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Abstract: In this paper we study the dual charges ofN = 1 supergravity in asymptotically
flat space-time. The action considered is the usual supergravity action with a topological
contribution. This is the Nieh-Yan term and the magnetic term of the free Rarita-Schwinger
field. Through methods of the covariant phase space formalism we construct the charges
conjugate to supersymmetry, diffeomorphism and Lorentz transformations. The additional
term in the action will lead to new, non-vanishing contributions to these charges. The
magnetic diffeomorphism charges are equivalent to the ones previously found for gravity,
while the dual supersymmetric charges are new and do not appear for the free Rarita-
Schwinger field. The dual Lorentz charges serve to regularize the previous two. We find
that the asymptotic symmetry group for supergravity can only include globally well-defined
super-rotations.
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1 Introduction

The usual Maxwell equations that govern the behavior of the electric and magnetic fields,
seemingly forbid the existence of magnetic monopoles. This conclusion was first challenged
by Dirac. His insight was that by choosing a special couple of gauge potentials, that are
not everywhere continuous, and removing the origin of the coordinates, one can construct
a magnetic field with a monopole.

Later, in the study of Yang-Mills theory it was shown that one can add an additional
gauge and Lorentz invariant term to the action, with a coupling constant θ (hence the name
theta term). In special cases where the coupling constant varies with the background, one
can have magnetic field, seemingly caused by monopole. This happens, for example, when
one has electromagnetic radiation propagating inside of a topological insulator (θ = π) and
outside (θ = 0).
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There are a lot of parallels between Yang-Mills theory and the Einstein theory of gravity.
The study of dual charges is no exception. In the fifties and sixties, a very peculiar solution
to the vacuum Einstein equations was discovered - the Taub-NUT metric [7], [8]. This
solution is characterized by the NUT parameter, which can be viewed as a gravitomagnetic
monopole [16] - the dual charge of the gravitational mass. In recent years it has been shown
[18], that the presence of the NUT charge requires that the subleading (with respect to the
radial coordinate) components of the angular metric (written in the Bondi gauge [1]), is
not continuous on the sphere. What is more, this part of the metric transforms as a gauge
field under the action of the asymptotic symmetry group [9]. If one chooses this field to be
the gauge potential of the Dirac monopole, one obtains the the Taub-NUT metric [9].

On the other hand, the study of asymptotic symmetries of asymptotically flat space-
times lead to the discovery of an infinite dimensional group of asymptotic charges [13]. They
represent different modes of the mass and angular momentum flux. This begs the question
whether an infinite number of gravitational magnetic charges exist. Indeed these charges
were found [9], [10]. Subsequently, their existence was better understood in the Hamiltonian
formalism of gravity [11]. Adding an additional term to the Einstein-Palatini action, one
can derive these charges via the covariant phase space formalism. This additional term is
the Holst term. It is similar to the theta term in Yang-Mills theory and does not change the
equations of motion. Indeed one can derive the magnetic Yang-Mills charges in a similar
fashion [29]. If one couples gravity to fermions, the Holst term needs to be replaced by the
Nieh-Yan term [11].

In this paper we extend these efforts to supergravity. The topological term in the
action will have two contributions - the Nieh-Yan term and the magnetic term from the
free Rarita-Schwinger field [15]. We choose the metric to be asymptotically flat and we
write it in Bondi coordinates. The usual asymptotic symmetry group on this metric is the
BMS. Here it would be enlarged to in two ways. Firstly, because of supersymmerty it will
be extended to the super-BMS group [17]. Furthermore, it will have magnetic charges as
well as the usual super-BMS charges.

2 Symplectic structure

In order to study the normal and dual Hamiltonian charges for supergravity we first need
to set the tools of this analysis. Therefore, in this section, we briefly show how to construct
the phase space for a gauge theory. The phase space for a field is an infinite-dimensional
symplectic manifold, where every point is a specific field configuration. These configurations
are constrained by the equations of motion and the boundary conditions. The conserved
charges of the theory are functions on phase space. Mathematically they are are expressed
as functionals of the fields. Their commutator relationship and infinitesimal variations are
defined via the symplectic form. The steps for defining this symplectic form are straight-
forward [2], [12].
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First we vary the Lagrangian,

δL(φ, δφ) ≈ dΘ(φ, δφ) (2.1)

Here and throughout this paper the sign ≈means equality on shell. The boundary term Θ is
the pre-symplectic potential. The pre-symplectic density and form are defined respectively
as,

w(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ)− δ2Θ(φ, δ1φ) (2.2)

Ω̃(φ, δ1φ, δ2φ) =

∫
Σ
w(φ, δ1φ, δ2φ) (2.3)

where Σ is a Cauchy surface in the space-time manifold. The pre-symplectic form will be
in general degenerate on the phase space. Its degenerate directions correspond to trans-
formations, that are not physical, but are rather redundant descriptions of the same field
configuration. If we quotient the phase space by the degenerate directions, we get the pre-
symplectic form Ω. The infinitesimal variation of a Hamiltonian charge, conjugate to a field
variation δχφ is

�δHχ[φ] =

∫
Σ
w(φ, δχφ, δφ) (2.4)

For gauge transformations this can be re-written as a boundary term [12]. This varia-
tion is not in general an exact one form on phase space. This can be due to two to reasons-
the transformation is not canonical, or there is a charge flux through the boundary of the
space-time region. In the second case, one can impose the condition that the variation of
the field on the boundary is zero and thus make the Hamiltonian charge integrable [2].

The commutator of two integrable charges is defined as [12],

[Hχ, Hξ][φ] = δξHχ[φ] =

∫
Σ
w(φ, δχφ, δξφ) = H[ξ,χ] +Kξ,χ[φ̄] (2.5)

Kξ,χ =

∫
Σ
w(φ̄, δχφ̄, δξφ̄) +N[ξ,χ][φ̄] (2.6)

Where K is the central extension and φ̄ is a reference field configuration, which is the
starting point of integration of the charges on phase space.The term N is a reference charge.

3 The action

The action of gravity with magnetic term, coupled to fermions has been derived in [11].
It is the usual Einstein-Palatini action plus the Nieh-Yan term. The magnetic charges of
the free massless Rarita-Schwinger field were studied in [15]. Here, we will combine these
efforts and study the magnetic charges of the N = 1 supergravity theory.
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We work in the 1.5 order formalism [14]. Initially, we consider the that the frame field,
spin connection and gravitino field are all independent variables. By varying the action
with respect to the spin connection, we can determine its expression in terms of the two
other fields. The presence of spinor field, gives rise to a non-vanishing torsion. Once the
expression for the spin connection is determined, we put it back in the action and proceed
as if the only independent variables are the frame and gravitino field. For more details of
this formalism see [14].

The usual action for N = 1 supergravity in the Einstein-Palatini formalism is the
following,

SSG =
1

2κ2

∫
M

εabcd e
a ∧ eb ∧Rcd − ψ̄ ∧ γ5γ ∧∇ψ (3.1)

Here and throughout this paper, Greek letters µ, ν are space-time indices, and Latin
letters a, b are tangent space indices.

The topological term, that will give raise to magnetic charges is,

S∗SG = − iλ

2κ2

∫
M

ea ∧ eb ∧Rab − T a ∧ Ta − d
(
ψ̄ ∧ γ ∧ ψ

)
(3.2)

where T a is the torsion, defined as dea + eb ∧ ω a
b = T a. The first part is the topological

term for gravity coupled to fermions [11]. It is equall to ea∧eb∧Rab−T a∧Ta = d(ea∧T a).
Re-writing it like this however, hides away important terms, that are technically zero, but
whose contribution to the pre-symplectic potential is not. The action is invariant under
supersymmetry, diffeomorphism and local Lorentz transformations [14]. These transforma-
tions act respectively on the frame and gravitino field in the following way,

δεe
a
µ =

1

2
ε̄γaψµ δεψµ = ∇µε (3.3)

δξe
a
µ = Lξeaµ = ξν∂νe

a
µ + eaν∂µξ

ν δξψµ = Lξψµ = ξν∇νψµ + ψν∇µξν −
1

4
∇ρξνγργνψµ

(3.4)

δΛe
a = Λabe

b δΛψ = −1

4
Λabγ

abψ (3.5)

where ε is the gauge spinor, ξ is the vector field, generating diffeomorphism, and Λ generates
a local Lorentz transformation.

The variation of the action is,

– 4 –



δS =
1

2κ2

∫
M

(
2εabcde

b ∧Rcd − ψ̄ ∧ γ5γa∇ψ
)
∧ δea (3.6)

+

(
2εabfd de

a ∧ eb + 2εabcde
a ∧ eb ∧ ωcf −

1

4
ψ̄ ∧ γ5γγfd ∧ ψ

)
∧ δωfd (3.7)

−
(
∇ψ̄γ5 ∧ γ

)
∧ δψ (3.8)

+ d
(
eabcde

a ∧ eb ∧ δωcd − ψ̄γ5 ∧ γ ∧ δψ
)

(3.9)

− iλ
(
ea ∧ eb ∧ δωab − 2δea ∧ Ta − δ

(
ψ̄ ∧ γ ∧ ψ

))
(3.10)

In the first line we expressed the variation of the action with respect to the frame field
- this gives the Einstein equation. The second line is variation with respect to the spin
connection and it gives the equation for the torsion and contorsion tensor,

ωµab = ωµab(e) +Kµab(ψ) Kµ[ab](ψ) =
1

4

(
ψ̄bγaψµ − ψ̄aγbψµ − ψ̄aγµψb

)
(3.11)

T[µν]b(ψ) =
1

2
ψ̄µγbψν (3.12)

The third line is the equation of motion for the gravitino field. The two final lines are
pre-symplectic potential for N = 1 supergravity with magnetic term,

Θ =
1

2κ2

(
εabcde

a ∧ eb ∧ δωcd − ψ̄ ∧ γ5e
aγa ∧ δψ

)
(3.13)

− iλ

κ2

(
ea ∧ eb ∧ δωab − 2δea ∧ Ta − δ(ψ̄ ∧ γ ∧ ψ)

)
︸ ︷︷ ︸

Θ∗

(3.14)

Before we proceed with studying the charges we note something useful about the mag-
netic piece in the symplectic density.

Θ∗(δ) = δ(ea ∧ eb ∧ ωab)− 2δea ∧ dea − δ(ψ̄ ∧ γ ∧ ψ) (3.15)

Ω∗(δ1, δ2) = 2d(δ1e
a ∧ δ2ea) = dδ1(ea ∧ δ2ea)− dδ2(ea ∧ δ1ea) (3.16)

Because δ is the exterior derivative on phase space.

3.1 Asymptotic conditions

The equations of motion, that the fields ea and ψ need to satisfy are already given in section
3. In this section, we introduce the boundary conditions of the fields. Firstly, we demand
that the metric is asymptotically flat. In the Bondi gauge [1], [4], [24] an asymptotically
flat metric takes the following form,
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ds2 = −e2βf2du2 − 2e2βdudr + r2hAB(dxA − UAdu)(dxB − UBdu) (3.17)

hAB = γAB +
CAB
r

+
dAB
r2

+O(r−3) f2(u, r, xA) = 1− 2M(u, xA)

r
+O(r−1) (3.18)

e2β = 1 +O(r−2) guA =
1

2
DBC

AB +
1

r

(
1

4
CBCDAC

CB +NA

)
dAB =

1

4
γABCCDC

CD

(3.19)

Here DA denotes the covariant derivative with resepect to the metric of the unit two-
sphere γAB, M(u, xA) is the Bondi mass, that can vary with time and NA is the angular
momentum. The subleading tensor CAB characterizes a gravitational wave and is related
to the time derivative of the mass. Residual gauge freedom can be used to make it traceless
and to set the determinant det(gAB) to be r2 det(γAB).

Since we work in the Einstein-Palatini formalism, the metric is not the gravitational
field of interest. Rather we need the frame fields eaµ, which satisfy eaµebνηab = gµν , where ηab
is the Minkowski metric. The frame fields are defined up to a local Lorentz transformation.
Our choice for them is,

e0 =
eβ

f
dr + eβfdu e1 =

eβ

f
dr (3.20)

ei = rEiA
(
dxA − UAdu

)
EiAE

j
Bδij = hAB i, j ∈ {2, 3} (3.21)

Any variation should preserve the leading terms of these fields.
The gauge condition for the gravitino field is,

γµψµ = 0 (3.22)

This simplifies the equations of motion for ψ. The boundary conditions on ψ, will
be dictated by the fact that supersymmetric transformations must preserve the gauge and
asymptotic behavior of the metric,

δεgrr = ε̄γrψr = 0 δεgur =
1

2
ε̄γ(uψr) = O(r−2) δεgrA =

1

2
ε̄γ(rψA) = 0 (3.23)

To leading order this and the fermionic gauge condition are satisfied when,

ε ∼ O(1) ψA ∼ O(1) ψu ∼ O(r−1) ψr ∼ O(r−2) (3.24)

γuψr = 0 γu(0)ψ0
A = 0 γu(0)ψ(−1)

u = 0 γA(−1)ψA = 0 (3.25)

Notice that, because the matrix γu is nilpotent the equations of the second line do not
imply that ψr, ψ

(0)
A or ψ(−1)

u are 0. The justification for these boundary conditions are the
following. Firstly, ε ∼ O(1) comes from the fact that the commutator of the supersymmetric
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transformations of the metric, should be a diffeomorphism. This is better explained in the
next section. Next, because γAB is fixed ψA should be O(1). It cannot be more sub
leading, because the subleading tensors of hAB depend on CAB. The trace-free condition
requires that γA(−1)ψ

(0)
A = 0. Combining this with δεgrA, we can reach the conclusion that

ψ
(−1)
r = 0. Last but not least, remembering that the supersymmetric variation, should also

respect the linearized equations of motion for the metric, we must also have to the following
constraint on ψ(−1)

A ,

γ
(0)
(A ψ

(0)
B) + γ

(1)
(A ψ

(−1)
B) =

1

2
γABC

DCγ
(1)
(Dψ

0
C) ⇒ γA(−1)ψ

(−1)
A = 0 (3.26)

Finally it is important to discuss what variations are allowed on the gravitino field.
Super-translations preserve the leading order components of the field, while super-rotations
do not. From super-symmetric transformation we require that δεψA = O(r−1) and δεψu =

O(r−2). This is discussed in detail in section 4.3. Finally, for integrability of the super-
symmetric charges we require that any other non-specific variation δψA is subleading. The
fact that super-rotations violate this condition will result in a contribution to the central
charge.

4 Charges

4.1 Diffeomorphism charges

The diffeomorphisms that respect the boundary and gauge conditions of the fields form the
BMS group. The BMS group is generated by vector fields, that take the following form [1],
[4],

ξu = f(xA) +
u

2
DBf

B(xA) ξA = fA − ∂Bξu
∫

1

r2
e2βhABdr (4.1)

ξr = −r∂uξu +
1

2
∇rξu − ∂Bξu

∫
UBdr ∂uξ

u = DAf
A (4.2)

These generators can be divided in two subcategories - super-translations and super-
rotations. The super-translation generators depend only on an arbitrary function on the
sphere f(xA). When this function is taken to be the lowest order spherical harmonics, the
transformation reduces to ordinary translation. Similarly, the super-rotation generators
depend only on a vector field on the two sphere fB(xA) and includes the Lorentz subgroup.

In order to calculate the diffeomorphism charge, we use the fact that the variation of
any quantity is just its Lie derivative, and we can use Cartan’s magic formula,

Ω(δ, δξ) ≈ δΘ(δξ)− dιξΘ(δ)− ιξδL = δ (Θ(δξ)− ιξL)− dιξΘ(δ) (4.3)

�δHξ =

∫
Σ
δ (Θ(δξ)− ιξL)−

∫
∂Σ
ιξΘ(δ) (4.4)
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We see that the Hamiltonian charge, naturally splits into integrable and non-integrable
part. The latter quantifies the flux of the given charge through the Cauchy surface, which
here is chosen to be future null-infinity. At the past boundary of I+ this flux is set to be
zero, by choosing appropriate u fall-off conditions for gravitational radiation.

The calculations for the Hamiltonian charge density are in appendix D. The formula
for the charge is,

�δHξ + iλ�δH̃ =
1

2κ2

∫
∂Σ
δ
(
εabcde

a ∧ eb ιξωcd − ψ̄ ∧ γ5γ ιξψ
)

(4.5)

− ιξ
(
εabcde

a ∧ eb ∧ δωcd − ψ̄ ∧ γ5γ ∧ δψ
)

+ iλ(Lξea ∧ δea) (4.6)

First we note, that due to the boundary conditions on the fermionic field 3.24, the
part of the charge, that depends on ψ, is finite and it vanishes for super-translations. It is
integrable for both super-translations and super-rotations. The integrability crucially relies
on γA(−1)ψ0

A = γu(0)ψ
(0)
A = 0. We see that in the context of supergravity, the finiteness of

the global Lorentz generators of the gravitino field is a direct consequence of the asymptotic
flatness of the metric. One does not need to make additional assumptions for the asymptotic
behavior of the field, as is the case for the free Rarita-Schwinger field [25].

The rest of the above expression is the usual diffeomorphism charge of pure gravity.
The charge has normal and magnetic part. More specifically, comparing with the results
from [4], [11] and [23], the super-translation and super-rotation charges are respectively,

HST + iλH̃ST =
1

2κ2

∫
I+−

√
γ fM + iλ

∫
I+−
−CB[DDA]D

Bξu (4.7)

HSR + iλH̃SR =
1

2κ2

∫
I+−

√
γ − 1

4
DAf

AC2 + fANA + ψ̄[Aγ5γB]ψCf
C (4.8)

+iλ

∫
I+−
−CB[DDA]D

Bξu +
1

4
fBCC[AD|B|C

C
D] −

1

4
f[ADD]C

2 (4.9)

where C2 = CABC
AB.

4.2 Lorentz charges

In addition to diffeomorphisms, we also need to consider local Lorentz transformations.
They do not affect the metric and therefore one expects that they are unphysical. The
frame field transforms under diffeomorphisms and local Lorentz transformations as,

δeaµ = ξν∂νe
a
µ + eaν∂µξ

ν + Λabe
b
µ (4.10)

If we take into consideration only the diffeomorphisms, the gauge and boundary con-
ditions are not satisfied. We need local Lorentz transformations to regularize this. Their
expressions up to leading order are,
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Λ0
i = −e0

µe
A
i ∂Aξ

µ Λ1
i = −e1

re
A
i ∂Aξ

r (4.11)

Λ1
0 = − 1

f2
∂rξ

r Λij = −eAj LfBeiA + δijDAf
A (4.12)

Notice that in the third line, δjiDAf
A is the symmetric part of the term −eAj LfBeiA,

making Λij asymmetric as it should be. Furthemore, we observe that these transformations
are needed to preserve the boundary conditions, only if the BMS transformation in question
is a super-rotation. Intuitively, this can be understood as the fact that super-rotations are
a generalization of Lorentz transformations. Therefore, part of their effect on the frame
field needs to be undone by a local Lorentz transformation.

We now proceed to study the charges related to these transformations. We know from
[11] that δΛ

(
εabcde

a ∧ eb ∧ δωcd
)

= 0. We also have,

εabcde
a ∧ eb ∧ δΛω

cd = dQΛ + 2εabcdT
a ∧ ebΛcd = dQΛ + 2ψγ5γbcd ∧ ψ ∧ ebΛcd (4.13)

We know that the hamiltonian charge from Q in this setup is zero [11]. From the
fermionic part we have:

δΛψ = −1

4
Λab(x)γabψ δΛe

b = Λ(x)bae
a (4.14)

ψ̄ ∧ γ5γ ∧ δΛψ = ψ̄ ∧ γ5γγcd ∧ ψΛcd (4.15)

Which simplifies the second term in 4.13. Furthermore, thanks to the identity A.5
(which works in the same way if one replaces ωab by Λab), we can see that δΛ

(
ψ̄ ∧ γ5γ ∧ δψ

)
=

0. We conclude that the normal Lorentz charge vanishes.
On the other hand, the magnetic term from the Lorentz charges does not vanish. This

seems bizarre at a first glance. However, this is actually useful as it serves to regularize the
diffeomorphism magnetic charge.

(
Lξea + Λabe

b
)
∧ δea ∼ O(1) (4.16)

4.3 SUSY charges

The charges conjugate to supersymmetry transformations are more complicated. We will
study their expression in this section. First we work out the transformations of the fields
and the spin connection.

δεe
a
µ =

1

2
ε̄γaψµ δεψµ = ∇µε (4.17)

δεωµab(e) =
1

2
∂µ
(
ε̄γ[aψb]

)
+ eρa∂µ (ε̄γbψρ) +

1

2
ε̄γ[aψ

[ρe
σ]
b] ∂σgρµ +

1

2
eρ[ae

σ
b]∂ρ

(
ε̄γ(σψµ)

)
(4.18)

4δεKµab =∇bε̄γaψµ +
1

2
ε̄γbψ

νψ̄νγaψµ + ψ̄bγa∇µε

− 1

2
ψ̄aγ

cψbε̄γcψµ +∇aε̄γµψb +
1

2
ε̄γaψ

νψ̄νγµψb − (a↔ b)

(4.19)
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Where ε is the gauge spinor. These transformations need to preserve the boundary and
gauge conditions of the frame and gravitino field. This leads to various constraints. We
first look at the gauge spinor,

[δ1, δ2]gµν = ∇(µξν) ξν =
1

2
ε̄1γνε2 (4.20)

This looks like the transformation of the metric under diffeomorphism. We already
know what conditions should be satisfied by the vector field ξµ - it should generate a
member of the BMS group. In particular ξu should not be a function of r. This is achieved
if the following property is satisfied by the gauge spinor ε,

eβ

f
ε̄1 (γ0 + γ1) ε2 6= g(r) ⇒ εi =

√
f

eβ
fi(θ, φ) + γ(0)

r ρi (4.21)

From the above we see that ε−1 = −M
r ε

0 + γu(0)

r ρ(−1), (because γu(0) × γu(0) = 0).
From the gauge condition 3.22 at first and second order in r the equations of motion for
the gauge spinor are,

O(1) :γu0∂uε
0 = 0 (4.22)

O(r−1) :γA(−1)∂Aε
0 +

1

2
cot θγ2ε0 + γ1ε0 + γu0∂uMε0 + γu0∂uε

−1 = 0 (4.23)

γA(−1)∂Aε
0 +

1

2
cot θγ2ε0 + γ1ε0 = 0 (4.24)

This is the equation for covariantly constant spinor and it agrees with the result from
[17]. It’s expression is given in the appendix. This tells us that the function ξu = 1

2 ε̄1γ
uε2

is some linear combination of the lowest order spherical harmonics. Thus we recognize that
the vector field ξµ from 4.20 generates only ordinary translations. The same conclusion was
reached in [26]. Notice that in order to obtain higher order spin 1/2 spherical harmonics, [3],
and consequently more interesting super-translations, we would need a different constant
multiplying γ1. This would mean setting U0 = λ 6= 1. However Einstein equations tells us
that U0 = 1

2R[γ]. Knowing what the Ricci tensor is for the metric on the sphere, we can
infer that this re-scaling would also re-scale the coefficients of γAB, so as to leave the above
equation invariant. Therefore the equations of motion and the asymptotic flatness impose,
that the commutator of two supersymmetric transformations can only be an ordinary trans-
lation. It would be interesting to see whether more interesting results can be obtained for
other metrics. Finally, a quick calculation can show that by choosing ρ(−1)) = −γ0Mε0, we
can set δεψu ∼ O(r−2), which is going to be useful.

With these conditions in mind, we now proceed to the calculations of the fermionic
charges, arising from supersymmetry. The calculations for the part of the charge, arising
from the gravitino term in the action, are almost identical to the calculation for gauge
charges of the free, massless Rarita-Schwinger field [15],
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δΘ(δε)− δεΘ(δ) ≈ δ (Θ(δε)− IεL)− dIεΘ(δ) (4.25)

δ (Θ(δε)− IεL) ≈ δ (Θ(δε)) = δ
(
ψ̄ ∧ γ5γ ∧∇ε

)
(4.26)

≈ d
(
δ(ψ̄ ∧ γ5γε) + ψ̄ ∧ γ5T

aγaε
)

(4.27)

IεΘ(δ) = ε̄γ5γ ∧ δψ (4.28)

where the operator Iε is defined as Iε = ε · δδψ . In the expression for δεΘ I have ignored the
term ψ̄ ∧ γ5δεγ ∧ ψ because this is a four fermion term that vanishes thanks to the Fierz
identity A.6. Simiralry, ψ̄ ∧ γ5T

aγaε vanishes thanks to the cyclic identity for spinors A.8.
We now turn to the gravitational part of the symplectic form.

Ω(δ, δε) = εabcd

∫
Σ
δ(ea ∧ eb ∧ δεωcd)− δε(ea ∧ eb ∧ δωcd) (4.29)

First we note two things -
∫

Σ εabcde
a ∧ eb ∧ Bcd =

∫
ΣB

µν
µ dΣν , for any one-form with

two antisymmetrized tangent space indices. Also, the connection form ω has two parts
ω = ω(e) + K(ψ). From the expression of the supersymmetric variation of the contorsion
tensorKµab 4.19 and the gauge condition 3.22, we can conclude that εabcdea∧eb∧δεKcd = 0.
Any variation δ should preserve this gauge condition. Furthermore, most of the terms of
δε
(
εabcde

a ∧ eb ∧ δKcd
)
again vanish by the gauge condition. The remaining ones are of the

form nνδεψ̄
νγµδψµ. This will be sub-leading because we have set ∇uε ∼ O(r−2). We are

left with the usual symplectic form of four-dimensional pure gravity. Its expression is,

Ω(δ1, δ2) =
1

2κ2

∫
I+

√
γ dudθdφ εAB εCD δ1

(
CDA
)
δ2

(
∂uC

C
B

)
− (1↔ 2) (4.30)

Ω(δ, δε) =
1

2κ2

∫
I+

√
γdudθdφ εAB εCD ε̄γ

DψA δ
(
∂uC

C
B

)
− (δ ↔ δε) (4.31)

=− 1

2κ2

∫
I+
dudθdφ ∂u

(
ε̄γ5γDψA δC

D
B εAB

)
(4.32)

where we have used the fact that γ5 = γ0γ1γ2γ3 and γ0γ1ψ
(0)
A = −ψ(0)

A , which is a con-
sequence of γu(0)ψ

(0)
A = 0. Furthermore, writing this expression as a total derivative is

possible because the leading order terms of the spinors and frame field do not depend on
time. At subleading order this will no longer be true.

The overall the charge is,

δHε + iλ�δH̃ε = − 1

2κ2

∫
∂Σ

δ (ε̄γ5γ ∧ ψ) + ε̄γ5δγ ∧ ψ − ε̄γ5γ ∧ δψ − iλ ε̄ δγ ∧ ψ (4.33)

We see that unlike the Rarita-Schwinger case, there is contribution to the magnetic
charge. Furthermore because the boundary metric is fixed and because of 3.24 both charges
are finite. We can make both charges integrable by requiring that any non-specific variation
(that is not BMS or susy) of ψ0

A vanishes to leading order. In the case where the variation is
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supersymmetry or super-translation this still holds. When the variation is a super-rotation
one may naively think that the charge is not-integrable. However, this is not the case. A
simple way to understand why this is false is by noting that δξHε = −δεHξ. However, we
already know that Hξ is integrable up to some flux term [18]. Therefore, the obstruction
that one gets can only be interpreted as a central charge. This is studied in detail in the
last section.

It is worth noting that the integrable part of the normal charge is the same as the gauge
charge of the Rarita-Schwinger field [15] up to an overall numerical constant. In terms of
the metric and gravitino components, the integrable charges are,

Hε + iλH̃ε =
1

2κ2

∫
∂Σ

2ε̄(0)γ5γ
(1)
D ψ

(0)
[A CDB] − iλε̄

(0)γ
(1)
D ψ

(0)
[A CDB] (4.34)

We see that both charges depend on the tensor C̃AB = CC(BεA)C , which also enters in
the expression for the dual diffeomorphism charges.

5 Algebra of integrable charges

Before studying the algebra of the charges, we need to specify the algebra of the generators
ξ and ε. The algebra for the BMS generators is well-know [12],

ξf,fA = {ξf1.fA1 , ξf2,fA2 } (5.1)

f = fA1 DAf2 −
1

2
f1DAf

A
2 − (1↔ 2) fA = fB1 DBf

A
2 − (1↔ 2) (5.2)

Furthermore, we already know that the anti-commutator of two supersymmetric pa-
rameters is a translation, characterized by the function ε̄1γu(0)ε2. The problem now is to
work the bracket of ε with ξ. We define the bracket between a BMS vector and the gauge
spinor to be,

[ε, ξR] =
1

2
Lξε = fA∂Aε−

1

4
DAf

A (1 + γ0γ1) ε+O(r−1) (5.3)

We see that to leading order, this vanishes for a super-translations. Asymptotically
the generators of super-translation and supersymmetric transformations commute, as they
should. Using the fact that γu(0) (1 + γ0γ1) = 2γu(0), one can verify that with this bracket
the following Jacobi identity is satisfied.

{ε1, [ε2, ξSR]} − {ε2, [ε1, ξSR]} = [ξR, {ε1, ε2}] (5.4)

This result agrees with that in [28], where the same bracket was established in the
super-symmetric extension of BMS.
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We will now discuss an interesting result from this bracket. The fact that commutator
of gauge spinors can only give an ordinary translation implies that only Lorentz transforma-
tions are allowed in the super BMS group. In super gravity we cannot extend the Lorentz
group to include arbitrary conformal transformations of the celestial sphere. In order to
understand why this is the case, using the notation of [27], we write the vector field on the
sphere fA, the spherical harmonics fm.n and the covariantly constant spinors ε as,

ln = fAn = −zn+1∂z l̄n = f̄An = −z̄n+1∂z̄ fm,n =
1

1 + zz̄
znz̄m (5.5)

εT+ = ei
φ
2

(
ae

iθ
2 , ae−

iθ
2 , be

iθ
2 , be−

iθ
2

)
(5.6)

εT− = ei
−φ
2

(
ce

iθ
2 , −ce−

iθ
2 , de

iθ
2 , −de−

iθ
2

)
(5.7)

f0,0 = ε̄+γ
u(0)ε+ + ε̄−γ

u(0)ε− f1,1 = ε̄+γ
u(0)ε+ − ε̄−γu(0)ε− (5.8)

f1,0 = ε̄−γ
u(0)ε+ f0,1 = ε̄+γ

u(0)ε− (5.9)

Where z = eiφ cot θ2 is the standard stereographic projection, complex coordinate. the
We can re-write the BMS algebra in the following way [27],

[ln, lm] = (n−m)ln+m [l̄n, l̄m] = (n−m)l̄n+m [l̄n, lm] = 0 (5.10)

[lk, fn.m] =

(
k + 1

2
−m

)
fm+k,n [l̄k, fn.m] =

(
k + 1

2
− n

)
fm+k,n (5.11)

From these equations and the Jacobi identity (5.4) we see that whenever n > 1 the
commutators of [ln, ε] and [l̄n, ε] are equal to spinors, whose components must depend on
higher order spin 1/2 spherical harmonics. This is not allowed by the equations of motion for
the gauge spinor. Therefore the allowed asymptotic symmetry group is the super-Poincaré
group, plus the infinite dimensional super-translations.

5.1 Normal charges

In this section we study the algebra of the normal Hamiltonian charges, conjugate to diffeo-
morphic and supersymmetric transformations. They are a representation of an extension
of the BMS group - the super-BMS group [17]. It contains a copy of the super-Poincaré
group. The commutators of the BMS group are already well understood [12]. Curiously
the presence of the gravitino field does not modify the central charge. Here, we will look
only at the commutators, involving supersymmetric charges.

We first look at the commutator of two supersymmetric charges. This is the same as
the commutator for gauge charges of the free Rarita-Schwinger field [22].

[Hε1, Hε2] =
1

κ2

∫
∂Σ
∇[µε̄1γσ]γ5ε2 − (ε1 ↔ ε2) (5.12)

In [22] it is described in detail how the above expression is a BMS charge, generated
by ξµ = ε̄1γ

µε2. This can only be a super-translation, so the commutator is equal to,
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[Hε1, Hε2] =
1

2κ2

∫
∂Σ

√
γ ε̄01γ

u(0)ε02M − (ε1 ↔ ε2) (5.13)

Notice that there is no central charge. What used to be the central charge for this
commutator in the free Rarita-Schwinger theory is now the super-translation charge [15],
[22]. As already explained, ε̄01γu(0)ε02 is just a lowest order spherical harmonic, and therefore
the charge above is a global translation. Again, we note that other supertranslations can
not be obtained through the commutator of fermionic charges.

Now we proceed to study the commutator of a BMS and a supersymmetric charge.
Looking at the expressions from subection 4.3 and section 2 we can identify the commutator
and the central charge as,

[Hε, Hξ] =
1

κ2

∫
∂Σ

(Lξ ε̄)γ5γ ∧ ψ + ε̄(0)γ5γ
(1)
D ψ

(0)
[A LξC

D
B] = H[ε,ξ] +Kε,ξ (5.14)

Notice that we obtain the same result if replace δ, by δξ in 4.33 and use the act that∫
I+−
δξ (ε̄γ5γ ∧ ψ) = 0.

For super-translations Lξε = O(r−1), so H[ε,ξ] = 0 in agreement with the Poincarré
algebra. The central charge is,

Kε,ξST =
iλ

κ2

∫
∂Σ
ε̄γ5γ

B(−1)ψ
(0)
[A DD]DBf (5.15)

It is worth nothing that for l = 0, 1 the spherical harmonics satisfy DADBf = γABf

and the integral will vanish. Curiously, for higher order spherical harmonics it will not
necessarily vanish. This is also due to the fact that, as shown in appendix C, ψA can
depend on arbitrarily high spherical modes. This can be restricted in order to make the
central charge vanish. This expression also have a term involving ∂uCAB. This is the non-
integrable part and it vanishes at the past boundary of I+. The integrable central charge
for the super-rotations is,

Kε,ξSR =
iλ

κ2

∫
∂Σ
DCf

C ε̄γ5γ
Bψ[ACD]B + ε̄γ5γ

B(−1)ψ
(0)
[A D|C|fD]C

C
B + ε̄γ5γ

B(−1)ψ
(0)
[A C

C
D]D[BfC]

(5.16)

We notice strong a parallel between this central charge and the one for super-rotations,
given in equation 7.11 of [11].

5.2 Dual charges

The algebra of the dual charges is simpler to study. The commutator of two dual diffeo-
morphsim charges is already studied in [11]. It was established that the magnetic BMS
charges satisfy the same algebra as the normal ones, but with slightly different central
extension. Here we will look at commutators, involving dual fermioinic charges,
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{H̃ε1, H̃ε2} =
iλ

2κ2

∫
∂Σ
∇[µε̄1γσ]ε2 − (ε1 ↔ ε2) = 0 (5.17)

This seems to defer from the usual super-Poincaré algebra. However it is worth nothing,
that the dual global translation charge also vanishes [10]. Furthermore, the above expression
will not vanish if CAB is not a continuous function on the sphere. This is precisely the
condition we need for the existence of BMS magnetic charge as well. We now proceed to
compute the commutator of supersymmetric and diffeomorphism charge.

{H̃ε, H̃ξ} =
iλ

4κ2

∫
∂Σ
δε (ea ∧ Lξea)− Lξ (ea ∧ δεea) = (5.18)

iλ

2κ2

∫
∂Σ

ea ∧ (Lξε) γaψ + δεe
a ∧ Lξea = H̃[ε,ξ] + K̃ε,ξ (5.19)

The first term is the magnetic supersymmetric charge, defined from a gauge spinor Lξε.
The second one is the central charge. Its expression is almost identical to the one for the
normal charges,

K̃ε,ξST =
iλ

2κ2

∫
∂Σ
ε̄γB(−1)ψ

(0)
[A DD]DBf (5.20)

K̃ε,ξSR =
iλ

2κ2

∫
∂Σ
DCf

C ε̄γBψ[ACD]B + ε̄γB(−1)ψ
(0)
[A D|C|fD]C

C
B + ε̄γB(−1)ψ

(0)
[A C

C
D]D[BfC]

(5.21)

6 Conclusion

In this paper, a new type of charges was discovered for N = 1 supergravity. They are
dual to the usual diffeomorphisms and supersymmetric charges. The diffeomorphism dual
charges are the same as the ones studied before [10], [11]. The supersymmetric magnetic
charges are new and do not appear for the free Rarita-Schwinger field [15]. We saw that their
integrability and finiteness crucially depend on the conditions on the gravitino field, imposed
by the asymptotically flat metric. It would be interesting to study the dual charges for
more complicated supergravity theories, or for more exotic metrics. The magnetic charges
in supergravity can have potential interesting applications for black holes in supergravity
like the extreme Reissner-Nordström black hole.

A Conventions and useful identities

The choice of γ matrices is,

γ0 = −i

(
0 1
1 0

)
γj = −i

(
0 σj

−σj 0

)
γ5 = −i

(
1 0

0 −1

)
C =

(
0 1
−1 0

)
(A.1)
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The covariant and Lie derivative of a spinor are defined as,

∇µψν =∂µψµ − Γλµνψλ +
1

4
ωµabγ

abψν (A.2)

Lξψν =ξµ∇µψν + ψµ∇νξµ −
1

4
∇µξργµγρψν (A.3)

=ξµ∂µψν + ψµ∂νξ
µ − 1

4
ea[µLξeaν]γ

µνψν (A.4)

Up to leading order the last term is simplified by local a Lorentz transformation.
Simple, but useful commutation property,

− λabγaγbγ5ecνγ
c + λabγ5ecνγ

cγaγb + 4λabe
a
νγ

b = 0 (A.5)

for any λab that is antisymmetric in a and b.
Fierz identity in 4 dimensions [20],

(λ̄1λ2)λ3 a =− 1

4
(λ̄1λ3)λ2 a −

1

4
(λ̄1γ5λ3)γ5λ2 a −

1

4
(λ̄1γµλ3)(γµλ2)a (A.6)

+
1

4
(λ̄1γµγ5λ3)(γµγ5λ2)a +

1

8
(λ̄1γµνλ3)(γµνλ2)a (A.7)

Cyclic identity [14],

λ̄[1|γaλ|2|λ̄|3]γ
a (A.8)

Where λi are arbitrary spinors and the letter a is a spinor index.

B Covariantly constant spinor

The differential equation, satisfied by a covariantly constant spinor χ, is,

γA∂Aχ+ γ1χ+
1

2
cot θγ2χ = 0 (B.1)

With the particular choice we have made for the gamma matrices, the equations for
the first and second components are coupled, and are the same as the equations for the
third and forth. In particular we have,

i∂θχ2 −
1

sin θ
∂φχ1 +

i

2
cot θχ2 = χ2 (B.2)

i∂θχ1 −
1

sin θ
∂φχ2 +

i

2
cot θχ1 = −χ1 (B.3)

We assume separation of variables and impose, χ1 = e−i
θ
2 f(φ) and χ2 = ei

θ
2h(φ),
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e−i
θ
2∂φf −

i

2
e−i

θ
2h = 0 ei

θ
2∂φh−

i

2
ei
θ
2 f = 0 (B.4)

⇒ ∂φh =
i

2
f ∂φf =

i

2
h (B.5)

Setting h = aei
φ
2 + be−i

φ
2 and f = cei

φ
2 + de−i

φ
2 we have a = c and b = −d.

C Equations of motion for ψ

In order to study the the charges and their properties, we need first to solve (to some
extent) the equations of motion.Since the metric is already fixed, in this section we need
to study only the gravitino field. The equations for motion for it, subject to the gauge
condition 3.22, are γµ∇µψν = 0. Taking into consideration 3.24, at different orders and for
the different components of the gravitino, the exact equations are,

• ψA:

O(1) :γu(0)∂uψA = 0 (C.1)

O(r−1) :γB∂BψA +
1

2r
cot θγ2ψA − γCΓBCAψB + hABγ

Bψu + γu(0)∂uψ
−1
A = 0 (C.2)

• ψu:

O(r−1) :γu∂uψu = 0 (C.3)

O(r−2) :rγA∂Aψu +
1

2
cot θγ2ψu + γu∂uψ

−2
u − rγA∂uCBAψB = 0 (C.4)

• ψr:

O(r−3) :γA(−1)∂Aψ
(−2)
r +

1

2
cot θγ2ψ(−2)

r − γ1ψr − γA(−1)ψ
(−1)
A (C.5)

+ γC(−1) 1

2
C A
C ψ

(0)
A − γ

A(−2)ψ
(0)
A = 0 (C.6)

We note that Kµνργ
µγνγρ ∼ O(r−2) and that’s why it does not enter these equations.

Using the gauge condition 3.22 at second order the last equation can be re-written as,

γA(−1)∂Aψ
(−2)
r +

1

2
cot θγ2ψ(−2)

r + γC(−1) 1

2
C A
C ψ

(0)
A + γu(0)ψ(−2)

u = 0 (C.7)

We would need to components of the gravitino field to study the commutators of the
charges. This is an integral evaluated at u→ −∞. We would like the field to be finite in this
limit, so we assume it can be decomposed as ψµ = ϕµ(xA)+φµ(u, xA) with limu→−∞ φµ = 0.
Let’s look at the equation for ϕ(−1)

u .

γA∂Aϕu +
1

2
cot θγ2ϕ(−1)

u = 0 (C.8)
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Remembering that γu(0ϕ
(−1)
u = 0, this equation is solved by the spinor

√
sin θ ϕ

(−1)
u =(

az−m, az−m, −bz̄−m, bz̄−m
)T

, where z is the stereographic coordinate z = eiφ tan θ
2 , and

a and b are arbitrary constants. Taking into consideration that γA(−1)ψ
(0)
A , the equation

for ϕ(0)
φ is,

γA∂Aϕφ +
1

2
cot θγ2ϕ

(−1)
φ + γφϕ

(−1)
u = 0 (C.9)

If we write ϕφ =
(
ι λ
)
, the equations for the components of λ are,

∂θ(λ1 + λ2)− i

sin θ
∂φ(λ1 + λ2) +

1

2
cot θ(λ1 + λ2) = 0 (C.10)

∂θ(λ1 − λ2) +
i

sin θ
∂φ(λ1 − λ2) +

1

2
cot θ(λ1 − λ2) =

2b sin θ√
sin θ

eimφ cotm
θ

2
(C.11)

We remember that because γu(0)ϕ
(0)
A = 0, λ1 + λ2 = 0. This means that λ1 = −λ2 =

1
2 (λ1 − λ2) = −b cos θ√

sin θ
zm. Similralrly, ι1 = ι2 = 1

2 (ι1 + ι2) cos θ√
sin θ

z̄m. From the expression
of ψφ one can easily work out ψθ. Curiously they take a form, very similar to the generators
of the super-rotations.

ψφm =
cos θ√
sin θ

(
az−m, az−m, −bz̄−m, bz̄−m

)
(C.12)

ψθm = i sin θ
cos θ√
sin θ

(
az−m, az−m, bz̄−m, −bz̄−m

)
(C.13)

Because the algebra of super-rotations has already been established, one can easily
work the Lie derivative of this siponor, along a generator of the BMS group (after one
corrects with Local Lorentz transformations,

Lln+l̄nψ
A
m =

(
n−m− 1 + cos2 θ

2 cos θ

)
ψAn+m (C.14)

It may seem odd that the spinor change under the BMS group, even though the com-
ponents of the metric, on which its equation of motion depend do not. However, this linear
variation can be compensated by δξψu and δξψ

(−1)
A in the linearized equation of moiton.

From C.7, we see that the leading order u - independent part of of ψr depends on ψA
and the tensor CAB. For Minkowksi, ψr will have the same solution as ψu. Lastly, m should
be a half-integer because ψ is a spinor.

D Diffeomorphism variation of the pre-symplectic potential

In this appendix we provide in detail the calculations necessary for the deriving the expres-
sion for the diffeomorphism charge.
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2κ2 (Θ(δξ)− ιξL) = (D.1)

εabcde
a ∧ eb ∧ Lξωcd − ψ̄ ∧ γ5e

aγa ∧ Lξψ (D.2)

− ιξ
(
εabcde

a ∧ eb ∧Rcd − ψ̄ ∧ γ5γ ∧∇ψ
)

(D.3)

≈ εabcdea ∧ eb ∧ Lξωcd − ψ̄ ∧ γ5e
aγa ∧ Lξψ (D.4)

εabcde
a ∧ eb ∧ Lξωcd = εabcde

a ∧ eb ∧
(
dιξω

cd + ιξdω
cd
)

(D.5)

≈ d
(
εabcde

a ∧ ebιξωcd
)
− 2εabcd

(
T a ∧ ebιξωcd

)
+ 2εabcdξ

aeb ∧Rcd (D.6)

We obtain in the end three terms. One is a total derivative and the other two will be
simplified.

ψ̄ ∧ γ5e
aγa ∧ Lξψ = ψ̄γ5e

aγa (ιξdψ + dιξψ) (D.7)

≈ ψ̄γ5e
aγaιξdψ + d

(
ψ̄γ5e

aγaιξψ
)
− 1

4
ψ̄γ5 ∧ ωcdγcd ∧ eaγaιξψ + ψ̄γ5eb ∧ ωabγaιξψ (D.8)

− ψ̄γ5T
aγaιξψ (D.9)

≈ ψ̄γ5e
aγaιξdψ + d

(
ψ̄γ5e

aγaιξψ
)

+
1

4
ψ̄γ5 ∧ γ ∧ γcdωcdιξψ − ψ̄γ5T

aγaιξψ (D.10)

(D.11)

Notice that we have omitted the quantity ψ̄ ∧ γ5e
aγa ∧ ψ

(
ωabγ

ab −∇aξbγaγb
)
in the

Lie derivative of the gravitino, because it is compensated by the Lorentz transformation.
As we already saw, the charge from this transformation is 0.

2εabcdξ
aeb ∧Rcd = ψ̄ ∧ γ5ιξγ∇ψ ≈ ψ̄ ∧ γ5γ ιξ∇ψ (D.12)

2εabcd

(
T a ∧ ebιξωcd

)
=

1

4
ψ̄ ∧ γ5γγcdιξω

cd ∧ ψ (D.13)

ψ̄ ∧ γ5γ ιξ∇ψ −
1

4
ψ̄ ∧ γ5γγcdιξω

cd ∧ ψ − 1

4
ψ̄γ5 ∧ γ ∧ γcdωcdιξψ = ψ̄γ5e

aγaιξdψ (D.14)

We are left with ψ̄γ5T
aγaιξψ that disappears thanks to the cyclic identity A.8.
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