(0; –ω,ω)Eb(–ω)Ec(ω)

+ σ abc(0;ω, –ω)Eb(ω)Ec(–ω)

= σ abc(0; –ω,ω)Eb(–ω)Ec(ω) + c. c.

= 2σ abc(0; –ω,ω)Eb(–ω)Ec(ω),

(1)

where we use the intrinsic permutation symmetry of non-
linear optical coefficients to derive the final expression.
Different from the photovoltaic effect in a p-n junction,
the direct current generated in noncentrosymmetric ho-
mogeneous crystals comes from the second-order optical
process and is termed as bulk photovoltaic effect (BPVE)
or photogalvanic effect (PGE) [32].

As the photocurrent is a real quantity and Eb(–ω) =
E∗

b(ω), we take the complex conjugate of (1) and obtain
[σ abc(0; –ω,ω)]∗ = σ acb(0; –ω,ω). Therefore, the real/imag-
inary part of σ abc(0; –ω,ω) is symmetric/antisymmetric to
the exchange of the latter two index,

Reσ abc(0; –ω,ω) = Reσ acb(0; –ω,ω),

Imσ abc(0; –ω,ω) = – Imσ acb(0; –ω,ω),
(2)

We denote Reσ (0; –ω,ω) as σL and i Imσ (0; –ω,ω) as iσC .
With this notation, the definition of BPVE (1) can be refor-
mulated as [25, 38],

Ja = 2σ abc
L E∗

bEc + 2iσ ad
C

[
E∗ × E

]
d. (3)

Because E∗ × E is required to be imaginary, the photocur-
rent described by σC can only be contributed by the cir-
cular polarized light and is called the circular photogal-
vanic effect (CPGE). On the contrary, PGE described by σL

is called the linear photogalvanic effect (LPGE). Nonethe-
less, LPGE can be generated under the illumination of ei-
ther linear or cicular polarized light. Moreover, because
the change of helicity of circular polarized light is equiva-
lent to the exchange of E∗ and E, the photocurrent of CPGE
will alter its direction when the circular polarized light re-
verses its helicity while the LPGE does not [32].

Within the framework of perturbation theory and only
considering the interband transitions, we can obtain the
expression of BPVE described by the following two parts
[28, 39, 40],

dJa
inject

dt
= 2ηabc

inject(0; –ω,ω)Eb(–ω)Ec(ω)

= –
2e3π

�2

∑

nmk

�a
mnrb

nmrc
mnfmnδ(ωmn – ω)

× Eb(–ω)Ec(ω),

(4)
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Ja
shift = 2σ abc

shift(0; –ω,ω)Eb(–ω)Ec(ω)

= –
ie3π

�2

∑

nmk

fmn
[(

rc
mn

)
;ka rb

nm –
(
rb

nm
)

;ka rc
mn

]

× δ(ωmn – ω)Eb(–ω)Ec(ω)

= –
e3π

�2

∑

nmk

fmnrb
nmrc

mn
(
Rc

mn;a – Rb
nm;a

)

× δ(ωmn – ω)Eb(–ω)Ec(ω),

(5)

where �a
mn ≡ va

m – va
n and �ωmn ≡ Em – En denotes the

group velocity along a and eigen-energy difference be-
tween band m and n, respectively. rb

nm = 〈unk|i∂kb |unk〉 is
the transition dipole moment along b between band m
and n where |unk〉 is the periodic part of Bloch wavefunc-
tion [41]. fn is the Fermi–Dirac distribution of band n and
fnm ≡ fn – fm. (rc

mn);ka ≡ ∂arc
mn – irc

mn(Aa
mm – Aa

nn) is the gen-
eralized derivative and Aa

nn = 〈unk|i∂ka |unk〉 is the Abelian
Berry connection. Rc

mn;a ≡ i ∂ ln rc
mn

∂ka + Aa
mm – Aa

nn is the shift
vector indicating the change of electron position in real
space when transiting from band n to m. Note that we
adopt the definition of shift vector in Ref. [33] which is dif-
ferent the one in nonmagnetic systems [28, 30, 36].

We could see that (4) describes a DC current generated
from the change of electron group velocity that grows lin-
early with time. In real materials, however, the photocur-
rent will saturate after a time τ because of the impurities,
defects, and other scattering mechanisms. Therefore, the
photocurrent in (4) is named injection current. Similarly,
the DC current in (5) originating from the change of elec-
tron position in real space is called shift current. According
to their dependence on the polarization of light as men-
tioned above, the two photocurrents can be further clas-
sified into linear/circular injection current and linear/cir-
cular shift current. We obtain the corresponding response
coefficients by separating the real and imaginary part of
ηinject and σshift,

2ηabc
LI (0; –ω,ω) = –

e3π

�2

∑

nmk

fmn�
a
mn

{
rb

nm, rc
mn

}

× δ(ωmn – ω),

2ηabc
CI (0; –ω,ω) =

ie3π

�2

∑

nmk

fmn�
a
mn

[
rb

nm, rc
mn

]

× δ(ωmn – ω),

(6)

2σ abc
LS (0; –ω,ω) = –

ie3π

2�2

∑

nmk

fmn
{(

rc
mn

)
;ka , rb

nm
}

× [
δ(ωmn – ω) + δ(ωmn + ω)

]
,

2σ abc
CS (0; –ω,ω) = –

e3π

2�2

∑

nmk

fmn
[(

rc
mn

)
;ka , rb

nm
]

× [
δ(ωmn – ω) – δ(ωmn + ω)

]
,

(7)

where we have used the relations
(
rb

nm
)∗ = rb

mn,
[(

rb
mn

)
;ka

]∗ =
(
rb

nm
)

;ka , (8)

and defined the commutators and anticommutators,
{

rb
nm, rc

mn
} ≡ (

rb
nmrc

mn + rc
nmrb

mn
)
,

[
rb

nm, rc
mn

] ≡ (
rb

nmrc
mn – rc

nmrb
mn

)
,

{(
rc

mn
)

;ka , rb
nm

} ≡ [(
rc

mn
)

;ka rb
nm +

(
rb

mn
)

;ka rc
nm

]
,

[(
rc

mn
)

;ka , rb
nm

] ≡ [(
rc

mn
)

;ka rb
nm –

(
rb

mn
)

;ka rc
nm

]
.

(9)

They are the same with the expressions in Ref. [36].
Under the spatial symmetry operations, response coef-

ficients in (6) and (7) obey the same transformation rule
as a third-rank tensor and thus vanish in systems with
the spatial inversion symmetry P . As the Neumann’s prin-
ciple breaks down in the dynamic processes such as the
transport phenomenon [42], the transformation rule of re-
sponse tensors under T can not be acquired by applying
T to the relevant physical quantities, i.e., electric current
J and electric field E. However, we can obtain the trans-
formation rule of ηinject and σshift from their expressions
(6), (7). In systems with time-reversal symmetry, rmn(k) =
rnm(–k) and (rmn);k(k) = (rnm);k(–k). Therefore, the circu-
lar shift and linear injection current vanish in nonmagnetic
system with T , while the linear shift and circular injection
current are allowed to exist. In the noncentrosymmetric
magnetic systems with preserved combined PT symme-
try, the linear shift and circular injection current vanish
while the other two photocurrents, namely circular shift
and linear injection current, exist [33]. In the next sec-
tion, we take EuSn2As2 as an example to analyze the BPVE
responses in magnetic structures with symmetry analysis
and first-principles calculation.

2.2 Crystal structure and symmetry analysis of bilayer
EuSn2As2

The bulk EuSn2As2 has a layered structure and belongs
to space group R3m. Every layer component is composed
of a trigonal Eu layer sandwiched by two SnAs layers.
EuSn2As2 was found to be an axion insulator in the A-type
AFM phase belonging to magnetic space group (MSG)
R3m′ and a strong topological insulator in the paramag-
netic phase [43]. The bulk EuSn2As2 was experimentally
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Figure 1 (a)–(b) The crystal and magnetic stucture of bilayer AFM-z
EuSn2As2 . The crystal axes a is along the x direction in the Cartesian
coordinate system. (c) The Brillouin zone of bilayer EuSn2As2

found to have a collinear A-type AFM structure with the
in-plane magnetic moment [44]. However, the orientation
of the magnetic moments in ab-plane cannot be deter-
mined from neutron diffraction. BPVE is prohibited in
the bulk EuSn2As2 with A-type AFM and paramagnetic
structures because they both have P with the inversion
center on Eu atoms. When we confine the EuSn2As2 to
have a collinear magnetic structure, only the even-layer
EuSn2As2 in the A-type AFM phase breaks P and is able
to generate BPVE photocurrents.

We consider three AFM structures of the bilayer
EuSn2As2 with the magnetic moments along the
x̂ (AFM-x), ŷ (AFM-y), and ẑ (AFM-z) directions. The
nonvanishing independent components of the BPVE re-
sponse tensors in those magnetic structures can be ob-
tained by utilizing their properties under T and the irre-
ducible representations (IRREPs) of the crystalline point
group (CPG). For instance, the crystal structure of bi-
layer AFM-z EuSn2As2 is illustrated in Fig. 1(a), where
the magnetic moments break P but preserve PT . It be-
longs to the magnetic point group (MPG) 3′m′, M =
{I , 2C3, 3C2,PT , 2S6T , 3σdT }, which can be decomposed
into two forms, M = D3 ⊕ (D3d – D3)T and M = D3 ⊗
{I ,PT }. As σCI and ηLS are invariant under T , the effect
of T is equivalent to the identity operation and we can ac-
quire their nonvanishing independent components by an-
alyzing the IRREPs and generators of CPG D3d . The P in
D3d prohibits the existence of σCI and ηLS, being consistent
with the former conclusion that the linear shift and circu-
lar injection current vanish in systems with PT . Similarly,
we can analyze σCS and ηLI with IRREPs of CPG D3 due
to their invariance under PT . As the bilayer EuSn2As2 is
a quasi-2D material, we focus on the in-plane responses.
Take the electric current J as an example, we only concern
the Jx and Jy components that transform as E in D3 as il-
lustrated in Table 1. Table 1 presents the IRREPs of group
D3 and characters of the second-rank tensor for the group
elements [45]. As σCS (ηLI) relates a polar vector J and

Table 1 Characters for irreducible representations of group D3
and characters of the symmetric and asymmetric second-rank
tensor for group elements

D3 E 2C3 3C2 Basis function

A1 1 1 1
A2 1 1 –1 z,Rz
E 2 –1 0 (x, y), (Rx ,Ry )


(EE∗ )sym 3 0 1

(EE∗ )asym 1 1 –1

an asymmetric (symmetric) second-order tensor [EE∗]asym
([EE∗]sym), we obtain the representation of σCS (ηLI) and
decompose it into the direct sum of IRREPs as followings,


σCS = 
J ⊗ 
(EE∗)asym = E,


ηLI = 
J ⊗ 
(EE∗)sym = A1 ⊕ A2 ⊕ 2E.
(10)

Because 
ηLI includes one identity representation, there is
one nonvanishing independent component in ηLI. Utiliz-
ing the symmetry confinement of generators, C2x and C3z ,
we obtain the nonvanishing independent components, i.e.,
–ηxxx

LI = η
xyy
LI = η

yxy
LI . On the contrary, the decomposition

of 
σCS without the identity representation indicates that
the circular shift response vanishes in the bilayer AFM-z
EuSn2As2.

We can analyze the BPVE response in bilayer AFM-x
and AFM-y EuSn2As2 through the similar scheme. The
bilayer AFM-x EuSn2As2 belongs to MPG 2′/m that can
be decomposed into M = Cs ⊕ (C2h – Cs)T and M =
Cs ⊗{I ,PT }, while the AFM-y phase belongs to the MPG
2/m′ that can be decomposed into M = C2 ⊕ (C2h – C2)T
and M = C2 ⊗ {I ,PT }. The character tables for the men-
tioned CPGs and detailed analysis can be found in Ap-
pendix B. In AFM-x and AFM-y phases, σCI and ηLS are
still prohibited. However, the lowered symmetry resulted
from the in-plane magnetic moments lead to more BPVE
responses. To be more specific, the breakdown of C3z sym-
metry not only gives rise to the violation of equivalence re-
lations among in-plane components, i.e., –xxx = xyy = yxy,
–yyy = xxy = yxx, but also allows for the existence of in-
plane circular shift current, i.e., σ xxy

CS in AFM-x and σ
yxy
CS in

AFM-y.
The distinct BPVE response in different MPG helps us

detect the magnetic structure of EuSn2As2. First of all, as
the nonvanishing second-order optical responses only ex-
ists in even-layer AFM EuSn2As2, we could easily distin-
guish it from odd number layer structures. Secondly, be-
cause the circular shift current only exist in AFM-x and
AFM-y phases and it reverses direction when the incident
circular polarized light changes helicity, we can measure
the difference between response currents of circular po-
larized light with opposite helicity, 	J� – 	J�, to distinguish
them from the AFM-z phase. Finally, we could differentiate
the AFM-x and AFM-y phase by a beam of light regard-
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Figure 2 (a) The band structures of bilayer AFM-z EuSn2As2 with spin-orbit coupling (SOC) calculated with first-principles calculation (black) and
tight-binding Hamiltonian based on the Wannier functions (red). The red, blue and green arrows marked the interband contributions to peaks in
(b)–(c) centering at 0.33 eV, 0.37 eV and 0.55 eV, respectively. (b) The linear injection responses ηLI in AFM-z phase. (c) The linear injection responses
ηLI in AFM-x/y phases. (d) The circular shift responses σCS in AFM-x/y phases

less of the polarization. When illuminated by linear po-
larized light with polarization along x or y direction, the
response photocurrent flows perpendicular to the mag-
netic moments due to the nonzero η

yxx,yyy
LI and η

xxx,xyy
LI in

the AFM-x and AFM-y phase, respectively. When illumi-
nated by circular polarized light propagating in ẑ direction,
the response photocurrent flows parallel to the magnetic
moments due to the nonzero η

xxy
LI ,σ xxy

CS and η
yxy
LI ,σ yxy

CS in the
AFM-x and AFM-y phase, respectively.

We present a generalized symmetry analysis for bilayer
AFM structures with magnetic moments oriented along
any arbitrary axis. These phases can be classified into four
types based on their MPGs. The magnetic structures with
magnetic moments lying in the plane perpendicular to
the C2 axis belong to MPG 2/m′, and exhibit BPVE re-
sponses similar to the AFM-y phase. When magnetic mo-
ments are parallel to the C2 axis, the magnetic structure
belongs to MPG 2′/m and displays BPVE responses simi-
lar to the AFM-x phase. If the magnetic moments are along
the z axis, the corresponding magnetic structure belongs
to MPG 3̄′m′ and has the same BPVE responses as AFM-z
phase. The other magnetic structures belong to MPG –1′.
When systems with MPG 2/m′ and 2′/m are illuminated
with circularly polarized light, the induced BPVE currents
flow parallel to the projection of magnetic moments in the
x-y plane. On the other hand, magnetic structures belong-
ing to MGP –1′ allow the BPVE currents to flow in any
direction, either parallel or perpendicular to the magnetic
moment when illuminated with circularly polarized light.
Thus, we can differentiate structures that belong to differ-
ent MPGs.

2.3 First-principles calculation of BPVE in bilayer EuSn2As2
We obtain the band structures of the bilayer AFM-x/y/z
EuSn2As2 by first-principles calculation as shown in
Fig. 2(a) and Fig. A1(a), (b). They have similar electronic
structures with a narrow bandgap of 15 meV, indicating
that the direction of magnetic moments has negligibly
small influence on the band structure but has direct con-
strain on their BPVE responses. The linear injecton re-
sponses of the three magnetic phases are presented in
Fig. 2(b)–(c). As discussed before, there are three non-
vanishing components of ηLI in AFM-z phase, which are
supposed to share the same magnitude and only differ by
a sign. The little inconsistancy shown in Fig. 2(b) is at-
tributed to the violation of symmetry in generating Wan-
nier functions. On the contrary, the three components
in AFM-x/y phases are independent as demonstrated in
Fig. 2(c) due to the absence of C3z. Furthermore, EuSn2As2
in AFM-x/y phases display stronger linear injection re-
sponse. Figure 2(d) shows the circular shift response in
AFM-x/y phase, which is absent in AFM-z phase because
of the relations (–xxx = xyy = yxy, –yyy = yxx = xxy) re-
quired by C3z and the antisymmetric property of circular
shift conductivity to the last two indices.

From Fig. 2(c)–(d), we notice that there is a connection
between BPVE responses in AFM-x and AFM-y phase, i.e.,
ηAFM-x

yyy = –η
AFM-y
xxx , ηAFM-x

xxy = –η
AFM-y
yxy , ηAFM-x

yxx = –η
AFM-y
xyy and

σ AFM-x
xxy = σ

AFM-y
yxy , with minor differences resulted from the

little violated symmetry in generating the Wannier func-
tions and the tiny magnetic anisotropy. We attribute it to
be a consequence required by symmetry rather than a co-
incidence. As the bilayer EuSn2As2 is a quasi-2D material,
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Figure 3 The distribution of the group velocity difference �x
mn(k) and �

y
mn(k) in the BZ of (a), (d) AFM-x, (b), (e) AFM-y and (c), (f) AFM-z structures

Figure 4 The distribution of quantum metric gbcmn(k) in the BZ of (a), (d), (g) AFM-x, (b), (e), (h) AFM-y, and (c), (f), (i) AFM-z structures

the effect of Mx in MSG P2′/m is identical to C2y when con-
stranied in the x – y plane. Therefore, the MSG P2/m′ of
AFM-y phase can be transformed into the MSG P2′/m of
AFM-x phase when transformed under C4z. Applied with
C4z, we obtain

( x′
y′
)

=
( 0 1

–1 0

)( x
y
)

and transform η
AFM-y
xxx to

–ηAFM-x
y′y′y′ and σ

AFM-y
yxy to –σ AFM-x

x′y′x′ = σ AFM-x
x′x′y′ . However, the

system has no C4z rotation symmetry but tiny magnetic
anisotropy in x and y direction. This magnetic anisotropy
might be identified in the difference between ηLI and σCS
in Fig. 2(c) if the numerical error in calculations can be re-
duced enough, e.g., the generated Wannier functions can
preserve symmetry exactly.

The integrand of ηLI can be decomposed into three terms
as shown in (6), i.e., the k-resolved group velocity differ-
ence �a

mn(k), quantum metric 2gbc
mn(k) ≡ {rb

mn(k), rc
nm(k)}

[33, 46], and joint density of states (JDOS) δ(ωnm(k) – ω).
The distribution of �a

mn(k) and gbc
mn(k) in three magnetic

structures are shown in Fig. 3 and Fig. 4, respectively,

which follow the constrains of symmerty. For instance, C2x
and MxT in AFM-y/z confine �x

mn(k) and gxx,yy
mn (k) to be

symmetric about ky axis, while �
y
mn(k) and gxy

mn(k) are con-
fined to be antisymmetric about ky axis. These properties
require η

yyy,xxy,yxx
LI to vanish in AFM-y/z structures, which

is consistent with above symmetry analysis and calculation
results. More details about the transformation of quanti-
ties under symmetrical operations can be found in Table 2.
Furthermore, �a

mn(k) in the three magnetic structures are
similar to each other while gab

mn(k) are quite different, veri-
fying above conclusion that the alignment of magnetic mo-
ments has small influence on the band structure but greatly
changes the geometrical properties of wave functions as
reflected in the nonlinear optical responses.

The distribution of these quantities in BZ can offer us
further information about the BPVE responses. Noticing
that there are four peaks at 0.024, 0.33, 0.37 and 0.55 eV
in linear injection responses as shown in Fig. 2(b)–(c), we
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Table 2 Transformation of group velocity difference �a
mn(k) and quantummetric gbcmn(k) under C2x , C2xT , Mx and MxT

Symmetry operation

AFM-x AFM-y/z

Quantitiy C2xT Mx C2x MxT
�x

mn(kx , ky ) –�x
mn(–kx , ky ) –�x

mn(–kx , ky ) �x
mn(kx , –ky ) �x

mn(kx , –ky )
�

y
mn(kx , ky ) �

y
mn(–kx , ky ) �

y
mn(–kx , ky ) –�y

mn(kx , –ky ) –�y
mn(kx , –ky )

gxxmn(kx , ky ) gxxmn(–kx , ky ) gxxmn(–kx , ky ) gxxmn(kx , –ky ) gxxmn(kx , –ky )
gxymn(kx , ky ) –gxymn(–kx , ky ) –gxymn(–kx , ky ) –gxymn(kx , –ky ) –gxymn(kx , –ky )
gyymn(kx , ky ) gyymn(–kx , ky ) gyymn(–kx , ky ) gyymn(kx , –ky ) gyymn(kx , –ky )

can figure out the corresponding interband transitions in
the Brillouin zone according to the energy conservation re-
quired by δ(ωnm – ω). As illustrated in Fig. 2(a), the red,
blue and green arrows marked the interband contributions
to peaks centering at 0.33 eV, 0.37 eV and 0.55 eV, respec-
tively. They locate around 
 point in 
 – K and 
 – M di-
rections. Besides, interband transition at 0.024 eV is right
at 
. The photocurrent peaks at 0.024 eV, 0.37 eV and
0.55 eV coincide with the peaks in JDOS at the same pho-
ton energy position as shown in Fig. A2, while the pho-
tocurrent peak at 0.33 eV has no corresponding peak in
JDOS. We think this peak is mostly contributed by the
large values of quantum metric gbc

mn(k) in 
 – K direction
from the interband transition marked by the red arrows in
Fig. 2(a).

3 Conclusion
In summary, we demonstrate that the BPVE photocurrents
can be classified into linear/circular shift current and lin-
ear/circular injection current by analyzing their depen-
dences on the polarization of incident light and generating
mechanism. Taking bilayer EuSn2As2 in three AFM struc-
tures as an example, we analyze the BPVE responses con-
strained by the magnetic symmetry through group repre-
sentation theory and first-principles calculation. The re-
sults show that AFM-z structure has only linear injection
currents while AFM-x/y structures have the linear injec-
tion and circular shift currents and the currents flow in
perpendicular direction when illuminated by light. We de-
sign a protocol to distinguish the magnetic structures of

even-layer EuSn2As2 in experiments, which can be gener-
alised to materials with similar MPGs. Moreover, we illus-
trate that the geometric quantity has a crucial role in the
BPVE responses, which can guide us to find the ideal ma-
terials for practical applications.

4 Methods
The band structures are calculated using the Quantum
ESPRESSO (QE) simulation package [47, 48] with the
generalized gradient approximation of Perdew–Burke–
Ernzerhof exchange-correlation potential [49] in PSLI-
BRARY [50]. The self-consistent calculations are carried
out on a 11×11×1 Monkhorst–Pack k-mesh with the
plane-wave function cutoff set to 150 Ry. A vacuum region
of about 15 Å along the z direction is adopted to elimi-
nate the artificial layer interactions. Due to the existence
of Eu-4f orbitals, we apply a Hubbard U correction with
parameter U4f = U – J = 5.0 eV. The maximally-localized
Wannier functions [51–53] are generated using p orbital
Sn, p orbital of As, f orbital of Eu. With the tight-binding
Hamiltonian constructed from these Wannier functions,
we calculate the optical responses with modified code of
the WANNIER90 package [54]. The calculation is per-
formed on the 1500×1500×1 k-mesh and the convergence
has been tested.

Appendix A: Band structures of the AFM-x/y
structures and JDOS

Figure A1 The band structures of bilayer EuSn2As2 with spin-orbit coupling (SOC) calculated with first-principles calculation (black) and
tight-binding Hamiltonian based on the Wannier functions (red) in (a) AFM-x phase and (b) AFM-y phase
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Figure A2 The joint density of states of three magnetic structures

Appendix B: Symmetry analysis and character
tables of the AFM-x and AFM-y phases

AFM-x phase The bilayer AFM-x EuSn2As2 belongs to
MPG 2′/m that can be decomposed into M = Cs ⊕ (C2h –
Cs)T and M = Cs ⊗ {I ,PT }. The representation of σCS
and ηLI are given below according to Table B1. As there are
one and three identity representations in 
σCS and 
ηLI , re-
spectively, we can find out the nonvanishing independent
components are σ

xxy
CS and η

yyy
LI ,ηyxx

LI ,ηxxy
LI .


σCS = 
J ⊗ 
(EE∗)asym = A1 ⊕ A2,


ηLI = 
J ⊗ 
(EE∗)sym = 3A1 ⊕ 3A2.
(B.1)

AFM-y phase The AFM-y phase belongs to the MPG
2/m′ that can be decomposed into M = C2 ⊕ (C2h – C2)T
and M = C2 ⊗ {I ,PT }. The representation of σCS and ηLI
are given below according to Table B2. As there are one
and three identity representations in 
σCS and 
ηLI , respec-
tively, we can find out the nonvanishing independent com-

Table B1 Characters for irreducible representations of group Cs
and characters of a polar vector, a symmetric second-rank tensor
and an asymmetric second-rank tensor

Cs E Mx Basis function

A1 1 1 z, y,Rx
A2 1 –1 x,Rz ,Ry


(EE∗ )sym 3 1

(EE∗ )asym 1 –1

Table B2 Characters for irreducible representations of group C2
and characters of a polar vector, a symmetric second-rank tensor
and an asymmetric second-rank tensor

C2 E C2x Basis function

A1 1 1 x,Rx
A2 1 –1 y, z,Ry ,Rz


(EE∗ )sym 3 1

(EE∗ )asym 1 –1

ponents are σ
yxy
CS and η

yxy
LI ,ηxyy

LI ,ηxxx
LI .


σCS = 
J ⊗ 
(EE∗)asym = A1 ⊕ A2,


ηLI = 
J ⊗ 
(EE∗)sym = 3A1 ⊕ 3A2.
(B.2)
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