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Abstract

We investigate thermally-activated phenomena in micromagnetics
using large deviation theory and concepts from stochastic resonance.
We give a natural mathematical definition of finite-temperature as-
troids, finite-temperature hysteresis loops, etc. Generically, these ob-
jects emerge when the (generalized) Arrhenius timescale governing the
thermally-activated barrier crossing event of magnetic switching matches
the timescale at which the magnetic element is pulsed or ramped by an
external field; in the special and physically relevant case of multiple-
pulse experiments, on the other hand, short-time switching can lead
to non-Arrhenius behavior. We show how large deviation theory can
be used to explain some properties of the astroids, like their shrink-
ing and sharpening as the number of applied pulses is increased. We
also investigate the influence of the dynamics, in particular the relative
importance of the gyromagnetic and the damping terms. Finally, we
discuss some issues and open questions regarding spatially nonuniform
magnetization.
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1 Introduction

Submicron-sized ferromagnetic elements are the main building blocks in mag-
netoelectronics, where they are widely used as information storage devices
[22, 23, 39, 49]. As these elements get smaller, the effects of thermal noise
increase, particularly the ability of the noise to change the magnetization and
thereby limit the data retention time of the memory element [42, 46]. For this
reason, noise-induced magnetization reversal has received a lot of attention in
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the magnetics community, from experimental, analytical, and numerical points
of view [5, 6, 10, 20, 30, 40, 41].

A few standard experiments are used to study the stability of ferromag-
netic elements against magnetization reversal. In pulsed experiments [25], the
element is set to one of its preferred orientations. An (H1, H2) field is then
applied for a certain time (a pulse), where H1 is parallel to the easy axis.
After the pulse, the resistance is measured to determine whether the mag-
net has switched. Sometimes, multiple pulses are applied, in which case the
magnet is allowed to settle down after each pulse, then pulsed again, and the
magnetization is measured at the end of the series of pulses. The outcome is
plotted as a black (switch) or white (no switch) square in the (H1, H2) plane
(see Figure 1). This plot is called an astroid (or pulsed astroid). In a variant
of this experiment, a magnetic field of increasing intensity is applied in one
direction until the magnetization switches. Repeating the experiment along
each direction and plotting the outcome produces a “ramped” or “swept” as-
troid [47]. Under either pulsing or ramping, fixing a direction and plotting
magnetization against applied field intensity generates a one-dimensional plot
called a hysteresis loop [4].

At zero-temperature, such experiments amount to a bifurcation analysis of
the stable states in the system. The boundary of the zero-temperature astroid
(Figure 1) or the vertical jumps in the zero-temperature hysteresis loop (Fig-
ure 2) mark the “critical fields” which are just large enough to make unstable
the state to which the system is originally set. The real experiments, however,
are conducted at finite temperature, and they still produce nice astroids and
hysteresis loops. At first sight, this may seem strange. After all, the thermal
noise eventually allows the magnetization to surmount any energy barrier, and
thereby visit all possible configurations, no matter what the applied field is.
As the outcome of a single trial of a thermally-driven experiment, why should
the astroids and hysteresis loops be so well-defined and sharp?

The key is the interplay between the timescale at which the experiments
are conducted (for instance, the duration of the applied pulse) and the typical
timescale on which the thermal fluctuations drive the system to overcome the
energy barrier and change its magnetization. For a given pulse duration, the
probability of switching may either be very small (if the applied field is too
weak and the barrier high compared to the thermal energy available), or close
to one (if the applied field is strong enough and the barrier small compared
to the thermal energy). In a suitable limit, the boundary between these two
regimes becomes sharp, thereby producing well-defined finite-temperature as-
troids and hysteresis loops. The main purpose of this paper is to quantify these
statements using large deviation theory [15] and concepts similar to those used
in stochastic resonance [16]. As we will show, such an approach offers a com-
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Figure 1: The zero-temperature astroid associated with (3.2) for β2 = 1. The
boundary between the black (switch) and white (no-switch) regions is the
parametric curve given in (3.3).

prehensive understanding of the experiments described above and sheds light
on issues like the sharpening of the boundary of the astroid as the number of
pulses is increased. The approach also reveals how short or ultrashort pulses
can lead to non-Arrhenius switching behavior, a phenomenon which has been
experimentally and numerically observed [20, 19, 23]. Finally, the approach by
large deviation and stochastic resonance has the advantage that it can easily
be generalized to more complicated situations, for instance when the magne-
tization in the sample is nonuniform and is described by a stochastic partial
differential equation.

The remainder of this paper is organized as follows. In Section 2, we in-
troduce the stochastic Landau-Lifshitz-Gilbert (LLG) equations for a uniform
magnet. In Sections 3–7, we study the thin film limit of these equations. This
is the simplest situation, but it retains the essence of the argument. In Sec-
tion 3, we discuss single-pulse situations and determine the scaling relating
the amplitude of the noise and the length of the applied pulse to obtain well-
defined finite-temperature astroids. In Section 4, we generalize the argument
to multiple-pulse astroids. We see that under the influence of a large number of
pulses, exponentially unlikely events are important and the classical long-time
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Figure 2: The zero-temperature hysteresis loop for (3.2), with H2 = 0 and
β2 = 1. The dotted line shows the location of the maximum, which collides
with and annihilates the minimum at θ = π (or θ = 0) when H1 reaches 2
(resp. −2). The right-pointing arrows show the behavior of the magnetization
as H1 is increased (and the left-pointing arrows, as it is decreased), at zero
temperature. The magnetization only jumps when the applied field actually
annihilates the well in which it sits.
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switching path fails to capture the relevant physics. In Section 5, we discuss
some properties of the finite-temperature astroids. In Section 6, we investigate
finite-temperature ramped astroids, and in Section 7, finite-temperature hys-
teresis loops. In Section 8, we go back to the general situation and investigate
thermal switching in the context of the full LLG equations. In this case, the
switching path becomes nontrivial, and depends on the duration of the pulse,
the strength of the damping, and the anisotropy parameters. In Section 9, we
look more closely at short-time switching and its connection to non-Arrhenius
switching behavior. Deterministic effects arising for short pulses are discussed
in Section 10. Section 11 lists some generalizations and open problems. The
focus is on nonuniform magnetization, especially the dependence of the opti-
mal switching pathways on the applied field, and the identification of a low-
dimensional reduced problem in a suitable asymptotic limit. For the reader’s
convenience, we also include two appendices. Appendix A discusses elemen-
tary properties of the stochastic LLG equations. Appendix B summarizes the
necessary background on large deviation theory.

2 Modeling

We shall mostly focus on elements whose magnetization is uniform, which is
relevant for system of sufficiently small size [4, 49]. The zero-temperature
dynamics of the system are described by the Landau-Lifshitz-Gilbert equation
[1, 4, 7, 22], which after suitable nondimensionalization reads:

ṁ = m × h − αm × (m × h). (2.1)

In the uniform case, this is an ordinary differential equation, in which the
unit vector m = (m1,m2,m3) describes the orientation of the magnetization
in the ferromagnetic element. The effective field, h, is minus the gradient of
the magnetic energy:

h = −∂E

∂m
. (2.2)

The uniform micromagnetic energy consists of the sum of anisotropy and ap-
plied field energies [4]. Both crystalline and shape anisotropy (the contribution
of magnetostatic energy to the uniform model) play an important role. For
simplicity, we consider an element which is a thin film in the m1-m2 plane, with
uniaxial crystalline anisotropy and easy axis in the direction of m1. Under a
planar applied field (H1, H2), the energy is:

E(m) = β2m
2
2 + β3m

2
3 − H1m1 − H2m2, (2.3)
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where β2, β3 > 0 are the anisotropy parameters. The parameter β3 includes a
shape anisotropy contribution proportional to the inverse aspect ratio, so for
thin films, β3 > β2 (or, even, β3 � β2), reflecting the preference of the thin film
magnetization to remain in the m3 = 0 plane [48, 49]. The first term on the
right-hand-side of (2.1) is called the gyromagnetic term, and it is conservative.
The second term on the right-hand-side of (2.1), whose relative strength is
controlled by the parameter α > 0, can be written as αh⊥ = α(h − (h · m)m)
and accounts for damping. Due to this term, the dynamics in (2.1) drive the
system towards the closest local minimum of the energy (2.3).

Thermal effects in micromagnetics have been studied since the work of
Brown in the 1960’s [8]. They can be incorporated into the model by modifying
the effective field in (2.1) to include a random term:

ṁ = m ×
(

h +

√

2αε

1 + α2
Ẇ
)

− αm ×
(

m ×
(

h +

√

2αε

1 + α2
Ẇ
))

, (2.4)

where Ẇ is a three-dimensional standard white-noise, and ε is the (dimension-
less) temperature. Equation (2.4) is to be interpreted in the Stratonovich sense
(which guarantees that this equation preserves the norm constraint, |m| = 1),
and it can be shown (see Appendix A) that the equilibrium distribution asso-
ciated with (2.4) is the Gibbs distribution,

ρ(m) = Z−1e−E(m)/ε, (2.5)

where Z =
∫

|m|=1
e−E(m)/εdσ(m) is a normalization factor. We note that al-

though there are differences of opinion as to whether to modify h and in-
clude the random term in both the gyromagnetic and the damping terms,
as in (2.4), or in the gyromagnetic term alone, it does not matter as far as
one-point statistics are concerned, because the two equations lead to magneti-
zation fields which are identical in distribution (see Appendix A and [38, 41]).
Furthermore, (2.4) can be written as the Itô stochastic differential equation:











θ̇ = −∂E

∂z
− α

1 − z2

∂E

∂θ
+

√
2εα√

1 − z2
Ẇ1

ż =
∂E

∂θ
− α(1 − z2)

∂E

∂z
− 2εαz +

√
2εα

√
1 − z2Ẇ2,

(2.6)

using the representation

m = (cos θ
√

1 − z2, sin θ
√

1 − z2, z), (2.7)

which automatically accounts for the constraint |m| = 1 (see Appendix A).
The energy in (2.6) is (2.3) expressed in the (θ, z) variables:

E(θ, z) = β2(1 − z2) sin2 θ + β3z
2 −

√
1 − z2(H1 cos θ + H2 sin θ). (2.8)
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3 Single-pulse astroid in the thin film limit

In the thin film limit of (2.3) or (2.8), the vanishing aspect ratio forces the
shape anisotropy to infinity, i.e. β3 → ∞, in which case a finite energy require-
ment implies that z = m3 = 0, and (2.6) reduces to a single equation for θ,
the in-plane angle of m = (m1,m2, 0):

θ̇ = −αE ′
R(θ) +

√
2αεẆ1. (3.1)

The reduced energy is

ER(θ) := β2 sin2(θ) − H1 cos θ − H2 sin θ. (3.2)

Note that (3.1) is a pure steepest descent dynamics (no conservative term).
In this section and the next ones (Sections 4–7) we focus on (3.1) because
it simplifies the discussion while retaining the essence of the argument. We
return to the general case in Section 8.

The reduced energy in (3.2) has either two local minima, for subcritical ap-
plied fields, or only one minimum, for supercritical fields. The family of critical
fields marking the boundary between these regimes can be parameterized as

(Hc
1, H

c
2) = (−2β2 cos3(θ′), 2β2 sin3(θ′)), θ′ ∈ [−π, π) (3.3)

and this curve defines the boundary of the zero-temperature astroid (see Fig-
ure 1). Next, we consider the situation at finite temperature.

Denote by θA, θB the two minima of ER for subcritical fields (H1, H2),
labelled so that θA = 0, θB = π when (H1, H2) = (0, 0). Suppose that the
element is set to state θ = π initially, then a subcritical field H = (H1, H2) is
applied during a pulse of length T . If the temperature ε is finite but small,
with high probability the magnetization will first quickly relax to the vicinity
of θB. Subsequently switching to θA has a non-zero probability, whose value
depends on the pulse length T , the value of H, and the temperature ε. The
large deviation estimate for this probability is (see Appendix B)

Prob(no switch from θB to θA in time T ) ∼ e−T/τ(H). (3.4)

Here and below ∼ denotes asymptotic equivalence ( fε ∼ gε if fε/gε → 1 as
ε → 0). τ(H) is the mean time to switch from θB to θA under the applied field
H, which is related to the energy barrier ∆ER(H) to escape θB as

τ(H) ∼ ν−1e∆ER(H)/ε. (3.5)

The prefactor ν is given by Kramers’ estimate (see Appendix B)

ν =
α
√

E ′′
R(m)E ′′

R(s)

2π
. (3.6)
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Figure 3: We plot the switching probability as a function of H, using the
approximation in (3.4). The grey scaling ranges from white for zero to black
for one. The parameters are T = 1000, ε = 0.05, β2 = 1. At this tempera-
ture, (3.4) is a function varying rapidly from zero to one, and the grey region
is of small extent. This is consistent with the emergence of a reduced but
sharp finite-temperature astroid, as observed in the experiments. The finite-
temperature astroid is defined precisely in Proposition 1. See also Figure 5.
The boundary of the zero-temperature astroid is also shown (white dotted
line).

(We are assuming the generic condition that the minimal energy saddle, s, is
unique. See Appendix B for more detail.) Viewed as a function of H at fixed T
and ε � 1, (3.4) is a function which is mostly near 0 or 1, and varies very
rapidly between these two states (see Figure 3). Plotting (3.4) in the H-plane
defines a “probabilistic astroid” which is consistent with the well-defined finite-
temperature astroids observed in experiments. The transition region in the
H-plane between extremely unlikely switching and almost certain switching is
the region where

τ(H) � T, (3.7)

that is, the mean switching time τ(H) is logarithmically equivalent to the
pulse length T (see Figure 4). (Two functions fε and gε are logarithmically
equivalent, fε � gε, if log fε/ log gε → 1 as ε → 0.) This selection by match-
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Figure 4: Level sets (isolines) of e−∆ER(H)/ε � τ(H). For a given T , the
matching condition (3.5) is satisfied on one of these level sets, which therefore
approximate the boundary of the finite-temperature astroid. The dotted line
is the boundary of the zero-temperature astroid given by (3.3).

ing of timescales is similar to the one observed in stochastic resonance. Notice
that (3.7) does not involve the prefactor ν, but it implies that T must be expo-
nentially large in ε−1 in order that the finite-temperature astroid be different
from its zero-temperature counterpart – in which case it is also necessarily
smaller. In fact, the precise statement is:

Proposition 1 (Finite-temperature, single-pulse astroids). Consider
the sequence of pulses Tε := eA/ε(B + O(ε)), where A,B > 0. Let

Ω(A) := {H : ∆ER(H) > A}

be the region in the H-plane where the energy barrier out of θA is larger than A.
Then

lim
ε→0

Prob(no switch for t ≤ Tε) =

{

1 H ∈ Ω

0 H ∈ R
2/Ω.
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Figure 5: When the pulse length increases exponentially in ε−1 as the noise
decreases, the probability of not switching, (3.4), converges to a piecewise
constant function taking the value 0 or 1. The limiting region constitutes
the well-defined, finite-temperature astroid (which is different from the zero-
temperature astroid, whose boundary is shown as the white dotted-line). This
figure is an illustration of Proposition 1. (Here, β2 = 1.)
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Proof. For any H, the mean switching time satisfies

τ(H) � e∆ER(H)/ε.

We now use the exponential distribution (3.4) (cf. Appendix B) in three cases.
Case (1), ∆ER(H) = A, so that Tε � τ(H). The exponential distribution
applies, i.e.

lim
ε→0

Prob (no switch for t ≤ Tε) = c ∈ (0, 1).

Case (2), ∆ER(H) < A. Here, the probability of not switching goes to zero.
To see this, choose any M ∈ R

+.

lim
ε→0

Prob (no switch for t ≤ Tε) ≤ lim
ε→0

Prob (no switch for t ≤ Mτ(H))

≤ e−M .

Let M → ∞.
Case (3), ∆ER(H) > A. Here, the probability of not switching goes to one.
This time, choose any small m ∈ R

+,

lim
ε→0

Prob (no switch for t ≤ Tε) ≥ lim
ε→0

Prob (no switch for t ≤ mτ(H))

≥ e−m.

Let m → 0.

Proposition 1 leads to the following natural definition:

Definition 1 (Finite-temperature, single-pulse astroid). For given tem-
perature and pulse time, the finite-temperature, single-pulse astroid is defined
to be the following region in the H-plane:

Ω(ε, T ) := {H : ∆ER(H) > ε ln(νT )}.

4 Multiple-pulse astroids and action minimiza-

tion

As shown in Section 3, when a single pulse is applied, its length T must be
exponentially large in the inverse temperature, ε−1, in order to observe a finite-
temperature astroid which is both well-defined and nontrivial (i.e. smaller
than its zero-temperature counterpart). The situation changes if one considers
multiple-pulse experiments and allows the number of pulses, N , to be very
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large. This is very relevant since magnetic memory devices need to be able to
withstand many (on the order of 1017) subcritical pulses without accidentally
switching [24]. In this case, T can be O(1), provided that N is exponentially
large in ε−1 (and, of course, intermediate situations are possible as well). This
is interesting because the switching event occurs within a time which is very
short compared to the mean switching time! The exponential distribution
breaks down, and action minimization enters the picture, as explained next in
Sections 4.1 and 4.2.

We emphasize that multiple-pulse astroids are a real-world example in
which we can observe exponentially unlikely events. In the long-time limit,
the overwhelming probability is that switching is achieved by flowing uphill
to the minimal saddle. In multiple-pulse astroids, however, the extremely
unlikely event of short-time switching dominates.

4.1 Action minimization

Large deviation theory asserts that the probability of switching within the fixed
time, T , is estimated via an action minimization problem. Let CA denote the
basin of attraction of θA under the deterministic dynamics, θ̇ = −E ′

R(θ). Then

Prob(switch for t ≤ T ) � e−ST /ε, (4.1)

with the action, ST , defined as

ST := inf
φ(0)=π

φ(T )∈CA

1

4

∫ T

0

|φ̇(s) + E ′
R(φ(s))|2ds. (4.2)

The pathway φ? : [0, T ] → R which minimizes the action functional is called
the optimal switching path, and it is the most likely switching path: with
probability 1 as ε → 0, the actual switching paths remain within an arbitrarily
small neighborhood of φ?. The graph of φ? is trivial in one dimension (it
connects π to the optimal saddle point, θs), but not in two dimensions, see
Section 8.

For finite T ∈ (0,∞), the action has to be found via numerical minimiza-
tion, and an accurate estimate is important if we are interested in taking ex-
ponentially many pulses. In the long-time limit (T → ∞) the action converges
to the energy barrier,

ST → ∆ER(H), (4.3)

and the optimal path converges to the heteroclinic orbit connecting θB and θs

(see Appendix B). The rate of convergence in (4.3) depends only on the
characteristic timescale of the deterministic dynamics, θ̇ = −ER(θ), which we
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will denote by td (in the present context working with (3.2), we can for instance
take td = ν−1, the inverse of the prefactor (3.6)). This suggests the following
classification:

Definition 2 (Classification of Pulse Length).

1. Normal pulses last for a time logarithmically equivalent to the mean
switching time.

2. Short pulses are such that the mean switching time, td � T � τ(H).

3. Ultrashort pulses are comparable to, or even shorter than, the determin-
istic timescale td.

Single-pulse experiments lead to finite-temperature astroids which are both
well-defined and non-trivial (i.e. different from their zero-temperature coun-
terparts), and which are controlled by switching under normal pulses (cf. Def-
inition 1). The generalization to ultrashort and short pulses is given next.

4.2 Multiple-pulse astroids

From (4.1), we see that for N := eA/ε and fixed T , the switching probability
converges to zero or one, according to whether the action is greater or less
than A, which we now state as a proposition.

Proposition 2 (Finite-temperature, ultrashort, multiple-pulse astroid).
Fix T and define Nε := eA/ε(B + O(ε)), where A,B > 0. Then for

Ω(A) := {H; ST (H) > A},
we have

lim
ε→0

Prob(no switch for Nε pulses of length T ) =

{

1 H ∈ Ω

0 H ∈ R
2/Ω.

Proof. The result follows immediately from the fact that

Prob(no switch after N pulses) = (1 − Cε exp(−ST (H)/ε))Nε, (4.4)

where Cε is the subexponential prefactor.

A Proposition similar to Proposition 2 applies for short pulses if one uses
Ω(A) = {H : ∆ER(H) > A}. It suggests the generalization of Definition 2 for
both single and multiple pulses of arbitrary length as

Definition 3 (Single- and multiple-pulse finite-temperature astroid).
The finite-temperature astroid is defined as the following region in the H-plane

Ω(ε, T,N) := {H : ST (H) > ε ln(νTN)}.

14
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Figure 6: The δ-transition region of (Prob(no switch for t ≤ T ))N , for ε =
0.01, T = 1000, δ = 0.07. In the first plot, N = 1, while in the second,
N = 65, 000. The thinning of the transition region as the number of pulses
increases is consistent with experimental discovery of sharper multiple-pulse
astroids. Also consistent is the fact that the multiple-pulse astroid is smaller
than the single-pulse astroid.

5 Astroid properties

We are interested in the experimentally observed shrinking and sharpening of
the astroid under multiple pulses. We look at necessary and sufficient condi-
tions for these properties.

Shrinking. First, the astroid shrinks under multiple pulses if the switching
probability is monotonic in |H|, which is physically reasonable. A necessary
and sufficient condition for this monotonicity is for the action to be monotonic
in |H|. The monotonicity certainly holds for fields within the exponential
regime (by the monotonicity of τ).

Sharpening and log-convexity. It is observed that astroids become sharper
under multiple pulses, in the sense that there are fewer “freckles,” white spots
in a field of gray or gray spots in a field of white [24]. We find an explanation
for this sharpening by looking at the region of probability transition. The nu-
merics for our simple model demonstrate the thinning of the transition region
under multiple pulses, as shown in Figure 6.

Analytically, we show that the transition region shrinks under multiple
pulses if and only if the mean switching time is strictly log-convex (i.e. the
log of the function is strictly convex). First, we define the notions of the
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δ-transition region and the band-narrowing property.

Definition 4 (δ-transition region). For f : R
2 → [0, 1] and any δ > 0, we

call the region of R
2 for which

f(x) ∈ [δ, 1 − δ]

the δ-transition region of f .

Definition 5 (Band-narrowing property). The positive, decreasing func-
tion f(x) is band-narrowing if whenever 0 < A < B and T1 < T2, then

f−1(T2A) − f−1(T2B) < f−1(T1A) − f−1(T1B).

A simple example of a band-narrowing function is 1/x.
Propositions 3 and 4 below show that within the exponential regime, a

necessary and sufficient condition for the narrowing of the δ-transition re-
gion of the probability under multiple pulses is that the mean switching time
be strictly log-convex. First of all, the δ-transition region of the probability
shrinks if and only if the mean switching time is band-narrowing.

Proposition 3. Consider any ray H = h(cos φ, sin φ) and suppose

Prob(no switch for t ≤ T ) = exp(−T/τφ(h))

for some positive, decreasing function τφ. Then the δ-transition region of the
probability is decreasing in T for every δ ∈ (0, 0.5) if and only if τ is band-
narrowing on that ray.

Proof. This is a direct calculation.

Next, the mean switching time is band-narrowing if and only if it is strictly
log-convex.

Proposition 4. The positive, decreasing, continuously differentiable function
f is band-narrowing if and only if f ′(x)/f(x) is increasing or, equivalently, if
and only if f is strictly log-convex.

Proof. Let g(t) := f−1(At) − f−1(Bt). f is band-narrowing if and only if g is
strictly decreasing. Let f−1(tA) =: X2 and f−1(tB) =: X1 and consider the
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derivative.

g′(t) < 0 ⇔ A(f−1)′(tA) < B(f−1)′(tB)

⇔ A

f ′(f−1(tA))
<

B

f ′(f−1(tB))

⇔ A

f ′(X2)
<

B

f ′(X1)

⇔ f(X2)

tf ′(X2)
<

f(X1)

tf ′(X1)

⇔ f(X2)

f ′(X2)
<

f(X1)

f ′(X1)
.

6 Ramped astroids

A different but related physical experiment consists of applying an external
field by “ramping,” which refers to steadily increasing the applied field until
switching is achieved. Ramped astroids are also analyzed (with a different em-
phasis) in [47]. As in the pulsed case, we find a 0-1 distribution in the limit of
vanishing noise strength, where now the phenomenon is stochastic resonance
[16, 14] in the traditional sense: the increasing applied field corresponds to
a tilting potential, the noise sets the timescale for switching (with nearly de-
terministic precision), and as soon as surmounting the barrier is possible, it
is also probable, with probability converging to one in the limit. For ramped
astroids, the ramping rate is critical in defining the time and field at which
switching occurs.

Consider the question of when switching will occur. Let the applied field
be of the form H(t) = γt(cos φ, sin φ) where φ is a fixed angle, t is time, and
γ � 1 is a parameter which sets the timescale for ramping. At zero tempera-
ture, switching occurs when γt reaches the boundary of the zero-temperature
astroid. At finite-temperature, switching occurs when

e∆ER(H(t))/ε � γ−1.

We make this precise in the following proposition.

Proposition 5 (Ramped astroid). Let the ramped field be H(t) = γt(cos φ, sin φ)
with rate γ := Be−A/ε, A > 0. Then Ω := {H;∆ER(H) > A} is such that

lim
ε→0

Prob(not to have switched when field is H) =

{

1 H ∈ Ω

0 H ∈ Ω̄c.
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Proof. Fix any ray through the origin and consider ramping along the ray.
Find the value Ĥ along the ray such that ∆ER(Ĥ) = A. Consider the prob-
ability of switching while the ramping field is within a tolerance 0 < δ � 1
of Ĥ. Without loss of generality, rotate the frame of reference and consider
Ĥ ∈ R.

The time interval such that H(t) ∈ [Ĥ, Ĥ + δ] is I := [Ĥ/γ, (Ĥ + δ)/γ],
of length δ/γ. Furthermore, for this time range, ∆ER(H(t)) ≤ ∆ER(Ĥ) = A.
For simplicity, assume that the prefactor in the mean switching time is unity,
since it is subexponential and will have no importance in the result. Then,
using the exponential distribution,

Prob
(

no switch while H ∈ [Ĥ, Ĥ + δ]
)

= Prob(no switch for t ∈ I)

≤ exp

(

−δB−1eA/ε

e∆ER(Ĥ)/ε

)

= exp
(

−δB−1
)

∈ (0, 1).

Next, by the method of Proposition 1 in Section 3, one shows that the prob-
ability of switching for H(t) ∈ [0, Ĥ − δ] goes to zero, and the probability of
having switched by the time H(t) = Ĥ + δ goes to one, for any δ > 0.

7 Hysteresis loops

As discussed in the introduction, thermally reduced hysteresis loops are an-
other example of physically observed objects which can be understood via
large deviation theory and a concept similar to that of stochastic resonance.
The hysteresis loop tracks the location of the critical points of the energy
as a function of the applied field magnitude, h, in a fixed direction, i.e.
H = h(cos φ, sin φ). (Recall, for example, the zero-temperature hysteresis
loop from Figure 2.) Its most important feature is that it identifies the ap-
plied field (positive and negative) at which a metastable state loses stability
and disappears. The obvious extension of the ideas of the preceding sections is
that under the influence of noise, the zero-temperature hysteresis loop should
be replaced with a plot of the probability of switching out of the metastable
basin under an applied pulse. The probability transitions sharply from zero
to one in the neighborhood of the applied field whose mean switching time is
equal to the given pulse time.

To illustrate the idea, let us consider a specific example. We choose to
look at H2 = 0, since in that case we can solve explicitly for τ as a function
of H1. (The energy barrier in this case is ∆ER = (H1/2 − 1)β, with β = 2.
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Figure 7: Finite-temperature hysteresis loop for (2.3), with H2 = 0, β2 = 1,
ε = 0.01, and T = 1000. Compare to the zero-temperature loop, Figure 2.
The zero-temperature loop shrinks to the finite-temperature counterpart: the
jump in magnetization occurs at the H1 value for which τLD = T , before an-
nihilation of the energy barrier, and thermally-activated switching is observed
at subcritical fields.

Wernsdorfer points out in his review article [49] that β = 2 is nongeneric,
and specific to the case when the applied field and the uniaxial anisotropy
are aligned.) Letting β2 = 1 and solving for critical points of the energy for
H1 ∈ (0, 2) yields

(m1, s1,m2, s2) =

(

0, cos−1

(−H1

2

)

, π, 2π − cos−1

(−H1

2

))

.

Using the Kramers’ approximation for the switching time (cf. Appendix B),
the equation τ = T becomes:

π
√

2

α
√

(2 − H1)(4 − H2
1 )

exp

(

(H1/2 − 1)2

ε

)

= T.

We calculate H1 iteratively. The reduced loop is shown in Figure 7 for T =
1000, α = 1, and ε = .01.
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8 The general case

We have seen how to extract an explanation of finite-temperature effects for
the reduced model, (3.2). Of course, this simple model can be analyzed by
other means as well, for instance by solving the Fokker-Planck equation for the
mean first passage time. The power of the large deviation perspective is that
it can be generalized to higher dimensional situations when the Fokker-Planck
approach is not practical anymore. In particular, large deviation theory offers
a general framework through which to understand thermal effects for the full
energy, (2.3), or even the case of spatially nonuniform magnetization, which we
discuss in Section 11. We now look at the implications of large deviation theory
regarding the question of thermally-activated switching between the basins
of attraction of the modified energy landscape, i.e. the basins of the energy
landscape under the applied field. This can (for short pulses and low damping)
be different from the question of having switching between the basins of the
zero-field-system after the pulse has terminated. We discuss that complication
in Section 10.

8.1 Normal pulses

We saw that for normal pulses (or, equivalently, for single-pulse astroids), the
switching probability for the reduced model was determined by the energy
barrier from the minimum to the minimal-energy saddle point. We now show
that the same is true for the full system, because of the property that the
gyroscopic term in the LLG equations is perpendicular to the damping term.
We will also see a new feature, namely that the optimal switching path, which
is trivial in one dimension, can be an interesting object for the full model. Our
system is of the form

Ẋ = −(γ + r + εc) +
√

2εσẆ , (8.1)

with X = (θ, z) and

γ :=

( α

1 − z2
Eθ

α(1 − z2)Ez

)

, r :=

(

Ez

−Eθ

)

,

c =

(

0
2αz

)

, σ =









√
α√

1 − z2
0

0
√

α
√

1 − z2









.
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The Wentzell-Freidlin action functional [15] is

S[ 0,T ](φ) =
1

4

∫ T

0

|σ−1(φs)(φ̇s + γ(φs) + r(φs)|2 ds, (8.2)

for all φ such that the integral is defined, and ∞ otherwise. Because of the
relation (σ−2γ, r) = (∇E, r) = 0, we see that we can manipulate the action:

|σ−1(φ̇ + γ + r)|2 = |σ−1(φ̇ − γ + r + 2γ)|2

= |σ−1(φ̇ − γ + r)|2 + 4|σ−1γ|2 + 4(σ−2φ̇, γ) − 4|σ−1γ|2

= |σ−1(φ̇ − γ + r)|2 + 4Ė. (8.3)

From (8.2) and (8.3), we recognize that as before,

S[ 0,T ] ≥ ∆E,

i.e., the action is bounded below by the energy barrier. This leads to the
conclusion (cf. [15]) that the energy barrier controls the mean switching time.
Furthermore, Day shows that the exponentiality of the limiting distribution of
tB/t̄B also holds for the full dynamics [9]. Thus, Definition 1 extends precisely
to the general case. Furthermore, it is not hard to see that as long as β3 is
sufficiently large compared to β2, the minimal-energy saddle point lies along
z = 0, and the reduced model completely characterizes the single-pulse astroid
for the full model.

8.2 Optimal switching path

To achieve the sharp bound in (8.3), we see that the optimal trajectory should
solve

φ̇ = γ − r

to travel from (θB, 0) to the minimal saddle, and solve

φ̇ = −γ − r

to relax from the saddle to (θA, 0). This is the optimal path in the long-
time limit, and is close to the optimal path as long as T is large compared to
the deterministic timescale of the system. This long-time optimal path is a
function of the applied field, the damping, and the anisotropy. For the sake of
illustration and to emphasize the dependence on the system parameters, we
consider two examples. The first, shown in Figure 8, corresponds to a situation
where β2 = 1, β3 = 5, α = 01, H1 = 0.5, H2 = 0. Observe that the “uphill
path” is not simply time-reversed flow along the heteroclinic orbit, as in the
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Figure 8: In the general case, the optimal path is distinct from (but related
to) the heteroclinic orbit. (See the discussion in Section 8.) Here, H1 = 0.5,
H2 = 0.1, α = 0.1, β2 = 1, and β3 = 5. Here and in Section 10, we plot
the two-dimensional projection in terms of the height z vs. the scaled angle
(θ/π− 1)

√
1 − z2 +1 (preserving length along lines of constant latitude). The

minima are at (θ, z) = (0.040, 0) and (3.075, 0). The minimal-energy saddle
point is at (1.838, 0), and a secondary saddle is at (4.472, 0). Although they
lie on z = 0, the optimal path is not confined to the circle.

reduced model; the sign is reversed on the damping term, but preserved for
the gyroscopic term. Furthermore, even if the minimal saddle lies on z = 0,
the path is two-dimensional.

The second example, shown in Figure 9, is for the case β2 = 1, β3 = 0.5,
α = 0.1, H1 = 0.5, H2 = 0. With the out-of-plane penalization relaxed, even
the saddle points have z 6= 0.

The optimal path in the spatially nonuniform problem is yet more inter-
esting and complicated. See Section 11 for a discussion.

8.3 Short and ultrashort pulses

As always, short-time switching forces us to confront the full action minimiza-
tion problem, which is given by (4.2) with the action functional defined by
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Figure 9: Here, H1 = 0.5, H2 = 0, α = 0.1, β2 = 1, and β3 = 0.5. The minima
are at (θ, z) = (0, 0) and (π, 0). The minimal-energy saddle points, marked
with a ∗, are at (π,±

√
3/2). They do not lie on z = 0.

(8.2). As it did for the reduced model, the estimate (4.4) assures that the
probability of multiple-pulse switching, as a function of H, will tend to either
0 or 1, depending on the action associated to the given applied field. Thus,
Definition 3 also extends to the general case. (See also Section 9, below.)
Again, these ideas generalize and become yet more interesting in the spatially
nonuniform problem.

9 Non-Arrhenius behavior

The so-called Arrhenius behavior refers to the probability distribution of switch-
ing time being exponential in T . If this is not the case, one says that the behav-
ior is non-Arrhenius. Non-Arrhenius behavior has been observed in physical
and numerical experiments [19, 20, 23].

One source of non-Arrhenius behavior, which enters even for normal pulses,
is the existence of intermediate states (which are not present in the simple,
uniaxial model). When there are intermediate states in the switching process,
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the system is described by a multi-state (rather than two-state) Markov chain,
much in the spirit of the ladder model introduced in [20]. The reduction of
magnetic switching to the dynamics of a multi-state Markov chain is explored
in [10, 20, 23]. Intermediate states are found in the coherent rotation model
with cubic anisotropy, for example. Intermediate states are also a signature
feature of noncoherent rotation. Intermediate states in the nonuniform micro-
magnetic energy with zero applied field have been investigated numerically in
[10].

A second source of non-Arrhenius behavior is short-time switching. This is
clear from the non-Arrhenius distribution in (4.4). When short or ultrashort
switching is involved, the optimal switching path and corresponding action
can be computed numerically by solving the action minimization problem (as
functions of the pulse time and applied field). It is important to emphasize
that a path which is optimal at one value of T (or H) may be far from optimal
at another value of T (or H). Identifying the correct pathway is necessary in
order to accurately estimate the switching probability.

To quantify the effect of the nonexponentiality induced by short-time switch-
ing, consider the difference between the single-pulse astroid under pulse-length
NεT and the multiple-pulse astroid built by taking sequences in which Nε

pulses of length T are applied. In the former case, the finite-temperature as-
troid has a boundary of thermally critical fields for which SNεT = ε ln(NεT ). In
the latter case, the thermally critical fields are those for which ST = ε ln Nε.
For T fixed and ε � 1, this basically amounts to comparing ST (H) with
∆E(H), and the difference can be large or small, depending on T .

10 Ultrashort switching, low damping, and de-

terministic effects

We mentioned in Section 8 that we should consider whether there is a difference
between having switched in the pulsed-landscape and having switched in the
zero-field-landscape after termination of the pulse. As we discuss below, for
high damping, the questions are roughly equivalent; for low damping and
ultrashort pulses, however, the situation is different, and the effect of the
deterministic, gyroscopic motion can dominate.

When the pulse is turned on, the magnetization finds itself perturbed away
from the nearby minimum of the pulsed-landscape (as long as H1 6= 0). Un-
der the deterministic dynamics, it relaxes to the minimum. Furthermore, if
the damping is large enough, or, regardless, if the pulse is long enough for
relaxation, then the only way for switching to happen is by thermal driving.
When damping is low, however, the relaxing trajectory can wind around the
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Figure 10: For α = 0.01, H1 = 0, H2 = 1.5, the magnetization is initially
perturbed away from the nearby minimum of the pulsed landscape, which can
send it into a complicated deterministic orbit. The trajectory flies around the
sphere, and ultrashort pulses can “catch” the magnetization in either basin,
overriding thermal effects.

sphere, as illustrated in Figure 10. If the pulse is short enough to “catch”
the magnetization along the trajectory (i.e. if it is ultrashort), then switching
can be achieved precisely by turning the pulse off while the magnetization is
travelling through the basin of attraction of θA in the zero-field landscape.
The deterministic effect of pulse length overrides thermal effects in this case.
Remarkably, this mechanism has been captured in recent physical experiments
[44].

One is motivated to reconsider the astroid for low damping and ultrashort
pulses. A more complicated, “zebra astroid” emerges (for example, Figure 12),
in which the pulse time plays a critical role, and switching is no longer mono-
tonic in applied field magnitude, nor confined to the zero-temperature astroid.
Switching depends sensitively on the pulse time, which controls the position of
the magnetization along its orbit. Relationships among pulse time, anisotropy,
applied field, and damping have been studied in [21, 31], for instance.
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Figure 11: For α = 0.1, H1 = 0, H2 = 1.5, the damping is high enough that
even for ultrashort pulses, the deterministic orbit does not cause switching.
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Figure 12: Short pulse low damping “zebra astroid.” Here, α = 0.01 and
T = 28.
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11 Outlook and generalization

Switching probabilities for the one-dimensional equation (3.1) can be com-
puted by brute force via the Fokker Planck equation. The advantage of the
perspective developed here, applying large deviation theory and ideas from
stochastic resonance, is that it generalizes naturally to more complicated equa-
tions and even to spatially nonuniform systems. Relevant examples occur in
many application areas. For instance, large deviation theory could be applied
to spin-transfer-induced magnetic switching [37], although numerical study
may be necessary to find the minimum action even for long-time switching.
In biology, the dependence of unbinding force in dynamic force spectroscopy
on the pulling force [2, 13] is analogous to the dependence of ramped astroids
on ramping rate. The case of spatially distributed systems seems particularly
rich, both because it raises deep issues of analysis and probability, and because
it has strong links to many application areas, so we briefly comment upon it
here.

Removing the assumption of uniform magnetization means reinstating the
full LLG equations, which are difficult because of the nonlocal term in the
effective field and, to a lesser degree, the norm constraint. Below, we dis-
cuss some issues related to nonuniform magnetization. We conclude with two
particularly interesting, and largely open, subtopics.

One would expect that for the LLG equations, there is an extreme param-
eter regime in which the optimal switching path is spatially uniform, but that
once the sample is large enough compared to the exchange length, nonuniform
paths dominate. A similar crossover exists for the Allen-Cahn problem,

u̇ = ∆u − V ′(u) +
√

2εη. (11.1)

The stochastic gradient flow, studied in [11, 26, 40, 41], is a model which,
while simpler than the stochastic LLG, captures many relevant phenomena.
In [26], the authors identify a crossover between spatially uniform and nonuni-
form optimal-switching-pathways as the domain size increases. A crossover
from spatial uniformity to nonuniformity of the minimal saddle has also been
recently observed for a reduced micromagnetic energy, for a two-dimensional
magnetic ring [32].

The weak volume dependence of saddle points in the spatially nonuniform
landscape is important in LLG. Whereas the uniform model suggests a saddle
point energy which scales linearly with volume, this is far from true for typical
samples. Under applied field pulses, the micromagnetic energy is biased, which
tends to lead to saddle points whose energies depend only weakly on volume
once the sample is larger than a “critical nucleus.” The analogous situation
exists for (11.1) when V is an asymmetric potential. The existence of the
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critical nucleus is well known in the physics community (see, for instance, [5]).
In the PDE literature, the spherical symmetry of ground states and existence
of a critical radius for (11.1) were studied, for instance, in [3, 18].

Pursuing the generalization of the uniform case to the nonuniform: the
stochastic dynamics on nonuniform landscapes may be reduced to a Markov
chain in the small-noise limit, as discussed in Section 9 for the uniform mag-
netic problem. In this case, the saddle points are spatially complex interme-
diate states, interesting in their own right. Formally at least, the switching
probabilities and optimal switching pathways are studied via the action min-
imization problem, where now the minimization is over pathways through
function space. Quantitative, numerical investigations of saddle points and
the switching rates for LLG at zero applied field appear in [10, 40]. The opti-
mal pathways connecting the states of the chain generate a host of questions,
including the ones posed below. Both of the following subtopics find analogy
in the Allen-Cahn problem, and both contain interesting questions which, for
LLG, are largely open.

Dependence of optimal pathways on applied field. Because the spa-
tially extended landscape is so much richer than the uniform landscape, there
are many saddle points, and many switching pathways. An important and
interesting problem is how the optimal pathway depends on the applied field.
Entirely different pathways may be selected as the applied field ranges over
different values. It is pointless to obtain good action estimates for the wrong
pathways! A different but related problem studied in [11, 26, 27, 41] is: How
does the optimal pathway depend on the switching time and small parameter
in the Allen Cahn phase transformation problem?

Reduced problem: sharp interfaces and vortex motion. Asymptotic
limits of the scalar Ginzburg Landau energy are a familiar topic in the calcu-
lus of variations community. In [11, 26, 27, 41], related limits in the action
minimization problem lead to a reduced, sharp-interface problem.

In certain limiting regimes of micromagnetics, metastable states are char-
acterized by the locations of domain walls or boundary vortices. These limiting
regimes have been studied in the physics community for a long time [4, 22],
and have recently received a lot of attention in the mathematics community
(see, for instance, [29, 35, 36]). It would be appealing to investigate an asymp-
totic reduction of the magnetic switching problem in which action minimizing
pathways are characterized by the motion of domain walls or boundary vor-
tices.
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A The stochastic Landau-Lifshitz-Gilbert dy-

namics

We claimed in Section 2 that it does not matter whether we add a random
noise in both the gyromagnetic and the damping terms, as in (2.4), or in the
gyromagnetic term alone, because the one-point statistics are the same. This
is shown in [38], and later in [41]. In [41], the proof proceeds by changing to
(θ, z) variables in both (2.4) and the Stratonovich equation

ṁ = m × (−h +
√

2αε Ẇ ) − αm × (m × h), (A.1)

converting to Itô form, and showing that the resultant Fokker Planck equation
is the same as for the Itô equation (2.6).

Fokker Planck Equation and Invariant Measure

We verify that the noisy LLG (2.6) are consistent with the Gibbs distribution,
by showing that the Fokker-Planck equation for (2.6) may be written

pt = ∇ · (K∇Ep + εσσT∇p), (A.2)

and that a consequence is the stationarity of

ps := Z−1 exp(−E/ε).

(Z−1 is the normalization factor.) To proceed, we observe that (2.6) is a
two-dimensional system for X = (θ, z), of the form

Ẋ = −K∇E − εc +
√

2ε σẆ ,

where

K =

( α

1 − z2
1

−1 α(1 − z2)

)

, c =

(

0
2αz

)

, σ =









√
α√

1 − z2
0

0
√

α
√

1 − z2









,

and Ẇ is a two-dimensional white noise with independent components. De-
compose K into its symmetric and antisymmetric parts, K = KS + KA. Two
distinguishing features of the system are

• σσT = KS.

• KA is constant.
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With this structure, being able to write the Fokker Planck equation in the
divergence form (A.2) suffices to confirm the stationarity of ps, since

KS∇Eps + εσσT∇ps = 0

identically, and

∇ · (KA∇Eps) = KA : ∇∇Eps − ε−1(∇E,KA∇E)ps = 0

by antisymmetry. Thus, we need only show (A.2). By direct calculation,

pt = ∇ · (K∇Ep) + ∂2
θθ

(

εα

1 − z2
p

)

+ ∂2
zz

(

εα(1 − z2)p
)

+ ∂z(2εαzp)

= ∇ · (K∇Ep) + ∂θ

(

εα

1 − z2
∂θp

)

+ ∂z

(

εα(1 − z2)∂zp
)

= ∇ · (K∇Ep + εσσT∇p).

B Large deviation theory

It is well-known that thermally-activated transitions occur via saddle points,
with an Arrhenius law which depends on the energy barrier. Part of the con-
tribution of large deviation theory is to make these assertions rigorous, in
the limit ε → 0. Large deviation theory also gives more detailed information
about rare events and the pathways by which they occur. While the exponen-
tial distribution applies for timescales of the order of the mean switching time,
large deviation theory also estimates, for instance, the probability for an event
to occur within a given time, T . This estimate, which relies on action min-
imization, was important for studying multiple-pulse astroids in Subsection
4.

To make sharp statements in the limit of vanishing noise strength, we have
used results for the mean switching time, exponential distribution, and switch-
ing probability from large deviation theory. The results come from Freidlin
and Wentzell [15] and Martinelli, Olivieri, and Scoppola [33]. In this appendix,
we state the large deviation theorems for the process governed by (3.1). Anal-
ogous theorems hold for (2.6).

As usual, let θA, θB ∈ [0, 2π) represent the two minima of the energy ER

with applied field H. We are interested in the probability of switching from
the basin of attraction of the less favored metastable state, θB, to either (a)
the boundary of the basin of attraction of this state (which we call hitting),
or (b) a small neighborhood of the energetically preferred metastable state, θA

(which we call switching).
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Large deviation theory estimates the hitting and switching probabilities in
terms of the Wentzell-Freidlin action. We make the following definitions.

CA := the basin of attraction of θA CB := the basin of attraction of θB

tB(x) := inf{t ≥ 0; θε(0) = x, θε(t) /∈ CB} tB(x) := E[tB(x)]

Phit(x, t) := Prob(tB(x) ≤ t).

The Wentzell-Freidlin action functional for (3.1) is

S[ 0,T ][φ] =
1

4

∫ T

0

|φ̇(s) + E ′
R(φ(s))|2ds.

The gradient structure simplifies the action minimization problem in the long-
time limit (cf. Example B.1).

Mean hitting time. In the zero-temperature limit, the mean hitting time
is independent of x, and is controlled by the energy barrier:

lim
ε→0

ε ln t̄B = ER(s) − ER(θB) =: ∆ER.

In other words, t̄B � e∆ER/ε.

Hitting probability. The probability of hitting the boundary of the basin of
attraction within a given time T is found via an action minimization problem.
Specifically, for all x ∈ CB,

lim
ε→0

−ε ln Phit(x, T ) = inf
φ∈F x

S[ 0,T ][φ] =: ST , (B.1)

the action for the hitting event. Here, F x := {φ ∈ C[0, T ]; φ(0) = x, φ(s) /∈
CB for some s ≤ T}. The pathway φ? which minimizes the action functional
is the most likely pathway by which the stochastic process will switch, in the
sense that the switching pathway stays within an arbitrarily small neighbor-
hood of the action minimizing path, with probability one as ε → 0.

The more common, exponential estimate of hitting probabilities (see below)
looks on a timescale which is of the order of the mean hitting time, so that
T � exp(∆ER/ε). For ε-independent times, however, it is the action which
gives the correct exponential factor, requiring action minimization, i.e. solving
the deterministic variational problem in (B.1).
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Exponential distribution. In the limit as ε → 0, appropriately rescaling
tB yields an exponential distribution [33]. To be precise,

lim
ε→0

Prob(tB > c t̄B) = exp(−c).

For finite epsilon, if we rescale time by the mean hitting time, tB is approxi-
mately exponentially distributed. In other words, given T = O(t̄B), we have
the estimate

Phit(T ) ≈ 1 − e−T/t̄B .

We call the region of validity of this approximation in H1-H2 space the expo-
nential regime. (On this timescale, the hitting probability is x-independent in
the limit as ε → 0.)

Mean switching time and switching probability. What about the event
of switching rather than just hitting? The mean time to switch, τ , satisfies

τ � exp(∆ER/ε),

(logarithmic equivalence) which can be seen from a standard argument along
the lines of [15]. Alternatively, this estimate is a corollary of the estimates
above and the fact (cf. [41]) that within the exponential regime,

τ = 2t̄B, (B.2)

and thus the two are logarithmically equivalent. Also,

Prob(switch to CA for t ≤ T ) � exp



− inf
φ(0)=x

φ(T )∈CA

1

4ε

∫ T

0

|φ̇(s) + E ′
R(φ(s))|2ds



 .

Illustrative examples. When the form of the deterministic equation is gra-
dient or “gradient-plus-orthogonal,” there are simplifications which allow us to
determine the mean switching time and the most likely switching path (given
an arbitrarily long time).

Example B.1 (Simplification for the gradient case). Consider the noisy
gradient flow

dX = −∇V (X)dt +
√

2εdW.

Suppose that x0 lies in the basin of attraction of m, an isolated minimum of V .
Call the basin Dm. Suppose that ∂Dm is smooth and, furthermore, that there
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is a unique point s ∈ ∂Dm which minimizes V . Consider the action to switch
from x(T1) = m to x(T2) ∈ ∂Dm. One manipulates the action functional:

S[T1,T2][x] =
1

4

∫ T2

T1

|ẋ + ∇V (x)|2dt

=
1

4

∫ T2

T1

|ẋ −∇V |2 + 4〈ẋ,∇V 〉dt

=
1

4

∫ T2

T1

|ẋ −∇V |2dt + V (x(T2)) − V (m)

≥ V (s) − V (m),

the inequality following by dropping a positive term. From here, one identifies
the long-time limit of the action as the energy barrier between the minimum
and the minimal saddle, and the optimal long-time switching path as precisely
that which satisfies

ẋ = ∇V (x), x(−∞) = m, x(∞) = s,

i.e. the heteroclinic orbit of the deterministic gradient flow connecting m and
s (in backwards time).

Example B.2 (Gradient-plus-orthogonal). For the generalization

Ẋ = −∇V (X) + `(X) +
√

2εẆ ,

with 〈∇V, `〉 = 0,

where the potential V has only isolated critical points, the story remains al-
most the same. Reversing the sign on ∇V as before and using the orthogonality
condition, we discover that the system exits via the saddle at a rate with expo-
nential factor V (s) − V (m). The optimal path in this case satisfies

ẋ = ∇V (x) + `(x), x(−∞) = m, x(∞) = s.

The structure of the equations assures the existence of such a path.

Prefactors and Kramers’ analysis. The prefactor for the switching event
is derived by using Kramers’ estimate for the hitting rates [34, 45]; see also
[12]. According to this analysis, the switching rate km,si

from minimum m via
the saddle si (i = 1, 2) is given by

km,si
= e−ε−1∆Em,si

(

(2π)−1|µsi
|| det(JmJ−1

si
)|1/2 + O(ε)

)

, (B.3)
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where J is the Hessian matrix of E, the subscript m denotes evaluation at
the minimum, the subscript si denotes evaluation at the saddle point, µsi

is
the unique negative eigenvalue of KT Jsi

, and ∆Em,si
is the energy difference

between the saddle and the minimum. Note that although the formula above
was derived for the case with constant K, it holds for our case as well because of
the convenient fact that the derivatives of K vanish at the saddle and therefore

∂(KT∇E)

∂(θ, z)

∣

∣

∣

∣

si

= KT J(si).

Using this identity and denoting the unit tangent vector to the least action
path by t̂, we obtain µsi

t̂si
= KT

si
Jsi

t̂si
. This fact is enough to generalize

constant K analysis from [12], for instance, to the magnetic case. From the
switching rates, we calculate the mean switching time τ :

τ = (km,s1
+ km,s2

)−1. (B.4)

Generically, the rates are widely separated and

τ ≈ (max{km,s1
, km,s2

})−1.

Note that for the reduced energy (3.2), the rate formula (B.3) reduces to the
particularly simple estimate

km,si
= e−ε−1∆Em,si

(

(2π)−1
√

E ′′
R(m)E ′′

R(si)

)

.

Acknowledgements

We would like to thank Weinan E, Geoff Grinstein, and Roger Koch for inter-
esting discussions.

References

[1] Amikam Aharoni, Introduction to the Theory of Magnetism, Clarendon
Press, Oxford, 1998.

[2] Denis Bartolo, Imre Derényi, and Armand Ajdari, Dynamic response of
adhesion complexes: Beyond the single-path picture, Phys. Rev. E 65
(2002), 051910.

[3] H. Berestycki and P.-L. Lions, Some applications of the method of super
and subsolutions, Bifurcation and Nonlinear Eigenvalue Problems, Lec-
ture Notes in Math 782 (1980), 16–41.

34



[4] Giorgio Bertotti, Hysteresis in Magnetism, Academic Press, San Diego,
1998.

[5] H. B. Braun, Fluctuations and instabilities of ferromagnetic domain-wall
pairs in an external magnetic field, Phys. Rev. B. 50 (1994), 16485–16500.

[6] Gregory Brown, M. A. Novotny, and Per Arne Rikvold, Thermal mag-
netization reversal in arrays of nanoparticles, J. Appl. Phys. 89 (2001),
7588–7590.

[7] William Fuller Brown, Jr., Micromagnetics, Robert E. Krieger Publishing
Company, Huntington, 1978.

[8] William Fuller Brown, Jr., Thermal fluctuations of a single-domain par-
ticle, Phys. Rev. 130 (1963), 1677–1686.

[9] Martin V. Day. On the exponential exit law in the small parameter exit
problem, Stochastics 8 (1983), 297–323.

[10] Weinan E, Weiqing Ren, and Eric Vanden-Eijnden, Energy landscape and
thermally activated switching of submicron-size ferromagnetic elements,
J. App. Phys. 93 (2003), 2275–2282.

[11] Weinan E, Weiqing Ren, and Eric Vanden-Eijnden, Minimum action
method for the study of rare events, Comm. Pure App. Math. 57 (ac-
cepted for 2004).

[12] Weinan E, Weiqing Ren, and Eric Vanden-Eijnden, (to appear).

[13] Evan Evans, Probing the relation between force–lifetime– and chemistry in
single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30 (2001),
105–127.

[14] Mark I. Freidlin, Quasi-deterministic approximation, metastability and
stochastic resonance, Physica D 137 (2000), 333–352.

[15] Mark I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical
Systems, Springer-Verlag, 2nd edition, New York, 1998.

[16] Luca Gammaitoni, Peter Hänggi, Peter Jung, and Fabio Marchesoni,
Stochastic resonance, Rev. Mod. Phys. 70 (1998), 223–242.
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