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Abstract. Numerical simulations of thermomagnetic convection of paramagnetic fluids 

placed in a micro-gravity condition (g  0) and under a uniform vertical gradient magnetic 

field in an open ended square enclosure with ramp heating temperature condition applied 

on a vertical wall is investigated in this study. In presence of the strong magnetic gradient 

field thermal convection of the paramagnetic fluid might take place even in a zero-gravity 

environment as a direct consequence of temperature differences occurring within the fluid. 

The thermal boundary layer develops adjacent to the hot wall as soon as the ramp 

temperature condition is applied on it. There are two scenario that can be observed based on 

the ramp heating time. The steady state of the thermal boundary layer can be reached before 

the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time 

then the thermal boundary layer is in a quasi-steady mode with convection balancing 

conduction after the quasi-steady time. Further increase of the heat input simply accelerates 

the flow to maintain the proper thermal balance. Finally, the boundary layer becomes 

completely steady state when the ramp time is finished. Effects of magnetic Rayleigh 

number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat 

transfer are presented.  

1 Introduction 

In presence of a gravitational field natural convection is everywhere in nature. Extensive 

studies have been conducted related to natural convection heat transfer in the field of 

oceanography, meteorology, geophysics, astrophysics, energy systems, material science 

and so on using analytical, experimental and numerical methods. The most popular study is 

to study the transient flow behaviour and heat transfer in a differentially heated cavity as it 

has fundamental interest in fluid mechanics and practical applications. The fundamental 

concept of buoyancy driven flows in differentially heated cavity is the working fluid close 

to the heated wall undergoes motion as a result of heat being transferred from the wall into 

the fluid. The fluid adjacent to the heated wall reduces its density and rises. In this way the 

thermal boundary layer develops and eventually the whole enclosure becomes thermally 

stratified. The driving force for natural convection is generally the density difference due to 

temperature difference between two fluid zones.  

In a micro-gravity environment, there is no gravitational buoyancy acting on the fluid 

and natural convection phenomena are not present. However, if the fluid itself is subject to 

a magnetic field, it will experience a magnetic force, which depends on the magnetic 

susceptibility. The most important interest of studying this area is to understand the 

possibility of control of the convection phenomena and heat transfer rates in a terrestrial 

environment. Braithwaite et al. [1] reported enhancement or cancellation of gravitational 



convection due to a magnetic field for a solution of gadolinium nitrate in a shallow layer 

heated from below and cooled from above. Tagawa et al. [2, 3] derived a model equation 

for magnetic convection using a method similar to the Boussinesq approximation and 

carried out numerical simulations in a cubic cavity. Bednarz et al. [4, 5] have shown both 

numerically and experimentally how to enhance or suppress heat transfer by the application 

of a magnetic field. Very recently Saha [6] studied the effect of MHD and heat generation 

on natural convection flow in an open ended square cavity under microgravity condition.  

In this study, the magnetic convection in an open ended square cavity due to ramp 

heating on the left vertical wall is considered. The detailed boundary layer development 

adjacent to the hot vertical wall is presented and the effects of magnetic Rayleigh number, 

Ra, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and 

isotherms are discussed. 

2 Mathematical Formulation 

Under consideration is the transient behaviour of two-dimensional magnetic convection 

flow resulting from a motionless, isothermal ( = 0), viscous incompressible, Newtonian 

fluid in the absence of gravity but in the presence of a magnetic field, which is shown in 

Fig. 1. The length of the square cavity is H and the righthand side boundary is open. The 

left vertical wall is heated with a ramp heating temperature. The top and bottom walls are 

adiabatic. Except for the right boundary, all the other boundaries are nonslip. It is also 

assumed that the flow is laminar. The fluid is assumed to be subject to a uniform, vertical 

gradient magnetic field. We further assume that this fluid has constant properties except 

that the variation of its density with temperature follows the Boussinesq approximation. In 

the presence of a magnetic field this magnetic buoyancy force acts as the driving force for 

the resultant magnetic convection. The problem is now similar to the gravitational natural 

convection flow in an open ended square cavity.  

The development of the flow in an enclosure is governed by the following non-

dimensional 2D Navier–Stokes and energy equations with the Boussinesq approximation: 

 
Fig. 1. Schematic of the physical problem and the coordinate systems. w is the ramp wall 

temperature and T0 is the temperature of the fluid at   0. 
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where u and v are the x-direction and y-direction velocity components,  the time, p the 

pressure,   the temperature, and  the strength of the magnetic force. 

Two governing parameters, called Prandtl number and Rayleigh number, are defined 

respectively as  

,Pr
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Where , and  are the thermal expansion coefficient, kinematic viscosity and thermal 

diffusivity of the fluid. The strength of the magnetic force and the dimensionless 

momentum parameter for paramagnetic fluid are defined respectively as 

gH

b

m




2
00   and 

0

1
1

T
m


 , (6) 

Here, note that if only micro-gravity magneto-thermal convection conditions are 

considered (g  0), then Ra becomes zero and  becomes infinity. However, the product of 

Ra and  is finite, which will be nominated as the appropriate parameter to characterise the 

magnetic effect [5], 
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 The initial and boundary conditions imposed on the flow field are given by 
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The average Nusselt number along the left vertical wall is given by the expression 
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3. Numerical scheme and grid and time step dependence tests 

Eqns (1) - (4) are solved along with the initial and boundary conditions (8) using finite 

element based software, COMSOL Multiphysics 4.3b. Three non-uniform grid sizes, 



50×50, 100×100 and 150×150 with coarser grids in the core and finer grids concentrated in 

the proximity of three walls (except open end) were  constructed for grid dependence tests. 

The time series of maximum vertical velocity along y = 0.5 is monitored and compared 

with different grid sizes and time steps. The maximum error among those results have been 

found to be 0.2%. This means that either grid system is able to capture the flow 

development and the heat transfer into this system. In consideration of better output, the 

grid system of 150×150 is adopted in this study.  
 

 
Fig. 2: Time evolution of the maximum velocity of the boundary layer recorded on y = 0.5 for 

(a) Ra = 107, Pr = 10, m = 2 and p = 8 and (b) Ra = 104, Pr = 10, m = 2 and p = 4. 

4. Results and Discussions 

The left vertical wall of the enclosure is subjected to a temperature boundary condition 

which follows a linear function up until some specified time (p) and then remains constant.    

The time histories of the calculated maximum vertical velicity (vm) adjacent to the left wall 

is plotted in Fig. 2 for two different magnetic Rayleigh numbers and different length of the 

ramp heating time (p). Since the left wall is hot relative to the ambient fluid, the flow is 

laminar and stable so long as Ra is not too large. As a consequence, a natural convection 

boundary layer develops adjacent to the hot wall and continues to grow with increasing 

time. The development of the thermal boundary layer flow depends on the comparison of 

the time at which the ramp heating finishes and the time at which the thermal boundary 

layer completes its growth. If the ramp time is long compared with the steady state time, the 

layer reaches a quasi-steady stage as it is seen in Fig. 2a. Further increase in the heat input 

simply accelerates the flow to maintain the proper thermal balance. The overall flow 

development for this case may be characterized by the following: the early stage, the quasi-

steady mode and the steady state mode which can be clearly identified in Fig. 2a. On the 

other hand, if the ramp is completed before the layer becomes steady the boundary layer 

grows as though the startup was instantaneous and eventually reaches a steady state, and 

thus there is no difference between the ramp and instantaneous start up cases (see Fig. 2b).  
Figure 3 shows the time evolution of heat transfer as a form of Nusselt number through the 

left vertical wall for varying Magnetic Rayleigh number (Fig. 3a), Prandtl number (Fig. 3b) and 

the momentum parameter (Fig. 3c). It is found that for all cases the average Nusselt number 

increases with time and show several overshoot before it becomes steady state. The heat 

transfer rate for the variation of Magnetic Rayleigh number is significant. As expected, with 

increase of Magnetic Rayleigh number, the heat transfer also increases (See Fig. 3a). However, 

the variation of heat transfer is lower for the Prandtl number variation. Therefore, the heat 
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transfer for different fluid medium does not affect much when the Pr > 1. However, when the 

dimensionless momentum parameter for paramagnetic fluid varies from 2 to 20 the heat 

transfer varies significantly.      

 

  

 

Fig. 3: Time evolution of average Nusselt 

number calculated on the heated wall for 

different flow parameters. 

 

Time evolution of maximum vertical velocity calculated along the line perpendicular to 

the heated wall at mid point (y = 0.5) for different Ra, Pr and m are plotted in Fig. 4. It is 

observed that the vertical velocity increases for increasing values of all three parameters. It 

is also observed that the velocity strongly depends on the momentum parameter of the 

paramagnetic fluid compare to other two parameters. The variation of maximum vertical 

velocity is not significant for the variation of magnetic Rayleigh number.       

5. Conclusions 

A numerical simulation has been carried out for the thermo-magnetic convection in an 

open ended square cavity. The enclosure with non-instantaneous heating on left solid wall 

containing paramagnetic fluid has been placed in a micro-gravity condition (g  0). A 

distinct magnetic convection boundary layer is developed by imposition of ramp 

temperature condition on the left vertical sidewall due to the effect of the magnetic body 

force generated on the paramagnetic fluid. The thermal convection of a paramagnetic fluid 

takes place even in the zero-gravity environments as a direct consequence of temperature 

differences occurring within the fluid placed within a magnetic field gradient. Effects of 

magnetic Rayleigh number, Prandtl number, and paramagnetic fluid parameter on the flow 

field and heat transfer are presented graphically. It is evident that by using a strong 

magnetic field we can also enhance or reverse the usual gravitational convection with 

different combinations of the two main body forces, gravitational and magnetic buoyancy 

forces that act together to drive thermo-magnetic convection of paramagnetic fluids.  
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Fig. 4: Time evolution of maximum vertical 

velocity calculated along the line 

perpendicular to the heated wall at mid point 

(y = 0.5) 

References 

[1] D. Braithwaite, E. Beaugnon, R. Tournier, Magnetically controlled convection in 

paramagnetic fluid, Nature. 354 (1991) 667–673. 

[2] Tagawa, T., Shigemitsu, R. and Ozoe, H., Magnetizing force modelled and 

numerically solved for natural convection of air in a cubic enclosure: effect of the 

direction of the magnetic field, Int. J. Heat Mass Transfer. 45 (2002) 267–277. 

[3] T. Tagawa, A. Ujihara, H. Ozoe, Numerical computation for Rayleigh-Benard 

convection of water in a magnetic field, Int. J. Heat Mass Transfer. 46 (2003) 4097–

4104. 

[4] T. P. Bednarz, E. Fornalik, T. Tagawa, H. Ozoe, J. S. Szmyd, Experimental and 

numerical analyses of magnetic convection of paramagnetic fluid in a cube heated and 

cooled from opposing vertical walls, Int. J. Therm. Sci. 44 (2005) 933–943. 

[5] T. P. Bednarz, W. Lin, J. C. Patterson, C. Lei, S. W. Armfield, Scaling for unsteady 

thermo-magnetic convection boundary layer of paramagnetic fluids of Pr > 1 in micro-

gravity conditions, Int. J. Heat Fluid Flow. 30 (2009) 1157–1170. 

[6] S. C. Saha, Effect of MHD and heat generation on natural convection flow in an open 

square cavity under microgravity condition, Engineering Computations. 30 (2013) 5-

20. 



v
m

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Ra = 10
9
, Pr = 10, m= 2

Ra = 10
8
, Pr = 10, m= 2

Ra = 10
7
, Pr = 10, m= 2

Ra = 10
6
, Pr = 10, m= 2

(a)



v
m

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ra = 10
7
, Pr = 10, m= 2

Ra = 10
7
, Pr = 20, m= 2

Ra = 10
7
, Pr = 50, m= 2

Ra = 10
7
, Pr = 100, m= 2

Ra = 10
7
, Pr = 5, m= 2

(b)



v
m

0 5 10 15 20
0

0.5

1

1.5

Ra = 10
7
, Pr = 10, m= 2

Ra = 10
7
, Pr = 10, m= 4

Ra = 10
7
, Pr = 10, m= 8

Ra = 10
7
, Pr = 10, m= 20

(c)


