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Abstract

In recent years, the gravitational curvatures, the third-order derivatives of the gravitational 

potential (GP), of a tesseroid have been introduced in the context of gravity field mod-

eling. Analogous to the gravity field, magnetic field modeling can be expanded by mag-

netic curvatures (MC), the third-order derivatives of the magnetic potential (MP), which 

are the change rates of the magnetic gradient tensor (MGT). Exploiting Poisson’s relations 

between (n + 1)th-order derivatives of the GP and nth-order derivatives of the MP, this 

paper derives expressions for the MC of a uniformly magnetized tesseroid using the fourth-

order derivatives of the GP of a uniform tesseroid expressed in terms of the Cartesian ker-

nel functions. Based on the magnetic effects of a uniform spherical shell, all expressions 

for the MP, magnetic vector (MV), MGT and MC of tesseroids have been examined for 

numerical problems due to singularity of the respective integral kernels (i.e., near zone and 

polar singularity problems). For this, the closed analytical expressions for the MP, MV, 

MGT and MC of the uniform spherical shell have been provided and used to generate sin-

gularity-free reference values. Varying both height and latitude of the computation point, it 

is found numerically that the near zone problem also exists for all magnetic quantities (i.e., 

MP, MV, MGT and MC). The numerical tests also reveal that the polar singularity prob-

lems do not occur for the magnetic quantity as a result of the use of Cartesian as opposed 

to spherical integral kernels. This demonstrates that the magnetic quantity including the 

newly derived MC ‘inherit’ the same numerical properties as the corresponding gravita-

tional functional. Possible future applications (e.g., geophysical information) of the MC 

formulas of a uniformly magnetized tesseroid could be improved modeling of the Earth’s 

magnetic field by dedicated satellite missions.
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1 Introduction

In spherical approximation, a uniform tesseroid is the mass body with the uniform density 

�
tess bound by three surface pairs defined in spherical coordinates by spherical longitudes 

[ �
1
 , �

2
 ], latitudes [ �

1
 , �

2
 ] and radii [ r

1
 , r

2
 ] (see Fig. 1). Among the common mass bodies 

used in spatial domain gravity forward modeling (e.g., rectangular prism, vertical cylindri-

cal prism, mass-lines, mass-layers, point mass and polyhedron), the tesseroid is a basic 

mass body well-suited for global calculations of gravitational terrain and crustal effects at 

satellite height because of its computational efficiency (Heck and Seitz 2007; Wild-Pfeiffer 

2008; Tsoulis et al. 2009; Grombein et al. 2013; Uieda and Barbosa 2017). Furthermore, 

due to its characterization by spherical coordinates, the tesseroid can be considered as a 

commonly used mass body when dealing with global digital elevation or crustal models 

registered with respect to spherical latitude and longitude [e.g., ETOPO1 (Amante and 

Eakins 2009), Earth2014 (Hirt and Rexer 2015), CRUST1.0 (Laske et al. 2013)].

Using tesseroids in magnetic forward modeling, Asgharzadeh et al. (2008) derived the 

magnetic potential (MP), its first-order derivatives (i.e., magnetic vectors MV) and second-

order derivatives (i.e., magnetic gradient tensor, MGT) of a tesseroid in terms of spherical 

integral kernels and evaluated these magnetic effects with the 3D Gauss–Legendre Quad-

rature (GLQ) method. They investigated crustal magnetic effects using tesseroids over 
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Fig. 1  Illustration of a uniformly magnetized tesseroid with uniform density �tess and magnetization Mtess in 

spherical coordinates [modified from Kuhn (2003)]. [ �
1
 , �

2
 ], [ �

1
 , �

2
 ] and [ r

1
 , r

2
 ] define the bounding sur-

faces of the tesseroid in the directions of spherical longitude, latitude and radius. P(�,�, r) and S(��,��
, r

�) 

are computation and source points, respectively. Derivatives of the gravitational and magnetic potential are 

given in a local north-orientated reference frame (LNOF, i.e., x, y, z)



1077Surveys in Geophysics (2020) 41:1075–1099 

1 3

the Iran region within the Middle East at a satellite height of 500  km. Du et  al. (2015) 

compared different numerical approaches [e.g., 3D GLQ and second-order Taylor Series 

Expansion (TSE)] to compute the MP, MV and MGT of a tesseroid in terms of accuracy 

and computational efficiency. Their numerical experiments revealed that the accuracy 

of the MP is higher than for the MV and MGT, and errors of the MGT are largest but 

decrease more quickly, which is due to faster attenuation of higher-order gravity quantity. 

Baykiev et al. (2016) derived the MV of a tesseroid applying Poisson’s relation (Poisson 

1826; Baranov 1957; Blakely 1995; Li and Oldenburg 1998; Roy 2008; Hinze et al. 2013; 

Baykiev et al. 2016) based on the gravity gradient tensor (GGT) using Cartesian kernels 

(Grombein et al. 2013). They presented the magnetic modeling software (Magnetic tesse-

roids) to calculate the Earth’s induced and remanent MV effects at global and regional 

scales. Based on derivations of gravitational curvatures [GC, the third-order derivatives of 

the gravitational potential (GP)] of a tesseroid, Deng and Shen (2018a) proposed the con-

cept of magnetic curvatures (MC), the third-order derivatives of the MP, i.e., the change 

rates of the MGT with respect to the directions of the local north-orientated reference 

frame (LNOF, see Fig. 1) in magnetic field modeling. In the above part, a comprehensive 

overview of studies related to the MP of a uniform tesseroid and their derivatives up to the 

second order is provided, whereas the related formulas of the MC are not yet introduced. 

Thus, the existing body of literature is extended here by the MC, which is derived and 

numerically tested.

A complete summary of all spherical shell formulas in magnetic field was not yet avail-

able. Sections  3.2.1 and 3.2.2 in Blakely (1995,  pp. 49–54) presented the potential and 

gravitational attraction of the spherical shell and solid sphere in gravity field, respec-

tively. Section 5.7 put the problem 1 “Use Poisson’s relation to find the magnetic field of 

a uniformly magnetized spherical shell”, but did not offer the answer clearly in Blakely 

(1995, p. 98). Appendix B Subroutines in Blakely (1995, p. 370) presented the computa-

tion routine named sphere to calculate the gravitational attraction of a sphere in Table B.1, 

which was also in gravity field. Actually Table B.1 did not give the codes for the spherical 

shell directly especially for the magnetic field. The GP, GV and GGT of the spherical shell 

for the gravity field were applied as the reference values with respect to the discretized 

tesseroids in Grombein et  al. (2013), the same as the GC of the spherical shell in Deng 

and Shen (2018a). The shell formulas of the MP, MV, MGT and MC can be references for 

the discretized tesseroids in magnetic field, which were not clearly presented in the related 

studies of Blakely (1995), Du et al. (2015) and Baykiev et al. (2016). In this contribution, 

the general nth order derivatives of the gravitational potential of the spherical shell are pre-

sented. The magnetic field (including MP, MV, MGT and MC) of a uniformly magnetized 

spherical shell is also presented for the sake of completeness, which answers the problem 1 

in Blakely (1995, p. 98).

In recent years, satellite missions are increasingly used to measure magnetic quan-

tities in space to investigate the Earth’s magnetic field. For example, the MGT was 

obtained by numerical differentiation of the measured MV by Swarm satellite mission to 

investigate Earth’s magnetic field (Friis-Christensen et al. 2006, 2008; Olsen et al. 2010; 

Sabaka et al. 2018), and the CHAMP satellite measured the MV components to inves-

tigate magnetic effects of the Earth’s lithosphere (Maus et al. 2006, 2007, 2008; Sebera 

et al. 2019). Further studies combined Swarm and CHAMP magnetic measurements to 

model the Earth’s lithospheric magnetic field (Olsen et al. 2017; Vervelidou et al. 2018). 

Recently, Bandyopadhyay et al. (2019) reported the first measurements of magnetic field 

curvature by using in situ data from the Magnetospheric Multi-Scale mission (MMS). 

Although there is still a very long way to go to directly measure the MGT and MC in 
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space, this study indicates the possible application of the MC for improved modeling of 

geophysical phenomena that leave a signal in the Earth’s magnetic field.

Poisson’s relation (Blakely 1995; Roy 2008; Hinze et  al. 2013) provides a link 

between the nth-order derivatives of the MP and the (n + 1)th-order derivatives of the 

GP. Therefore, if expressions for higher-order derivatives of the GP are known, they can 

be used to derive expressions for the MP and its derivatives. For instance, by using Pois-

son’s relation, Blakely (1995) derived expressions for the MP of a solid sphere, infinite 

slab and horizontal cylinder from known expressions of gravity vectors (GV). Baykiev 

et al. (2016) derived the MV of a uniform tesseroid based on expressions of the GGT 

given by Grombein et  al. (2013). This demonstrates the usefulness of Poisson’s rela-

tion for deriving expressions for magnetic quantities, where expressions of higher-order 

derivatives of the GP are already known.

Various expressions for the GP, GV, GGT and GC of a uniform tesseroid have been 

derived and applied to evaluate gravitational effects of the Earth’s topographic and crus-

tal masses. Kuhn (2003) applied zero-order TSE approach to calculate the GP and radial 

GV components of a tesseroid. Heck and Seitz (2007) expanded the 3D TSE approach 

up to second-order formula to evaluate the GP and radial GV of a tesseroid. Asgharza-

deh et al. (2007) calculated the terrain effects of the GP, GV and GGT of a tesseroid in 

spherical integral kernels with the 3D GLQ approach. Grombein et al. (2013) applied 

the 3D TSE second-order formula to evaluate the GP, GV and GGT of a tesseroid in 

terms of the Cartesian kernel functions. Deng et al. (2016) corrected the related formu-

las in Heck and Seitz (2007) and Grombein et al. (2013) to the correct form (i.e., from 

denominator (i + j + k)! to i!j!k!) of the general 3D TSE formula for the GP and radial 

GV components of a tesseroid. Deng and Shen (2018a) derived the formulas of the GC 

of a tesseroid using spherical integral kernels, and expanded the 3D TSE approach up 

to sixth-order formula to evaluate the GP, GV, GGT and GC of a tesseroid. Deng and 

Shen (2018b) derived the formulas of the GC of a tesseroid using the Cartesian kernels, 

and compared the 2D/3D TSE, GLQ and Newton–Cotes Quadrature (NCQ) methods to 

validate the GP, GV, GGT and GC of a tesseroid with respect to the reference values of 

the spherical shell. The advantage of using Cartesian kernels instead of spherical ker-

nels is that the former avoids the polar singularity for the GC formulas (Deng and Shen 

2018b).

The near zone (or very-near-area) problem was widely investigated for gravitational 

functional of a tesseroid. It occurs when the computation point is close to the attract-

ing mass in arbitrary direction using the mathematical explanation 1/l with l → 0 . The 

contents of near zone problem for the GP, GV and GGT of the relevant literature (Heck 

and Seitz 2007; Tsoulis et al. 2009; Li et al. 2011; Grombein et al. 2013; Shen and Deng 

2016; Uieda et al. 2016) were reviewed in Deng and Shen (2018b). The near zone prob-

lem appears for the GC both using the spherical kernels and Cartesian kernels (Deng 

and Shen 2018a, b). In magnetic field modeling, Du et al. (2015) demonstrated that the 

near zone problem also occurred for the MP, MV and MGT of a tesseroid.

Based on the proposed concept of the MC (Deng and Shen 2018a), this contribu-

tion derives and analyses the MC expressions of a uniformly magnetized tesseroid and 

spherical shell. The latter has been included here for numerical validation purposes. 

The fourth-order derivatives of the GP of the uniform tesseroid and spherical shell are 

derived first and subsequently used to derive expressions for the MC using Poisson’s 

relation. The spherical shell is used for validation of the newly derived expressions for 

the MC, then these expressions have been analyzed numerically with particular focus on 

the near zone and polar singularity problems.
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This paper is organized as follows. Section  2 provides theoretical aspects, where the 

general principle of Poisson’s relation is presented in Sect.  2.1; expressions for the nth-

order derivatives of the GP of the uniform tesseroid using the Cartesian kernels and 

spherical shell are derived in Sects. 2.2 and 2.3, respectively; Sect. 2.4 provides the gen-

eral expressions of the MC of a tesseroid in terms of the Cartesian kernel functions; and 

the magnetic effects up to MC of a uniformly magnetized spherical shell are derived in 

Sect. 2.5. In Sect. 3 expressions for the MP, MV, MGT and the newly derived expressions 

for the MC are analyzed numerically. Section 3.1 provides a description of the numerical 

experiment where the spherical shell is discretized by tesseroids. In Sect. 3.2 the computa-

tional precision and computation time of the MC component are investigated based on the 

number of nodes used in the 3D GLQ. The near zone and polar singularity problems of the 

MP, MV, MGT and MC have been investigated in Sects. 3.3 and 3.4, respectively. Finally, 

the main conclusions and an outlook on future studies are provided in Sect. 4.

2  Theoretical Aspects

2.1  Poisson’s Relation Between Magnetic and Gravimetric Functional

Poisson’s relation provides a link between functional of the magnetic and gravity fields 

(Blakely 1995; Roy 2008; Hinze et  al. 2013). According to Poisson’s relation, nth-order 

derivatives of magnetic effects can be obtained from (n + 1)th-order derivatives of gravity 

effects, and vice versa. The general expression of Poisson’s relation from gravity to mag-

netic functional is given as (Blakely 1995, pp. 91–93):

where � and V are the magnetic and gravitational potentials, respectively. (�n(.)∕�n
�) 

denotes the nth-order derivatives of functional (.) (i.e., � or V), where � ∈ {x, y, z} indi-

cates the axes (i.e., directions) of the local north-orientated reference frame (LNOF). G is 

the gravitational constant (i.e., G = 6.673 × 10−11 m3 kg−1 s−2 ), and �
0
 is the magnetic per-

meability of free space (i.e., �
0
= 4� × 10

−7
N A

−2 ). � and M are the uniform density and 

magnetization of the uniform mass body, respectively. 
∑

(�n+1
V∕�n+1

�) represents the sum 

of all (n + 1)th-order derivatives of gravitational potential in the three directions indicated 

by � . It should be noted that Eq. (1) can be used for any order ( n ≥ 0 ), but the condition 

of uniform magnetization and uniform density of the mass body is required. While for the 

real Earth’s field, sources of the magnetic field never have magnetization distributions in 

exact proportion to their density distributions (Blakely 1995, pp. 92–93), the condition of 

Poisson’s relation can be applied in local applications (Hotine 1969, p. 184). In this case 

density distributions can be assumed to be in direct proportion to their magnetization dis-

tributions. This condition can be used to derive pseudo-gravity from magnetic anomalies, 

which can aid in the interpretation of magnetic data (Baranov 1957; Blakely 1995, p. 93).

Using Eq.  (1), the nth-order derivatives of magnetic effects can be obtained from the 

(n + 1)th-order derivatives of the corresponding gravity effects. For instance, the MP can 

be obtained from the GV [e.g., see MP expressions of a solid sphere, infinite slab and hori-

zontal cylinder in Blakely (1995)], the MV can be obtained from the GGT [e.g., see MV 

expressions of a tesseroid in Baykiev et al. (2016)]. Following Poisson’s relation, the deri-

vation of expressions for the MC requires the fourth-order derivatives of the GP, which 

(1)
�n �

�n�
= −

�
0

M

4�G �

[

∑ �n+1
V

�n+1�

]
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will be provided in Sect. 2.2 for a uniform tesseroid and for completeness in Sect. 2.3 for a 

uniform spherical shell.

2.2  nth-Order Derivatives of the GP of a Tesseroid Using the Cartesian Kernels

The first- and second-order derivatives of the GP (i.e., GV and GGT) of a tesseroid in terms 

of the Cartesian kernel functions were derived in Grombein et al. (2013), and third-order 

derivatives (i.e., GC) were derived in Deng and Shen (2018b). Based on the same principle, 

the general expression of the nth-order derivatives of the GP ( V(i,j,k) with i + j + k = n ) of a 

tesseroid using the Cartesian kernels with respect to the LNOF is expressed as (Grombein 

et al. 2013; Deng and Shen 2018b):

where �
tess is the constant density of the uniform tesseroid (see Fig.  1), and 

i, j, k ∈ {0, 1, 2, 3,⋯ , n} (with i + j + k = n ) indicate the number of derivatives in x, y and 

z directions, respectively. For the LNOF, the x-axis, y-axis and z-axis point to the north, the 

east and the zenith direction, respectively. P(�,�, r) and S(��,��
, r

�) are the computation 

(or field) point and integration (or running) point, respectively. For detailed derivations of 

the partial derivatives in Eq. (2) refer to Grombein et al. (2013, Eqs. 15–20).

Based on Eqs.  (2)–(8), expressions for the fourth-order gravitational components of a 

tesseroid using the Cartesian kernels are provided in Appendix 1. Moreover, the same prin-

ciple can be used for any higher derivatives, i.e., n ≥ 5.

2.3  nth-Order Derivatives of the GP of a Uniform Spherical Shell

In this study the analytical formulas for the gravitational potential and its higher-order 

derivatives induced by a uniform spherical shell are used to validate the gravitational func-

tional of a uniform tesseroid (cf. Sect. 3). For the sake of completeness the nth-order deriv-

atives of the GP of a uniform spherical shell are provided here. The gravitational potential 

of a uniform spherical shell with constant density �sh can be obtained by the differences of 

(2)V(i,j,k) =G�tess ∫
r2

r1
∫

�2

�1
∫

�2

�1

�
�i+j+k(

1

�
)

��x
i ��y

j ��z
k

d��d��dr�

(3)� =

√

r�2 + r2 − 2r�r cos� =

�

�2

x
+ �2

y
+ �2

z

(4)�
x
=r

�
(

cos� sin�� − sin� cos��
cos(�� − �)

)

(5)�
y
=r

�
cos��

sin(�� − �)

(6)�
z
=r

�
cos� − r

(7)cos� = sin� sin��
+ cos� cos��

cos
(

�� − �
)

(8)� =r
�2

cos�
�
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the gravitational potential of two solid spheres with the same center O and different radii R
1
 

and R
2
 ( R

2
 > R

1
).

For a computation point located in the outer space of the shell (e.g., r ≥ R
2
 ) the gravita-

tional potential of the spherical shell ( Vsh ) is given as (Blakely 1995; Vanícĕk et al. 2001):

where r =

√

x2 + y2 + z2 is the geocentric distance of the computation point P and the 

thickness of the sphere is given as h� = R
2
− R

1
 in Fig. 2.

Based on Eq. (9), expressions for the nth-order gravitational components of a uniform 

spherical shell are obtained as:

where i, j, k ∈ {0, 1, 2, 3,⋯ , n} with i + j + k = n.

Grombein et  al. (2013) provided the first- and second-order gravitational components 

of the uniform spherical shell as the elements of the gravitational acceleration and the 

Marussi tensor. Deng and Shen (2018a) further presented the third-order gravitational 

components of the uniform spherical shell as the GC. Furthermore, the fourth-order gravi-

tational components of the uniform spherical shell are provided in Appendix 2. Moreover, 

one can derive expressions for the nth-order ( n ≥ 5 ) gravitational components of the uni-

form spherical shell based on Eq.  (10).

2.4  Magnetic Curvatures of a Uniformly Magnetized Tesseroid

Du et al. (2015) derived the MV and MGT of a tesseroid from general integral equations of 

the magnetic potential given by Blakely (1995) instead of using Poisson’s relation. Baykiev 

et al. (2016) presented the MV of a tesseroid by applying Poisson’s relation using the GGT 

(9)V
sh
=

4

3
�G�

sh
(

R
3

2
− R

3

1

)1

r

(10)Vsh

(i,j,k)
=

�i+j+kVsh

�xi �yj �zk
=

4

3
�G�sh

(

R3

2
− R3

1

)
�i+j+k(

1

r
)

�xi �yj �zk

Fig. 2  Illustration of a uniformly 

magnetized spherical shell with 

uniform density �sh and magneti-

zation Msh . O is the same center 

of the two spheres with radii R
1
 

and R
2
 , indicating the lower and 

upper bounds of the spherical 

shell. P is the computation point 

with radius r from the center O. 

The orientation of the lines in the 

hatching shell indicate the direc-

tion of the uniform magnetization
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of Grombein et al. (2013). In this part, the MC of a tesseroid using the Cartesian kernels 

based on Poisson’s relation with the fourth-order derivatives of the gravitational potential 

of a tesseroid are derived.

Based on Poisson’s relation using the fourth-order gravitational components of a tesse-

roid ( V(i,j,k) with i, j, k ∈ {0, 1, 2, 3, 4} and i + j + k = 4 ) provided in Appendix 1, the gen-

eral MC of a uniformly magnetized tesseroid ( B��� with �, �, � ∈ {x, y, z} ) are expressed 

in the LNOF as:

The summation ( 
∑

 ) in Eq. (11) indicates the sum over the fourth-order gravitational deriv-

atives of the GP of the tesseroid in the three directions x, y and z. The detailed Poisson’s 

relation between MC and fourth-order gravitational derivatives of the GP is provided in 

Table  6 in Appendix 3. After substituting the expressions of V(i,j,k) from Appendix 1 in 

Table 4 into the expressions in Table 6, the MC of a uniformly magnetized tesseroid are 

provided in Table 7 in Appendix 3.

2.5  Magnetic E�ects up to Magnetic Curvatures of a Uniformly Magnetized 

Spherical Shell

Using Poisson’s relation, the MP ( � sh ), MV ( Bsh

�
 with � ∈ {x, y, z} ) and MGT ( Bsh

��
 with 

�, � ∈ {x, y, z} ) of a uniformly magnetized spherical shell are obtained from the expres-

sions for the GV ( Vsh

�
 with � ∈ {x, y, z} ), GGT ( Vsh

��
 with �, � ∈ {x, y, z} ) and GC ( Vsh

���
 

with �, �, � ∈ {x, y, z} ) of the uniform spherical shell as:

Furthermore, the MC ( Bsh

���
 with �, �, � ∈ {x, y, z} ) of a uniformly magnetized spherical 

shell are obtained from the expressions for the fourth-order gravitational components of 

the uniform spherical shell ( Vsh

(i,j,k)
 with i, j, k ∈ {0, 1, 2, 3, 4} and i + j + k = 4 ) provided in 

Appendix 2 as:

The summation ( 
∑

 ) in Eqs.   (12)–(15) indicate the sum of the first-order, second-order, 

third-order and fourth-order gravitational derivatives of the GP of the spherical shell in 

three directions x, y and z, respectively.

For the sake of completeness, the detailed expressions for Poisson’s relations for the 

MP, MV, MGT and MC are given in Table  8 in Appendix 4. After substituting the 

(11)B��� = −
�0 Mtess

4�G �tess

(

∑

V(i,j,k)

)

(12)� sh
= −

�
0

M
sh

4�G �sh

(

∑

V
sh

�

)

(13)B
sh

�
= −

�
0

M
sh

4�G �sh

(

∑

V
sh

��

)

(14)B
sh

��
= −

�
0

M
sh

4�G �sh

(

∑

V
sh

���

)

(15)Bsh

���
= −

�0 Msh

4�G �sh

(

∑

Vsh

(i,j,k)

)
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expressions of Vsh

�
 and Vsh

��
 from Grombein et al. (2013), Vsh

���
 from Deng and Shen (2018a), 

and Vsh

(i,j,k)
 ( i, j, k ∈ {0, 1, 2, 3, 4} and i + j + k = 4 ) from Appendix 2 into expressions in 

Table 8, the detailed expressions for the MP, MV, MGT and MC of a uniformly magnet-

ized spherical shell are derived and provided in Table 9 in Appendix 4. It should be noted 

that the closed analytical expressions for the MP, MV, MGT and MC in Table 9 are used to 

provide reference values for all numerical tests.

3  Numerical Investigations

3.1  Set-up of the Numerical Experiments

Following the test layout used by Grombein et al. (2013), Shen and Deng (2016), Deng and 

Shen (2018a, b), and Zhong et al. (2019), expressions for the MC given in Table 7 are used 

to derive magnetic effects of a uniform spherical shell discretized by uniform tesseroids. 

For completeness the same test layout is applied to the MP, MV and MGT. Reference val-

ues ( Xref ) for all magnetic quantities (i.e., MP, MV, MGT and MC) are obtained from the 

analytical solutions provided in Table 9 in Appendix 4. Absolute and relative approxima-

tion errors �X
Abs and �X

Rel are derived as:

where X represents any of the magnetic quantities MP, MV, MGT or MC. 
∑

X
tess stands 

for the magnetic effects obtained through discretization of the spherical shell by tesseroids. 

Hereby, 
∑

X
tess expresses the finite element nature of approximation, which is obtained by 

the sum of every individual effect of all tesseroids forming the entire spherical shell (see 

parameterization of the numerical experiments below).

The numerical parameters used for the uniformly magnetized spherical shell are listed 

in Table 1. The value for R
2
 (i.e., R2 = 6,371,200 m ) is chosen as the radius of Earth’s mag-

netic reference sphere adopted by the International Geomagnetic Reference Field (IGRF) 

(Finlay et al. 2010; Thébault et al. 2015). For all numerical studies, the thickness of the 

uniformly magnetized spherical shell is h� = R2 − R1 = 1, 000 m to be consistent with the 

reference values used in previous studies (Grombein et al. 2013; Deng and Shen 2018a, b) 

and for the links between the GC (Deng and Shen 2018a, b) and MC in this paper.

The reference values of the MP, MV, MGT and MC of the uniformly magnetized spherical 

shell at satellite height h
P
= 260,000 m are listed in Table 2. For the numerical calculations 

the computation point P is located on the polar axis. This assumption means that the magnetic 

(16)�X
Abs

=|
(∑

X
tess

)
− X

ref|

(17)�X
Rel

=

�
�∑

X
tess

�
− X

ref�
�Xref�

Table 1  Numerical parameters 

of the uniformly magnetized 

spherical shell used for validation 

purpose

R
2

6,371,200 m

R
1

6,370,200 m

�
0 4� × 10

−7
N A

−2

M
tess

= M
sh 1 A m

−1
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field of a uniformly magnetized spherical shell has a magnetic monopole. It should be noted 

that the real magnetic field does not have monopoles. However, this is of no concern here as 

this layout is able to provide precise reference values for validation purposes.

In the following numerical experiments, the entire spherical shell is discretized by 

tesseroids with a size of 1◦ × 1
◦
× 1 km , i.e., the horizontal dimensions of the tesseroid 

are �� = �
2
− �

1
= 1

◦ and �� = �
2
− �

1
= 1

◦ . The vertical dimension of the tesseroid is 

�r = r
2
− r

1
= 1000 m.

Magnetic effects are obtained by the sum of individual effects from all tesseroids form-

ing the entire spherical shell. The 3D GLQ approach has been used to numerically solve 

the triple integral in the MC components of a tesseroid (see Table 7 in Appendix 3), which 

was widely applied for the numerical evaluations in gravity field modeling (Ku 1977; 

Blakely 1995; Asgharzadeh et al. 2007; Wild-Pfeiffer 2008; Hirt et al. 2011; Hinze et al. 

2013; Rexer and Hirt 2015; Roussel et al. 2015; Uieda et al. 2016; Deng and Shen 2017, 

2018b, 2019; Asgharzadeh et al. 2018; Zhong et al. 2019) and magnetic field modeling (Ku 

1977; Blakely 1995; Asgharzadeh et al. 2008; Hinze et al. 2013; Du et al. 2015; Baykiev 

et al. 2016; Deng et al. 2019). Detailed expressions for the 3D GLQ approach can be found 

in Deng and Shen (2018b).

To show the numerical error level of some MGT and MC components, the following 

Laplace parameters (or Laplacians) can be used:

Theoretically, all Laplacians should be equal to zero. The effect of magnetization on the 

Laplacian is taken as M
tess

= 1 A m
−1 from Table  1. The reductions ( ∼ 15 to 16 orders 

(18)��L
1
=�Bxx + �Byy + �Bzz

(19)��L
2
=�Bxxx + �Byyx + �Bzzx

(20)��L
3
=�Bxxy + �Byyy + �Bzzy

(21)��L
4
= �Bxxz + �Byyz + �Bzzz

Table 2  Reference values of the 

MP, MV, MGT and MC of a 

uniformly magnetized spherical 

shell characterized in Table 1 at 

satellite height h
P
= 260,000 m 

(e.g., r
P
= R

2
+ h

P
)

Parameter Satellite

h
P

260,000 m

r
P
= R

2
+ h

P
6,631,200 m

�
sh 1.160 × 10

−3
T m

Bsh

x
= Bsh

y
1.749 × 10

−10
T

Bsh

z
−3.498 × 10

−10
T

Bsh

xx
= Bsh

xz
= Bsh

yy
= Bsh

yz
−7.913 × 10

−17
T/m

Bsh

xy
0

Bsh

zz
1.583 × 10−16 T/m

Bsh

xxx
= Bsh

yyy − 3.580 × 10−23 T/m
2

Bsh

xxy
= Bsh

yyx −1.193 × 10
−23

T/m
2

Bsh

xxz
= Bsh

yyz
= Bsh

zzx
= Bsh

zzy 4.773 × 10
−23

T/m
2

Bsh

xyz
0

Bsh

zzz
− 9.546 × 10−23 T/m

2
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of magnitude) indicate the precision level of double precision (cf. Sects.  3.3, 3.4), thus 

the conclusion can be made that the Laplace equations are practically zero considering a 

numerical precision of double precision. In the following numerical process, the magnitude 

of the Laplacian reveals the error level due to the discretization of the spherical shell by 

tesseroids.

3.2  Precision and Computation Time for the MC Component B
zzz

 Evaluated by 3D 

GLQ

In order to test the effectiveness of the 3D GLQ approach, the MC component Bzzz is cho-

sen to analyze the precision and computation time in relation to the number of nodes (here 

2 × 2 × 2 to 8 × 8 × 8 ) used by the 3D GLQ algorithm. For this test the computation point 

P is set on the polar axis with a height of 260,000 m (i.e., satellite height) above the spheri-

cal shell. The height has been chosen to practically eliminate numerical problems due to 

the near zone problem (cf. Sect. 3.3). Computations have been performed for a uniformly 

magnetized spherical shell introduced in Sect. 3.1 (see Table 2 for the reference value). All 

calculations have been performed on a standard PC with a 2.7 GHz Intel Core i5 processor 

and 8 GB RAM. However, it should be noted that the actual computation time estimates 

highly depend on the actual hardware and software, thus estimates should largely be inter-

preted in a relative sense.

Relative approximation errors based on Eq.  (17) and computation time using differ-

ent 3D GLQ nodes are shown in Fig. 3a, b, respectively. As expected, Fig. 3a shows that 

the relative approximation error decreases with increased number of nodes used in the 

3D GLQ algorithm, i.e., the computational precision increases with increased number of 

nodes. Furthermore, Fig.  3b shows an increase in computation time correlates with the 

number of nodes.
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Fig. 3  Illustration of a relative approximation errors in Log10 scale and b computation times (in seconds) 

for the MC component Bzzz dependent on the number of 3D GLQ nodes. The x-axes in both panels indicate 

the value for n where the number of nodes is n × n × n
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In order to balance computational precision with the required computation time, the 

number 3D GLQ nodes are chosen as ( 3 × 3 × 3 ) for all subsequent numerical calculations. 

According to Fig. 3, this choice results in a relative error of − 1.307 in Log10 scale, which 

is about 4.9% (i.e., this approximation is sufficient here to test near zone and singularity 

problems having relative errors with much larger magnitudes.) and a computation time of 

8.3 s required to calculate Bzzz at a single computation point.

3.3  Study of the Near Zone Problem of the MP, MV, MGT and MC

The following test has been set-up to study the near zone problem for magnetic quanti-

ties. The near zone problem, which is also known as “very-near-area” or “innermost zone” 

problem, refers to the singularity of the integral kernels that cause numerical problems 

when evaluating very close to the source masses, which was mentioned for the GP and 

GV by Heck and Seitz (2007), GGT by Grombein et al. (2013) and GC by Deng and Shen 

(2018a, b). In order to investigate whether evident errors exist in the near zone for the MP, 

MV, MGT and MC, i.e., when the computation point P is near the source masses, absolute 

and relative approximation errors [cf. Eqs.  (16), (17)] are analyzed for various heights of 

the computation point P above the spherical shell. This test layout follows that of Deng 

and Shen (2018a, b) used to study the GP, GV, GGT and GC. Here we use different heights 

above the spherical shell to model different geocentric distances of the computation point, 

i.e., r
P
= R

2
+ h

P
 . In this experiment, the range of the height h

P
 is [0, 2000 km] with an 

interval of 5 km. Without loss of generality as stated in Deng and Shen (2018a), the spheri-

cal latitude and longitude of the computation point P are set to � = 0
◦ and � = 0

◦ , respec-

tively, because of spherical symmetry.

The relative approximation errors for the MP ( �� ), MV ( �B
x
 , �By and �Bz ), MGT ( �B

xx
 , 

�Bxz , �Byy , �Byz and �Bzz ) and MC ( �B
xxx

 , �Bxxy , �Bxxz , �Byyx , �Byyy , �Byyz , �Bzzx , �Bzzy and 

�Bzzz ) in relation to the height h
P
 are shown in Fig. 4a. And the absolute approximation 

errors for the Laplace parameters for the MGT ( ��L
1
 ) and MC ( ��L

2
 , ��L

3
 and ��L

4
 ) are 

illustrated in Fig. 4b.

The relative approximation errors for all magnetic quantities (i.e., MP, MV, MGT and 

MC) show a very similar behavior (cf. Fig.  4a). As the height h
P
 increases the relative 

approximation errors decline rapidly, which is referred here to the “rapid drop zone”. The 

break point near 600–700 km could be linked to the used discretization 1◦ × 1
◦ for tesse-

roids. The almost flat behavior is an indication of the error level introduced by the chosen 

discretization, e.g., at 600–700 km, the discretization error is larger than the error intro-

duced by the near zone problem. At a height between 600 and 800 km (depending on the 

magnetic quantity), the relative approximation errors become almost constant referred here 

to the “stable zone”. The magnitude in the “stable zone” seems to represent the numerical 

precision of the calculations used, i.e., double precision in this case. Apart from the drop 

off, it is mostly the magnitude of the relative approximation error at or close to h
P
 = 0 km 

that indicates the near zone problem, i.e., the computation point is located either on or very 

close to the source masses. These behaviors of the MP, MV, MGT and MC are expected 

as they “inherit” the same properties as the gravitational functional as shown in Deng and 

Shen (2018a, b), though not including the fourth-order derivatives of the GP required for 

the MC quantity.

The overall minimum and maximum values (i.e., range) of the relative approximation 

errors in Log10 scale are about [− 16, 9] for the MC, [− 15, 5] for the MGT, [− 15, 3] for the 

MV and [− 14, 0] for the MP. In the rapid drop zone, the curves of the MC share the same 
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Fig. 4  Visualization of a relative approximation errors in Log10 scale for the MP ( ��  ), MV ( �B
x
 , �By and �Bz ), 

MGT ( �B
xx

 , �Bxz , �Byy , �Byz and �Bzz ) and MC ( �B
xxx

 , �Bxxy , �Bxxz , �Byyx , �Byyy , �Byyz , �Bzzx , �Bzzy and �Bzzz ) 

dependent on the computation point height (in km); b absolute approximation errors for the Laplace parameters of 

the MGT ( ��L
1
 ) and MC ( ��L

2
 , ��L

3
 and ��L

4
 ) dependent on the computation point height. Based on Table 2, 

the order of magnitudes of the MGT components are about − 17 or − 16. The order of magnitudes of the MC com-

ponents are about − 23. In both cases the reduction is about 15–16 orders of magnitude (e.g., 32 − 17 = 15 and 

39 − 23 = 16 ), which indicates the level of numerical precision (double precision)
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properties expressed by two curves that overlap several MC components, i.e., one curve 

contains the 7 MC components ( �B
xxx

 , �Bxxz , �Byyy , �Byyz , �Bzzx , �Bzzy and �Bzzz ); while 

the other overlapped curve contains the 2 MC components ( �Bxxy and �Byyx ). Similarly, 

the curves of the 5 MGT components ( �B
xx

 , �Bxz , �Byy , �Byz and �Bzz ) overlap together as 

one curve in the rapid drop zone, the same for the 3 MV components ( �B
x
 , �By and �Bz ). 

Among the magnetic quantities in Fig. 4a, the relative approximation errors of the MC are 

largest in the rapid drop zone under the same condition. This resembles the same behavior 

for gravitational functional, i.e., the near zone problem worsens for higher derivatives.

Figure 4b shows the variations of absolute approximation errors in Log10 scale for the 

MGT and MC Laplace parameters in relation to the height. With increased height, the 

absolute approximation errors decline steadily. Specifically, the minimum and maximum 

values in Log10 scale of the MGT Laplace parameter ( ��L
1
 ) and MC Laplace parameters 

( ��L
2
 , ��L

3
 and ��L

4
 ) are about [− 32,− 25] and [− 39,− 30] , respectively, which are very 

close to zero, where all Laplace parameters should theoretically be equal to zero. Based 

on Table 2, the order of magnitudes of the MGT components in Laplacian are about − 17 

or − 16. The magnitudes of the MC components in Laplacians are about − 23. In both 

cases the magnitude reduces by about 15–16 orders of magnitude (e.g., 32 − 17 = 15 and 

39 − 23 = 16 ), which indicates the level of numerical precision (double precision). This 

also indicates that large part of the near zone problem cancels out. Thus, the precision level 

of the MGT and MC Laplace parameters shows that the sum of the MC ( �B
xxx

 , �Byyx and 

�Bzzx ; �Bxxy , �Byyy and �Bzzy ; �Bxxz , �Byyz and �Bzzz ) in Eqs.  (19)–(21) satisfies the Laplace 

equations at proper precision, the same for the sum of the MGT ( �B
xx

 , �Byy and �Bzz ) in 

Eq. (18). Effectively, these also provide the same information as the relative approximation 

errors, i.e., large errors in the near zone and numerical precision (i.e., magnitude 14–15 

digits) level further away. While having a larger magnitude in the near zone, the absolute 

errors in the Laplace parameters are still negligible (very close to zero) while errors in the 

magnetic quantities are very large.

3.4  Study of the Polar Singularity Problem of the MP, MV, MGT and MC

The following test has been set-up to study the polar-singularity problem for magnetic 

quantities. The polar singularity problem was found for the GC component ( �Vxxz ) in 

spherical integral kernels in Deng and Shen (2018a). In Deng and Shen (2018b), the polar 

singularity problem could be avoided for the GC component ( �Vxxz ) using the Cartesian 

kernels. In this experiment, in order to study whether the polar singularity problem exists 

for the MC, the latitude of the computation point is gradually changed from the equator 

to the pole while the computation point is at satellite height h
P
= 260 km. Here only the 

satellite height is considered because this kind of effect cannot be studied at lower altitudes 

(i.e., h
P
= 0 or 1 km) due to a bias from the near zone problem as revealed in Sect. 3.3. 

Importantly, using other satellite heights (e.g., 300 km, 400 km or 500 km) have no effect 

on the main conclusions of the paper. For completeness, the polar singularity problem is 

also studied for the remaining MP, MV and MGT.

Following the same layout as in Grombein et  al. (2013), Shen and Deng (2016) and 

Deng and Shen (2018a, b), without loss of generality (i.e., spherical symmetry) the lon-

gitude of the computation point P is set to � = 0
◦ and the geocentric radius according to 

the computation point height is selected (see Table 2). Because of the symmetry between 

the northern and southern hemispheres, the spherical latitude � of the computation point 
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varies from the equator to the north pole in 1◦ intervals, which is the same as used by Deng 

and Shen (2018a, b) to study the polar singularity problem of the GC.

The relative approximation errors of the MP, MV, MGT and MC in relation to the lati-

tude are illustrated in Fig. 5a. In addition, the absolute approximation errors of the MGT 

and MC Laplace parameters for the satellite height are also shown in Fig. 5b.

Figure 5a reveals the variations of the relative approximation errors for the MP, MV, 

MGT and MC in relation to the latitude of the computation point at satellite height 

h
P
= 260 km . It can be used to study the polar singularity problem as it is not or only mini-

mally impacted by the near zone problem. At the polar region ( � ≥ 85◦ ), relative approx-

imation errors rapidly increase for all magnetic quantities. Again relative approximation 

errors of the MC are generally larger than those of the MP, MV and MGT for all lati-

tudes. With increased latitude, some curves (i.e., �� , �By , �Bz , �B
xx

 , �Byy , �Byz , �Bzz , �Bxxy , 

�Bxxz , �Byyx , �Byyy , �Byyz , �Bzzy and �Bzzz ) decline gradually at first, then rise quickly at the 

pole, whereas other curves (i.e., �B
x
 , �Bxz , �B

xxx
 and �Bzzx ) increase slowly from 0◦ to 85◦ . 

The minimum and maximum values in Log10 scale of the relative approximation errors for 

the MP, MV, MGT and MC are approximately [− 9,−6] for the MP, [− 8,− 4] for the MV, 

[− 6,− 2] for the MGT and [− 6,− 1] for the MC, respectively, where larger errors are pre-

sent at the pole.

The minimum and maximum values (i.e., magnitude) of the approximation errors of the 

MGT and MC Laplace parameters illustrated in Fig. 5b are [− 15,− 11] for the MC Laplace 

parameters ( ��L
2
 , ��L

3
 and ��L

4
 ) and [− 15,− 12] for the MGT Laplace parameter ( ��L

1
 ) 

compared to the actual magnitude of the quantities. For the satellite case, the ranges of the 

Laplace parameters validate the reliability of the calculations as near zone problems are 

minimized. It is likely that a canceling effect is present at lower magnitude for the satellite 

height case. In addition, the ranges are consistent with the findings in Fig. 4b for the rapid 

drop zone, being less affected by the near zone problems.

As for the polar singularity problem of the MC, the curves of the MC in Fig. 5a have no 

numerical overflow at the latitude 90
◦ . In other words, the polar singularity does not occur 

in Fig. 5a for the MC at the North Pole. It should be noted that the errors increase signifi-

cantly towards the pole, i.e., some numerical problems may occur probably in part related 

to the “deformation” of the tesseroids (due to meridian convergence) towards the pole. The 

same for this character can be found for the MP, MV and MGT in Fig. 5a. The reason can 

be inferred from the use of Cartesian integral kernels in the tesseroid formulas for the MC 

with similar behavior experienced for the GC using the Cartesian kernels as shown in Deng 

and Shen (2018b). Thus, it can be expected that the same properties are inherited by the 

magnetic quantities.

4  Conclusions

In recent years, the concept of gravitational curvatures has been proposed in gravity 

field modeling, and the theoretical and practical aspects of the GC have been inves-

tigated. Analogously, the general concept of magnetic curvatures was outlined in the 

“Conclusions and outlook” part of Deng and Shen (2018a), while the formulas of the 

MC using Cartesian integral kernels were presented in this contribution. In order to 

derive expressions for the MC, the general expressions for the nth-order derivatives of 

the GP not only for the uniform tesseroid using the Cartesian kernels but also for the 

uniform spherical shell have been derived and provided in Appendices 1 and 2. Using 
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Poisson’s relation together with the components of the fourth-order derivatives of the 

GP of the uniform tesseroid and spherical shell, expressions for the MC of a uniformly 

magnetized tesseroid and spherical shell are derived in Appendices 3 and 4, respec-

tively. The correctness of the newly derived expressions has indirectly been confirmed 

through the numerical satisfaction at the double precision level of the Laplace equations 

for the MC, where the order of magnitudes of the MC are about − 23 from Table 2, and 

the magnitudes of the absolute approximation errors of the MC Laplacians are about − 

35 from Fig. 5b.

The near zone problem has been studied for the MP, MV, MGT and MC with the 3D 

GLQ approach. Numerical results indicate that when the computation point P approaches 

the surface of the spherical shell, i.e., gets increasingly closer to the source masses, largely 

increased relative approximation errors are present not only for the MP, MV and MGT, but 

also for the MC. As demonstrated in Shen and Deng (2016) and Deng and Shen (2018a, 

b), the near zone problem also exists for the GP, GV, GGT and GC using the TSE and 

GLQ approaches. Thus, the weak singularity of the kernel functions is a main limitation 

for the given discretization problems both in gravity and magnetic fields modeling. For this 

conclusion refer to the fact that formulas of magnetic quantities are based on those of the 

gravitational functional, thus it is expected that they inherit similar properties. Moreover, 

when the computation point P is in the near zone, the MC are impacted to a larger extent 

than the MP, MV and MGT, i.e., the MC have larger relative approximation errors than the 

MP, MV and MGT.

In addition, we performed numerical experiments at satellite height h
P
= 260 km to 

study the polar singularity for computation points with latitude from 0◦ to 90
◦ . For the 

satellite height application at the polar region ( � ≥ 85◦ ), all relative approximation errors 

increase with larger magnitudes for the MC than those of the MP, MV and MGT. Numeri-

cal experiments revealed that polar singularity problems as manifested by a lack of numeri-

cal overflow do not occur for the MC at satellite height, which is the same behavior as for 

the GC using the Cartesian kernels as shown in Deng and Shen (2018b). Moreover, the 

relative accuracy range of the MC in Log10 form could be achieved as about [− 6, − 1] with 

tesseroid size 1◦ × 1
◦ at satellite height. The larger discretizations lead to larger errors for 

the MV in Baykiev et al. (2016) and the GP in Shen and Deng (2016).

As the concept of magnetic curvatures was proposed in magnetic field, other MC for-

mulas for different mass elements (e.g., rectangular prism, vertical cylindrical prism, lines, 

layers, polyhedron, tetrahedron and spherical cap) both in the spatial domain and in spec-

tral domain (e.g., based on the spherical harmonic (SH) expansion), are left for future stud-

ies. Analogous to the first laboratory measurement of the GC (Rosi et  al. 2015), direct 

measurements of the MC could be expected in near future (Qi et al. 2019; Bandyopadhyay 

et al. 2019). Applications of the MC components are expected to provide supplementary 

information for geomagnetic field modeling. For instance, the global magnetic models 

(e.g., SH models to degree/order 720 or higher) could be used for a follow-up study of how 

the MC look like and what geophysical information they convey.

Fig. 5  For computation points at satellite height ( h
P
 = 260 km), visualization of a relative approximation 

errors in Log10 scale for the MP ( �� ), MV ( �B
x
 , �By and �Bz ), MGT ( �B

xx
 , �Bxz , �Byy , �Byz and �Bzz ) and 

MC ( �B
xxx

 , �Bxxy , �Bxxz , �Byyx , �Byyy , �Byyz , �Bzzx , �Bzzy and �Bzzz ) in relation to the latitude of the computa-

tion point; b absolute approximation errors for the Laplace parameters for the MGT ( ��L
1
 ) and MC ( ��L

2
 , 

��L
3
 and ��L

4
 ) in relation to the latitude of the computation point. Based on Table 2, the order of magni-

tudes of the MGT components of the Laplacians are about − 17 or − 16. The order of magnitudes of the 

MC components of the Laplacians are about − 23. The colors and styles of curves for different parameters 

are the same as used in Fig. 4

▸
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Project Public Interest (Grant No. 201512001). Finally, we are very appreciative of the people, who helped 

to fight the COVID-19 in Wuhan.

Appendix 1: Fourth-Order Gravitational Components of a Uniform 
Tesseroid Using the Cartesian Kernels

The total number of fourth-order gravitational components (i.e., fourth-order derivatives of the 

GP) of a tesseroid is 34
= 81 . Because of the symmetry among the fourth-order gravitational 

components, the defining number is 15. The fourth-order gravitational components of a tesse-

roid in terms of the Cartesian kernel functions are listed in the LNOF in Table 3.

Moreover, the Laplace relationship for the fourth-order gravitational components for any 

mass distribution are given as:

(22)V(4,0,0) + V(2,2,0) + V(2,0,2) =0,

(23)V(3,1,0) + V(1,3,0) + V(1,1,2) =0,

(24)V(3,0,1) + V(1,2,1) + V(1,0,3) =0,

(25)V(2,2,0) + V(0,4,0) + V(0,2,2) =0,

(26)V(2,1,1) + V(0,3,1) + V(0,1,3) =0,

Table 3  Detailed expressions 

with Cartesian integrals for 

the fourth-order gravitational 

components of a uniform 

tesseroid as G�tess ∫ r
2

r
1

∫ �
2

�
1

∫ �
2

�
1

�

�9
 

V(i,j,k)d�
�d��dr� . � , �

x
 , �

y
 , �

z
 , 

cos� and � can be referred to 

Eqs. (3)– (8)

Quantity Expression

V(4,0,0) 3
(

35�4

x
− 30�2

x
�

2
+ 3�4

)

V(0,4,0) 3

(

35�4

y
− 30�2

y
�

2
+ 3�4

)

V(0,0,4) 3
(

35�4

z
− 30�2

z
�

2
+ 3�4

)

V(3,1,0) 15�
x
�

y

(

7�2

x
− 3�2

)

V(3,0,1) 15�
x
�

z

(

7�2

x
− 3�2

)

V(1,3,0) 15�
x
�

y

(

7�2

y
− 3�2

)

V(1,0,3) 15�
x
�

z

(

7�2

z
− 3�2

)

V(0,3,1) 15�
y
�

z

(

7�2

y
− 3�2

)

V(0,1,3) 15�
y
�

z

(

7�2

z
− 3�2

)

V(2,2,0) 3

[

35�2

x
�

2

y
− 5

(

�
2

x
+ �

2

y

)

�
2
+ �

4

]

V(2,0,2) 3

[

35�2

x
�

2

z
− 5

(

�
2

x
+ �

2

z

)

�
2
+ �

4

]

V(0,2,2) 3

[

35�2

y
�

2

z
− 5

(

�
2

y
+ �

2

z

)

�
2
+ �

4

]

V(2,1,1) 15�
y
�

z

(

7�2

x
− �

2
)

V(1,2,1) 15�
x
�

z

(

7�2

y
− �

2

)

V(1,1,2) 15�
x
�

y

(

7�2

z
− �

2
)
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 By using Laplace relationship in Eqs. (22)–(27), the correctness of the fourth-order gravi-

tational components of a tesseroid in Table 3 can be confirmed. Furthermore, because of 

the number of Laplace equations [see Eqs.  (22)–(27)], the independent number for the 

fourth-order gravitational components is actually 15 − 6 = 9.

Appendix 2: Fourth-Order Gravitational Components of a Uniform 
Spherical Shell

The expressions for fourth-order gravitational components of a uniform spherical shell are 

provided in Table 4.

Analogously, the Laplace equations (22)–(27) can confirm the correctness of the fourth-

order gravitational components of a uniform spherical shell in Table 4. When the computa-

tion point P is on the polar axis with x = y = 0 and z = r , the expressions in Table 4 can 

be simplified, which are listed in Table 5. Obviously, the simplified expressions in Table 5 

satisfy the Laplace equations (22)–(27) as well.

(27)V(2,0,2) + V(0,2,2) + V(0,0,4) =0.

Table 4  Detailed expressions 

for the fourth-order gravitational 

components of a uniformly 

magnetized spherical shell

Quantity Expression

V
sh

(4,0,0)
4�G�

sh(R3

2
−R

3

1
)

r9

(

35x
4 − 30x

2
r

2 + 3r
4
)

V
sh

(0,4,0)
4�G�

sh(R3

2
−R3

1
)

r9

(

35y4 − 30y2r2 + 3r4
)

V
sh

(0,0,4)
4�G�

sh(R3

2
−R3

1
)

r9

(

35z4 − 30z2r2 + 3r4
)

V
sh

(3,1,0)
20�G�

sh(R3

2
−R3

1
)

r9

[

xy
(

7x2 − 3r2
)

]

V
sh

(3,0,1)
20�G�

sh(R3

2
−R3

1
)

r9

[

xz
(

7x2 − 3r2
)

]

V
sh

(1,3,0)
20�G�

sh(R3

2
−R3

1
)

r9

[

xy
(

7y2 − 3r2
)

]

V
sh

(1,0,3)
20�G�

sh(R3

2
−R3

1
)

r9

[

xz
(

7z2 − 3r2
)

]

V
sh

(0,3,1)
20�G�

sh(R3

2
−R3

1
)

r9

[

yz
(

7y2 − 3r2
)

]

V
sh

(0,1,3)
20�G�

sh(R3

2
−R3

1
)

r9

[

yz
(

7z2 − 3r2
)

]

V
sh

(2,2,0)
4�G�

sh(R3

2
−R3

1
)

r9

[

35x2y2 − 5
(

x2 + y2
)

r2 + r4

]

V
sh

(2,0,2)
4�G�

sh(R3

2
−R3

1
)

r9

[

35x2z2 − 5
(

x2 + z2
)

r2 + r4

]

V
sh

(0,2,2)
4�G�

sh(R3

2
−R3

1
)

r9

[

35y2z2 − 5
(

y2 + z2
)

r2 + r4

]

V
sh

(2,1,1)
20�G�

sh(R3

2
−R3

1
)

r9

[

yz
(

7x2 − r2
)

]

V
sh

(1,2,1)
20�G�

sh(R3

2
−R3

1
)

r9

[

xz
(

7y2 − r2
)

]

V
sh

(1,1,2)
20�G�

sh(R3

2
−R3

1
)

r9

[

xy
(

7z2 − r2
)

]
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Appendix 3: The MC of the Uniformly Magnetized Tesseroid

The detailed Poisson’s relations between the MC and fourth-order gravitational deriva-

tives of the GP are given in Table 6. Substituting the expressions of fourth-order gravita-

tional components of a tesseroid provided in Table 3 into the detailed Poisson’s relations 

in Table 6, the MC of a uniformly magnetized tesseroid ( B��� with �, �, � ∈ {x, y, z} ) in 

LNOF is given in Table 7.

Moreover, the Laplace equations for the MC, which are independent of the mass distri-

bution, are given as:

Using Laplace equations, the correctness of the detailed expressions for the related MC of 

a uniformly magnetized tesseroid in Table 7 can be confirmed.

(28)Bxxx + Byyx + Bzzx =0,

(29)Bxxy + Byyy + Bzzy =0,

(30)Bxxz + Byyz + Bzzz =0.

Table 5  Detailed expressions 

for the fourth-order gravitational 

components of a uniformly 

magnetized spherical shell when 

the computation point P is on 

the polar axis with x = y = 0 

and z = r

Quantity Expression

V
sh

(4,0,0)
= V

sh

(0,4,0)
12�G�

sh(R3

2
−R

3

1
)

r5

V
sh

(0,0,4)
32�G�

sh(R3

2
−R

3

1
)

r5

V
sh

(2,2,0)
4�G�

sh(R3

2
−R

3

1
)

r5

V
sh

(2,0,2)
= V

sh

(0,2,2) −
16�G�

sh(R3

2
−R

3

1
)

r5

V
sh

(3,1,0)
= V

sh

(3,0,1)
= V

sh

(1,3,0)
= V

sh

(1,0,3)
= V

sh

(0,3,1)
= V

sh

(0,1,3)

= V
sh

(2,1,1)
= V

sh

(1,2,1)
= V

sh

(1,1,2)

0

Table 6  Detailed Poisson’s 

relation between the MC 

expressions and fourth-order 

gravitational derivatives of the 

GP as −
�0 Mtess

4�G �tess

∑

V(i,j,k)

Quantity
∑

V(i,j,k)

B
xxx

(

V(4,0,0) + V(3,1,0) + V(3,0,1)

)

Bxxy

(

V(3,1,0) + V(2,2,0) + V(2,1,1)

)

Bxxz

(

V(3,0,1) + V(2,1,1) + V(2,0,2)

)

Bxyz

(

V(2,1,1) + V(1,2,1) + V(1,1,2)

)

Byyx

(

V(2,2,0) + V(1,3,0) + V(1,2,1)

)

Byyy

(

V(1,3,0) + V(0,4,0) + V(0,3,1)

)

Byyz

(

V(1,2,1) + V(0,3,1) + V(0,2,2)

)

Bzzx

(

V(2,0,2) + V(1,1,2) + V(1,0,3)

)

Bzzy

(

V(1,1,2) + V(0,2,2) + V(0,1,3)

)

Bzzz

(

V(1,0,3) + V(0,1,3) + V(0,0,4)

)
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Appendix 4: The MP, MV, MGT and MC of a Uniformly Magnetized 
Spherical Shell

The detailed formulas of Poisson’s relation between the MP, MV, MGT and MC and 

fourth-order gravitational components of a uniformly magnetized spherical shell are pre-

sented in Table 8.

When the computation point P is on the polar axis with x = y = 0 and z = r , the simpli-

fied expressions of the fourth-order gravitational components of a uniform spherical shell 

in Table 5 are substituted into Table 8. Then the simplified expressions of the MP, MV, 

MGT and MC of a uniformly magnetized spherical shell are provided in Table 9. It should 

be noted that the Laplace equations (28)–(30) can confirm the correctness of the related 

MC components of a uniformly magnetized spherical shell listed in Table 9.

Table 7  MC expressions for a uniformly magnetized tesseroid as 
�

0
M

tess

4�
∫ r

2

r
1

∫ �
2

�
1

∫ �
2

�
1

�

�9
 (expression) 

d�′d�′
dr

′

Quantity Expression

B
xxx −3

[

8�4

x
+ 20�3

x
(�

y
+ �

z
) − 24�2

x
(�2

y
+ �

2

z
) − 15�

x
(�

y
+ �

z
)(�2

y
+ �

2

z
) + 3(�2

y
+ �

2

z
)2
]

Bxxy 3

[

4�4

x
− 20�3

x
�

y
+ 3�2

x
(−9�2

y
− 10�

y
�

z
+ �

2

z
) + 15�

x
�

y
(�2

y
+ �

2

z
) + (4�2

y
+ 5�

y
�

z
− �

2

z
)(�2

y
+ �

2

z
)

]

Bxxz 3

[

4�4

x
− 20�3

x
�

z
+ 3�2

x
(�2

y
− 10�

y
�

z
− 9�2

z
) + 15�

x
�

z
(�2

y
+ �

2

z
) − (�2

y
− 5�

y
�

z
− 4�2

z
)(�2

y
+ �

2

z
)

]

Bxyz 15

[

�
3

x
(�

y
+ �

z
) − 6�2

x
�

y
�

z
+ �

x
(�

y
+ �

z
)(�2

y
− 7�

y
�

z
+ �

2

z
) + �

y
�

z
(�2

y
+ �

2

z
)

]

Byyx 3

[

4�4

x
+ 5�3

x
(3�

y
+ �

z
) + 3�2

x
(�2

z
− 9�2

y
) + 5�

x
(−4�3

y
− 6�2

y
�

z
+ 3�

y
�

2

z
+ �

3

z
) + 4�4

y
+ 3�2

y
�

2

z
− �

4

z

]

Byyy −3

[

3�4

x
− 15�3

x
�

y
− 3�2

x
(8�2

y
+ 5�

y
�

z
− 2�2

z
) + 5�

x
(4�3

y
− 3�

y
�

2

z
) + �

3

y
(8�

y
+ 20�

z
) − �

y
�

2

z
(24�

y
+ 15�

z
) + 3�4

z

]

Byyz −3

[

�
4

x
− 5�3

x
�

z
− 3�2

x
(�2

y
+ 5�

y
�

z
+ �

2

z
) − 5�

x
�

z
(�2

z
− 6�2

y
) − 4�4

y
+ �

y
�

2

z
(27�

y
− 15�

z
) + �

z
(20�3

y
− 4�3

z
)

]

Bzzx 3

[

4�4

x
+ 5�3

x
(�

y
+ 3�

z
) + 3�2

x
(�2

y
− 9�2

z
) + 5�

x
(�3

y
+ 3�2

y
�

z
− 6�

y
�

2

z
− 4�3

z
) − �

4

y
+ 3�2

y
�

2

z
+ 4�4

z

]

Bzzy −3

[

�
4

x
− 5�3

x
�

y
− 3�2

x
(�2

y
+ 5�

y
�

z
+ �

2

z
) − 5�

x
(�3

y
− 6�

y
�

2

z
) − 4�4

y
+ �

2

y
�

z
(27�

z
− 15�

y
) + �

3

z
(20�

y
− 4�

z
)

]

Bzzz −3

[

3(�2

x
+ �

2

y
)2 − 15�

z
(�

x
+ �

y
)(�2

x
+ �

2

y
) − 24�2

z
(�2

x
+ �

2

y
) + 20�3

z
(�

x
+ �

y
) + 8�4

z

]
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Table 8  Detailed Poisson’s 

relations for the MP, MV, 

MGT and MC of a uniformly 

magnetized spherical shell as 

−

�
0

M
sh

4�G �sh

∑

Quantity
∑

�
sh

(

Vsh

x
+ Vsh

y
+ Vsh

z

)

B
sh

x

(

Vsh

xx
+ Vsh

xy
+ Vsh

xz

)

Bsh

y

(

Vsh

xy
+ Vsh

yy
+ Vsh

yz

)

Bsh

z

(

Vsh

xz
+ Vsh

yz
+ Vsh

zz

)

B
sh

xx

(

Vsh

xxx
+ Vsh

xxy
+ Vsh

xxz

)

Bsh

xy

(

Vsh

xxy
+ Vsh

yyx
+ Vsh

xyz

)

Bsh

xz

(

Vsh

xxz
+ Vsh

xyz
+ Vsh

zzx

)

Bsh

yy

(

Vsh

yyx
+ Vsh

yyy
+ Vsh

yyz

)

Bsh

yz

(

Vsh

xyz
+ Vsh

yyz
+ Vsh

zzy

)

Bsh

zz

(

Vsh

zzx
+ Vsh

zzy
+ Vsh

zzz

)

B
sh

xxx

(

V
sh

(4,0,0)
+ V

sh

(3,1,0)
+ V

sh

(3,0,1)

)

Bsh

xxy

(

V
sh

(3,1,0)
+ V

sh

(2,2,0)
+ V

sh

(2,1,1)

)

Bsh

xxz

(

V
sh

(3,0,1)
+ V

sh

(2,1,1)
+ V

sh

(2,0,2)

)

Bsh

xyz

(

V
sh

(2,1,1)
+ V

sh

(1,2,1)
+ V

sh

(1,1,2)

)

Bsh

yyx

(

V
sh

(2,2,0)
+ V

sh

(1,3,0)
+ V

sh

(1,2,1)

)

Bsh

yyy

(

V
sh

(1,3,0)
+ V

sh

(0,4,0)
+ V

sh

(0,3,1)

)

Bsh

yyz

(

V
sh

(1,2,1)
+ V

sh

(0,3,1)
+ V

sh

(0,2,2)

)

Bsh

zzx

(

V
sh

(2,0,2)
+ V

sh

(1,1,2)
+ V

sh

(1,0,3)

)

Bsh

zzy

(

V
sh

(1,1,2)
+ V

sh

(0,2,2)
+ V

sh

(0,1,3)

)

Bsh

zzz

(

V
sh

(1,0,3)
+ V

sh

(0,1,3)
+ V

sh

(0,0,4)

)

Table 9  Detailed expressions for 

the MP, MV, MGT and MC of a 

uniformly magnetized spherical 

shell when the computation 

point P is on the polar axis with 

x = y = 0 and z = r

Quantity Expression

�
sh �

0
M

sh(R3

2
−R

3

1
)

3r2

Bsh

x
= Bsh

y
�

0
M

sh(R3

2
−R

3

1
)

3r3

Bsh

z −
2�

0
M

sh(R3

2
−R

3

1
)

3r3

Bsh

xx
= Bsh

xz
= Bsh

yy
= Bsh

yz −
�

0
M

sh(R3

2
−R

3

1
)

r4

Bsh

zz
2�

0
M

sh(R3

2
−R

3

1
)

r4

Bsh

xy
0

Bsh

xxx
= Bsh

yyy −
3�

0
M

sh(R3

2
−R

3

1
)

r5

Bsh

xxy
= Bsh

yyx −
�0 M

sh(R3

2
−R

3

1
)

r5

Bsh

xxz
= Bsh

yyz
= Bsh

zzx
= Bsh

zzy
4�0 M

sh(R3

2
−R

3

1
)

r5

Bsh

zzz −
8�0 M

sh(R3

2
−R

3

1
)

r5

Bsh

xyz
0
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