UC Irvine UC Irvine Previously Published Works

Title

Magnetic dilution study in La2CuO4: Comparison with other two-dimensional magnets.

Permalink

https://escholarship.org/uc/item/3n67t25v

Journal

Physical review. B, Condensed matter, 44(17)

ISSN 0163-1829

Authors

Cheong, SW Cooper, AS Rupp, LW <u>et al.</u>

Publication Date

1991-11-01

DOI

10.1103/physrevb.44.9739

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Magnetic dilution study in La₂CuO₄: Comparison with other two-dimensional magnets

S-W. Cheong, A. S. Cooper, L. W. Rupp, Jr., and B. Batlogg AT&T Bell Laboratories, Murray Hill, New Jersey 07974

J. D. Thompson and Z. Fisk

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 22 May 1991)

The reduction of the Néel point T_N of La₂CuO₄ by substitution of nonmagnetic Mg or Zn for Cu has been studied, with particular emphasis on keeping the oxygen content unaffected. In the lowconcentration range ($\leq 10\%$), the rate of T_N suppression is found to be the same as in other twodimensional (2D) Heisenberg magnets such as K₂CuF₄ ($S = \frac{1}{2}$) and K₂MnF₄ ($S = \frac{5}{2}$). While this suppression rate is larger than for 2D Ising magnets, it is much smaller than the rapid T_N reduction upon introduction of holes in La₂CuO₄ through oxygen excess or heterovalent substitution for La. Thus, no unusual quantum magnetic dilution effects are observed in the $S = \frac{1}{2}$ La₂CuO₄ magnet.

The problem of site-diluted magnets is a simple form of the more general percolation or connectivity problem. In spite of the simplicity of the magnetic dilution problem, only a limited number of experiments have been reported. This can be attributed in part to the difficulty in finding magnetic materials that can be diluted without drastic changes of the magnetic interactions (e.g., due to local symmetry and bond-length variations). Examples of twodimensional (2D) magnets where these problems could be minimized are K₂CoF₄ and Rb₂CoF₄ in which the reduction of the Néel temperature T_N follows closely the theoretical expectations for $S = \frac{1}{2}$ Ising magnets on a square lattice.¹ Here we report magnetic dilution studies on La₂CuO₄, which is isostructural with the cobalt magnets, but with the cuprates being a Heisenberg system. Particular attention has been given to keep the oxygen concentrations constant because T_N of La₂CuO₄ is known to be very sensitive to this parameter.² Our results, together with previous studies on other 2D Heisenberg magnets such as K₂CuF₄ and K₂MnF₄, indicate a "universal" initial reduction of the magnetic ordering temperature that is significantly faster than in 2D Ising magnets.

Extensive investigations of the magnetic behavior of La₂CuO₄ have been performed, especially to explore possible quantum magnetic phenomena, expected to be most pronounced in this $S = \frac{1}{2}$ system.³ It appears, however, that the magnetic properties in La₂CuO₄ are explainable in terms of a classical spin model, although with slightly renormalized (~20%) parameters.³⁻⁷ However, an anomalous rapid depression of the Néel point upon dilution of the magnetic Cu sites has been reported.⁸ The main focus of the present study is to clarify this apparent anomaly.

Even though an ideal 2D $S = \frac{1}{2}$ Heisenberg system does not develop long-range order at finite temperatures, La₂CuO₄ undergoes 3D antiferromagnetic (AF) ordering due to the presence of a slight deviation from the ideal system, possibly due to interlayer coupling. Chakraborty *et al.*⁸ reported that nonmagnetic, divalent Zn substitution on Cu sites in La₂CuO₄ induces a rapid decline of T_N . The slope of the initial T_N reduction curve in their report was ~ 20 times larger than the theoretical predication for an Ising square lattice and ~ 9 times larger than that of the 2D Heisenberg magnets such as K₂CuF₄ and K₂MnF₄.¹ The T_N reduction due to Cu dilution is to be contrasted to the effects of charge carriers introduced through either oxygen excess or heterovalent substitution (e.g., Sr, Ba) for La.^{2,9} The initial T_N reduction by the introduction of hole carriers was found to be comparable with that by Zn substitution reported by Chakraborty *et al.* Furthermore, for La₂CuO_{4+ δ} and La_{2-x}Sr_xCuO₄, the threshold in δ and x occurs at $\frac{1}{20}$ of the conventional percolation limit (for the 2D square lattice, the site percolation threshold is predicted to correspond to 41% removal of magnetic sites).^{1,10} This fast T_N reduction has been attributed to magnetic frustration arising from the competition between AF order in the CuO₂ planes and ferromagnetic coupling among Cu ions induced via hole carriers.

Among nonmagnetic and divalent atoms, the ionic radii of Mg and Zn ions are very close to that of Cu. According to Shannon's study,¹¹ the ionic radii of Mg, Cu, and Zn in octahedral coordinations are 0.72, 0.73, and 0.74 Å, respectively. In our investigation of the magnetic dilution by Mg or Zn substitution on Cu sites in La₂CuO₄, we find that Mg atoms are very good substitutional ions for simple magnetic dilution study in La₂CuO₄, i.e., Mg ions have a large solubility limit in the La₂CuO₄ structure and Mg substitution in La₂CuO₄ induces little change of lattice constants and lattice symmetry, especially orthorhombicity. The results of our study also indicate that the rapid T_N reduction by Zn substitution reported by Chakraborty et al. is probably due to extra oxygen in their specimens and that T_N variation, by Zn substitution only, is similar to that produced by Mg doping. At the end of our report, we compare the studied magnetic dilution effect on T_N by Mg and Zn with that in more conventional 2D magnets.

Polycrystalline pellets of $La_2Cu_{1-x}Mg(\text{or }Zn)_xO_4$ were prepared by conventional solid-state reaction in air. The sintered pellets were annealed at 650 °C for 10 h under a N₂ atmosphere to ensure the least amount of extra oxygen in the compounds, which can affect T_N rather drastically. It is noteworthy that extensive investigations of the oxygen stoichiometry of La₂CuO_{4+ δ} indicate that La₂CuO₄ phase can incorporate extra oxygen (not oxygen vacancies) and that the above inert-gas annealing removes the extra oxygen thoroughly, reflected in a T_N above 300 K.^{4,12,13} All sintered pellets of La₂(Cu_{1-x}Mg_x)O₄ with x = 0, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, and 0.25 or La₂(Cu_{1-x}Zn_x)O₄ with x = 0, 0.01, and 0.03 were prepared and post-synthesis annealed next to each other to ensure the same oxygen content throughout the specimens.

Lattice parameters of $La_2(Cu_{1-x}Mg_x)O_4$ compounds were determined by the least-squares method from film x-ray patterns using $Cr K\alpha$ radiation. The upper panel in Fig. 1 displays the measured values for single-phase materials of x = 0, 0.05, 0.1, and 0.2. The powder pattern of an x = 0.25 specimen showed second-phase reflections and the lattice constants for x = 0.25 were identical with those for x = 0.2. Thus, the Mg solubility limit in the La₂CuO₄ system appears to be surprisingly large, i.e., between 20 and 25 at.%. Copper ions in the La₂CuO₄ structure are coordinated by oxygen octahedra elongated along the baxis [the elongated octahedra is slightly tilted away from the b axis below a structural transition temperature (see below)].^{12,14} It appears that the isotropic nature of the electronic configuration of Mg ions induces more isotropic environment at Cu sites causing the increase of a and cand the decrease of b. (Here we use the orthorhombic notation.) We note that the orthorhombicity, directly related to the difference between a and c, is very insensitive to the Mg substitution on Cu sites up to 20%.

FIG. 1. Evolution of lattice parameters at room temperature as a function of x in La₂(Cu_{1-x}Mg_x)O₄ is displayed in the upper panel. The lower panel shows change of the orthorhombic-to-tetragonal transition temperature (T_{O+T}) as a function of x in La₂(Cu_{1-x}Mg_x)O₄ (\bullet) and La₂(Cu_{1-x}Zn_x)O₄ (\blacktriangle). Solid lines are drawn as guides for the eyes.

The orthorhombic-to-tetragonal transition for La₂CuO₄ occurs at $T_{O\leftrightarrow T} \approx 530$ K and involves a tilting of the elongated CuO₆ octahedra. The nearest layer magnetic interaction in La₂CuO₄ is frustrated in the tetragonal structure. However, the tilting of CuO₆ octahedra induces nonzero magnetic coupling between nearest layers. Since we may learn how interlayer coupling changes with substitution by investigating the change of $T_{O \leftrightarrow T}$, we measured $T_{O \leftrightarrow T}$ of La₂(Cu_{1-x}Mg(or Zn)_x)O₄. Since the orthorhombic-to-tetragonal transition was found to be an endothermic process, the structural transition temperature was determined by using an Omnitherm Differential Scanning Calorimeter. As shown in the lower panel of Fig. 1, Mg and Zn substitutions induce an increase of $T_{Q \leftrightarrow T}$ and Zn substitution has a stronger effect on $T_{Q \leftrightarrow T}$ than Mg substitution does. We point out that the Mg substitution causes a rather slow increase of $T_{Q \leftrightarrow T}$ (~10% increase of $T_{O \leftrightarrow T}$ by 20% Mg doping), which, together with the insensitivity of the orthorhombicity to the Mg substitution, suggests qualitatively that there is no dramatic change of interlayer magnetic coupling with the substitution of Mg ions on Cu sites. We also note that according to the report by Chakraborty et al., Zn substitution in low-concentration range induces little change in the lattice constants, similar to the case of Mg doping. However, here we find a faster increase of $T_{O \leftrightarrow T}$ by Zn doping compared to Mg doping, which suggests that Mg atoms are better substitutional ions for simple magnetic dilution studies than Zn atoms.

Magnetic susceptibility χ measurements on Mg or Zn substituted La₂CuO₄ were made in a field of 5 kOe between 2 and 350 K using a Quantum Design SQUID magnetometer. The temperature-dependent susceptibility is plotted in Fig. 2 for representative specimens. Extensive studies showed that the peaklike feature in the χ vs T plot for La₂CuO₄ is associated with AF order of Cu ions and the anomalous shape of the χ peak is due to weak ferromagnetism arising from the tilting of CuO₆ octahedra in the orthorhombic structure. The χ anomaly occurs at \sim 305 K in the pristine La₂CuO₄ specimen and moves to lower temperatures with increasing Mg substitution. We note that the highest temperature for the χ anomaly ever reported is 326 K for an inert-gas-annealed La₂CuO₄

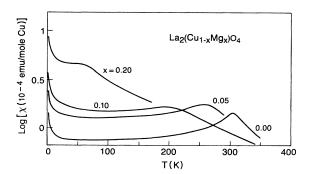


FIG. 2. Logarithm of temperature dependent susceptibility normalized per mole Cu is plotted for various x in La₂- $(Cu_{1-x}Mg_x)O_4$.

9740

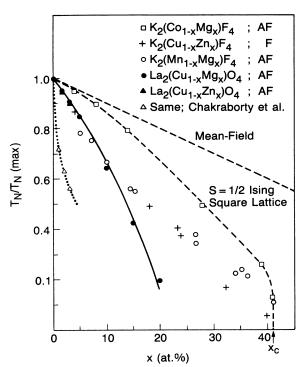


FIG. 3. Normalized Néel temperature $[T_N/T_N(\text{max})]$ vs concentration of nonmagnetic ions at magnetic sites in various quasi-2D magnets. (\bullet, \blacktriangle : present work; \triangle : from Ref. 8; the rest: from Ref. 1.) $[T_N$ for ferromagnetic $K_2(Cu_{1-x}Zn_x)F_4$ stands for Curie temperature.]

reported to be lower by ~ 20 K than 326 K, probably due to poor crystallinity and/or extra oxygen in polycrystalline samples.^{2,4} T_N (defined at the temperature where χ reaches its local maximum) as a function of Mg or Zn substitution is displayed in Fig. 3.

Figure 3 also shows various experimental data and theoretical predictions for T_N reduction of diluted 2D magnets. First, all experimental data exhibit, naturally, a faster T_N reduction than the prediction of mean-field theory, which simply states that the long-range-ordering temperature declines linearly with nonmagnetic ion substitution and disappears when magnetic sites are fully occupied by nonmagnetic ions. Second, T_N reduction in a quasi-2D Ising system such as K₂CoF₄ follows rather

nicely the prediction for $S = \frac{1}{2}$ Ising square lattice antiferromagnet, of which the critical concentration x_c is identical to the site percolation threshold for a 2D square lattice, i.e., 0.41.^{1,10,15} It appears that the critical concentration for Mg-doped La₂CuO₄ is in the range of 20%-25% and Zn substitution in La₂CuO₄, at least in the low doping range, induces a T_N decline slightly faster than, but quite similar to, that by Mg doping. As shown in Fig. 3, the T_N reduction by Zn substitution in La₂CuO₄ reported by Chakraborty et al. is much faster than our observation. The facts that their samples were prepared under O₂ atmosphere, contrary to N₂ atmosphere for our final annealing, and that their undoped La₂CuO₄ specimen showed a rather low T_N , i.e., $T_N = 242$ K, compared to our $T_N \simeq 305$ K, strongly indicate that their observed rapid T_N reduction by Zn doping is a combined effect of extra oxygen and Zn doping.

Contrary to that in La₂(Cu_{1-x}Mg_x)O₄, x_c in K₂(Cu_{1-x}Zn_x)F₄ and K₂(Mn_{1-x}Mg_x)F₄, 2D Heisenberg magnets, is similar to the site percolation threshold. However, the initial suppression rate of T_N (R_{1S}) tabulated in Table I, in all reported^{1,15-17} (to the best of our knowledge) and presently studied 2D Heisenberg magnets including antiferromagnetic La₂(Cu_{1-x}Mg_x)O₄ and K₂(Mn_{1-x}Mg_x)F₄ are quite similar to each other, i.e., close to $R_{1S} = -\{\partial [T_N(x)/T_N(0)]/\partial x\}_{x=0} = 3$. We note that mean-field theory predicts $R_{1S} = 1$ and in the case of the 2D Ising square lattice model, R_{1S} is calculated to be ~ 1.3 .¹⁷

It has been estimated that the 3D ordering temperature in quasi-2D Heisenberg antiferromagnets can be written as $k_B T_N \propto J_{\perp} (\xi_{2D}/a)^2$ where J_{\perp} is interlayer coupling, ξ_{2D} is 2D magnetic correlation length at T_N and *a* is the in-plane distance between Cu ions $[(\xi_{2D}/a)^2]$ is the number of magnetic ions within the 2D magnetic correlation length].¹⁸ We can generalize the formula for the diluted system as

$$k_B T_N(x) \propto J_{\perp} \left(\frac{\xi_{2D}(x)}{a}\right)^2 (1-x).$$

At least in the case of $La_2(Cu_{1-x}Mg_x)O_4$, the orthorhombicity, determining the interlayer coupling (J_{\perp}) , is relatively insensitive to Mg substitution. Thus, if we assume a constant J_{\perp} , $R_{1S}=3$ implies that $\xi_{2D}(x) = \xi_{2D}(0) \times (1-x)$, i.e., ξ_{2D} varies linearly with magnetic dilution

TABLE I. Experimental data on diluted 2D magnets in the K₂NiF₄ structure.

Spin type	Compounds	Substituent	Spin	Coupling	Initial suppression rate $R_{\rm IS}^{\rm a}$	References
Ising	K ₂ CoF ₄	Mg	<u> </u>	AF	1.6	15,17
	Rb ₂ CoF ₄	Mg	$\frac{1}{2}$	AF	1.95	16,17
Heisenberg	K2CuF4	Zn	$\frac{1}{2}$	F	3	1
	K ₂ MnF ₄	Mg	5/2	AF	3~3.5	15,17
	La ₂ CuO ₄	Mg	$\frac{1}{2}$	AF	3	Present work
	La ₂ CuO ₄	Zn	$\frac{1}{2}$	AF	~3.4	Present work

 ${}^{a}R_{1S} = -\{\partial [T_N(x)/T_N(0)]/\partial x\}_x =_0$ where T_N is either the Néel temperature or Curie temperature and x is the concentration of non-magnetic dopant on magnetic sites.

9742

in the low doping range.

The lack of theoretical understanding of magnetic dilution effect in quasi-2D Heisenberg magnets prohibits any further quantitative analysis. However, our investigation suggests that the magnetic dilution effect on T_N in La₂CuO₄ is similar to that in other quasi-2D Heisenberg magnets such as ferromagnetic $S = \frac{1}{2}$ K₂CuF₄ and antiferromagnetic $S = \frac{5}{2}$ K₂MnF₄. That is, we do not observe any unusual magnetic dilution effect in La₂CuO₄, which, together with various experimental results in Refs. 4-7, suggests that La₂CuO₄ is a rather conventional magnetic system.

In addition to our investigation of the magnetic dilution effects on T_N in La₂CuO₄, we studied the change of superconducting transition temperature T_c in Mg-doped La_{1.85}Sr_{0.15}CuO₄ via χ measurements. We found that the T_c reduction by Mg substitution (the data are not shown in this paper) is quite similar to that produced by Zn or Ga doping¹⁹ and superconductivity in La_{1.85}Sr_{0.15}(Cu_{1-x}-Mg_x)O₄ disappears at $x \approx 0.025$.

In conclusion, our structural analysis suggests that Mg atoms are particularly good substitutional ions in La_2 -CuO₄ for the study of simple magnetic dilution effects.

- ¹See, for example, L. J. de Jongh in *Magnetic Phase Transitions*, edited by M. Ausloos and R. J. Elliott (Springer-Verlag, New York, 1983), p. 172.
- ²D. C. Johnston et al., Phys. Rev. B 36, 4007 (1987).
- ³See, e.g., S. Chakravarty, in Los Alamos Symposium-1989, High Temperature Superconductivity Proceedings, edited by K. S. Bedell et al. (Addison-Wesley, Palo Alto, 1990), p. 136.
- ⁴S-W. Cheong, J. D. Thompson, and Z. Fisk, Phys. Rev. B **39**, 4395 (1989).
- ⁵D. C. Johnston, Phys. Rev. Lett. **62**, 957 (1989).
- ⁶K. B. Lyons et al., Phys. Rev. B 39, 9693 (1989).
- ⁷G. Aeppli et al., Phys. Rev. Lett. 62, 2052 (1989).
- ⁸A. Chakraborty et al., Phys. Rev. B 40, 5296 (1989).
- ⁹See, for example, H. Takagi et al., Phys. Rev. B 40, 2254

Contrary to the earlier report by Chakraborty et al., our results indicate that magnetic dilution effects on T_N in La₂CuO₄, without introducing additional carriers, are very similar to that in conventional 2D Heisenberg magnets such as K₂CuF₄ and K₂MnF₄. Particularly, we find a "universal" behavior of T_N reduction in the quasi-2D Heisenberg magnets at low substitution range ($x \leq 10\%$), which is appreciably faster than that in a 2D Ising system. It appears that for small substitution, the dominant effect on T_N stems from a linear decrease in the 2D magnetic correlation length with doping. However, this work finds that x_c is somewhat smaller in doped La₂CuO₄ than predicted by $S = \frac{1}{2}$ Ising models or, for that matter, observed in Heisenberg magnets K₂CuF₄ or K₂MnF₄. It is interesting to observe though that both Mg and Zn depress the superconducting transition temperature T_c of La_{1.85}- $Sr_{0.15}CuO_4$ to zero at a value of x about $\frac{1}{10}$ that of x_c for T_N and that $T_c \sim 1/10T_N$, i.e., $dT_c/dx \sim dT_N/dx$ but $d \ln T_c/dx \sim 10 d \ln T_N/dx$. We do not believe that this interesting correlation necessarily supports a magnetic mechanism for superconductivity, but rather that this may be a manifestation of a "hidden variable," e.g., structural or electronic, that affects both T_N and T_c .

(1989).

- ¹⁰F. Yonezawa, S. Sakamoto, and M. Hori, Phys. Rev. B 40, 636 (1989).
- ¹¹R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- ¹²S-W. Cheong, J. D. Thompson, and Z. Fisk, Physica C 158, 109 (1989).
- ¹³J. Saylor et al., Phys. Rev. B 40, 6854 (1989).
- ¹⁴R. J. Cava et al., Phys. Rev. B 35, 6716 (1987).
- ¹⁵D. J. Breed *et al.*, J. Appl. Phys. **41**, 1267 (1970); Physica **68**, 303 (1973).
- ¹⁶M. Suzuki and H. Ikeda, J. Phys. C 11, 3679 (1978).
- ¹⁷T. Idogaki and N. Uryu, J. Phys. Soc. Jpn. 45, 1498 (1978).
- ¹⁸T. Thio et al., Phys. Rev. B 38, 905 (1988).
- ¹⁹M. Z. Cieplak et al., Phys. Rev. B 39, 4222 (1989).