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We study the magnetic Compton profile (MCP) of the disordered Fe0.5Ni0.5 and of the ordered FeNi alloys and
discuss the interplay between structural disorder and electronic correlations. The coherent potential approximation
is employed to model the substitutional disorder within the single-site approximation, while local electronic
correlations are captured with the dynamical mean field theory. Comparison with the experimental data reveals
the limitation of local spin-density approximation in the low momentum region, where we show that including
local but dynamic correlations the experimental spectra is excellently described. We further show that using
local spin-density approximation no significant difference is seen between the MCP spectra of the disordered
Fe0.5Ni0.5 and a hypothetical FeNi alloy having the ordered CuAu L10 structure. Only by including the electronic
correlations, the spectra significantly separate, from the second Brillouin zone boundary down to zero momenta.
The difference between the MCP spectra of ordered and disordered alloys is discussed also in terms of the
atomic-type decompositions. Finally based on the presented calculations we predict the shape of the MCP profile
for the ordered FeNi alloy along the [111] direction.
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I. INTRODUCTION

The dominant contribution, according to the nonrelativistic
limit of the x-ray scattering comes from the interaction of
the photon with the electron’s charge [1]. The relativistic
Compton amplitude does depend, however, on the spin of the
electron and on the polarization of the x rays [2]. To obtain
the scattering cross section the Compton amplitude is squared
and summed over all final states consistent with the energy
conservation. Within the impulse approximation [3] the mag-
netic scattering cross section measures the spin moments [4–6]
through the integrated difference,

∫
[n↑( �p) − n↓( �p)]d3 �p, in the

momentum distribution n↑(↓)( �p) of spin up (down) electrons.
The magnetic Compton scattering experiments combined with
theoretical calculations of the profile may provide also valuable
information about the exchange and correlation effects in
materials.

The computed magnetic Compton profile (MCP) spectra for
Ni [7–15] and Fe [9,12,16,17] have been previously reported
in the literature. The analysis of spectra covers the aspects
of multiple scattering, core contribution, relativistic effects,
and electronic correlations. The comparison with experimental
measurements concerning the shape of the MCP spectra and
the values of spin moments were also discussed. Along the
[111] direction prominent features of the MCP for Fe and
Ni are (i) the negative polarization of s and p bands at low
momentum, (ii) dips in the MCP profiles near pz = 0 a.u.,
and the (iii) periodic features due to the Umklapp processes
at momenta �p = �k ± n �G, where �G is the reciprocal-lattice
vector and n ∈ Z. Generally, the theory overestimates the MCP

spectra near pz = 0 irrespective of the band-structure method
used in the density functional theory (DFT) calculations
[7–11,16,17]. This discrepancy has been attributed to the
inadequate treatment of the electron-electron correlations in
the local density approximation (LDA) or its gradient corrected
(GGA) type independent-particle models for the exchange
correlations of DFT. It was shown during the last decades that
dynamical mean field theory (DMFT) [18–20] successfully
removes some of the observed inconsistencies [21–25] in the
description of the ground state properties of 3d transition
metal elements. DMFT based calculations for the MCP profiles
[12–14] of Fe and Ni showed indeed that the low momentum
discrepancies in the MCP are reduced, however high resolution
measurements would be useful to investigate specific features
in the MCP profiles that are still not well described.

In this paper we report theoretical results on the MCP
spectra for the disordered Fe0.5Ni0.5 alloy using the exchange
correlation potential of LDA and the improved LDA+DMFT
method [26]. We show that the discrepancies between the
LDA and the experimental spectra at low momentum are
corrected including local dynamic correlations captured by
DMFT. At the same time we identify the correct magnitude
of the Coulomb parameters on different alloy components. To
study the interplay of disorder and correlation in momentum
space, we compare MCP spectra of the Fe0.5Ni0.5 alloy with the
corresponding spectra of the ordered FeNi with the CuAu L10

structure, that has the same unit cell dimensions and chemical
composition. We show that at the LDA level the total MCP
spectra for both ordered and disordered FeNi alloys are similar,
while only within LDA+DMFT the distinction between the
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two becomes apparent. In particular at low momenta the MCP
spectra obtained within the CPA calculation is reduced, while
for the ordered alloy the MCP spectra is slightly enhanced.
Based on the type decomposition of the MCP, we discuss
differences and similarities between these spectra. As the MCP
spectra of LDA+DMFT is found to be in agreement with the
experiment in the disordered case, and as we are unaware of
any previous experimental measurements or calculations of
MCP spectra for the ordered FeNi alloy, we thus predict the
MCP shape of FeNi along the [111] direction.

In the following section (Sec. II) we provide an overview
of the LDA+DMFT computational procedure of the MCP
profiles within the Korringa-Kohn-Rostoker Green’s function
formalism for the disordered, Sec. II A, and ordered, Sec. II B,
systems. The results are presented in section Sec. III. We
present the density of states and magnetic moment calcula-
tions; the total MCP and type decompositions are discussed
in Sec. III B and Sec. III C for the disordered, respectively,
ordered alloys, and finally the paper is concluded in Sec. IV.

II. COMPUTATIONAL DETAILS

The most important ingredient in the analysis of the
electronic momentum density n( �p) in disordered systems is
the impurity configuration averaged Green’s function. Such
analysis was achieved for the first time by Mijnarends and
Bansil [27,28] within the muffin-tin framework of the coherent
potential approximation (CPA) [29–32], formulated using the
multiple scattering theory, the so-called KKR-CPA [33–36]
method. Here we present results using the spin-polarized rela-
tivistic Korringa-Kohn-Rostoker (SPR-KKR) method [37,38]
in the atomic sphere approximation (ASA). The exchange-
correlation potentials parameterized by Vosko, Wilk, and Nu-
sair [39] were used for the LSDA calculations. For integration
over the Brillouin zone the special points method has been
used [40]. In addition to the LSDA calculations, a charge
and self-energy self-consistent LSDA+DMFT scheme for
correlated systems based on the KKR approach [15,23,41,42]
has been used. The many-body effects are described by means
of dynamical mean field theory (DMFT) [18–20] and the

relativistic version of the so-called spin-polarized T-matrix
fluctuation exchange approximation [43,44] impurity solver
was used. The realistic multiorbital interaction has been pa-
rameterized by the average screened Coulomb interaction U

and the Hund exchange interaction J . Recent developments
allow us to compute the dynamic electron-electron interaction
matrix elements exactly [45]. It was shown that the static
limit of the screened energy dependent Coulomb interaction
leads to a U parameter in the energy range of 1 and 3 eV
for all 3d transition metals [45]. As the J parameter is hardly
affected by screening it can be calculated directly within the
LSDA and is approximately the same for all 3d elements, i.e.,
J ≈ 0.9 eV. In our calculations we used values for the Coulomb
parameter in the range of U = 2.0 to 3.0 eV and the Hund
exchange interaction J = 0.9 eV. The lattice parameter for
both ordered and disordered alloy was taken as 6.763 a.u. and
a BZ integration mesh of 62 × 62 × 62 points was used.

The computation of Compton profiles within the SPR-KKR
formalism [37,38] was worked out a decade ago [46,47].
The magnetic Compton profile is given by the momentum
distribution of valence electrons projected along the scattering
vector pz. The spin projected momentum density is expressed
in terms of the Green’s function in the momentum representa-
tion, constructed from the real-space Green’s function, using
the eigenfunctions of the momentum operator. The electron
momentum densities are usually calculated for the principal
directions [001],[110],[111] using an rectangular grid of 200
points in each direction. The maximum value of the momentum
in each direction is 8 a.u.. Here we present results only for the
[111] direction which allows us to compare with experimental
data [48] for the disordered alloy.

A. Magnetic Compton profiles for disordered
alloys, type decompositions

Given the eigenfunctions of the momentum operator, real-
space integration is used to calculate Gms

( �p, �p,E). This inte-
gration is performed over a unit cell, and summed over the cells,
as described in Ref. [46]. In the momentum representation the
ensemble averaged Green’s function is given by:

Gms
( �p, �p,E) = 1

�

∑
q

∑
A

xqA

[
−

∑
�

M̃
qA

ms�ms
+

∑
��′

M
qA

ms�

(
DqAτ

0q,0q

CPA (E)
)
��′M

qA∗
ms�′

]

+ 1

�

∑
q

∑
q ′

e−i �p( �Rq− �Rq′ )
∑
A 	=B

xqA
xq ′

B

∑
��′

M
qA

ms�

(
DqAτ

nq,n′q ′
CPA ( �p,E)D̃q ′

B

)
��′M

q ′
B∗

ms�′ . (1)

We denote by q(q ′) the sites within the cells n(n′).
With τ

0q,0q

CPA (E) we denote the site-diagonal and with

τ
nq,n′q ′
CPA ( �p,E) the site-non-diagonal, parts of the scattering

path operator. In addition τ
0q,0q

CPA (E) = ∫
BZ

τCPA(�k,E)d3�k. The

type-projected scattering path operators DqAτ
0q,0q

CPA (E) and

DqAτ
nq,n′q ′
CPA ( �p,E)D̃q ′

B appear as a consequence of the single-
site approximation of the CPA, when computing the config-
uration average 〈τnq,n′q ′

��′ 〉 [49,50]. Finally, M
q,A

ms�
and M̃

q,A

ms�ms

are the regular and irregular Compton matrix elements for the
alloy component A. The explicit form of these expressions was
presented in Refs. [46,47].

In order to proceed with the decomposition of the MCP
we shall in the following analyze Eq. (1). A specific site
q in the unit cell contains the components A(B), with the
concentrations xqA(B) . The site and component diagonal Green
function in momentum representation is:

GA,A
ms

( �p, �p,E) = 1

�

∑
q

xqA

[
−

∑
�

M̃
qA

ms�ms

+
∑
��′

M
qA

ms�

(
DqAτ

0q,0q

CPA (E)
)
��′M

qA∗
ms�′

]
.

(2)
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The site-diagonal but component-non-diagonal (A 	= B)
Green function is obtained from the last term of Eq. (1):

GA,B 	=A
ms

( �p, �p,E)

= 1

�

∑
q

xqA
xqB

·
∑
��′

M
qA

ms�

× (
DqAτ

0q,0q

CPA ( �p,E)D̃qB
)
��′M

qB∗
ms�′ (3)

Accordingly, the spin resolved momentum densities in the
disordered system are obtained integrating the corresponding
Green’s functions:

nA,B;X
ms

( �p) = − 1

π
�

∫ EF

−∞

[
GA,B;X

ms
( �p, �p,E)

]
dE. (4)

With X we denote the functional form in the band structure
calculation, X = LSDA(+DMFT) and ms = ↑ (↓). Using the
expressions for the Green’s function the pure Eq. (2) and the
mixed Eq. (3) contributions in the momentum density can be
obtained. The double integral of the spin momentum density,
projected onto the scattering direction K, with �pz||K, defines
the magnetic Compton profile (MCP):

J
A,B;X
mag,K (pz) =

∫∫
[nA,B;X

↑ ( �p) − n
A,B;X
↓ ( �p)]dpxdpy. (5)

B. Site decomposition of the magnetic
Compton profile for ordered alloys

For systems with more atoms in the unit cell, the MCP spec-
tra is usually decomposed into the site-projected contributions
and the interferencelike terms similar to Ref. [46]. The unit
cell sites q,q ′ can be occupied by atoms of type A or B. The
type- and site-diagonal Green’s function has the form:

GA,A
ms

( �p, �p,E) = 1

�

∑
q

[∑
��′

M
q

ms�
τ

q,q

��′( �p,E)Mq∗
ms�′

−
∑
�

M̃
q

ms�ms

]
. (6)

The summation over the sites (q) in Eq. (6) is restricted to the
sites occupied by the same type of atoms. The site-off-diagonal
Green’s function is:

GA,B 	=A
ms

( �p, �p,E) = 1

�

∑
q

∑
q ′ 	=q

e−i �p·( �Rq− �Rq′ )

·
∑
��′

M
q

ms�
τq,q ′

( �p,E)��′M
q ′∗
ms�′ (7)

Equation (7) contains the product of Compton matrix elements
M

qA

ms�
, Mq ′B∗

ms�′ with the scattering path operator weighted by the

phase factor
∑

q,q ′ e
−i �p( �Rq− �Rq′ ). In analogy with elementary

formulas for x-ray diffraction by an assembly of atoms,
equations of type Eq. (7) can be interpreted as interference
or structure factor functions for the material. The momentum
density and the magnetic Compton profile are then computed
using the formulas Eq. (4) and Eq. (5). Accordingly, the
magnetic Compton interference term is the MCP obtained
using the Green’s function of Eq. (7). Note that the Compton
interference function can be an alloy-type nondiagonal or

FIG. 1. Left: The ordered CuAu L10 structure for FeNi. Fe/Ni
red/blue spheres. Right: the “CPA effective” atom (gray sphere) of
composition Fe0.5Ni0.5.

diagonal depending on the occupation of the q(q ′) sites. This
interference term is an incoherent scattering contribution and
the corresponding MCP signal shall have a weak amplitude for
all directions along pz.

III. RESULTS

In Fig. 1 we depict the unit cell for the FeNi (ordered
CuAu L10 structure) and the disordered Fe0.5Ni0.5 in the f cc

geometry. For the ordered FeNi (CuAu L10) electronic struc-
ture calculations [51] and experimental studies have already
been published [51,52]. The ordered FeNi alloy consists of
alternating Fe and Ni layers with a unit cell containing two Fe
and two Ni atoms.

In-plane atoms have neighbors of the same type, while
out-of-plane neighbors are of different types. In this case, the
calculation of the DMFT self energy is performed for each type
separately, which allows us to use different Coulomb/exchange
parameters. Within the CPA the “effective” Fe0.5Ni0.5 atom has
the same neighbors in all directions. The DMFT (impurity)
problem is still solved for each component Fe/Ni; in addition
the CPA equation is imposed for self-consistency. The charge
self-consistency involves the one “effective” atom unit cell.

A. Electronic density of states and magnetic moments

We have performed the LDA(+DMFT) calculations for the
ordered FeNi and disordered Fe0.5Ni0.5 alloy within CPA. The
DMFT calculations were done for different values of the local
Coulomb interactions for Fe and Ni. As best values for the
average Coulomb parameters we identified UFe = 2 eV and
UNi = 3 eV. The average exchange parameter was set to J =
0.9 eV. Table I summarizes the results for the spin and orbital
magnetic moments.

The alloys have a ferromagnetic ground state. The Fe
magnetic moment is in the range about 2.5–2.6 μB while
a value of about 0.6 μB is obtained for Ni, depending on
the strength of the local Coulomb parameters UFe/Ni. The Ni
magnetic moment remains essentially at its value in bulk fcc.
Our results agree with previously published data at the LSDA
[51,52] and DMFT [15,22,23] level. Already in the absence
of correlation effects, Fe in FeNi has a larger moment than
in fcc Fe at the same lattice constant. This can be explained
by a smaller Fe-Ni hybridization due to the more contracted
3d orbitals of Ni. A larger hybridization tends to decrease the
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TABLE I. Magnetic moments: spin and orbital components for the disordered Fe0.5Ni0.5 and ordered FeNi alloy, computed with LSDA and
for different values of UFe/Ni; JFe/Ni using LSDA+DMFT.

DMFT UFe/Ni; JFe/Ni

Fe0.5Ni0.5 2.0/0.0; 0.9/0.0 2.0/2.3; 0.9/0.9 0.0/2.0; 0.0/0.9 2.0/3.0; 0.9/0.9 LSDA

Fe ms(μB ) 2.525 2.472 2.463 2.466 2.478
ml(μB ) 0.089 0.10 0.059 0.105 0.058

Ni ms(μB ) 0.628 0.653 0.680 0.653 0.659
ml(μB ) 0.048 0.066 0.067 0.069 0.049

DMFT UFe/Ni; JFe/Ni

FeNi 2.0/0.0; 0.9/0.0 2.0/2.3; 0.9/0.9 0.0/2.3; 0.0/0.9 2.0/3.0; 0.9/0.9 LSDA

Fe ms(μB ) 2.594 2.596 2.572 2.599 2.573
ml(μB ) 0.109 0.108 0.064 0.106 0.064

Ni ms(μB ) 0.578 0.584 0.60 0.584 0.598
ml(μB ) 0.037 0.040 0.04 0.045 0.051

magnetic moment on an atom by filling the minority spin 3d

orbitals, which are more extended [52].
The computed magnetic moments are closely related to

density of states results. In Fig. 2, we show the total and atom
resolved DOS for Fe0.5Ni0.5 (left column) and FeNi alloys
(right column). The alloys’ electronic structure in the absence
of electronic correlations, shows that the majority spin channel
of Ni undergoes relatively small changes (with respect to the
pure case) upon addition of Fe. The minority states continue
to remain occupied in the Fe0.5Ni0.5 alloy, similarly to the case
of pure Ni [22–24]. The spectral changes are mainly limited
to the weight reduction, in both spin channels, which is more
significant than the spectral weight transfer towards the Fermi
level, seen for the Ni majority spins.

-2

-1

0

1

2

Fe0.5Ni0.5

LSDA
DMFT

FeNi

LSDA
DMFT

-1

0

1 Fe Fe

-9 -6 -3 0 3
E-E

F
(eV)

-1

0

1 Ni

-9 -6 -3 0 3

Ni

FIG. 2. The density of state results for the disordered (left column)
and ordered (right column) FeNi alloy. The DMFT results were
obtained for the values UFe = 2 eV, and UNi = 3 eV and J = 0.9 eV.

The combined effect of correlation and disorder is most
remarkable for Fe’s DOS in the Fe0.5Ni0.5 alloy. A strong
renormalization of the spectral function towards the Fermi level
for the majority spin channel (spin-up) and the appearance of
a peak in the vicinity of EF is visible. On the contrary, for
the minority spin channel the weight of DOS is suppressed.
In both spin channels the spectra is broadened accordingly.
A clear signature of satellite formation is seen. Because of
the perturbative nature of the DMFT solver [43], the satellite
takes a shoulder form, which is visible in the energy range
of −9 eV to −6 eV. The satellite structure is present also
for Fe, although its formation in bulk is still under debate
[24,53]. It is interesting to note that for the ordered FeNi in
the CuAu L10 structure (right column Fig. 2) the shoulder
in the energy range of (−9 eV,−6 eV) is more pronounced
for the Fe projected DOS, and a minor effect is seen for
Ni, despite the larger value of the local Coulomb parameter
UNi > UFe. A further comparison of the DOS results for the
ordered and disordered FeNi reveals that LSDA(CPA)-DOS is
more broadened because of the imaginary part of the complex
effective potential. In addition electronic correlations have a
less dramatic effect in the case of the ordered alloy.

B. Total MCP and type decomposition spectra of Fe0.5Ni0.5 alloy

The MCP spectra of Fe0.5Ni0.5 alloy are presented in
Fig. 3. With decorated dashed blue/red lines we present raw
LSDA/DMFT data. To allow the comparison with the exper-
imental spectra of Kakutani et al. [48] the theoretical profiles
have been broadened using a broadening parameter (full width
at half maximum FWHM) equal with the experimental mo-
mentum resolution for recording the spectra, which was �p =
0.42 a.u. These are seen in Fig. 3(a) with solid blue/red lines.

In the [111] direction one clearly observe the significant
discrepancy between theory and experiment for pz < 1.5 a.u.
The LDA+DMFT calculations capture the correct behavior
at low momenta, similarly to the situation in bulk Fe and Ni
[12–14]. Many of the specific features of the theoretical MCP
cannot be seen in the experimental profile due to the relative
limited resolution (�p ≈ 0.42 a.u.). Within the first zone,
p < p

[111]
F ≈ 0.8 a.u., the theoretical spectra predict a first peak
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Fe0.5Ni0.5

(a)
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FIG. 3. (a) Calculated total MCP of Fe0.5Ni0.5 alloy along
the [111] direction. Blue solid line: LSDA(CPA); red solid line:
LSDA(CPA)+DMFT. The experimental spectra of Kakutani et al.
[48] (black circle). (b) Type decomposition of MCP profiles of
Fe0.5Ni0.5 alloy. LSDA/DMFT results are represented by dashed/solid
lines. The inset shows the mixed term.

marked with A and situated at 0.4 a.u. This peak is absent in
experiment but its Umklapp is observed experimentally (peak
C). Within the second zone, the theory predicts peaks marked
with B and C and outside the second zone the D and E

peaks are visible. Further Umklapp features can be observed
for larger momenta as shoulders at ∼2.9 a.u., ∼3.5 a.u., etc.
Because of the relatively large broadening the experimental
spectra “melts” the peaks B, C, and D, therefore the Umklapp

0 1 2 3 4 5 6
momentum p

z
 (a.u.)

0

0.1

0.2

M
C

P

LSDA
DMFT

0 1 2 3 4 5 6
0

0.1

0.2

FeNi
Fe
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Ni

0.5
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FeNi
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0.5
Ni

0.5

[ 1 1 1 ]

FeNi

DMFT

LSDA

UFe=2.0 UNi=3.0
(a) (b)

(c)

FIG. 4. Calculated MCP of the ordered FeNi alloy along the [111]
direction: panel (a) the total MCP profiles computed with LSDA and
DMFT for the values of UFe/Ni = 2/3 eV and J = 0.9 eV. Panels (b)
and (c) the total MCP profiles for the ordered and disordered FeNi
alloys in LSDA and respectively in DMFT.

of A into the second Brillouin zone (C) is slightly overesti-
mated. Furthermore the higher momenta Umklapp shoulders
in the experimental profiles are considerably smeared out.

Based on Eq. (5), the total MCP along the [111] direc-
tion has been decomposed, as seen in Fig. 3(b), into the
type-projected contributions. Both J Fe Fe

mag and J Ni Ni
mag spectra

show a pronounced dip at pz = 0. At nonzero momenta we
see that electronic correlations lead to momentum density
redistribution between different Brillouin zones. The J Fe Fe

mag
DMFT spectra is situated below the LSDA spectra for pz <

p
[111]
F ≈ 0.8 a.u. and within the further Brillouin zones is above

the LSDA. On the other hand the DMFT J Ni Ni
mag is situated below

the LSDA spectra for the entire range of momenta. The inset of
Fig. 3(b) shows the mixed MCP term, J Fe Ni

mag obtained from the
formula Eq. (4) and the Green’s function Eq. (3). The mixed
term shows no significant correlation effects, its characteristic
being the oscillatory structure.

The type-resolved spectra has been scaled according to the
spin moment obtained by self-consistent calculations, which
is 1.57 μB in the LSDA calculations and 1.56 μB in the
LSDA+DMFT calculations with UFe = 2.0 eV and UNi =
3.0 eV, respectively. Iron gives the dominant contribution in
MCP, as a consequence of its large spin moment: 2.48 μB

LSDA and 2.46 μB in LSDA+DMFT calculation, respectively.
A significantly smaller Ni spin moment is obtained 0.66 μB

(LSDA) and 0.65 μB (LSDA+DMFT), respectively.

C. Total MCP spectra and the site decompositions
for the ordered FeNi alloy

In Fig. 4(a) we present the comparison between the total
MCP [111] profile of the ordered FeNi alloy obtained using
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FIG. 5. Type decomposition of MCP spectra for the ordered FeNi
alloy along [111] direction: panel (a),(b) Ni, respectively, the Fe
components computed within LSDA (upper part) and DMFT (lower
part).

the LSDA (black line) and the LSDA+DMFT (red line)
methods. The computed spectra (no applied broadening) are
normalized to the values of the magnetic moments obtained in
LSDA/DMFT calculations, respectively.

Contrary to the disordered case, Fig. 3(a) where correlation
leads to a depleted spectra around the zero momenta, we predict
that correlation effects enhance the MCP profile in the range up
to pz ≈ 1.5 a.u. For larger momenta pz > 1.5 a.u., similarly to
the disordered case, the DMFT corrections does not change
much on the LSDA shape. We observe that at the LSDA
level the MCP spectra can hardly distinguish between the
ordered and disordered structures, Fig. 4(b). Any broadening
applied to the spectra to account for the experimental resolution
would make the spectra identical. Including correlation effects
Fig. 4(c) the LSDA(CPA)+DMFT spectra separate starting
from the maximum value down to zero momenta and match the
experimental results. The MCP spectra the red line Fig. 4(a) is
our prediction for the shape of the MCP of ordered FeNi along
the [111] direction.

According to Eq. (6) the total spectra is further decomposed
into the MCP Ni Fig. 5(a) and MCP Fe Fig. 5(b) contributions.
Note that Fe’s weight to the total spectra is about four times
larger than that of Ni. The reason why LSDA cannot distinguish
between the ordered and disordered structure Fig. 4(b) become
also apparent: The Ni/Fe MCP components for the ordered
alloy under/overestimate the corresponding spectra of the
disordered alloy. The amounts of under/overestimation nearly
compensate each other producing a similar total spectra.

The DMFT calculations for the disordered alloy produce
slightly reduced spectra for Fe (red solid line) in comparison
with the LSDA (red dashed line) as seen in Fig. 3(b). For
Ni a slightly stronger reduction takes place. For the ordered
FeNi alloy, DMFT spectra of Fe/Ni are enhanced/diminished
in the low momentum region, however, the increase of the Fe’s
MCP dominates the decrease on the Ni side, and an overall
enhanced spectra is obtained [Fig. 5(a), lower part]. Figure 5(a)
contains also the results of the Ni bulk MCP calculations.
We mark the first essential peaks as in Fig. 3(a). Obvious
differences are seen below pz < 2pF ≈ 1.6 a.u. (first two BZ).

For the bulk-Ni the first two peaks (A and B) are shifted
and contained within the first BZ: The first (A) is positioned
at about 0.23 a.u.; the second (B) is in the vicinity of pF .
The third, the fourth, and the subsequent Umklapp peaks are
similar for all three spectra. The intensity of Umklapps for
Fe0.5Ni0.5 are smeared out additionally because of disorder
effects. Electronic correlations enlarge the differences between
the Ni-project spectra of the disordered alloy with respect to
the bulk and ordered FeNi. Additionally the Ni contribution
for the disordered alloy is further smeared out.

IV. CONCLUSIONS

The self-consistent spin polarized electronic structure and
the magnetic Compton profiles along the [111] direction have
been computed for the disordered Fe0.5Ni0.5 alloy. Disorder
has been modeled using the CPA and the electronic correla-
tions were considered through a multiorbital Hubbard model
solved with the DMFT. We showed that the discrepancy at
low momenta due to the inadequate treatment of electronic
correlations in LSDA can be corrected using DMFT. Note
that DMFT has to be “active” on both alloy components. We
have checked that neglecting “electronic correlations” on one
of the components or using improper values of the Coulomb
interaction parameter does not provide a good comparison
with the experimental spectra of Kakutani [48]. Most notably
the LSDA(CPA)+DMFT with UFe = 2 eV, UNi = 3 eV, and
J = 0.9 eV resolves the discrepancy around pz = 0. Umklapp
features of the total-MCP spectra can be identified up to
momenta pz < 2pF . Subject to electronic correlations, in-
tegrated spin-resolved momentum density show significant
changes while integrated spin resolved real-space densities
provide almost similar magnetic moments. Due to the limited
momentum resolution of the experimental spectra (�p =
0.42 a.u.) no clear comparison between theory and experiment
can be performed for large pz momenta. High resolution
measurements would be useful to identify specific features of
the computed MCP profile.

To study further the interplay between disorder and elec-
tronic correlations, in momentum space, we have performed
calculations for the MCP spectra of the ferromagnetic ordered
FeNi alloy. The calculation has been performed in the supercell
setup with a similar lattice parameter as the one of the
disordered alloy. Our results show that within the LSDA the
MCP spectra for the ordered and disordered alloys are similar.
This additional shortcoming of the LSDA can be explained by
analyzing the type decomposition of MCP. Beyond the LSDA,
the MCP spectra of ordered and disordered alloys are different,
thus we predict within LSDA+DMFT the MCP shape of the
FeNi alloy along the [111] direction.

An interesting conclusion may be drawn from the results of
the present work. Namely, MCP appears to be more sensitive
to changes in the strength of the electronic correlations rather
than in the different geometrical structures (different disorder
realizations). In other words, electronic correlations affect the
momentum distribution more significantly than the chemical
bonding induced by structural disorder. From an experimental
point of view high resolution measurements would be bene-
ficial to resolve further the theoretical features of the MCP
profile at low momentum and the blurring of the Umklapp
features for high pz.
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