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ABSTRACT

We report on a global magnetohydrodynamical simulation of the solar convection zone, which succeeds in generating
a large-scale axisymmetric magnetic component, antisymmetric about the equatorial plane and undergoing regular
polarity reversals on decadal timescales. We focus on a specific simulation run covering 255 years, during which
8 polarity reversals are observed, with a mean period of 30 years. Time–latitude slices of the zonally averaged
toroidal magnetic component at the base of the convecting envelope show a well-organized toroidal flux system
building up in each solar hemisphere, peaking at mid-latitudes and migrating toward the equator in the course of
each cycle, in remarkable agreement with inferences based on the sunspot butterfly diagram. The simulation also
produces a large-scale dipole moment, varying in phase with the internal toroidal component, suggesting that the
simulation may be operating as what is known in mean-field theory as an αΩ dynamo.
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1. NUMERICAL SIMULATIONS OF CONVECTION AND
THE SOLAR DYNAMO

It is now generally agreed upon that the solar activity cycle
ultimately owes its existence to the inductive action of fluid
flows pervading the solar interior. However, the turbulent na-
ture of these internal flows yields a computationally challenging
problem. Following the advent of high-performance computing,
parallelized versions of the Glatzmaier (1984) simulation model
made high-resolution calculations possible attaining a strongly
turbulent regime (see Miesch & Toomre 2009, and references
therein). Dynamo action in these simulations proved very effi-
cient at producing small-scale magnetic fields, but failed to gen-
erate a spatially well-organized large-scale component (Brun
et al. 2004). Toward this end, the presence of a stably stratified
tachocline-like layer, where significant rotational shear could
persist, was shown by Browning et al. (2006) to be an im-
portant, possibly essential ingredient. These authors succeeded
in producing a large-scale magnetic component, antisymmetric
about the equator and persistent on yearly timescales. However,
no polarity reversals were observed over the 8 year time span of
these simulations.

Herein, we report on a series of global magnetohydrodynam-
ical (MHD) simulations of the solar convection zone (SCZ),
conceptually similar to those referenced above, that do produce
well-organized large-scale magnetic fields undergoing regular
cyclic polarity reversals on decadal timescales. Our model in-
tegrates the anelastic form of the MHD equations (Glatzmaier
1984) in a thick, rotating spherical shell of electrically con-
ducting fluid. We use a modified version of the general-purpose
hydrodynamical simulation code EULAG (see Prusa et al. 2008
for a review) in which we have introduced magnetic fields and a
solar-like, spherically symmetric stratification of the static am-
bient state. Our overall simulation setup is similar to that in
Browning et al. (2006). The solution domain spans the range
0.61 � r/R⊙ � 0.96, covering 3.4 density scale heights and
across which we force the solar heat flux. The ambient stratifi-
cation is convectively stable in the bottom portion of the domain
(0.61 � r/R⊙ � 0.71) and unstable above. Stress-free bound-
ary conditions are imposed at the top and bottom boundaries,
with the magnetic field constrained to remain radial (magneti-

cally open). We defer an exposition of the model formulation to
a forthcoming publication, with only a few highlights provided
below.

The anelastic hydrodynamic SCZ model of Elliot &
Smolarkiewicz (2002) is cast in an anholonomic time-dependent
curvilinear framework of Prusa & Smolarkiewicz (2003) and
extended to MHD. The governing equations take the form
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= −∇π − g

θ ′

θo

+ 2v′ × +
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(B · ∇) B + Dv,
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Dt
= −v · ∇θe + H − αθ ′, (1)

DB

Dt
= −∇π∗ + (B · ∇) v − B(∇ · v) + DB,

∇ · (ρov) = 0,∇ · B = 0,

where v and B denote vectors of the physical velocity and of
the magnetic field, measurable at every point of the spherical
shell in a local Cartesian frame tangent to the lower surface of
the shell, and θ is the potential temperature (tantamount to the
specific entropy, s = cp ln θ ). Subscripts “o” refer to the basic
isentropic state with density satisfying hydrostatic balance with
g ∝ r−2. Primes denote deviations from a prescribed ambient
state different, in general, than the basic state (Prusa et al.
2008). In the momentum equation, π is a density-normalized
pressure perturbation inclusive of the magnetic pressure and
centrifugal force, and Dv symbolizes viscous dissipation. In
the entropy equation, H combines heat sink/sources due to
radiation, diffusion, and viscous heating. A weak Newtonian
cooling (here α = 2 × 10−8 s−1) damps entropy departures
from the ambient stable/unstable thermodynamic profile in
the tachocline/SCZ. In the induction equation, the gradient
of potential π∗ denotes an auxiliary term introduced to assure
∇ · B = 0 in numerical integrations, and DB is a shorthand for
magnetic diffusion. All other symbols have their usual meaning.

Using the mass continuity equation and the solenoidality
constrain on B, the system (1) is rewritten as a set of Eulerian
conservation laws and solved using the non-oscillatory forward-
in-time (NFT) approach, widely documented in the literature;
see Prusa et al. (2008) and Smolarkiewicz & Szmelter (2009) for
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Figure 1. Radial component of the flow velocity at r/R⊙ = 0.954, near the domain top, in an Nφ × Nθ × Nr = 256 × 128 × 93 simulation. The results are plotted in

Mollweide projection, with the color scale coding the flow speed in m s−1. Peak radial flow speed occurs in downflow lanes, and here can reach ∼25 m s−1.

recent reviews and discussions. In essence, the resulting system
of the partial differential equation is viewed as

∂ρ∗
Ψ

∂t
+ ∇ · (V∗

Ψ) = R, (2)

where Ψ denotes the vector of prognosed-dependent variables
(components of v, B, and θ ′), ρ∗ = Gρo combines the anelastic
density and the Jacobian of coordinate transformation, V∗ =
ρ∗x is an effective advective velocity, with x symbolizing the
contravariant velocity of the actual curvilinear coordinates, and
R is a shorthand for the associated right-hand side inclusive
of the metric forces (viz., Christophel’s terms). The model
algorithm for a discrete integration of Equation (2) in the
time–space continuum relies on the implicit trapezoidal rule
approximation. It is formulated in the spirit of
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with n, i, and δt marking discrete locations in the model (t, x)
domain and a temporal increment, L and N denoting linear
and nonlinear parts of the right-hand side operators, Ψ ≡
(v, θ ′, B), Φ ≡ 0.5δt(φ, φ, φ, 0, φ∗, φ∗, φ∗), and ν = 1, . . . , m

numbering the fixed point iterations. With all prognostic-
dependent variables co-located, the execution of Equation (3)
invokes its local algebraic inversion with respect to Ψ

n,ν
i ; after

which, enforcing discretized mass continuity and magnetic field
solenoidality on the components v and B leads to the associated
discrete elliptic problems for φ and φ∗. These are solved with a
robust, preconditioned non-symmetric Krylov-subspace solver
(Smolarkiewicz et al. 1997, 2004), essentially completing the
model algorithm.

A key element of the NFT approach implemented in EULAG
is a universally second-order-accurate (in time and space) NFT
advection operator MPDATA that forms the explicit element
Ψ̂i ≡ Ai(Ψ

n−1 +0.5δtRn−1, Ṽ∗) of Equation (3), with A and Ṽ∗

denoting, respectively, the advection operator and a solenoidal
O(δt2) estimate of V∗ at tn−1/2. MPDATA is a finite-volume,
high-resolution multi-pass (iterative) upwind scheme, already
well reviewed in the literature; see Smolarkiewicz & Szmelter
(2009), and references therein. A particular feature of MPDATA
important for the present study is its proven dissipative property
mimicking the action of explicit subgrid-scale turbulence mod-
els where the flow is under-resolved (Domaradzki et al. 2003).
Such calculations relying on the properties of non-oscillatory
differencing are referred to in the literature as implicit large-
eddy simulations, or ILES. While minimizing the computational

effort, they tend to maximize the effective Reynolds number of
simulations (Waite & Smolarkiewicz 2008; Piotrowski et al.
2009). In the experiments reported here, we retained only the
radiative diffusion in the H forcing term on the right-hand side
of the entropy equation in (1), while delegating the entire system
dissipativity to ILES. This effects in magnetic Prandtl number
≈1 and rough estimates for the viscous and magnetic Reynolds
numbers O(102)–O(103). The latter depend on the model reso-
lution and a posteriori estimates of the ratio of energy injection
to dissipation length scales (Lesieur 1997).

All simulations begin from an unmagnetized ambient state
in which small random velocity perturbation and seed magnetic
field are introduced. A “spin-up” phase lasting up to 40 years is
typically required to reach statistically stationary solutions.

2. RESULTS: MAGNETIC CYCLES

Figure 1 is a snapshot, in longitude–latitude Mollweide pro-
jection, of the radial component of the convective flow below
the outer surface of the simulation domain. This flow exhibits
the expected pattern of broad upflow cells delineated by a frag-
mented network of narrower downflow lanes, typical of thermal
convection in a density-stratified environment (see Figure 5 in
Miesch et al. 2000, and Figure 1 in Brun et al. 2004). Reynolds

Q1
stresses associated with this stratified, rotating turbulent con-
vection drive large-scale flows, including differential rotation
and meridional circulation shown in Figure 2. The former is
reasonably solar like, with equatorial acceleration and primarily
latitudinal differential rotation at mid to high latitudes, vanish-
ing rapidly within the stable layer underlying the SCZ. The latter
evinces large flow cells in the equatorial regions, correlated with
isocontours of angular velocity. From mid to high latitudes, the
meridional flow is directed primarily poleward at the surface,
and equatorward at the base of the convecting envelope, with-
out significant penetration in the underlying stable layers. In the
surface layers, the magnetic field is temporally and spatially in-
termittent, reaching locally values in excess of 0.1 T, but carries
little net flux—the hallmark signature of turbulent small-scale
dynamo action (Cattaneo 1999). However, below the base of
the SCZ a strong and spatially well-organized large-scale com-
ponent builds up, as shown in Figure 3. Significant turbulence
persists at this depth, as a result of convective undershoot from
above, so that the magnetic field still shows strong local fluctua-
tions. Yet, a very well-defined large-scale component is clearly
present, antisymmetric with respect to the equatorial plane, and
reaching here strengths of ≃0.25 T. This compares well to the
simulation results of Browning et al. (2006; Figure 2(B)) and
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Figure 2. Large-scale flows building up in the simulation. Panel (A) shows a zonal and 1 year temporal average of angular velocity (top) plotted in the radius–latitude
plane. Note the equatorial acceleration and rapid disappearance of differential rotation moving below the core–envelope interface (dashed line). Panel (B) shows the
corresponding similarly averaged meridional flow. At mid to high latitudes, that flow is primarily poleward (∼2 m s−1) at the surface and equatorward (∼0.5 m s−1)
at the core–envelope interface (r/R = 0.718).

Figure 3. Toroidal component of the magnetic field, in the uppermost portion of the stable layer underlying the convective envelope (r/R⊙ = 0.695). A well-organized
axisymmetric field component is evident, reaching 0.25 T in strength at mid-latitudes and showing antisymmetry about the equator. Although the snapshot is extracted
in the nominally stable layer, convective undershoot from above induces strong fluctuations in the magnetic field.

supports their conclusion that a stably stratified tachocline-like
layer is an essential component of a global solar-like large-scale
dynamo (but see also Brown et al. 2010).

Our ILES simulations break into novel territory in that they
exhibit regular polarity reversals on multi-decadal timescales,
something that to the best of our knowledge had not yet been
observed in global three-dimensional simulations of the SCZ
operating in the turbulent regime. Figure 4 shows results of
a low-resolution simulation (128 × 64 × 47) that was run for
almost 255 years. Figure 4(A) shows a time–latitude diagram of
the zonally averaged toroidal magnetic component extracted at
the core–envelope interface in the simulation. Under the usual
assumptions that sunspots do form following the buoyant rise
and emergence of toroidal flux ropes formed and stored in
the upper reaches of the tachocline, and that the number and
the latitude of formation of these flux ropes are determined
primarily by the strength of the large-scale toroidal magnetic
field therein, this diagram is our simulation’s analog to the
well-known sunspot butterfly diagram. Several features are
noteworthy. (1) The toroidal magnetic component undergoes
fairly regular polarity reversals on a timescale of 30 years. This
is three times the observed mean period of the solar cycle, but the
fact that the simulation yields a cycle at all is already remarkable.

(2) The large-scale magnetic component manages to retain a
dipole-like polarity pattern throughout the whole simulation
interval, again in agreement with inferences based on sunspot
magnetic polarities. (3) The deep-seated toroidal magnetic field
is concentrated at mid-latitudes, rather than the lower latitudes
indicated by the sunspot butterfly diagram, but does show a hint
of equatorward propagation in the course of each unfolding
cycle. (4) Despite strong fluctuations in the amplitude and
duration of individual cycles, the two solar hemispheres manage
to retain a good level of long-term synchronicity in their
spatiotemporal evolution. These characteristics are all solar-
cycle-like.

Figure 4(B) shows time series of the zonally averaged toroidal
magnetic flux density (BT , solid lines) in each solar hemisphere,
as color-coded, and of the polar cap radial magnetic flux density
(BP, dotted lines), again for each hemisphere. The former is cal-
culated in a thin meridional slice straddling the core–envelope
interface (0.695 � r/R⊙ � 0.749), and the latter at the top
of the simulation domain over a cap extending 30◦ in lati-
tude from the poles. These time series leave no doubt as to
the global and cyclic nature of the large-scale dynamo mech-
anism. The apparent predominance of positive-signed toroidal
flux densities, independently of hemisphere, can be traced to the
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Figure 4. (A) Time–latitude “butterfly” diagram of the zonally averaged toroidal magnetic field component at r/R⊙ = 0.718. (B) Time series of the hemispheric
tachocline toroidal flux densities (solid lines) and polar cap radial magnetic flux densities (dotted lines). The vertical line segments indicate the time of polarity
reversals of the deep-seated toroidal component for each hemisphere, as color-coded. (C) Time–radius slice of the zonally-averaged toroidal magnetic field component
extracted at mid-latitudes in the Southern hemisphere. The base of the nominally unstable layer is indicated by a horizontal dashed line. This statistically stationary
solution underwent a prior “spin-up” phase lasting ∼40 years.

buildup of a persistent equatorially concentrated band of pos-
itive toroidal field, most prominent during simulated cycles 2
through 4 (see Figure 4(A)). The high degree of correlation be-
tween variations in the hemispheric polar cap fluxes indicates
that the large-scale surface magnetic field is dominated by a
dipole component approximately aligned with the rotation axis,
and oscillating essentially in phase with the deep-seated toroidal
component.

As can be seen in Figure 4(C), the cycle originates well
within the SCZ, with the magnetic field undergoing further
amplification once pumped down into the underlying stably
stratified fluid layer, reaching there peak strengths in excess of
0.3 T for the stronger cycles. Field amplification also takes place
in the upper half of the SCZ, but the toroidal field strength therein
seldom exceeds 0.1 T. The signature of the magnetic cycle
clearly pervades the whole SCZ, and also leaves its imprint on
large-scale flows. Significant cycle-driven torsional oscillations
are observed in the angular velocity. Counterrotating meridional
flow cells also appear at very high latitudes in both hemispheres
in the descending phase of most cycles. One such cell is just
starting to appear in the Southern hemisphere in Figure 2(B),
taken at a time corresponding to the peak of the first cycle in
Figure 4.

3. THE PHYSICAL NATURE OF THE LARGE-SCALE
DYNAMO PROCESS

The simultaneous presence of a well-defined dipole moment
and of a Reynolds-stress-driven axisymmetric mean differential

rotation sustained throughout the simulation suggests that the
simulation may be operating as what is known in mean field
theory as an αΩ dynamo, with the regeneration of the poloidal
magnetic component taking place through the agency of the so-
called α-effect, more precisely, the αφφ component of the alpha
tensor. Calculation of the zonal component of the mean electro-
motive force (EMF), with the fluctuating components of the flow
and field computed by subtracting the zonal averages, does yield
a well-defined hemispheric pattern of like-signed EMF in both
hemispheres, reversing in step with the axisymmetric dipole mo-
ment, consistent with a positive α-effect in the bulk of the SCZ,
producing a positive dipole moment from a toroidal component
positive in the Northern hemisphere, as shown in Figure 4(B). A
similar qualitative correspondence with the behavior predicted
by mean field theory was also noted by Käpylä et al. (2010) in
their spherical wedge convective dynamo simulations.

It remains to be understood why our simulations manage
to produce regular polarity reversals, while those of Browning
et al. (2006) by all appearances do not. Both simulations are
very similar in design and reach comparable turbulent and
magnetic intensities, at least judging from the convective flow
speeds, strengths of mean magnetic field in stable layer, surface
field strengths, ratio of total magnetic to kinetic energies, etc.
However, our ILES approach allows us to reach a turbulent
state at relatively low spatial resolution, which in turn permits
longer temporal integrations in reasonable wallclock time. It
is certainly possible that the lack of polarity reversals in the
Browning et al. (2006) simulations is a simple consequence of
their relatively short integration time.
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One notable modeling difference is a weak thermodynamic
forcing used in our experiments, with entropy perturbations
merely redistributed and weakly damped while maintaining the
ambient state. Another is our use of a boundary condition on
the magnetic field that allows magnetic helicity to exit the
domain, which is believed to be more conducive to large-
scale dynamo action (see, Käpylä et al. 2008; Brandenburg
2009 and references therein). At a more fundamental level,
it is also quite possible that the behavior of the simulation at
small spatial scales plays a key role in governing large-scale
dynamo action. The latter can be viewed as a combination of
forward and inverse cascades, of both magnetic energy and
helicity, operating from the energy injection (intermediate) scale
to both the (small) dissipative scales and the (large) dynamo
scales. Varying treatment of the manner small scales are treated

Q2
can affect the inverse cascades, especially if an insufficient
separation of scales is realized in the simulation between
the dissipative and energy injection scales. The numerical
experiments of Elliott & Smolarkiewicz (2002) on purely
hydrodynamical solar convection offer empirical support to this
conjecture.

This Letter has focused on the general characteristics of
the solar-like cycles of the large-scale magnetic component
building up in MHD ILES of the SCZ. There are of course many
additional simulation features that are of interest and need to be
explored in detail. In particular, our preliminary analyses reveal
a weak but clear signature of the magnetic cycle in the heat
transport throughout the convective envelope. This has direct
relevance to the ongoing debate regarding the ultimate origin
of the observed decadal variations of the total solar irradiance
during the magnetic activity cycle.

The numerical simulations reported in this Letter were car-
ried out primarily on the computing facilities of the Réseau
Québécois de Calcul de Haute Performance. This work is sup-
ported by Canada’s Natural Sciences and Engineering Research
Council, Research Chair Program, and Foundation for Innova-
tion (P.C.). The National Center for Atmospheric Research is
supported by the National Science Foundation (P.K.S.).
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