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Magnetic coordinates for hydromagnetic equilibria are defined which treat toroidal and 
"straight" helical plasmas equivalently and yet exploit the existence of a continuous symmetry to 
derive relations between various geometrical and physical qualities. This allows the number of 
equilibrium quantities which must be known to be reduced to a minimal, or primitive, set. 
Practical formulas for various quantities required in hydromagnetic stability calculations 
(interchange, ballooning, and global) are given in terms of this primitive set. 

I. INTRODUCTION 
It has long been known1*' that a general coordinate sys- 

tem for toroidal plasmas can be set up which simplifies ana- 
lytic and numerical work by making the magnetic field lines 
straight when graphed in the space of the coordinates. All 
that needs to be assumed about the system is that the mag- 
netic field lines map out nested toroidal surfaces. The auth- 
ors cited restrict their coordinate system further by the re- 
quirement that the Jacobian of -the transformation from 
magnetic coordinates to Cartesian coordinates be constant 
on each magnetic surface. We shall call such a restricted set 
Hamada coordinates, but shall work mainly with the more 
general class of straight-field-line coordinates, which include 
Hamada coordinates as a special case, but allow more flexi- 
bility in the choice of grid for numerical work.374 

Most detailed calculations to date have been done on 
systems which, at least approximately, have a continuous 
symmetry; either axi~ymmetry~,~ or helical symmetry.710 
The assumption of symmetry has the advantages that the 
existence of magnetic surfaces is assured, that the existence 
of an ignorable coordinate allows the dimensionality of the 
system to be reduced by one, and that there are relations 
between the various metric-type quantities which may be 
used to reduce the amount of information stored in compu- 
tational work. 

In exploiting these symmetries, however, there is a 
temptation to build in so much geometric information spe- 
cific to the system being treated that easy application to oth- 
er systems is precluded. In particular, the  PEST^^ stability 
code was formulated specifically for axisymmetric systems. 
The ERATO" code for axisymmetric systems has been con- 
verted to a helical symmetry code, HERA,"*~' by replacing 
the axisymmetric expressions with the appropriate helical 
expressions. It is the purpose of this paper to show instead 
that, for evaluating plasma stability, it is not necessary to 
treat the axisymmetric and helical cases separately, thus 
making future generalization to nonsymmetric geometries 

"I Permanent address: Department of Theoretical Physics, Research School 
of Physical Sciences, The Australian National University, Canberra 
A.C.T. 2601, Australia. 

easier. We construct a straight-field-line coordinate system 
appropriate equally to axisymmetric or helically symmetric 
systems. Using only the existence of an ignorable coordinate, 
various geometric relations are derived. We use only stan- 
dard vector calculus identities rather than a tensor calculus 
formalism, and wherever possible use only quantities which 
are invariant under change of coordinates. When a symbol is 
defined for a noninvariant quantity, we shall distinguish it by 
use of script letter. We shall call the general system of coordi- 
nates universal coordinates. 

We show how to reduce formulas required for evalua- 
tion of interchange, ballooning, and global stability to alge- 
braic expressions involving a minimal set of scalar quanti- 
ties. We call this theprimitive set and have written a mapping 
code FMAP2.5 which takes the output file (EQDSK) of a new 
helical flux coordinate code (FEQ2.5) and tabulates the primi- 
tive quantities in a file METDSK. This file is used by a balloon- 
ing stability code BAL2.5, described in Sec. IX, and a new 
version of PEST2, PEST2.5. These have been used for evaluat- 
ing the stability of heliac  configuration^,^^ but the purpose of 
the present paper is simply to present the basic formalism in 
as accessible a fashion as possible, as its simplicity and gener- 
ality raises the hope that it will be found useful in a variety of 
applications. 

In Sec. I1 we introduce the straight-field-line coordi- 
nates and general notation. In Sec. I11 we define a set of 
orthogonal, invariant basis vectors used for resolving vector 
quantities, and also define the local shear and the integrated 
residual shear. Up to this point, we have not used the exis- 
tence of a continuous symmetry, but in Secs. IV and V we use 
this fact to find expressions for metric-type quantities and 
the plasma current density in terms of a primitive set of 
quantities, defined in Sec. V. In Secs. VI-VII we define and 
calculate fluxes and curvatures, and in Sec. VIII we describe 
a procedure for actually calculating equilibria and the primi- 
tive set. 

In Secs. IX-X we give formulas for evaluating local and 
global stability. In Appendix A we describe the high-/? toka- 
mak ordering used for checking that the large-aspect-ratio 
limit of the various expressions is well-defined, and in Ap- 
pendix B we show how to calculate the gradient of an arbi- 
trary vector in terms of the primitive set. 
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FIG. 1. Axisymmetric toroidal magnetic surface $ = const showing a 0, S, 
mesh, the r, q5, z coordinates, the surface of section S+ = [ T I +  = const], and 
the X, Z, Y coordinates. 

II. STRAIGHT-FIELD-LINE COORDINATES 
Figure 1 illustrates an axisymmetric toroidal magnetic 

surface, and Fig. 2 a helical surface. In both cases the equilib- 
rium is doubly 27r-periodic, with a "poloidal" angle 6 and a 
"toroidal" angle I,. The mapping from magnetic coordinates 
to Cartesian coordinates will be discussed in more detail in 
Sec. VIII. Here it suffices to know only that I, is ignorable, 
that is, that any scalar equilibrium quantity is independent of 
I,. As a flux surface label we use $, such that 2 4  is the helical 
magnetic flux (or poloidal flux in the axisymmetric toroidal 
case). That is, 2 4  is the flux threading a ribbon 6 = const 
bounded by the magnetic axis, the magnetic surface, and the 
surfaces [ = 0 and 6 = 27r. We can use V B = 0 (where B is 
the magnetic field) to show thatI4 

1,=(27r)-2 J d ~ B w V 6 ,  
v 

(1) 

where V ($) is the volume enclosed by the bounding surfaces. 
By the assumption of the existence of magnetic surfaces we 
have 

FIG. 2. Helical magnetic surface iff = const, showing a 0, {mesh, the r, 4, z 
coordinates the surface of section S, = (rlz = const) and the X, Z, Y co- 
ordinates. This is an 1 = 1 system. 

The conditions that B be divergence-free, that B be or- 
thogonal to V$, and that the field lines be straight in ($,@,I, ) 
space can be expressed as the requirement that B be given by 

B = VI, XV$ + q($)V$XV6. (3) 
The constant q is the slope of the magnetic field lines in the 
( 6 , a  plane and is called the "safety factor" in tokarnaks. In 
the helical case, with magnetic surfaces having 1-fold sym- 
metry (Sec. VIII), q is related to the rotational transformI4 L 

per helical period (i.e., I, increasing by 274 by 
III -=- +-. 

27r q 1 
This remains true in the tokamak, but with the term I// 
deleted because of the different interpretation of if? (Sec. 
VIII). 

From Eq. (3) we can calculate the current density 

j = V X B .  (5) 
By crossing the equilibrium equation 

jXB = Vp, (6)  
wherep($) is the plasma pressure, with V$ we see that 

j -V$=O.  (7) 

Now since V x Vp = 0, where p is any scalar, we have from 
Eq. (51, 

j V p  = V (BXVp) . (8) 

Using Eq. (3) in Eq. (8) withp = $ we see that the condition 
[Eq. (7)] that the current lies within a magnetic surface gives 
the following constraint on the I, and 6 coordinates: 

v (W^sI, - qIV$l2Vs0) = 0 ,  (9) 
where fs is the component of any vector f within a magnetic 
surface, 

fs^l - v$v*/~v*~2)-f ,  ( 10) 
I being the unit dyadic. 

The Jacobian of the transformation from Cartesian co- 
ordinates to ($,6,I, ) coordinates is denoted by f ,  

^(V$ V6 xv^r ' , (1 1) 

and may be chosen in any convenient way apart from a $- 
dependent normalization determined by periodicity. If 
f = /'($I we have Hamada coordinates. Denoting the op- 
erators which take the partial derivatives with respect to $, 
6, and S, by a+,  do, and 4, respectively, we have 

v=(v$)a+ + (ve )ao + (vw . (12) 
From Eq. (3) we have 

B - v  =^-ya0 +qac) .  (13) 
Also useful is the identity, for any vector field f, 

which follows from the representation 
f=f^6xV^+VI,xV$V6 +V$XVWS,)*f, 

(15) 
and the fact that V (Vp x Vv) = 0, where p and v are arbi- 
trary scalars. 
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Ill. BASIS VECTORS 
Rather than use V@, Ve, and V[ as basis vectors, it is 

more physical to use the set s, V$, and B, where s is a surface 
vector defined by 

s=v,[ - qvse . (16) 
From Eq. (3) we see that 

B=sXV@,  (17) 
whence it is clear that s, V@, and B form an orthogonal 
(though not orthonormal) basis. By crossing Eq. (17) with 
V$, we see that s may alternatively be defined in a coordi- 
nate-free way 

s = ( v ~ x B ) / I v $ I ~ .  (18) 
Note that s as defined here differs by a component in the V@ 
direction from the vectors used in Refs. 3 and 4. The present 
definition, being invariant under coordinate change seems 
more physical. By squaring Eq. (1 8), we find the normaliza- 
tion 

s12 = B ~ / [ V $ I ~ .  (19) 
Also, we observe that s can be written 
s = V,a = V a  - [(Va V$)/IV$)2]V@, (20) 

where 
a+-96,  

Since 
B = VaxV@, 

we see that the magnetic field lines are formed by the inter- 
section of surfaces of constant a and constant @. For short- 
wavelength (ballooning) modes, a forms a convenient coor- 
dinate," but the aperiodic component in Va, evidenced by 
the last term in Eq. (22) makes it inconvenient for numerical 
work in general. 

Calling q' the global magnetic shear, we see from Eq. 
(22) that a natural definition for the local magnetic 
shea?~'~," S (@,a ) is 

= f - ' [q r+  (do + q < W ]  (25) 
We need the Jacobian factor in Eq. (25) to make 5 an invar- 
iant, as can also be seen by taking the curl of Eq. (20) to show 

s= - s * v x s .  (26) 
We term 9%' the integrated residual shear. 

IV. RESOLUTION OF vs<9 AND vsC 
So far we have not used the ignorability of Â£, except 

perhaps to ensure the existence of magnetic surfaces. How- 
ever, as we now show, it can be used quite powerfully to 
derive the existence of an invariant which allows us to ex- 
press V,0 and V.6 in terms of the basis vectors B and s. This 
is because ignorability implies that the last term of Eq. (14) 

vanishes iff is any equilibrium quantity. In particular, not- 
ing that Eq. (9) can be written 

V (IV^s) = 0 , (27) 
we take f = ( V $ ~ ~ S  in Eq. (14) and find a differential equation 
for s V0, 

~ ~ ~ ~ s - v , e ) = o .  (28) 
Integrating, we have 

s -v,e = - ~ ( W / - I V + I ~ ,  (29) 
where gW is a constant of integration, which is essentially 
the f (@) of the toroidal case5 or the H (@) of the helical ca~e. ' '~ 
By considering the most general change of variable consis- 
tent with ignorability of t ,  

e = e l + h ( e ' , @ ) ,  (30) 
where h is a 27r-periodic function of 6 ', we can easily show 
that f V s O  is invariant under such coordinate changes. 
Thus g($) is also an invariant. 

From Eqs. (1 6), (19), and (29) we have 

S VS( = U^ - g q ) / T W  . (31) 
To find the parallel components we use Eq. (13) to show 

B*Vse=,-', (32) 
and 

B*V,[=qf-'. (33) 
From Eqs. (29)-(33) we readily find 

V. RESOLUTION OF j 
Since s x B  = - IS)~V@, it is readily verified that the 

expression 
j = a B  - ([V@12/B ')p1($)s (37) 

satisfies the equilibrium equation, Eq. (6), where o=j = B/B 
is yet to be determined. 

We can alternatively determine j from Eq. (5). It is ea- 
siest to resolve j onto V0 and Vt, 

j*V#= -gff - ' ,  (38) 
j * v S t  =f-1ae[(fB2~@*V6)/lV@12 - g 9 ]  

+ f - '&,dP - gq) 9 (39) 
where we have used Eqs. (23), (29), and (31). Comparing Eq. 
(38) with the VsO component of (37) we determine a ,  

a = - g' - gpl/B . (40) 

Comparing Eq. (39) with the Vst component of (37) we also 
find the interesting identity 

ff^B^ + ̂P' - g9' 
= ae [ g 9  - \ f ~ ^  ve)/lv+l2] . (41) 

All terms of Eq. (41) are 0 (el) in the high-beta ordering of 
Appendix A except for the term fp'. It is therefore inadvis- 
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able to use Eq. (41) to substitute for p' as cancellations of 
large terms can arise, leading to numerical errors. 

We take the primitive set of quantities, in terms of 
which the stability formulas of the subsequent sections can 
be written as algebraic expressions, to be the surface quanti- 
ties ~($1, p'(@), qW), ql(@), d@), g'W and the poloidally vary- 
ing quantities \W, V@ * VO, B ', 9*B ', 9.B ', f ,  9^f, 9, 
and d e 9 .  We show in Appendix B that, in order to represent 
the gradient of an arbitrary vector, we should add <?+ IV@[' 
and& lVq512 to the primitive set. It will be shown in Sec. VIII 
how these quantities can be calculated numerically. In the 
other sections the quantities of the primitive set will be taken 
as known and no further information about the equilibrium 
will be needed. 

VI. FLUXES 
Just as Eq. (1) gives the poloidal magnetic flux 274, the 

toroidal magnetic flux 2ir@ (@) is given by 

From Eq. (13) we see that 

so that q can also be interpreted as <P '(t,b). 
The poloidal current 2771 (@) is defined by replacing B 

with j in Eq. (1). From Eq. (38) we then get 

Clearly, for a vacuum magnetic field, g must be constant. 
Similarly, the toroidal current 21rJ(@) is defined by Eq. 

(42) with B replaced by j. From Eq. (39) we find 

J(*)= [(^B2) -gqIS, (45) 
where (-)=(277)'$2"' do. Note that a stellarator with zero 
toroidal current must have q = ( fB ')/g. This is also ap- 
proximately true for a large-aspect-ratio tokamak (see Ap- 
pendix A). An alternative expression for J may be had by 
using Eq. (41); 

(46) 

VII. CURVATURE 
We calculate the magnetic field line curvature 

K=el, Veil (where en =B/B ) from the identity2 
K = [v , (~P  + B ~ ) ] L ! B ~ ,  (47) 

where VL =(I - ell en ) V. Clearly K B=0, so the most gen- 
eral form of K is 

where the normal curvature is found by dotting Eq. (47) with 
v*, 

2p' + 9.B v@* V09<,B2 
K* = w + 21V@12B ' ' (49) 

and the geodesic curvature is found by dotting with s, 
K~ = - (s/2fB 4}9e B ' (50) 

Comparing Eq. (50) with Eq. (40) we also see that 

which holds even in nonaxisymmetric geometries2 if . / "  'do 
is replaced by B V. 

VIII. EQUILIBRIUM AND MAPPING 
The purpose of this section is to outline the modifica- 

tions that have been made to the flux coordinate code of 
DeLucia et aZ.ls in order to allow for either helical or toroidal 
symmetry. We take the shape of the plasma boundary to be 
specified in an appropriate surface of section. We have called 
the new code FEQ2.5. 

Consider the r, 4, z cylindrical coordinates of Fig. 1 or 2. 
Helical symmetry7 implies that all equilibrium quantities are 
functions only of r and u where 

u=Z4-hz,  (52) 
Z being the dimension of the discrete symmetry group asso- 
ciated with rotations about the z axis. Scalar equilibrium 
quantities are 277--periodic in u. Thus 277-/h is the helical peri- 
od measured along the z axis, but the length along the z axis 
for a complete turn of the flux tube is Z periods, or 277-Z /h. 

Formally, the helically invariant system includes the 
axisymmetric system as the special case Z = 1, h~rvo ,  but 
this limit makes sense only if we hold the plasma shape con- 
stant (as h varies) in a cross-sectional surface (Fig. 2) which 
does not have thez axis as its normal. We take this surface of 
section to be the half-plane 4 = 0 (S+ of Fig. I), and provide 
the option in the code for the plasma shape to be specified in 
this plane so that axisymmetric equilibria can be treated. To 
visualize the limit h - +  co , imagine the compression of a single 
coil of a helical spring. When completely compressed 
(h = co ), the ends of the coil join continuously, and the coil 
becomes a toroid. The equivalent limit Z = 0, h = 1 is incom- 
patible with our interpretation of Z, cf. Eq. (62a). 

On the other hand, the plane z = 0 is often more con- 
venient for specifying the plasma shape of helical systems 
and we also provide the option of working in this surface of 
section. If this plane were used for the h-+ co case the plasma 
would be reduced to a disk of zero thickness. 

There is another fundamental difference between the 
axisymmetric case, A-CO , and the helical case, h finite, tak- 
en as a straight, periodic model for toroidal systems with a 
helical distortion imposed (e.g., stellarators). To treat axi- 
symmetric systems we make a topological identification 
between the sections 4 = 0 and 6 = 277-. But to model helical- 
ly deformed toroids, we identify the sections z = 0 and 
z = 277-m/h, where m is the number of field periods around 
the machine the long way. It can easily be seen that these two 
identifications are topologically different: In the helical case 
the magnetic axis and the curve r = const, u = const are to- 
pologically linked (Fig. 3), while they are not in the axisym- 
metric case. This explains how it can be that the term I// is 
present in Eq. (4) in the helical case, but not in the axisym- 
metric case. 

The limit of a cylinder with arbitrary cross section can 
be obtained by taking the large-aspect-ratio limit ( r ~ x x i )  of 
the axisymmetric case (h+ co ), provided care is taken to or- 
der terms correctly (Appendix A). 
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FIG. 3. Two helical periods of an 1 = 2 system, showing the ribbonR,, used 
for defining the helical flux $, and the ribbon R used for defining the poloi- 
dal flux $ = $ + <P / I .  The dashed lines show a possible topological identi- 
fication of the intersections of the magnetic axis and a constant-$, 0 line 
with two 2 = constant surfaces an integral number of periods apart. These 
lines are topologically linked (in contrast to the similarly identified lines 
intersecting a <  ̂= constant surface in the toroidal case), illustrating the fact 
that a field line with q = 00 would have a rotational transform of 2ir every 1 
periods. 

Helical symmetry and V B = 0 imply that 
B = Ihux V$ + Ihgu (53) 

where 
u = (12 + hr&/(l + h 2r2) , (54) 

* 
where 2=Vz and +=rV<f. The field lines for a typical helical 
equilibrium are shown in Fig. 4. The coordinate-free repre- 
sentation of the equilibrium equation for helically symmet- 
ric systems is 

where 
K = W / [ 1 2 + h 2 ^ ) .  (56) 
It is easily shown that 2d$  is the flux through a helical 

ribbon with length along thez axis of 2irl /h (Fig. 3), with the 
magnetic axis as one edge and with the same symmetry as the 
equilibrium. To do this we use 

B = hi?xV$ + B,h, (57) 
where 

h = 2 + hr&/l 
is a vector pointing in the symmetry direction, i.e., 
h Vf (r,u) = 0. Since V B = 0,2d$ is also the flux through 
any ribbon that is obtained by continuous deformation; that 
is, which has one edge on the magnetic axis and the other 
edge on the flux surface and winds around the magnetic axis 
once in 1 helical periods. However, this helical flux must be 

FIG. 4. Helical magnetic surface with magnetic field lines rather than 
0 = const lines. Note that the field lines twist more slowly than the con- 
stant-0 lines, corresponding to q < 0. 

distinguished from the poloidal flux when we model a heli- 
cally deformed toroid. The flux per helical period through 
any ribbon which does not wrap around the magnetic axis 
but repeats after 1 helical periods is called the poloidal flux 
(per period) and denoted as 214~. Thus 

^ = @ + I$, (59) 
where 2-IT<P is the toroidal flux; that is, the flux through any 
cross section of the flux tube. This relationship then gives 
Eq. (4) [from the use of d 2 1 ~  = d&/d@ and Eq. (43)l. We 
again note that in the axisymmetric toroidal case, the I// 
term should be dropped because the way the ends of the tube 
are topologically identified means that 2 4  itself is the poloi- 
dal flux. 

In order to allow an arbitrary twisting surface of section 
we consider a coordinate system X, Z, Y where 

X = X (r,u) , (604 
and 

Z = Z (r,u) 
are Cartesian coordinates in the surface of section. We sup- 
pose these equations to be invertible: VX x V Z  * V Y # 0. We 
take Y to be an ignorable coordinate 

when acting on equilibrium scalars. For definiteness we will 
consider here only two such surfaces of section. The 
<f = const plane, where 

and the z = const plane, where 
X = r cos(u/l ) , Z = r sin(u/l ) , Y = hz . (62b) 
We now transform to flux coordinates1' Y,0 ,  Y, where 
x = x ( ~ , e ) ,  (63) 
Z = Z ( Y , 0 ) ,  (64) 

and 

The angle 0 has been chosen to give equal arc lengths in the 
surface of section for equal increments of 0 at fixed Y. The 
intermediate coordinate Y is approximately equal to $, and 
the mapping equations (63) and (64) are adjusted iteratively 
[by solving Eq. (55) at each step] until $ is equal to Y to 
within a specified tolerance. These requirements replace Eq. 
(36) of DeLucia et a/." Adequate resolution near the mag- 
netic axis is obtained by using an unequally spaced mesh in 
Y, giving constant increments of Y 'I2. 

We now indicate how the added level of coordinates 
(X,Z ) modifies the calculation of the metric quantities of De- 
Lucia et ~ 1 . ' ~  The left-hand side of the equilibrium equation 
can be written 

v *  W^) = (1~fv,e,r)[(^*h yy+ $eh Oy)Y 

+ ($YhW+ ^h Ye] (66) 
where a single subscript Y or 0 denotes partial differenti- 
ation with respect to that variable, 
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&,e,y=l/(V^ xVO* VY) =fp,eJ ,  (67) 
fv ,e=sXvZe -XeZv (68) 
J=l/(VX XVZ- VY) , (69) 
h **= ( K J / & , e ) ( ~ & l ~ ~  l 2  

- 2ZeXeVX. VZ + X &  [ V Z  12), (70) 
he*=( -  KJ/f^)[zezy,vx l 2  

- (ZeXp + ZpXe)VX* V Z  + XeXp\VZ 12] 9 

The new quantities evaluated for the 4 = const surface of 
section are 

K =  12/(12/h2 + X 2 ) ,  (72) 
J = X / l ,  (73) 
IVXl2= 1 ,  (74) 
IvZ I 2  = [(12/h ') + X2]/X2, (75) 
v x * v z = o ,  (76) 

and for the z = const surface of section are 

~ = l ~ h ~ / [ l ~ + h ~ ( X ~ + Z ~ ) ] ,  (72') 
J=  l/h,  (73') 
I v X [ ~  = 1 + h2z2 /12 ,  (74') 
V Z 1 2 =  1 +h2X2/12, (75') 
VX*VZ= -h2XZ/12. (76') 

The expression for the safety factor is also modified. Using 

with 
d S  = VY.f^,e,yd!PdO, 

we find 

where 
B*VY= -KC/^yePy +Kg,  (81) 

and 
C =  - Ze/h (4 = const plane) (82a) 

or 
C = (XZe - ZXe)/l (z = const plane) . (82b) 
When the iterations have converged, FEQ2.5 tabulates 

the scalar quantities ~($1,  q($), g($), and the coordinates 
X ($,0 ), Z ($,0 ). These are written to a disk file EQDSK. 

Finally, we illustrate how to transform to magnetic co- 
ordinates (required for the stability analysis) by calculating 
the primitive set of quantities listed in Sec. V. This step is 
performed by a postprocessing code FMAP2.5, which pro- 

duces tables of the primitive set in a disk file METDSK. It is 
this file which is used by the stability codes BAL2.5 and 
PEST2.5. 

We write the magnetic field B as in Sec. 11, 
B = V ~ x V $ + V @ x V 6 ,  (83) 

and find 6 as a function of 0 from 

where ,f is assumed given up to some multiplicative func- 
tion of $. Specifically, we allow Jacobians of the form 

where/^ is the Jacobian for "equal arc" 6 (i.e., 6 s=0 ), f p  
is the Jacobian for 6 dp [see Eq. (92)], and the B factor is 
included because Jacobians with l/B2 poloidal variation 
have been found to arise naturally in some analytic formula- 
tions. I6'l9 Hamada coordinates can be obtained by setting nE 
= rip = nB = 0. The coefficient a($) is adjusted so that 6 

has period 2n-. Derivatives with respect to 6 at constant $ 
and derivatives with respect to $at constant 6 are now easily 
evaluated using the chain rule. 

9 
(87) 

The metric quantities lV$12, V$ V6 and f are given 
by 

(Ze\^X[2+Xe\^Z12-2ZeXeVX*VZ) 
\w= 

/if',e 
9 

(88) 
V^ V6 = - [ZeZ* IVX l 2  - (ZeX+ + Z*Xg)VX vz 

where 
S = O P - 6 ,  

with Qp being defined by 

Also 
VY*V$= [ z ^ x ~ v Y - x g v z * v x ] / ^ , e ,  (93) 

and 
V Y VX = 0 (4 = const plane) , (944 

or 
VY- VX = h 'Z/I (z = const plane) , (94'4 
V Z  V y  = 1 ̂ /hX (4 = const plane) , (954 

or 
VZ*VY= -h2X/I (z=const plane). (95b) 
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We have verified the new code by checking that it agrees 
with previous codes in the axisymmetric limit, and also by 
checking that the same results are obtained if the same heli- 
cal equilibrium is calculated using the two surfaces of section 
(constant if> and constant z). 

IX. BALLOONING AND INTERCHANGE STABILITY 
Using the model density tensor pV$V* of the PEST2 

the line averaged Lagrangian15 for ballooning modes 
is given by 

where ds=f d9, 8 4 /ds, 

with 01, a constant and A the eigenvalue of the Euler-La- 
grange equation which makes 6 (9 )4 as 19 \+w. The local 
dispersion relation a2 = A (@,gk ), where a is the frequency of 
the mode, can be used to construct a WKB approximation to 
the global eigenmode.20 

In this section we present a simple and efficient method 
for finding the eigenvalue A which has been implemented as 
a computer code, BAL2.5, to study the ballooning stability of 
bbheliac" equilibria.13 First note that Eq. (96) can, using Eq. 
(5 1) and judicious integration by parts, be written in the form 

where 
a = l/lV*12 + (lV$12/B 2)[^i + q'(9 - & ) I 2  (99) 

[not to be confused with the a of Eq. (2 I)], 

and 

where S is the local shear, Eq. (25). The integration by parts 
avoids having an oscillating secular term in y. The subtrac- 
tion of o-,,O, the value of u at the point on each surface where 
the curvature is worst ( p ' ~ ^ ,  is maximal), has been found 
empirically to increase the numerical accuracy. A further 
integration by parts can be done to remove thedgS^ term in S 
if desired. We now introduce the conjugate "momentum" 
11=9p/98, and proceed to the Hamiltonian equations of 
motion in the standard way2' 

i?= -0(11+/3S)/a-(Ap+r)S. (1031 
This coupled pair of ordinary differential equations was 

first derived by ~ r e e n e ~ ~  and is convenient for numerical 
integration and also for constructing the asymptotic series 
for the large \0 \ behavior. In BAL2.5 the integration is started 
at 9 = go Â vff-., where 9- is much greater than unity (typi- 
cally, O,, around ten is adequate), and runs inward with an 
initial guess, A = A,, to the matching point 60, where the next 
guess, 4 + , , is computed from the jump in the logarithmic 
derivative at 9 = 60 using the recursion relation 

where 

This formula is a variant of the Rayleigh-Ritz variational 
principle and converges stably and quadratically to the low- 
est eigenvalue. 

The asymptotic behavior of6 for our model density can 
easily be shown to be 

6-16 lpA , ( 106) 
where 

p* = - 4 - ( - D, - (//a^ ( pf^ )'I2 , (107) 
with ( ) denoting averages over 6. Here 

with /3, = ql(u - uo) and a2 = q'21V$12/B being the coeffi- 
cients of the highest powers of 9 occurring in the coefficients 
B and a. 

The eigenfunctions are square integrable (implying the 
possibility of a discrete spectrum) provided 

Thus, as long as D, < 0, marginal or unstable modes (AGO) 
are discrete. This corresponds to the Mercier criterion for 
stability against ideal interchange modes,2 but otherwise has 
no physical significance owing to our artificial density mod- 
el. Resistive interchange stability (within the subsidiary or- 
dering of Glasser et can likewise be determined by 
showing Do < 0, where23 

DR =D1 +(If-#, (110) 
with 

( I l l )  
In the high$ tokamak ordering of Appendix A, the terms 
contributing to the magnetic well parameter 

d ̂ v  (242 ( f )  -- 
dG2 - 7 (7) 

are not dominant, and we conclude that a more appropriate 
design parameter is DR.  

X. GLOBAL STABILITY 
The quadratic energy functional 8 W  for small oscilla- 

tions of amplitude j; about an equilibrium state can be writ- 
ten24-26 
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where 

The form of Ugiven here (see Appendix B) is more prac- 
tical for application than the usual since it is in terms 
of the normal curvature, parallel current, and local shear 
introduced in previous sections. 

As described in the Appendix of Ref. 4, we can reduce 
the stability problem to a minimization of 8WÃ over the sca- 
lar field t = 6 V* by a prior analytic minimization over the 
other two components of 6 using a method due to Binea~.'~ 
The resulting form of SWp is 

A, 

and v is a multivalued potential satisfying 

where u is single-valued. As in Sec. VI, ( ) denotes averag- 
ing over 9. We have assumed that 4" depends on c through a 
factor exp( - inc), indicating through the Kronecker delta 
factor that the last two terms of Eq. (1 15) contribute only 
to the modes having the same symmetry as the equilibrium 
(n = 0). 

When Eqs. (40) and (49) are taken into account, Eq. 
(1 14) already gives Uin terms of the primitive set of equilibri- 
um quantities. With the assumed ^-dependence, B V t  
= if - '(de - inq)t, and 

We also have 

fis =de(fIVsQ We -in(ifVse*VsO& 
- inde(fVs9* VJ) - n2iflVsc12. (121) 

In the above two equations, do acts on everything to its right. 
The coefficients are given by Eqs. (34)-(36). 

To evaluate the second n = 0 term we write 

where V x Y'" = 0 and V Y: = 0. We normalize Y(" [Y(2'] so 
that the line integral around any closed circuit is the same as 
that of - Vg /2?7- (^9/2?7-). By representing the Y"' as gradi- 
ents of multivalued scalar potentials: we can easily show 

where 

Cl(*) = <VS^ V^/IV^ I2)C2W 9 (125) 
C2(*) = <(ifIVs6 I2)-l)-l - (126) 
We can eliminate !& from Eq. (1 19) by dotting with Y1" 

and integrating over a magnetic surface, thus obtaining 
2 

I L i j I j = V ' ^ \ ,  ,= 1 
(127) 

where 

L ij(*) = ( ~ T T ) ~ ( ^  Yy) , (128) 
fY? VX(ts) + f i Y ? x j  -V$  

IV*l2 ) , 
(129) 

Solving Eq. (127), and using Eq. (122), we find the last 
term of 8W in Eq. (1 15) to be 

At the time of writing, the formulation given above had 
been used to modify the PEST2 code to a new version PEST2.5, 
except that then = 0 terms had not been included. The vacu- 
um energy remains to be formulated. 

XI. CONCLUSIONS 
We have found a formulation of magnetic coordinates 

appropriate to ideal, isotropic pressure hydromagnetic equi- 
libria, which is both concise and practical. Since such equili- 
bria can form the starting point for investigating a variety of 
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physical effects, such as kinetic stability and wave propaga- 
tion, as well as the hydromagnetic stability calculations de- 
scribed here, we anticipate that this formulation will be 
found widely useful. 
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APPENDIX A: HIGH-BETA ORDERING 
In order to choose between different, but analytically 

identical [e.g., due to use of Eq. (41)], expressions we use the 
criterion that they must be well-ordered in a large-aspect- 
ratio ordering appropriate to axisymmetric systems with 
high flp =2p/B 2 ,  where p and B are a typical pressure and 
poloidal magnetic field, respectively. This also ensures that 
equations are well-ordered near the magnetic axis. By "well- 
ordered" we mean that the left-hand side should not be for- 
mally smaller in the expansion parameter e than the largest 
term on the right-hand side, so that numerical errors are not 
introduced unnecessarily by the near cancellation of large 
quantities. 

For definiteness we refer to axisymmetric systems (Sec. 
VIII) and take 

where a and R are typical minor and major radii, respective- 
ly. We order 

so it follows from q-aB /RBp that Bp/B-e. 
We take units so that 

whenceR -â‚¬- Bp we. It followsfromg-RB thatg-e l .  
We define the high-/? ordering by taking 

so that p-e. Since +-aRBp, we have $- 1, so that pl- 1, 
and ql- 1. 

However g' is not ordered the same as g, but rather 

That is, g is constant to leading order in an expansion about 
the magnetic axis. This may be seen by considering that the 
Grad-Shafranov equation implies 

ggf= - X 2 p ' + 0 ( l ) ,  
where X is defined in Eq. (62a). 

Also, since B = ̂ /X2 + 0 (8), we see from Eq. (40) 
that the terms making up a cancel to leading order, and we 
have 

0-6. (A61 
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Furthermore, the leading term of X is constant in an expan- 
sion about the magnetic axis, so X '/X- and 

s+B~-E,  (A71 
Finally, we see from f = X/lV+l lVs6 1 that f-e-I. 

In summary, we list the orderings of the primitive set of 
equilibrium quantities and a few others; 

(A81 
(A91 

APPENDIX 6: VECTOR CALCULUS IN MAGNETIC 
COORDINATES 

The straight-field-line coordinate system is neither or- 
thogonal nor unique. We have thus been led to depart from 
the standard tensor calculus approach of using V+, V6, and 
VC as a covariant basis set, and instead have used the more 
physical basis 

e h V $ ,  &B, essss. (Bl) 
Since magnetic coordinates are useful in applications other 
than those treated in this paper, we have felt it desirable to 
show how to perform arbitrary vector calculus operations in 
our basis. 

In this Appendix we show how to evaluate the dyadic 
Vf, where f is an arbitrary vector, in terms of the primitive set 
augmented with the components of VlV+12. This result in- 
cludes V * f and V X f. As an application we evaluate the 
quantity Uin Eq. (1 15). The results of this section are valid in 
nonsymmetric systems as well. 

Resolving f onto our basis we have 

where ie f $, 11 J \ . We also define the contravariant basis vec- 
tors 

ei=e71ei12, P 3 )  
so that the unit dyadic I can be represented 

From Eq. (B2) we have 

The quantities V ei and Vxei can all be evaluated in terms 
of the primitive set. First we need the result, following from 
Eqs. (20) and (22), 

V x s  = - V^XV(^? + q'6).  (B7) 
This gives V X es, but also, from the identity 1 s 1 2V+ = B x S, 
we have 

V-( ls12V+)=j*s-B-Vxs 
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Since ls12 = B 2/IV$12, we can calculate V$ Vls12 in terms 
of the augmented primitive set, and thus Eq. (B8) gives V e*. 
We also have V ell = 0, and, from Eq. (27), we have 
V (IV$12es) = 0. Finally we note that V x e c  0 and 
V x e "  = j. 

The most general vector calculus expression involving 
only first derivatives is Vf, which we calculate using the iden- 
tity'' 

2a Vb c = a V(b c) + c - V(b a) - b V(a c) 

+ ( a x e )  - VXb . 
By dotting Vf on both sides with I, we find 

2 ~ f = 2 Z ( ~ / . ) e ' + f . T + ( f * T ) ~ - T - f  
1 

+ D X f +  (Dxf)^-  f *  D X l ,  
where T is the triadic 

TEE eieiVlei12, 
, 

D is the dyadic, 

and superscript T denotes the transposed dyadic. 
We observe that D involves no V+ components. It is 

readily verified that Eq. (B10) is consistent with Eqs.(B5) and 
(B6). We can also use it to show 

2 B -  (Vn) - s  = - 1~1%- IV+IS, PI31 
and 

where n=V$/lV+l. We can then easily derive Eq. (1 14) from 
the 

U =  [B -(Vn) j~n] / IV$l ' ,  (B15) 
although it is actually easier to derive U directly from first 
principles by manipulating the form of 8W due to Furth et 
a/.2-28 into the form of Eq. ( 1  14). 
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