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ABSTRACT

Context. Electromagnetic coupling of planetary moons with their host planets is well observed in our solar system. Similar couplings
of extrasolar planets with their central stars have been studied observationally on an individual as well as on a statistical basis.
Aims. We aim to model and to better understand the energetics of planet star and moon planet interactions on an individual and as
well as on a statistical basis.
Methods. We derived analytic expressions for the Poynting flux communicating magnetic field energy from the planetary obstacle to
the central body for sub-Alfvénic interaction. We additionally present simplified, readily useable approximations for the total Poynting
flux for small Alfvén Mach numbers. These energy fluxes were calculated near the obstacles and thus likely present upper limits for
the fluxes arriving at the central body. We applied these expressions to satellites of our solar system and to HD 179949 b. We also
performed a statistical analysis for 850 extrasolar planets.
Results. Our derived Poynting fluxes compare well with the energetics and luminosities of the satellites’ footprints observed at Jupiter
and Saturn. We find that 295 of 850 extrasolar planets are possibly subject to sub-Alfvénic plasma interactions with their stellar winds,
but only 258 can magnetically connect to their central stars due to the orientations of the associated Alfvén wings. The total energy
fluxes in the magnetic coupling of extrasolar planets vary by many orders of magnitude and can reach values larger than 1019 W.
Our calculated energy fluxes generated at HD 179949 b can only explain the observed energy fluxes for exotic planetary and stellar
magnetic field properties. In this case, additional energy sources triggered by the Alfvén wave energy launched at the extrasolar planet
might be necessary. We provide a list of extrasolar planets where we expect planet star coupling to exhibit the largest energy fluxes.
As supplementary information we also attach a table of the modeled stellar wind plasma properties and possible Poynting fluxes near
all 850 extrasolar planets included in our study.
Conclusions. The orders of magnitude variations in the values for the total Poynting fluxes even for close-in extrasolar planets provide
a natural explanation why planet star coupling might have been only observable on an individual basis but not on a statistical basis.
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1. Introduction

Planetary bodies throughout the universe are commonly embed-
ded in a flow of magnetized plasma. These bodies are thereby
obstacles to the flow and interact with their surrounding plasma.
Among the different types of waves excited in these interactions,
the Alfvén mode is particularly important because it can trans-
port energy and momentum along the local background mag-
netic field with very little dispersion over large distances. An
interesting case of this interaction occurs if the relative veloc-
ity v0 between the plasma and the obstacle is smaller than the
Alfvén velocity vA, i.e. the Alfvén Mach number MA = v0/vA is
smaller than 1. Then a necessary condition is met that the Alfvén
mode can carry energy and momentum in the upstream direction
of the flow.

Sub-Alfvénic plasma interaction (MA < 1) is well known
in our solar system. It has been observed and studied for artifi-
cial satellites in the Earth’s magnetosphere (Drell et al. 1965). It
is also common in the outer solar system, where the planetary

⋆ Estimated plasma parameters and their associated Poynting fluxes
are only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A119

satellites are often close enough to their parent planets such
that their orbits are within the planets’ magnetospheres. In these
cases the relative velocities between the planetary satellites
and the magnetospheric plasma are often small enough for the
plasma interaction to be sub-Alfvénic. Historically, the interac-
tion of Io with Jupiter’s magnetosphere played the leading role
in advancing, both observationally and theoretically, our under-
standing of sub-Alfvénic plasma interaction. Io’s interaction has
been observed through its control of Jupiter’s radio waves (e.g.,
Bigg 1964; Zarka 1998), by in-situ measurements of the Voyager
and Galileo spacecraft (e.g., Acuña et al. 1981; Kivelson et al.
1996b; Frank et al. 1996), and subsequently as Io’s footprints
in Jupiter’s atmosphere (Connerney et al. 1993; Prangé et al.
1996; Clarke et al. 1996; Bonfond et al. 2008; Wannawichian
et al. 2010; Bonfond 2012; Bonfond et al. 2013). In conjunc-
tion with the observational progress, the electrodynamic cou-
pling between Io and Jupiter has been extensively studied the-
oretically and numerically as well (e.g., Piddington & Drake
1968; Goldreich & Lynden-Bell 1969; Neubauer 1980; Goertz
1980; Wright & Schwartz 1989; Jacobsen et al. 2007, 2010).
Next to Io, sub-Alfvénic satellite interactions with significant
energy exchanges have also been observed at Jupiter’s large
satellites Europa, Ganymede and Callisto (Kivelson et al. 2004)

Article published by EDP Sciences A119, page 1 of 20

http://dx.doi.org/10.1051/0004-6361/201118179
http://www.aanda.org
http://cdsarc.u-strasbg.fr
130.79.128.5
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A119
http://www.edpsciences.org


A&A 552, A119 (2013)

and imprints of the interaction in Jupiter’s atmosphere in form of
auroral footprints have been observed for Europa and Ganymede
(Clarke et al. 2002; Grodent et al. 2006, 2009; Bonfond 2012).
Hints for a Callisto footprint have been reported by Clarke
et al. (2011). Recently, Cassini spacecraft observations iden-
tified a significant sub-Alfvénic interaction at Saturn’s satel-
lite Enceladus generated by geyser activity near its south pole
(Dougherty et al. 2006; Tokar et al. 2006; Khurana et al. 2007;
Saur et al. 2007, 2008; Kriegel et al. 2009; 2011; Jia et al. 2010;
Simon et al. 2011a). The Alfvén waves launched near Enceladus
also generate footprints in Saturn’s upper atmosphere as recently
discovered (Pryor et al. 2011).

In our own solar system, all planets are sufficiently far away
from the sun such that the relative velocity between the solar
wind and the planets is super-Alfvénic (MA > 1) and super-
fast nearly all the time, i.e. the relative plasma velocity is larger
than the group velocity of the fast magneto-sonic mode. In our
solar system MA = 1 occurs on average around 0.08 AU and
Mercury’s perihelion is near 0.31 AU. Chané et al. (2012) re-
cently reported an exceptional period where the solar wind up-
stream from Earth was sub-Alfvénic for a time period of four
hours. During that time period the Earth lost its bow shock
and developed Alfvén wings. The Alfvén wings were, however,
not able to connect to our sun because the sub-Alfvénic period
lasted not long enough. Many of the extrasolar planets discov-
ered so far orbit their central stars within close distances, i.e.
less than 0.1 AU. At close radial distance, the stellar wind likely
often has not reached a flow speed which exceeds the Alfvén
velocity. Thus the interaction is sub-Alfvénic and Alfvén waves
generated by the interaction can travel upstream and transport
energy to the central star when the orientation of the stellar wind
magnetic field is favorable (as described in detail in this work).
Similar sub-Alfvénic interactions occur in our solar system be-
tween planetary satellites and their central planets. The resulting
sub-Alfvénic plasma interaction does not generate a bow-shock,
but an Alfvén wing structure in the satellites/planets plasma en-
vironment. The interaction of extrasolar planets with their cen-
tral star is commonly called star-planet interaction (SPI) in the
literature (e.g., Shkolnik et al. 2003).

Observational evidence for such a magnetic extrasolar planet
star coupling comes from measurements of enhanced stellar
Ca emission correlated with the orbital periods of close in extra-
solar planets by Shkolnik et al. (2003, 2005, 2008). In particular
for HD 179949, the synchronicity of the Ca emission with the
orbital period is visible in four out of six epochs (Shkolnik et al.
2008). For this star, Shkolnik et al. (2005) estimate a chromo-
spheric excess energy flux of ∼1020 Watt, i.e. the same order of
magnitude as a typical flare.

Next to individual studies, SPI is also investigated on a sta-
tistical basis. Scharf (2010) presents an analysis of X-ray fluxes
from extrasolar planet harboring stars and argues that stars with
extrasolar planets closer than 0.15 AU show a correlation of
X-ray flux with the mass of the extrasolar planets, while extraso-
lar planets at larger distances show no correlation. Poppenhaeger
et al. (2010) also provide a statistical analysis of X-ray fluxes
from a sample of 72 stars, which host extrasolar planets, but ar-
rive at a different conclusion compared to Scharf (2010). The
authors show that there are no significant correlations of the
normalized X-ray flux with planetary mass or semi-major axis.
Thus Poppenhaeger et al. (2010) see no statistical evidence of
SPI even though SPI might still be observable for some individ-
ual targets. In their most recent study Poppenhaeger & Schmitt
(2011) argue that the correlation derived in Scharf (2010) is
caused by selection effects and does not trace possible planet

induced phenomena in stellar coronae. In another study in the
υ Andromedae system, Poppenhaeger et al. (2011) also find no
evidence in X-rays or in the optical that can be identified being
due to extrasolar planets.

Theoretical aspects of the plasma interaction at extrasolar
planets have been addressed by a series of authors. Cuntz et al.
(2000) estimate with simplified expressions the strengths of tidal
and magnetic planet star couplings for 12 planet star systems. Ip
et al. (2004) numerically model the SPI of close-in extrasolar
planets assuming that the planets possess a magnetic field and
therefore also a planetary magnetosphere. Preusse et al. (2005,
2006, 2007) also numerically model the sub-Alfvénic interaction
of hot Jupiter’s with the stellar winds and the phase difference
generated by the finite propagation time of the Alfvén waves to
the central star. Further numerical simulations were performed
by Lipatov et al. (2005) and Cohen et al. (2009). Kopp et al.
(2011) numerically investigate SPI for magnetized and nonmag-
netized planets and conclude that the mere existence of SPI is no
evidence that a planet possesses an intrinsic magnetic field. An
example for this argument are the moons Io (nonmagnetized)
and Ganymede (magnetized), which both couple to Jupiter. In
the case of Io, the existence of an atmosphere and ionosphere is
sufficient to cause a strong interaction with the magnetospheric
plasma of Jupiter and to generate powerful Alfvén wings.

Grießmeier et al. (2004, 2005, 2007) investigate SPI with
particular emphasis on the radio emission from extrasolar plan-
ets and their detectability from Earth depending on various pa-
rameters such as stellar wind properties. Zarka et al. (2001),
Zarka (2006, 2007), and Hess & Zarka (2011) also investigate
the plasma interaction of extrasolar planets with their parent star
and their associated putative radio emission. Li et al. (1998),
Willes & Wu (2004, 2005), and Hess & Zarka (2011) study the
possible electromagnetic coupling of extrasolar planets around
white dwarfs and their effects on radio emission and orbital evo-
lution. In several of these studies expressions for the Poynting
flux convected onto the planetary obstacle and the energy dissi-
pated in the planets’ ionosphere/magnetosphere are calculated.

Lanza (2008, 2009) also investigate magnetic star-planet in-
teraction with theoretical models. Lanza (2008) discusses the
energy budget under the assumption that the planets trigger a
release of the energy of the coronal fields by decreasing their
relative helicity. The observed intermittent character of the star-
planet interaction by Shkolnik et al. (2008) is explained by a
topological change in the stellar coronal field, induced by a vari-
ation in its relative helicity.

Even though there exists no observational evidence for ex-
trasolar planets to possess an intrinsic magnetic field, yet, it is
still often assumed to be the case (e.g., Christensen et al. 2009)
as many of the extrasolar planets are assumed to be similar in
structure as the outer planets of our solar system, which all pos-
sess dynamo fields. In this case the sub-Alfvénic interaction of
a stellar wind with an extrasolar planet would likely be simi-
lar to Ganymede’s sub-Alfvénic interaction with the plasma of
Jupiter’s magnetosphere as Ganymede is the only known plan-
etary satellite with an intrinsic dynamo field (Kivelson et al.
1996a).

The aim of this work is to study the electromagnetic energy
fluxes, i.e. Poynting fluxes, radiated away from satellites or ex-
tra solar planets in sub-Alfvénic interaction. Previous studies
used the Poynting flux onto the satellite/plasma based on con-
stant magnetic field and plasma velocities as a proxy for the en-
ergy fluxes radiated away from the satellites/planets. In our work
we derive explicit expressions for the Poynting flux including
the nonlinear magnetic field and plasma velocities in the Alfvén
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waves generated by the interaction. We additionally present sim-
plified, readily useable approximations for the Poynting flux for
small Mach numbers. Our calculated energy fluxes are bench-
marked based on well observed sub-Alfvénic interactions in our
solar system, i.e. Io, Europa, Ganymede, and Enceladus. Then
we apply our model to the 850 extrasolar planets discovered un-
til 2012 November 14 to perform a statistical study. We also look
individually at HD 179949 b and compare our results with the
observations by Shkolnik et al. (2003, 2005, 2008). We deter-
mine for each extrasolar planet whether sub-Alfvénic interac-
tion is to be expected, whether the Alfvén waves can travel up-
stream, and we then subsequently estimate the energy flux within
the Alfvén wings, which are generated at each extrasolar planet.
We particularly investigate how geometrical and plasma proper-
ties, such as the angle between the local magnetic field and the
plasma flow or the orientation of a possible dipole moment of
the planetary body affect the values of the Poynting flux and its
ability to travel upstream.

The remainder of the work is structured in the following way:
in Sect. 2.1 we derive expressions for the total Poynting flux,
whose properties and dependencies are discussed in Sects. 2.2
and 2.3. The derived fluxes are then benchmarked in our solar
system (Sect. 3) and finally applied to an ensemble of 850 known
extrasolar planets, including HD 179949 b (Sect. 4).

2. Model for the Poynting flux within the Alfvén

wings

A planetary obstacle in a flow of magnetized plasma modifies
the electric and magnetic field within the vicinity of the plane-
tary body and generates waves, which radiate electromagnetic,
mechanical and thermal energy away from the obstacle.

2.1. Calculation of Poynting flux in sub-Alfvénic plasma
interaction

Poynting’s theorem for the evolution of the electromagnetic field
energy reads

∂

∂t

(

B2

2µ0

+
E2ǫ0

2

)

+ ∇ · S = − j · E (1)

with the electric field E, the magnetic induction B, the magnetic
and electric permeabilities of free space µ0 and ǫ0, respectively,
the electric current density j, and the Poynting flux

S = E × B/µ0. (2)

In the ideal magneto-hydrodynamic (MHD) approximation,
i.e. E = −u× B, the Poynting flux can equivalently be written as

S =

(

B2

µ0

)

u⊥, (3)

i.e. the Poynting flux describes the transport of magnetic en-
thalpy, which is bodily carried by the plasma velocity u⊥ per-
pendicular to the magnetic field.

2.1.1. Sub-Alfvénic interaction and Alfvén wings

If a plasma with magnetic field B0 and mass density ρ con-
vects with a relative velocity u0 past a planetary body, an ob-
server in the rest frame of the planetary body sees a motional
electric field E0 = −u0 × B0 with E0 = cosΘv0B0 assum-
ing frozen-in-field conditions. Here the angle Θ describes the
deviation of the flow direction from being perpendicular to

Fig. 1. Geometrical properties of the interaction of a planetary body
with its surrounding magnetized plasma with B0: unperturbed stellar
wind magnetic field, usw: stellar wind velocity, uorbit: orbital velocity
of planet, u0: relative velocity between planet and stellar wind plasma,
Mexo: magnetic moment of planet (in this figure it points out of the dis-
played plane), c+

A
: direction of Alfvén wing in parallel direction of B0,

c−
A

: direction of Alfvén wing in anti-parallel direction of B0, Θ: an-
gle between u0 and normal to B0, Θ±

A
: angles between both Alfvén

wings and B0, and ΘM : angle between B0 and planetary magnetic mo-
ment Mexo. The Poynting flux is calculated through a plane perpendic-
ular to B0. Note, the properties are displayed in the rest frame of the
obstacle, besides the orbital and stellar wind velocity (which have been
added for clarity in an inertial rest frame).

the magnetic field with 0 ≤ Θ ≤ π (see Fig. 1). The plan-
etary body represents an obstacle to the flow and generates
Alfvén waves with group velocities uA = ±B0/

√
ρµ0 in the

rest frame of the plasma. If the Alfvén Mach number MA =

v0/vA < 1, then a necessary condition is met that the Alfvén
waves can propagate upstream of the flow. In the sub-Alfvénic
case, two standing Alfvén waves, also called Alfvén wings
(Neubauer 1980) are generated (see Fig. 1). Sufficiently far away
from the obstacle such that the slow mode and fast mode have
insignificant wave amplitudes, the Elsasser variables or Alfvén
characteristics

c±A = u ± uA (4)

are conserved quantities in each wing when the stellar wind
plasma is sufficiently smooth and the plasma β sufficiently low
(Elsässer 1950; Neubauer 1980).

In this work we calculate the energy fluxes radiated away
from the obstacles. We assume that in the vicinity of the extraso-
lar planets (or planetary moons) the incoming stellar wind prop-
erties (or magnetospheric plasma properties) can be considered
spatially homogeneous on the scales of the local plasma inter-
action. The energy fluxes generated at the planets (moons) are
calculated through a plane which is chosen to be sufficiently far
away from the planets (or moons) such that other waves modes
than the shear Alfvén modes do not play a role any more. But the
location of the plane is still chosen close enough to the planet (or
moon) such that the stellar wind properties can still be consid-
ered spatially homogeneous and, e.g. the bend of the Parker spi-
ral or the curvature of the magnetospheric fields do not need to
be considered. Typical distances of the plane from the planetary
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obstacles are several times the diameter of the obstacle, whose
sizes will be discussed further below.

For the overall stellar wind flow, we assume that the veloc-
ity usw is strictly radially away from the star. We also assume
without restriction of generality that the magnetic field direction
of the stellar wind points away from the star. The planets move
in orbital direction with Kepler velocity uorbit, which leads to a
relative velocity between the planet and the stellar wind of

u0 = usw − uorbit. (5)

One of the two Alfvén wings generated in the interaction always
points away from the star. With our choice of magnetic field ori-
entations of B0, this is the c+

A
-wing. We therefore focus in this

study on the c−
A

-wing (see Fig. 1). The expressions in the remain-
der of this work thus hold for the c−

A
-wing, but could similarly be

derived for the c+
A

-wing. In the remainder of the manuscript we
drop for simplicity of notation the superscript “−” on the quanti-
ties describing the c−

A
-wing.

For the moon-magnetosphere interaction, the geometry is
different. The plasma flow up is mostly in the orbital direction
of the moon and the magnetic field is nearly perpendicular to the
flow. The relative velocity u0 thus can be written

u0 = up − uorbit

≈ (Ωrs − vorbit) êorbit, (6)

where Ω is the angular velocity of the central planet, rs the dis-
tance of the satellite from the planet’s spin axis and êorbit the unit
vector in orbital direction of the satellite (all three quantities as
given in an inertial rest frame). In the moon-planet interaction
both wings couple to the planet. In analogy with the exoplanet-
star coupling, we will focus in the moon-planet interaction on
the c−

A
-wing as well.

We stress that in the analysis of this paper we use two sep-
arate frame of references, within which we apply two separate
coordinate systems. One frame of reference is the rest frame of
the obstacle which launches the Alfvén waves. In the rest frame
of the obstacle the Alfvén wings are steady state under the as-
sumption that the upstream conditions and the properties of the
obstacle are steady state. The other frame of reference is rotat-
ing with the central body, i.e. the star or the central planet, at
the radial distance of the exoplanet or the moon, respectively.
In this frame of reference the Alfvén wings are time-dependent
as an observer in this rest frame sees the wings being convected
across the observer with time. These two frames of reference are
connected by a transformation with a constant velocity uT, whose
direction and amplitude will be discussed in Sect. 2.1.3. We also
use two separate coordinate systems applicable in each frame of
reference (see Fig. 1). One coordinate system is called Alfvén
wing system (Neubauer 1980). The Alfvén wing coordinate sys-
tem in the reference frame of the obstacle is defined as follows:
the z-axis is parallel to the Alfvén wing, i.e. parallel to c−

A
. The

y-axis is along the u0 × B0 direction and the x-axis completes a
right-handed coordinate system, i.e. lies in a plane defined by u0
and B0. The second coordinate system is called the B0 magnetic
field system or primed system. In the rest frame of the obstacle
it is defined as follows: the z′ axis is anti-parallel to B0, the y′

axis is in direction of uorb × B0, and x′ completes a right-handed
coordinate system. The wing coordinate system (unprimed sys-
tem) and the magnetic field system (primed system) within the
same frame of reference are related through

x = cosΘA x′ − sinΘA z′ (7)

y = y′ (8)

z = sinΘA x′ + cosΘA z′. (9)

The angle ΘA describes the inclination of the Alfvén wing with
respect to the background magnetic field (for the exact definition
see (19)). The Alfvén wing coordinate system and the B0 mag-
netic field coordinate system in the rest frame of the rotating
central body have coordinate axes in the same directions as the
associated coordinate systems in the rest frame of the obstacle.

If |uT| ≪ c with c being the speed of light, the variables are
related by a Galilei transformation between both frames of ref-
erences. Denoting the variables in the rest frame of the obstacle
with the superscript obst and variables in the rest frame of the
rotating central body without any extra superscript, the plasma
velocities in both frames are related by

u0 = u
obst
0 − uT, (10)

the electric fields by

E = Eobst + uT × Bobst, (11)

and the magnetic fields by

B = Bobst, (12)

respectively.

2.1.2. Model properties of the Alfvén wings

If the planetary body including its atmosphere is electrically con-
ductive and/or possesses a sufficiently strong internal magnetic
field, the plasma flow in the vicinity of the body is slowed and
the electric field is reduced. Simple models of the resultant elec-
tric field in sub-Alfvénic plasma interaction have been derived
by Neubauer (1980, 1998), Saur et al. (1999), or Saur (2004),
where the electric currents through the planetary bodies, iono-
spheres/atmospheres/magnetospheres are closed in the Alfvén
waves, which are launched by the interaction.

In these models, the relative strength of the sub-Alfvénic
interaction is characterized by a factor α. This factor as-
sumes α = 0 when no interaction takes place, i.e. the obstacles
do not perturb the plasma flow, and α = 1 for maximum in-
teraction strength, i.e., the obstacles bring the exterior flow to a
complete halt in its immediate vicinity. The factor is defined by

α = 1 − Eobst/Eobst
0 (13)

≈ 1 − vobst/vobst
0 , (14)

i.e., it is related to how strongly the motional electric field and
the plasma velocity in the vicinity of the obstacle is reduced due
to the interaction.

In the model applied here the effects of the obstacles are sim-
plified such that the resultant electric currents reduce the electric
field Eobst within the obstacle of radius R to a constant amplitude
(1−α) Eobst

0
. Writing the electric field in terms of the electric po-

tential with Eobst = −∇Φobst leads to

Φi,obst = (1 − α) Eobst
0
y r < R. (15)

Outside of the obstacle and perpendicular to z, the perturbation
electric field decays as a two-dimensional dipole field

Φe,obst = Eobst
0
y
(

1 − α R2

r2

)

r > R. (16)

This electric potential and the resultant electric field map into
the Alfvén wings where they exhibit a two-dimensional struc-
ture with translational invariance along the wings similar to the
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other plasma properties in the wings (Neubauer 1980). In ex-
pressions (15) and (16), we use the radial distance r of spheri-
cal coordinates with x = r cosϕ and y = r sin ϕ. The radius of
the obstacle R is in case of a nonmagnetized obstacle the radius
of the planet including its atmosphere/ionosphere. In case of a
magnetized body, the effective radius Reff depends on the prop-
erties of the internal and external magnetic field as detailed in
Sect. 2.3.

In case of the obstacle being created by an ionosphere whose
conductance is given by the Pedersen conductance ΣP within R,
then the interaction strength α can be approximated (Neubauer
1998; Saur et al. 1999) by

α =
ΣP

ΣP + 2ΣA

· (17)

The Pedersen conductance ΣP is calculated by integrating the
local Pedersen conductivity σp along the magnetic field lines
through the planet’s ionosphere beginning at the magnetic equa-
tor (e.g., Neubauer 1998; Saur et al. 1999). The Pedersen con-
ductance is here assumed to be spatially constant within the
ionosphere. In (17), we neglect the Hall conductance since the
Hall currents are perpendicular to the electric field and thus only
indirectly contribute to the energy budget of the interaction by
modifying the overall electric and flow field. Note, also other
physical reasons can slow and modify the flow near the obsta-
cle. Examples are intrinsic magnetic fields (e.g., Ganymede see
Kivelson et al. 1996a) or the effects of a plasma absorbing body
such as Rhea, see Simon et al. 2012).

The Alfvén conductance ΣA in (17) controls the maximum
current which can be carried by an Alfvén wave. It is given after
Neubauer (1980) by

ΣA =
1

µ0vA(1 + M2
A
− 2MA sinΘ)1/2

· (18)

The Alfvén wing is inclined with respect to the local background
magnetic field Bobst

0
by the angle ΘA (see Fig. 1), which reads

sinΘA =
µ0ΣAEobst

0

Bobst
0

=
MA cosΘ

(1 + M2
A
− 2MA sinΘ)1/2

· (19)

The constancy of the Elsasser variables and a given electric field
(e.g. with Eqs. (15) and (16)), constrains the magnetic field in an
Alfvén wing after Neubauer (1980) to

Bobst
⊥ = ( ẑ × Eobst)µ0ΣA (20)

where ⊥ denotes here the direction perpendicular to the wing,
ẑ is the unit vector in the z-direction and

Bobst
z = −

√

(

Bobst
0

)2
−
(

Bobst
⊥
)2
. (21)

2.1.3. Model energy fluxes in Alfvén wing

The Poynting flux, the kinetic and the thermal energy fluxes de-
pend on the frame of reference. Even though the Alfvén wing is
steady state in the rest frame of the obstacle for steady state up-
stream and planetary conditions, we are interested in the energy
fluxes deposited into the central bodies. For the calculations of
the energy fluxes, we therefore describe the plasma in a frame
of reference moving with the central body (the star or the central
planet) at a radial distance of the obstacle. We choose to calcu-
late the fluxes at the radial distance of the obstacle because we
are interested to determine the fluxes that are generated locally

by the obstacle. With that choice there is no relative motion of
the reference frame toward or away from the central body and
the analysis plane through, which we calculate the energy fluxes
does not move with respect to the central body. Note that a ref-
erence frame which would fully move with the plasma would
generally not meet this criteria. The transformation from the rest
frame of the obstacle to the rotating frame of the central body is
given by

uT = Ωrobstêorbit − uorbit (22)

= (Ωrobst − vorbit) êorbit, (23)

where Ω is the angular velocity of the central body, robst the dis-
tance between the central body and the obstacle, êorbit the unit
vector in orbital direction of the obstacle (all three as seen from
an inertial rest frame).

In the Alfvén wing coordinate system, the transformation uT
from the rest frame of the obstacle into the rotating frame of
reference is given by the velocity vector uT:

vT,x = v
obst
0 (cosΘ cosΘA + γ sinΘA) (24)

vT,y = 0 (25)

vT,z = v
obst
0 (cosΘ sinΘA − γ cosΘA) (26)

where vobst
0

represents the relative velocity between the obstacle
and the unperturbed plasma flow. This transformation is appli-
cable for, both, the extra solar planets with relative plasma ve-
locities given in (5) and the satellites at the outer planets with
velocities given in (6). The factor γ covers both cases and con-
siders the different geometrical properties of the interaction at
the moons or the extra solar planets. The factor γ also describes
the velocity of the plasma parallel to the background magnetic
field.

For the extrasolar planets where the magnetic field is inclined
by the Parker angle θB with respect to the radial direction we find

γ = − tanΘB cosΘ. (27)

With this choice of γ it can readily be shown that the resul-
tant frame of reference is a frame that rotates with the angular
velocity of the star Ω⋆ at the radial distance of the extrasolar
planet rexo assuming the Parker model with its frozen-in-field
approximation for the stellar wind. The Parker angle ΘB, i.e. the
angle between the radial direction and the direction of the mag-
netic field, is given by

tanΘB =
Ω⋆rexo

vsw

· (28)

For the satellites in the outer solar system where the orbital ve-
locities of the moons and the unperturbed magnetospheric fields
are approximately perpendicular, we find

γ = 0 (29)

and assume cosΘ = 0. With this choice of transformation the
new frame of reference is thus a frame which moves with the
angular velocity of the central planet at the radial distance of
the moon.

With the transformation of expressions (24) to (26), the re-
sulting frame of reference is a frame where the relative veloc-
ity u0,⊥ perpendicular to the background magnetic field B0 van-
ishes, i.e. a frame of reference which “moves with the magnetic
field”. In the rotating frame of reference, the Alfvén wave trav-
els parallel or anti-parallel to the unperturbed magnetic field and
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Fig. 2. Sketch of the Alfvén wing and its associated dissipation region
for idealized stellar wind properties in a frame of reference rotating
with the central body. The idealized orientations of the vector fields
in the sketch resemble the situation when the radius of the star R⋆ is
much larger than the effective radius of the extra solar planet Reff and
the angular velocity of the star, the radial distance of the extra solar
planet and the stellar wind velocity obey Ω⋆rexo/vsw ≪ 1. The sketch
displays the wing at time t and also indicates the time-variability of the
wing in the rotating frame. At time t the extra solar planet is situated at a
location marked with a brown circle. The extra solar planet in this frame
of reference was located at earlier times t − ∆t further to the right. The
extra solar planet steadily launches Alfvén waves, which travel parallel
to B0. The superposition of the wave packets launched at earlier times
results in the snapshot of the wing at time t displayed here.

thus the group velocity of the Alfvén wave is parallel or anti-
parallel to B0 (see Eq. (4)). The velocity component u0,‖ paral-
lel to the background magnetic field is approximately zero in
the case of the moon planet interaction. However, the velocity
component u0,‖ parallel to the background magnetic field is non
zero in the case of the extra solar planets and assumes a value
of γvobst

0
.

In the rotating frame of reference shifted by uT the unper-
turbed motional electric field Eobst

0 vanishes and the net elec-
tric field E is given by expression (11). Note, however, that the
velocity component γvobst

0
parallel to B0 makes a nonnegligible

contribution in (11) because the cross product of uT is taken with
the perturbed magnetic field B(x) and not with B0.

The time-constant, standing Alfvén wing in the obstacle
frame of reference is a structure moving with uT and is thus time-
variable in the rotating frame of reference. In the rotating frame,
the group velocity of the Alfvén waves and the Elsasser vari-
able c−

A
are parallel to the background magnetic field B0, but the

Alfvén wing for a given time t is still inclined by the angle ΘA

with respect to B0 (see also Fig. 2).
In the rotating frame of reference and using the Alfvén

wing coordinate system, we can now derive expressions for the
Poynting flux S. Because the expressions are time-dependent in
the rotating frame, we have to evaluate the Poynting flux at a
certain time t. We can choose t without loss of generality such
that the center of the wing is located at x′ = 0 and y′ = 0 for a
certain z′. With (2), (11), (12), (15), (20), and (21) we find for
the Poynting flux within the inner part of the Alfvén wing, i.e.
for r ≤ R

S i
x/S 0 = −Γ1Γ4 ((−1 + α) cosΘA + Γ1) (30)

S i
y/S 0 = 0 (31)

S i
z/S 0 = (−1 + α) sinΘAΓ4((−1 + α) cosΘA + Γ1). (32)

The Poynting flux in the inner part is spatially constant due to the
model assumptions, which enter into expression (15). With (2),
(11), (12), (16), (20), and (21), we find for the Poynting flux in
the exterior part of the Alfvén wing, i.e. for r > R,

S e
x/S 0 = −4α

2
R4x2y2 sin2 ΘAΓ4/r

8

− Γ2[−Γ3 + Γ3 sinΘA(−γ cosΘA/cosΘ + sinΘA)

+Γ4Γ2] (33)

S e
y/S 0 = −2αR2xy(Γ3 sin2ΘA + Γ2 cosΘA)Γ4/r

4 (34)

S e
z/S 0 = sinΘA

{

4α2
R4x2y2 cosΘAΓ4/r

8

−Γ3[−Γ3 + Γ3 sinΘA(−γ cosΘA/cosΘ + sinΘA)

+Γ4Γ2] } (35)

with the abbreviations

S 0 =
B2

0
v0 cosΘ

µ0

, (36)

Γ1(α,ΘA) =

√

1 − (1 − α)2 sin2ΘA, (37)

Γ2(x, y, α,ΘA) =

√

1−
(

α
2
R4+2αR2(−x2+y2)+r4

) sin2ΘA

r4
,

(38)

Γ3(x, y, α) = 1 +
αR2(−x2 + y2)

r4
, (39)

Γ4(ΘA,Θ, γ) = cosΘA + γ sinΘA/cosΘ. (40)

In the Alfvén wings, also kinetic and thermal energy are con-
vected away from the obstacle. Constancy of the Elsasser vari-
able or Alfvén characteristic (see Eq. (4)) can be used to cal-
culate the plasma velocity u = u0 + (B − B0)/

√
µ0ρ in the c−

A
Alfvén wing. Using the same frame of reference and coordinate
system as for the calculation of the Poynting flux, we find for the
velocity field in the inner part of the wing (i.e., r < R)

vix/v0 = sinΘA(−α/MA − γ + sinΘ) (41)

viy/v0 = 0 (42)

viz/v0 = −Γ1/MA + cosΘA(1/MA + γ − sinΘ) (43)

and in the exterior part (i.e. r > R)

vex/v0 = sinΘA

(

sinΘ − γ + α/MAR2(−x2 + y2)/r4
)

(44)

vey/v0 = −2α/MAR2xy sinΘA/r
4 (45)

vez/v0 = cosΘA(1/MA + γ − sinΘ) − Γ2/MA. (46)

This velocity field u determines the resultant kinetic energy
flux Fk = 1/2ρv2u and enthalpy flux FT = 5/2kB2ρ/mTu,
where T is the plasma temperature, kB the Boltzmann constant
and m the average ion mass of the flow. The factor of 2 enters if
we assume that the ions and electrons have equal temperature. It
provides additional contributions by the wing to the Joule dissi-
pation in Eq. (1) in the rotating frame.

2.1.4. Total energy fluxes toward the central body

In this work we are interested in the energy sources QD respon-
sible for generating X-ray, UV, optical and IR emissions at the
central body due to the sub-Alfvénic interaction with an obsta-
cle. A likely candidate for this energy source is Joule dissipation
of electromagnetic field energy feed by the Poynting flux. For
further clarifications on how to determine the total Poynting flux
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communicated by the interaction toward the central body, it is
helpful to return to Poynting’s theorem (1). In MHD the elec-
tric field energy can be neglected compared to magnetic field
energy as their ratio is proportional to (v/c)2. The time derivates
of the magnetic field energy also vanishes because |B| is con-
stant within the Alfvén wing under the assumptions discussed
in Sect. 2.1.2. We integrate (1) over a volume V which starts
“above” the obstacle but it includes the Alfvén wing and the
part of the central body where the electromagnetic field energy
is dissipated (see Fig. 2 for a simplified geometry). The resultant
equation reads

∫

V

dV ∇ · S = −
∫

V

dV j · E. (47)

Within a volume VW , which includes the Alfvén wing and which
is outside of the obstacle and the central body, the term j · E
describes the reversible work done by the electromagnetic field
on the plasma and vice versa, i.e. the acceleration and deceler-
ation of the flow. Within a volume VD which includes the close
proximity of the central body, we assume that j · E describes the
irreversible, dissipative work done by the electromagnetic field.
The Volume V = VW + VD has a surface consisting of three
parts: (1) a mantle; (2) an upper lit (or surface) which is located
between the dissipation volume VD and the interior of the cen-
tral body and (3) a lower lit (or analysis plane) where the Alfvén
wave generated by the interaction at the obstacle enters the vol-
ume. Applying Gauss Theorem, (47) reads

∫

mantle

dA · S +
∫

upper lit

dA · S +
∫

lower lit

dA · S

= −
∫

VW

dV j · E|reversible −
∫

V
D

dV j · E|dissipative . (48)

The surface integral of the Poynting flux through the mantle dis-
appears when the mantle is displaced sufficiently far away from
the wing because the Poynting flux in (33 ) to (35) decreases
with r−2 for large r if r characterizes the distance from the wing
center to the mantle. Because the mantle area grows proportional
to the product of r H, where H is the length of the wing, the
Poynting flux through the mantle decrease to zero with r grow-
ing infinitely. The Poynting flux through the upper lit is zero
because we assume that the flux is being absorbed in the dis-
sipation volume VD. Thus only the Poynting flux through the
lower lit is non zero. In this analysis we are not interested to
measure the conversion of electromagnetic energy to mechani-
cal energy, thus we need to choose the volume VW such that the
integral over j · E|reversible vanishes. Under this assumption (48)
simplifies to

∫

lower lit

dA · S = −
∫

VD

dV j · E|dissipative. (49)

The integral on the right hand side of (49) represents the dis-
sipated electromagnetic field energy and will be abbreviated
by QD. In (49) the surface integral on the left hand side describes
the Poynting flux in direction of the outer normal to the lower lit
of the volume VW. Because the obstacle generates an energy flux
into the volume anti-parallel to the outer normal, we convert the
sign in this integral and and call the ingoing flux through the
lower lit: the Poynting flux through the analysis plane. Thus we
can write

QD =

∫

analysis plane

dA · S. (50)

The orientation of the analysis plane needs to be chosen such

that
∫

VW
dV j · E|reversible = 0. The upper lit of the volume is as-

sumed to be approximately parallel to the surface of the central
body. We assume the magnetic field near the central body to be
approximately perpendicular to the surface. In order for the vol-
ume integral over j·E|reversible to disappear the analysis plane also
needs to be perpendicular to the magnetic field B0. This choice
of the analysis plane is consistent with the group velocity of the
Alfvén wave toward the central body being anti-parallel to B0

in the rotating rest frame, in which this analysis is performed.
In the wing directed toward the central body, the wave travels
parallel to

−B̂0 = êz′ = (− sinΘA, 0, cosΘA). (51)

To calculate the fluxes through the analysis plane, we therefore
multiply the Poynting fluxes and the respective velocity field
components in Eqs. (30) to (35) and (41) to (46) with êz′ .

The choice of the analysis plane perpendicular to the
background magnetic field B0 as motivated in the previous
paragraphs implies interesting consequences for the resulting
Poynting flux. The Poynting flux through this analysis decreases

with r′−4 for large distances from the wing center. The to-
tal, i.e. spatially integrated, Poynting flux therefore stays finite.
The Poynting flux through any other analysis plane decreases

with r′−2 for large distances from the wing center. The total
Poynting flux in certain segments of these other planes therefore
can assume infinite values.

To display the Poynting flux through the analysis plane, it
is convenient to apply the primed coordinate system where x′

and y′ are perpendicular to B0. The primed Cartesian coordi-
nates can also be expressed in spherical coordinates through x′ =
r′ cosϕ′ and y′ = r′ sin ϕ′. The Alfvén wing cuts through the
plane perpendicular to B0 inclined by the angle ΘA and thus a
circle with radius R turns into an ellipse given by x′2 cos2ΘA +

y′2 = R2 or equivalently described by

R′
2
ellipse(ϕ′) =

R2

1 − sin2ΘA cos2 ϕ′
· (52)

The total flux S total is given by the integral of the Poynting
flux S i

‖ and S e
‖ over the plane perpendicular to B0

S total =

�

(x′ cos θA)2+y′2≤R2

S i
‖ dx′dy′ +

�

(x′ cos θA)2+y′2>R2

S e
‖(x′, y′) dx′dy′. (53)

If the Alfvén Mach number MA = v0/vA assumes small values,
i.e. in the limit MA → 0, the total Poynting flux toward the star
resulting from expression (53) can be strongly simplified to

S total = 2πR2 α2 E0B0

µ0

MA cosΘ , (54)

which also can be rewritten as

S total = 2πR2 (αMAB0 cosΘ)2

µ0

vA (55)

i.e., the total flux is for small MA proportional to the square of
the magnetic field perturbation αMAB0 cosΘ generated by the
interaction times the Alfvén velocity vA by which the energy is
radiated away. As will be discussed in Sect. 2.2, the simplified
expressions for the total Poynting flux in (54) or (55) might be
useful approximations in a series of cases. These expressions
differ from the expressions in Zarka (2007) and Lanza (2009)
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Fig. 3. Poynting flux through a plane perpendicular to B0 for Alfvén
Mach number MA = 0.8, interaction strength α = 0.2, and flow direc-
tion perpendicular to B0, i.e. for Θ = 0.

next to other details by a factor of 2v/vA. We note that the en-
ergy dissipation in the central body and in the obstacle are not
symmetric. The energy dissipation in the obstacles’s ionosphere
renders a maximum for interaction strength α = 1/2 (Neubauer
1980), while the Poynting flux in expression (55) maximizes for
maximum interaction strength α = 1.

The kinetic and thermal energy fluxes are calculated sim-
ilarly through a plane perpendicular to B0. In our rest frame,
the background velocity u0, i.e. the velocity sufficiently far away
from the obstacle is purely parallel to B0 and thus also anti-
parallel to the group velocity of the Alfvén wave. For extra solar
planets u0 points away from the central star. We are interested in
the total energy fluxes toward the central star and thus integrate
the kinetic and thermal energy fluxes where the velocity vector

parallel to B0 points toward the star, i.e. where u(x) · B̂0 < 0.

2.2. Properties of the Poynting flux within the Alfvén wing

We display the Poynting flux S ‖ = S · êz′ in Fig. 3 for an
Alfvén Mach number MA = 0.8, an interaction strength α = 0.2
and Θ = 0, i.e the magnetic field and plasma flow are perpen-
dicular to each other. The Poynting flux is positive everywhere,
i.e. points away from the obstacle toward the central body. In
our model, the Poynting flux S i

‖ is constant in the inner part of

the Alfvén wing, i.e. within the ellipse given by r′ < R′ellipse (see
Eq. (52)). The Poynting flux achieves its maximum values on the
flanks of the wing, i.e. near x′ = 0 and |y′| > R. The Poynting
flux decreases as r−4 at larger distance from the wing.

In Fig. 4 we show the total Poynting flux calculated with
expression (53) as a function of the interaction strength α
for MA = 0.04, MA = 0.4 and MA = 0.66 as solid lines. We also
show for comparison the simple approximation of the Poynting
flux given by the expressions in (54) or (55) as dashed lines. For
small MA the approximation fits the full expression very well,
but even for large MA both the full and simplified expression
are still in reasonable agreement. Therefore the simple and “user
friendly” expressions for the total Poynting flux provided in (54)
or (55) might be used in a series of applications.

For large Alfvén Mach numbers MA, which obey the
condition

(1 + α)2 sin2ΘA > 1, (56)

the argument of the root in (35) turns negative for selected
locations of x and y. In the case where the incident plasma
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Fig. 4. Total Poynting flux through a plane perpendicular to B0 as a
function of the interaction strength α for different Alfvén Mach num-
bers MA = 0.04, MA = 0.4 and MA = 0.66. The solid lines shows the
solution of the full nonlinear expression (53) and the dashed lines the
approximations given by (55). The background magnetic field B0 and
the incident plasma flow u0 are assumed to be perpendicular, i.e. Θ = 0.

flow is perpendicular to the background magnetic field, i.e.

Θ = 0, the condition simplifies to MA > 1/
√

α(2 + α). Assuming

additionally α = 1, the condition reads MA > 1/
√

3 or ΘA > 30◦.
For the parameter space where (56) is fulfilled, the expression
in (35) cannot be used to calculate the Poynting flux. This effect
is visible in Fig. 4 for the upper curves with MA = 0.66. Under
this circumstance the upper solid line only extends to α ≈ 0.8. In
case condition (56) applies in some of the sub-Alfvénic cases to
be discussed in this work, a lower limit can be chosen by using a
decreased interaction strength α such that (1 + α)2 sin2ΘA = 1.

The total Poynting flux also depends on the angle between
the incident flow and the background magnetic field character-
ized by Θ, which is defined such that Θ = 0, when B0 and u0 are
perpendicular, see Fig. 1. In Fig. 5 we show the total Poynting
flux as a function of the incident angle Θ for the Alfvén Mach
numbers MA = 0.04, MA = 0.4, MA = 0.66 and interaction
strength α = 0.5. The total Poynting flux is zero, when the
flow is parallel or anti-parallel to the background magnetic field
since the motional electric field in the rest frame of the plasma
vanishes. In reality the obstacle will in this case still gener-
ate some perturbations, which are, however, very small com-
pared to the case when B0 and u0 are approximately perpen-
dicular. Within the planetary bodies under consideration in this
work, Θ ranges from 0◦ to 180◦. However, the Poynting flux
as a function of Θ is symmetric with respect to Θ = 90◦, i.e.
S total(90◦ + Θ) = S total(90◦ − Θ). In Fig. 5 we therefore display
the range 0◦ ≤ Θ ≤ 90◦ only, but add for completeness the
range −90◦ ≤ Θ ≤ 0◦. The Alfvén wing angle ΘA is asymmetric
with respect to the flow angle Θ = 0. The physical reason is that
the plasma flow u0 has contribution parallel to B0 for Θ � 0. If
the flow is parallel to the Alfvén wave uA the tilt of the Alfvén
wing is decreased, i.e. the wing is more aligned with B0. Figure 5
also shows that the approximated expression of (55) shown as
dashed lines is for angles Θ � 0 not under all circumstances an
upper limit to the full expression (53) of the total Poynting flux
shown as solid lines.
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Fig. 5. Total Poynting flux as a function of the angle Θ between
the background magnetic field B0 and the incident plasma velocity u0.
The angle Θ is zero, when B0 and u0 are perpendicular (see Fig. 1). The
Poynting flux is symmetric with respect to 90◦. For the planetary bodies
under consideration in this work, Θ falls into the range 0 ≤ Θ ≤ 180◦.
Note that in this figure, we additionally show the range −90◦ ≤ Θ ≤ 0◦

for cases where such an orientation of the magnetic field and the veloc-
ity occur. The interaction strength and the Alfvén Mach number are cho-
sen as α = 0.5 and MA = 0.04, MA = 0.4 and MA = 0.66, respectively.
Solid lines are calculated with the full expression for the Poynting flux
of Eq. (53) and dashed lines are calculated with the approximation of
Eq. (55).

2.3. Orientation of planetary magnetic field and effective
radius of the obstacle

In case the planetary body possesses an intrinsic magnetic field,
the magnetic field environment near the planetary body and thus
also the Poynting flux generated by the interaction with the sur-
rounding flow is additionally modified. Here we assume that
the internal magnetic field can be characterized by a dipole
moment Mexo with equatorial field strength Bexo on the sur-
face of the planetary body. Next to the magnitude of the plan-
etary magnetic field, its orientation with respect to the exterior
field B0 plays a crucial role for the total Poynting flux. In Fig. 6
we show the magnetic field environment near the planet where
we assume a planetary surface field Bexo of 5000 nT with an as-
sociated dipole moment which is inclined by 45◦ with respect to
the stellar wind field B0 of 100 nT. The magnetic field environ-
ment can be topologically divided into three areas. I: field lines
which start on the planet and end on the planet, II: field lines
which start on the planet and end on the star, and III: field
lines which never intersect with the planet. The effective width
of all field lines belonging to region I, when B0 and the mag-
netic dipole moment of the extrasolar planet Mexo are parallel is
given by

Robst = Rexo

(

Bexo

B0

)1/3

=

(

µ0

4π

Mexo

B0

)1/3

(57)

where Rexo is the radius of the extrasolar planet. This expres-
sion is often used to characterize the size of the planetary ob-
stacle in the stellar wind (e.g. Lanza 2009). However, all field
lines anchored in the planetary ionosphere from class II are
slowed depending on the conductance of the planet’s ionosphere,
and thus establish the effective radius of the planet’s magneto-
sphere Reff = 1/2Deff as displayed in Fig. 6. The effective diam-
eter Deff is the average distance at which field lines in regions
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Fig. 7. Effective radius of Alfvén wing in units of Robst (see (57)) as a
function of the orientation of the intrinsic to the external magnetic field
(solid line). Two analytical approximations are shown as dashed and
dotted lines.

II are separated at large distance from the planet. The effective
radius as a function of the angleΘM between the planetary mag-
netic moment Mexo and the stellar wind magnetic field B0 is
shown in Fig. 7. For arbitrary angleΘM, the values of Reff need to
be calculated numerically (solid line in Fig. 7). When the dipole
moment and the stellar magnetic field are parallel, the effective

radius is maximum and a factor of
√

3 larger than Robst. Thus the
effective area of the obstacle is a factor of 3 larger than the area
determined by the closed field lines quantified by Robst in (57)
and its assumptions. When the magnetic moment and the stellar

A119, page 9 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118179&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118179&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118179&pdf_id=7


A&A 552, A119 (2013)

Table 1. Total Poynting fluxes and properties at satellites for average magnetospheric values.

Satellite B0 v0 n mion MA Reff Σa
P,c

α Iobs S obs S theo

nT km s−1 cm−3 amu km S kR 109 W 109 W

Ioa,c 1790–2130 57 391–2330 22 0.12–0.33 1.3 × 1822 200 0.63–0.96 5–700 4–300 288–1660
Europaa,c 387–473 76 12–167 18 0.11–0.49 1.3 × 1561 30 0.06–0.85 14–80 0.1–8 0.1–71
Ganymedea,c 69–116 139 0.8–8 14 0.19–0.98 3.2–3.8 × 2634 16 0.09–0.79 20–150 0.1–15 1–149
Callistoa 6–41 192 0.001–0.5 16 0.03–4.41 1.3 × 2410 1000 0.02–1.0 – – 0.0001–5.2

Mimasb 722 15.6 90 – 0.04 1.3 × 195 ∼0 ∼0 – – ∼0

Enceladusb,d,e, f ,g,h 325 26 70.5 17.6 0.13 1.3 × 250 ∼10 ∼1 0.45–1.55 ∼1–4 × 10−3 ∼0.2

Tethysb,k 167 34 30 17.6 0.22 1.3 × 530 0.3 ∼0.016 – – ∼0.0001

Dioneb,i 75 40 13 17 0.37 1.3 × 560 2 ∼0.04 – – ∼0.0003

Rheab, j 21 57 3.5 17 0.97 1.3 × 765 30 ∼0.4 – – ∼0.02

Notes. Values either taken from or calculated based on (a) Kivelson et al. (2004) ; (b) Saur & Strobel (2005); (c) Wannawichian et al. (2010), Clarke
et al. (2002), Gérard et al. (2006), Grodent et al. (2009), Bonfond et al. (2013), Prangé et al. (1996); (d) Pryor et al. (2011); (e) Saur et al. (2008);
( f ) Kriegel et al. (2009); (g) Simon et al. (2011a); (h) interaction strength α was assumed to be maximum; (i) Simon et al. (2011b); ( j) Santolík
et al. (2011); (k) Simon et al. (2009), Fluxes at Saturn’s satellites are calculated with (55). S obs quotes the electron input energies derived from
observation in the FUV. S theo quotes our calculated Poynting fluxes.

wind magnetic field are anti-parallel, i.e. the planetary field at
the magnetic equator and the stellar wind magnetic field are par-
allel, the magnetosphere is closed. This effect has been noted by
Ip et al. (2004) and Kopp et al. (2011), but not investigated quan-
titatively. For convenience we provide in Fig. 7 two expressions
which approximate the numerical values. Thus the relative ori-
entation of the planetary magnetic moment and the stellar wind
magnetic field has strong effects on the magnitude of the result-
ing Poynting flux launched at the planet.

3. Poynting fluxes generated by the satellites

of Jupiter and Saturn

In our solar system, sub-Alfvénic plasma interactions are ob-
served at a number of satellites in the outer solar system (see
Sect. 1). We therefore can use these observational constraints to
benchmark our derived expressions of the previous section and
predict luminosities of possible satellite footprints which have
not yet been observed.

3.1. Jupiter’s Galilean satellites

At the Galilean satellites of Jupiter, the Poynting fluxes gener-
ated by the interactions are time-dependent and depend on the
satellites’ positions in Jupiter’s magnetosphere because Jupiter’s
magnetic moment is inclined by∼10◦ with respect to its spin axis
(e.g. Kivelson et al. 2004). Therefore magnetic field strengths,
plasma densities and interaction strengths vary with the satel-
lites’ positions in Jupiter’s rotating magnetosphere conveniently
measured in system III longitude.

While most quantities in the expressions for the Poynting
fluxes (30) and (35) have been measured by spacecraft and are
listed in Table 1, the relative strength of the plasma interac-
tion α is not a directly observable quantity, but can be esti-
mated with the Pedersen conductance of the satellites’ iono-
spheres ΣP and the Alfvén conductance ΣA through (17). The
latter two quantities are not directly measurable either, but the
Alfvén conductance ΣA is given by (18) and depends domi-
nantly on the observationally constrained plasma densities and
magnetic field strengths. The Pedersen conductance ΣP is the
local Pedersen conductivity integrated along the magnetic field
lines through the satellites’ ionospheres. The Pedersen conduc-
tances have been modeled in various studies (e.g. Saur et al.
1999, 2002; Kivelson et al. 2004). For Jupiter’s satellites we use

the maximum, spatially averaged ionospheric conductances ΣP,c

listed in Kivelson et al. (2004) as the values in the center of
Jupiter’s plasma sheet. Because the Pedersen conductivity is pro-
portional to the plasma density in the ionosphere, we scale the
variation of the Pedersen conductance ΣP relative to its values in
the center of the Jovian plasma sheet nc with

ΣP ≈
(

n

nc

)κ

ΣP,c. (58)

When the torus plasma enters the satellites’ ionospheres unmod-
ified, κ = 1. An enhanced plasma density through enhanced elec-
tron impact ionization can be considered by κ > 1.

Due to uncertainties in the detailed spatial variations of the
plasma density in Jupiter’s magnetosphere at the locations of the
Galilean satellites as a function of system III longitude, we apply
in the following Sects. 3.1.1 to 3.1.4 two different models of the
plasma densities for each satellite. One set of models is individu-
ally constructed based on various sources in the literature and the
other model is after Bagenal & Delamere (2011), who provide
a model for the plasma properties of Jupiter’s magnetosphere.
Due to uncertainties in the variability of the interaction strength
as a function of system III longitude, we also investigate its ef-
fect on the energy fluxes. Therefore we use the density model
of Bagenal & Delamere (2011) and vary the interaction strength
by choosing κ = 1 and κ = 2 in (58). For each of the Galilean
satellites we therefore apply three models, respectively, to study
the variability of the footprint brightness and their dependences
on the plasma properties in the vicinity of the Galilean satellites.

3.1.1. Poynting fluxes: Io

The resultant Poynting fluxes at Io as a function of system III are
displayed in Fig. 8 in the first panel. The Poynting flux calcu-
lated with the density model extracted in Jacobsen (2011) based
on Bagenal (1994) is shown as dashed solid line with κ = 2.
Additionally, we use the density model by Bagenal & Delamere
(2011) with κ = 1 and κ = 2 and display the resultant Poynting
fluxes with the thin blue and the thick black line, respectively.
The magnetic field model is based on the composite model in-
cluding Jupiter’s internal field and the plasma sheet contributions
assembled in Seufert et al. (2011). For the interaction strength α
we use (17) and (58) with ΣP,c = 200 S in the center of the
plasma sheet (Saur et al. 1999; Kivelson et al. 2004). We assume
an effective radius due to Io’s ionosphere of Reff = 1.3 RIo, an
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Fig. 8. Total Poynting flux generated by the
Galilean satellites as a function of system III
longitude for different models of the plasma
density and interaction strength. Solid lines dis-
play the Poynting flux with magnetospheric
density models after Bagenal & Delamere
(2011) calculated with two different assump-
tions of the interaction strength α controled
by κ = 1 (thin blue) and κ = 2 (thick black).
The dashed line displays the Poynting flux
for individual magnetospheric plasma models,
where the dashed black lines are calculated
with the full expression given in (53), while the
dashed green and the dashed red lines repre-
sent upper and lower limits when condition (56)
is met. The grey area shows cases where the
interaction is expected to be super-Alfvénic,
i.e. MA > 1. More details see explanations in
the main text. Results are discussed for each
satellite individually in Sects. 3.1.1 to 3.1.4.

average mass for the torus plasma of 22 amu, and Θ ≈ 0 (Saur
et al. 1999; Kivelson et al. 2004).

Average values for the Poynting flux are on the order of ∼1×
1012 W. These values can be compared with Hubble Space
Telescope (HST) observations. The observed intensities of Io’s
footprint in the far-ultraviolet (FUV, i.e. 120–180 nm) typically
lie on the order of several 100 kR, where 1 kR = 103 Rayleigh
correspond to 1013 photons m−2 s−1 into 4π steradians (Clarke
et al. 2002). An emission output in the FUV of 1 kR requires
an input energy flux by energetic electrons of ∼10−4 W m−2

(e.g., Gérard et al. 2006). In the FUV, an emission of 1 kR cor-
responds to an energy flux of ∼10−5 W m−2. This implies a con-
version/efficiency factor of ∼10% of the energy input flux by
energetic electrons compared to the energy output as FUV pho-
tons. If the extreme-ultraviolet spectrum (EUV, i.e. 80–120 nm)
is included in addition to the FUV, the conversion factor is ∼20%
(Gustin et al. 2012; Bonfond et al. 2013). Io’s main footprint
displays a brightness in the FUV in the range of 5–700 kR (e.g.,
Clarke et al. 1996, 1998; Gérard et al. 2006; Wannawichian et al.
2010). The required electron input power to generate these foot-
print fluxes was derived to lie in the range 4–300 × 109 W (e.g.,
Prangé et al. 1996; Clarke et al. 1996; Gérard et al. 2006). Very
recently, Bonfond et al. (2013) reanalyzed a large set of HST ob-
servations of Io’s footprint and found a maximum vertical bright-
ness of approximately ∼2–20 × 103 kR in the EUV+FUV with
an associated energy input in the range of ∼25–200×109 W. Our
modeled Poynting fluxes lie in the range of 288−1660 × 109 W
(see Table 1). Comparison of the observationally derived energy
input fluxes with our Poynting fluxes imply that on the order
of ∼10% of the total Poynting flux of Io’s Alfvén wave/wing is
converted into accelerated electrons to generate Io’s main foot-
print. The rest of the wave energy is (a) partially reflected on
its way to Jupiter (Chust et al. 2005; Hess et al. 2010a, 2013),
is (b) partially distributed over a larger area including multiple
spots and the downstream auroral trail, and is (c) partially con-
verted into other forms of plasma energy, such as heating. But
succinctly, the overall energy in the Poynting flux originating at
Io is sufficient to generate Io’s auroral footprint.

The quoted brightness of Io’s UV footprints show significant
variability. Next to variations of an apparent random nature, a

systematic trend in the total UV intensity is due to Io’s posi-
tion with respect to the Jovian plasma sheet with typical values
varying by a factor of ∼5 from ∼50 kR to ∼250 kR according to
Wannawichian et al. (2010). Depending on the input torus model
used in our calculations, we see a very weak variability of ∼20%
(dashed line in upper panel of Fig. 8) up to a variability by a
factor of ∼5 as a function of system III longitude (solid lines in
upper panel of Fig. 8). The strongest contribution to the variabil-
ity in the locally generated Poynting fluxes is due to the variable
density with weaker contributions due to the variable interac-
tion strength α, whereas the magnetic field strength at Io varies
only modestly as a function of system III. Additional effects of
the far-field likely contribute to a stronger variability. According
to Jacobsen et al. (2007), the stronger the interaction the more
nonlinear is the reflection of Io’s Alfvén waves at the electron
acceleration region or Jupiter’s ionosphere characterized by its
Pedersen and Hall conductances. For a fully nonlinear interac-
tion, the Alfvén waves are reflected back to Io within the original
Alfvén waves. In this case no multiple footprints downstream are
seen, but only a downstream tail, as the wave is reflected within
itself (Gérard et al. 2006; Jacobsen et al. 2007). Therefore the
wave energy of the multiple spots is combined, when Io is in the
center of the current sheet. Bonfond et al. (2008) report the dis-
covery of a leading spot, i.e. a precursor spot, when Io is outside
the center of the torus. When Io is in the center of the torus, the
leading spot will overlap with Io’s main spot and thus will en-
hance its brightness as well. A fraction of the wave energy at Io
will be partly reflected and filamented while traveling along the
inhomogeneous plasma densities and magnetic fields (Wright &
Schwartz 1989; Chust et al. 2005; Jacobsen et al. 2007; Hess
et al. 2010a, 2011a). The strength of the wave reflection, trans-
mission and filamentation also depends on Io’s position in the
torus and will contribute to the variably of the brightness (Hess
et al. 2013).

3.1.2. Poynting fluxes: Europa

Clarke et al. (2002) report the first observation of an auroral foot-
print of Europa with brightnesses of a few 10 kR in the FUV.
Grodent et al. (2006) measure 14 kR for the main spot, but also
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observe an auroral tail. Wannawichian et al. (2010) see varia-
tions in the FUV spot brightness between 20 and 80 kR. The total
emitted power derived by Grodent et al. (2006) is 8×108 W with
a spot size corresponding to an upper limit of 15 times the diam-
eter of Europa. Clarke et al. (2002) report energy input fluxes for
Europa’s footprint of 1−5 × 108 W.

We calculate the total Poynting flux as function of λIII

with the following parameters for three different models: we
use ΣP,c = 30 S which corresponds to αc ∼ 0.8 in the center
of the plasma sheet (Kivelson et al. 2004). We assume an exten-
sion of Europa’s interaction region of Reff = 1.3 REuropa (Saur
et al. 1998). The magnetic field is calculated similar to Io with
the model by Seufert et al. (2011). The dashed curve in Fig. 8
uses torus electron number densities from Schilling (2006) with
an average ion charge of 1.5 elementary charges and average
mass of 18 amu (Kivelson et al. 2004). We extract the ion den-
sity assembled in Schilling (2006) by an analytic expression of
the form n0+n1 sinγ(λIII−λ0), with the free parameters n0, n1, λ0

and γ. For Europa we use for the electron density n0 = 18 cm−3,
n1 = 232 cm−3, λ0 = 22.5◦, and γ = 4 based on the values in
Schilling (2006) and we use κ = 2. The solid blue and black lines
use the density model of Bagenal & Delamere (2011) with κ = 1
and κ = 2 , respectively.

The resulting total Poynting fluxes as function of system III
are shown in the second panel of Fig. 8. The total Poynting flux
clearly varies as a function of λIII with the maximum values
when Europa is in the center of the Jovian plasma sheet. Our
model results are consistent with the derived energy input fluxes
by HST of 0.1−8 × 109 W (Clarke et al. 2002; Grodent et al.
2006). We find model fluxes in the range of ∼0.1–71 × 109 W.
These observed values are on the order of ∼10% of the total
Poynting flux generated at Europa , i.e. similar to Io only a frac-
tion of the total Poynting flux is converted into electron input
energies to generate the UV emissions of the central auroral
spot. The brightness variability in our model is different for each
model. The strongest impact on the variability is due to the vari-
ability of the plasma density as a function of system III. The
variability of the local interaction strength also contributes to
the variability of the Poynting flux and the nonlinearity of the
farfield interaction similar to the discussion at Io might play a
role as well.

3.1.3. Poynting fluxes: Ganymede

Clarke et al. (2002) first observed the Ganymede footprints
in Jupiter’s ionosphere/atmosphere with a brightness of a
few 10 kR which requires an energy input of 0.1–0.5 × 109 W.
Grodent et al. (2009) derive values for the energy input in the
range of 2–15 × 109 W where the auroral footprint matches an
area with a diameter of 8–20 RGanymede. Wannawichian et al.
(2010) see brightness variations between ∼50–150 kR.

We calculate the total Poynting flux as function of λIII with
the following model parameters: we use ΣP,c = 16 S which
is 4 times higher compared to the value referenced in Kivelson
et al. (2004), but it leads to more realistic values of the po-
lar flow velocity in agreement with Jia et al. (2009). We as-
sume κ = 2. For the torus ion density, we use for the model
displayed as dashed line in Fig. 8 a similar dependency as for
Europa with γ = 4, n0 = 1 cm−3, n1 = 7 cm−3, and 14 amu
as average mass (Kivelson et al. 2004). This model can be re-
garded as an upper limit for the variability as function of sys-
tem III. The solid blue and the black lines are calculated with
density models from Bagenal & Delamere (2011) and κ = 1

and κ = 2, respectively. The magnetic field model is after Seufert
et al. (2011). Ganymede possesses an intrinsic magnetic moment
and thus a mini-magnetosphere within Jupiter’s large magneto-
sphere (Kivelson et al. 1996a; Neubauer 1998). The intrinsic
magnetic field significantly enlarges the size of the obstacle to
the flow. As discussed in Sect. 2.3 the size of the open-closed
field line area given by (57) is in case when the magnetic mo-
ment and the external magnetic field are parallel enhanced by a

factor of
√

3. Thus the effective radius of Ganymede as a source

of Alfvén waves is Reff =
√

3(Bp/Bsw)1/3RGanymede, which as-
sumes values in the range of ≈3.2−3.8×RGanymede, depending on
Ganymede’s position with respect to the magnetospheric current
sheet. Thus the effective area and the resulting Poynting flux are
enhanced by roughly a factor of 10 compared to πR2

Ganymede
due

to Ganymede’s internal magnetic field.

The total Poynting flux as a function of system III is shown
in the third panel of Fig. 8 for our three different models. The to-
tal Poynting flux assumes values as high as ∼1.5 × 1011 W with
the maximum values at λIII where Ganymede is in the center of
the Jovian plasma sheet. In the center of the plasma sheet our
solution is in the range where it does not obey the condition (56)
any more. In this case we use the approximate expression for
the Poynting flux in (55) as an upper limit (dashed green curve),
and we lower sin(ΘA) in (53) (to avoid altering α) until condi-
tion (56) is met as a lower limit (dashed red curve).

The observationally derived energy input fluxes in the range
of 0.1−15 × 109 W (Clarke et al. 2002; Grodent et al. 2009)
are consistent with our model fluxes which lie in the range
of 1−149 × 109 W. Thus also at Ganymede, our predicted
Poynting flux is sufficiently large to account for the auroral foot-
print energy budget. Similarly to Io on the order of ∼10% of
the generated Poynting flux is converted into electron accelera-
tion to generate Europa’s footprint. Our predicted variability de-
pends strongly on the density model and the model of the inter-
action strength. Our model variabilities are within the observed
variability ranges by Clarke et al. (2002); Grodent et al. (2006);
Wannawichian et al. (2010). Also here similar to Io, wave re-
flection and the nonlinear feedback of the reflected waves might
additionally contribute to the variability.

3.1.4. Poynting flux: Callisto

Callisto’s footprints have not yet been fully confirmed observa-
tionally. They likely lie within Jupiter’s main auroral oval which
has a typical brightness of a few 100 kR. First observational
hints for the existence of Callisto’s footprints where presented
by Clarke et al. (2011). Here we provide predictions for foot-
print brightness and variability, as Jupiter’s main auroral oval
can shift its location due to variable internal sources and vary-
ing solar wind conditions and thus might very occasionally not
overlap with a possible footprint of Callisto.

We calculate the total Poynting flux as a function of λIII

for three different models. The dashed black line is calculated
with a similar density dependence as for Europa and Ganymede
with minimum and maximum values ranging between 0.001
and 0.5 cm−3 and an average mass of 16 amu (Kivelson et al.
2004) and apply κ = 2 for this model. The solid blue and the
black lines are calculated with density models after Bagenal &
Delamere (2011) and κ = 1 and κ = 2, respectively. We use in
the center of the plasma sheet ΣP,c = 1000 S (Kivelson et al.
2004), which corresponds to an interaction strength of αc > 0.99
(Strobel et al. 2002). The magnetic field model is after Seufert
et al. (2011). The resulting Poynting fluxes are displayed in the
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fourth panel of Fig. 8. The total Poynting flux assumes values up
to ∼5 × 109 W. Near the center of the plasma sheet (56) is vio-
lated. Thus we calculate similar to the procedure at Ganymede
an upper limit (green dashed curve) and a lower limit (red curve).
The grey area indicates cases where the interaction is super-
Alfvénic, i.e. MA > 1. The theoretical model of the Alfvén
wings by Neubauer (1980) which we apply has, however, been
developed for MA < 1. All three models predict that Callisto’s
Poynting fluxes are not maximum in the center of the cur-
rent sheet. The reason is that at radial distances of Callisto
the magnetic field strength in the center of the current sheet is
strongly reduced and even compensates the effects of the en-
hanced plasma density within the current sheet.

3.1.5. Comparison and comments

Zarka (2007) and Hess et al. (2011a) estimate values for the en-
ergies in the interaction of the satellites with Jupiter’s magneto-
sphere. Our derived values for the Poynting flux are on the same
order but somewhat smaller than those in Zarka (2007) since
the expressions in Zarka (2007) consider the energy flux into
the satellites’ ionospheres or the energies dissipated within the
satellites’ ionospheres, which are generally larger than the en-
ergy radiated away from the satellites, which we calculate here.
Hess et al. (2010b, 2013) also investigate, based on simplified
expressions for the local interaction, the variability of the lumi-
nosity of the satellites’ footprints focusing on the far-field, i.e.
the reflection and filamentation of the waves.

An additional important component which creates variability
of the footprint brightness as a function of system III, might be
the plasma properties in the region where magnetic field energy
is converted into particle acceleration. For Jupiter the auroral ac-
celeration region is thought to occur a few Jovian radii above
Jupiter’s ionosphere. In this region the density of ions and en-
ergetic electrons might vary with implications on the variability
of the footprint brightness as discussed for example in Bonfond
et al. (2007); Hess et al. (2011b).

Note that the observationally derived brightnesses and esti-
mated input fluxes for the satellites footprints by the various au-
thors where partially derived under somewhat different assump-
tion and with somewhat different analysis techniques.

Succinctly, the overall energy flux values in the Poynting
fluxes originating at the Galilean satellites are sufficient to gen-
erate their auroral footprints.

3.2. Poynting flux: Saturn’s inner icy satellites

At Saturn so far only an Enceladus footprint has been observed
by Pryor et al. (2011). The observed spot brightness in the UV
ranges from 0.45 to 1.55 kR with the size of the spots possibly
extending 20 REnceladus downstream. With the values of Table 1,
we predict a Poynting flux of ∼200 × 106 W. For this value we
assumed a maximum interaction strength and a fairly large size
of the obstacle. The value thus rather needs to be considered
an upper limit. Based on the observed brightness a footprint
size corresponding to 1.3 REnceladus with a downstream exten-
sion of 20 REnceladus would lead to an auroral electron energy
input of ∼1−4 × 106 W assuming 1 kR requires an energy in-
put of 1 × 10−4 W m−2 (Pryor et al. 2011). Thus the predicted
Poynting flux is larger and sufficient to account for the UV ob-
servations and its large extension. We note that at Enceladus
the neutral gas environment possesses a north south asymme-
try due the location of the water plume near Enceladus’ south
pole (Dougherty et al. 2006; Tokar et al. 2006). This asymmetry

in the gas generates asymmetric Alfvén wings and associated
asymmetric Poynting fluxes (Saur et al. 2007). Using the asym-
metric expressions for the electric fields derived in Saur et al.
(2007) or Simon et al. (2011a), these asymmetric fluxes can be
calculated in the same manner as in Sect. 2. Due to the electro-
magnetic coupling of Enceladus’ southern and northern hemi-
spheres (Saur et al. 2007), we expect even in the case where the
south polar plume would be located only near and “just below”
Enceladus’ south pole, still Poynting flux being radiated into the
northern hemisphere of Saturn’s magnetosphere.

Based on the values in Table 1, among the inner icy satel-
lites of Saturn, only Rhea and Dione might produce a Poynting
flux which could possibly lead to observable footprints in case
of sufficiently long exposure times. Both, Rhea and Dione have
sputtering generated atmospheres/exospheres (Saur & Strobel
2005; Teolis et al. 2010; Simon et al. 2011b) which is a root
cause for the generation of Alfvén waves. The Poynting fluxes
at the satellites of Saturn might vary as a function of time
due to varying magnetospheric properties and/or varying neu-
tral atmosphere densities caused by a time variable radiation belt
(Roussos et al. 2008; Simon et al. 2011b). Note that Simon et al.
(2012) show that the dominant part of the magnetic field pertur-
bations observed by the Cassini spacecraft near Rhea is due to
plasma absorption effect caused by the solid body of Rhea. But
independent of the root cause of the magnetic field and velocity
perturbations near planetary bodies, their resultant Alfvén wings
carry Poynting flux toward the central body.

4. Poynting fluxes at extrasolar planets

In this study we investigate the plasma environment at 850 ex-
trasolar planets1 (Schneider et al. 2011). They provide a good
statistical ensemble to investigate the possible electromagnetic
star-planet coupling at extrasolar planets.

4.1. Star, stellar wind, and extrasolar planet properties

The total Poynting flux generated at the extrasolar planets can
be calculated with (53) if the following properties are known:
the components of the unperturbed stellar wind velocity vsw, as-
sumed to be radially away from the star, the orbital velocity
of the planet vorbit, the radial and azimuthal component of the
magnetic field, Br and Bϕ in a stellar centric reference frame,
the stellar wind plasma density ρ, and the effective radius Reff

of the Alfvén wings. None of these values are measured di-
rectly, yet. Instead we use the following properties provided by
http://exoplanet.eu/: the extrasolar planets mass mexo and
radius Rexo, its orbital period Pexo and radial distance rexo from
the central star, the stellar mass m⋆, radius R⋆ and age a⋆. As
described in the following paragraphs the required properties to
calculate the Poynting fluxes can be estimated with this data.

In case the set of measured values on http://exoplanet.
eu/ is not complete for the extrasolar planets or their associated
host stars, we proceed as follows: In case either the mass mexo or
the radius Rexo of one the 850 extrasolar planets are not known,
we estimate the missing value assuming a mass density ρJ equal
to Jupiter’s interior. For some extrasolar planets there is no data
of either the radial distance rexo or the orbital period Pexo avail-
able. In these cases we calculate the missing value with Kepler’s
third law. If either the masses m⋆ or the radii R⋆, or both values
of the stars are missing, we estimate the missing values based

1 Listed until 2012, November 14 on the website
http://exoplanet.eu/
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Table 2. Overview and classification of the 850 extrasolar planets and their associated stars under consideration according to (a) stellar class and
Alfvén Mach number and (b) applied strategies when not all stellar properties to model the stellar wind are available.

Total number Number with MA < 1
(a) spectral class: B 2 1

spectral class: A 9 8
spectral class: F 94 52
spectral class: G 325 82
spectral class: K 200 58
spectral class: M 45 17
spectral class: not available 175 77

sum of all classes: 850 295

(b) calculation of Rexo with mexo and ρJ 548 99
calculation of mexo with Rexo and ρJ 39 13
calculation of Pexo with rexo and m⋆ 26 15
calculation of rexo with Pexo and m⋆ 58 27
calculation of m⋆ and R⋆ based on spectral class 50 8
calculation of m⋆ and R⋆ for unknown spectral class with ρ⊙ and R⊙ 17 14
calculation of R⋆ with m⋆ and ρ based on spectral class 134 28
calculation of R⋆ with m⋆ and ρ⊙ for unknown spectral class 28 2
calculation of m⋆ with R⋆ and ρ based on spectral class 1 0
calculation of m⋆ with R⋆ and ρ⊙ for unknown spectral class 9 6
substitution of a⋆ with a⊙ 304 100

on the stars’ spectral classes. In these cases we assume that the
stars are main-sequence stars and use the typical values for ra-
dius, mass and thus density associated with their spectral classes
as provided in Appendix G of Carroll & Ostlie (2007). In case
the spectral class is unknown in addition to an unknown stellar
mass or radius, we assume the values of the sun. Furthermore we
use the age a⊙ of the sun for unknown stellar ages. In Table 2 we
provide an overview of some classifications of the 850 extraso-
lar planets and their host stars. The table also shows how often
unknown properties had to be approximated as described in this
paragraph.

We estimate the stellar winds properties based on known
properties of the central star and a model for the evolution of
the stellar wind. Most observed extrasolar planets orbit sun like
stars. Preusse et al. (2005) compare the stellar wind model by
Parker (1958) and Weber & Davis (1967) and find that the Parker
model is generally adequate to describe the stellar wind proper-
ties around the known extrasolar planets (see also discussion in
Sect. 4.2). The plasma and field properties near extrasolar plan-
ets which orbit very close to the central star might possibly be
altered due to the local stellar field structures such as for exam-
ple due to coronal loops. In our solar system, Wang & Sheeley
(1995) approximate the solar magnetic field by a potential field
as far out as 2.5 R⊙ = 0.011 AU. Outside that region the cur-
rent sheet effects have to be considered and the field and the
flow are described by the Parker model (Wang & Sheeley 1995;
Lockwood et al. 1999). To calculate vsw, Br, Bϕ and ρ at the ra-
dial distance rexo with the Parker model, interior boundary con-
ditions are needed. These conditions are given by the measured
values m⋆, R⋆ and the unknown values temperature T⋆ of the
corona, the magnetic field B⋆ of the star, its rotation period P⋆
and the mass flow density F⋆ at its surface. In the absence of
direct measurements of the stellar corona temperatures, we as-
sume T⋆ ≈ 106 K comparable to the corona temperatures of the
sun. The magnetic field of the extrasolar planet hosting stars is
generally unknown and thus needs to be estimated. Based on the
age of the star a⋆, we estimate its rotation period after Newkirk
(1980) with the empirical relationship P⋆ ∼ (1+a⋆/τ)

0.7 and the

constant τ = 2.56 × 107 years. The magnetic field of the star B⋆
can therefore be estimated after Grießmeier et al. (2007) with the
relationship B⋆ = B⊙P⊙/P⋆ using values of the solar magnetic
field B⊙ = 1.44× 105 nT (Preusse et al. 2006) and the solar rota-
tion period P⊙ = 27 days. Because the stellar mass flow density
is generally unknown, we assume the same value as on the sun’s
surface F⋆ = 2.2× 10−10 kg s−1 m−2 (based on a particle density
of 6.6 cm−3 and a velocity of 425 km s−1 at 1 AU from Schwenn
1990).

The orbital velocities of the planets are constrained by
Kepler’s third law and contribute to the relative velocity between
the planets and the stellar winds through their azimuthal veloc-
ity vorbit (see (5)).

For calculating the energy fluxes generated in the interaction
of stellar winds with extrasolar planets, the effective radius Reff

of the Alfvén wing is required, which in turn is controled by the
planetary magnetic moment (in case it possesses one). Magnetic
moments Mexo of extrasolar planets are not known observation-
ally, yet, even though it is generally assumed that extrasolar
planets likely possess intrinsic magnetic fields (e.g., Christensen
et al. 2009). In the absence of measurements, we assume a scal-
ing law for the dipole magnetic moment of convection-driven
planetary dynamos according to Eq. (23) of Olson & Christensen
(2006), which we scale to values of Jupiter and find

Mexo = MJ

(

Rexo

RJ

)10/3

, (59)

with the magnetic moment of Jupiter MJ = 1.56 × 1027 Am2

(Connerney et al. 1982) and the equatorial radius of Jupiter RJ =

71 492 km (Lindal et al. 1981). We assume that the magnetic
moment and the stellar wind magnetic field are perpendicular
based on the majority of the configurations in the solar system,
so that ΘM = 90◦. We also assume that the extrasolar planets
possess ionospheres which lead to a strong plasma interaction
with α = 1.

A119, page 14 of 20



J. Saur et al.: Sub-Alfvénic planet star and moon planet interaction

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

200

400

600

800

1000

rexo : star distance [AU]

v 0
:
re

la
ti

ve
p
la

sm
a

ve
lo

ci
ty

[k
m

/
s]

a)
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
10

−28

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

rexo : star distance [AU]

ρ
:
p
la

sm
a

m
a
ss

d
en

si
ty

[k
g
/
m

3
]

 

 

b)

MA < 1
MA ≥ 1
solar system

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

rexo : star distance [AU]

B
0

:
m

a
g
n
et

ic
fi
el

d
st

re
n
g
th

[n
T

]

c)
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
0

30

60

90

120

150

180

rexo : star distance [AU]Θ
:
a
n
g
le

b
et

w
ee

n
v

0
a
n
d

n
o
rm

a
l
to

B
0

[◦
]

d)

Fig. 9. Solar wind properties upstream of 850 extrasolar planets un-
der consideration as a function of radial distance from the central star.
a) Relative plasma velocity between stellar wind and planet; b) plasma
density; c) magnetic field strength; d) angle Θ, i.e., deviation of mag-
netic field and relative plasma velocity from being perpendicular. Black
dots are for Alfvén Mach numbers MA smaller than one and red dots
are for MA > 1 (see also Fig. 10).

4.2. Results of statistical study

In Fig. 9, we display the undisturbed stellar wind properties near
the 850 extrasolar planets under consideration as function of ra-
dial distance from their central stars. This figure includes the
relative plasma velocity v0 between the extrasolar planet and
the stellar wind (Fig. 9a), the plasma density ρ (Fig. 9b), the
magnetic field strength B0 (Fig. 9c), and the angle Θ between
the normal to the magnetic field and the relative flow velocity
(Fig. 9d) as a function of radial distance. Note that the Poynting
flux is symmetric with respect to Θ = 90◦ (see also discussion
in Sect. 2.2). The thin solid line displays the properties of the
solar wind in the solar system. The black dots are for cases in
which the stellar wind is sub-Alfvénic, i.e. MA < 1, and the
red dots for MA > 1. In Fig. 10 we display the Alfvén Mach
numbers MA near the 850 extrasolar planets as a function of ra-
dial distance calculated from the stellar wind properties shown
in Fig. 9.

We find that the Alfvén Mach number distribution has a
roughly similar dependency as expected from the Mach number
in the solar wind shown as thin solid line in Fig. 10. The reason
is that most known extrasolar planets orbit solar like stars. As
expected MA < 1 is more likely to be met when an extrasolar
planet is close to the star. We separate the extrasolar planets in
three groups: an inner region close to the stars (rexo < 0.1 AU),
an intermediate region (0.1 AU ≤ rexo < 10 AU), and an outer re-
gion (10 AU ≤ rexo). These regions are indicated as vertical lines
in Figs. 9–11. Overall we find that 295 of the 850 planets under
consideration are exposed to a stellar wind plasma with Alfvén
Mach number MA less than one. We note that due to observa-
tional and model uncertainties and due natural temporal varia-
tions some extrasolar planets which are close to the MA = 1 line
might shift from sub-Alfvénic to super-Alfvénic interaction and
vice versa. In the inner region the probability for MA < 1 is the

highest and is met by 234 out of 303 extrasolar planets. In the in-
termediate region it is fulfilled for 39 out of 519 and in the outer
region for 22 out of 28 extrasolar planets.

For some extrasolar planets, MA lies significantly above
the solar wind reference line, which contributes to cases
with MA > 1. Most of the stars in the inner and intermediate re-
gion, where this is the case, belong to the stellar class M, which
are color coded in red in Fig. 10. M type stars have small radii
and masses compared to the sun and thus generate large stel-
lar wind velocities within the Parker model. The smaller radii
of M type stars also generate weaker stellar magnetic fields and
thus smaller Alfvén velocities. Both effects contribute, on av-
erage, to larger values of MA compared to the solar case. The
opposite holds for young-type stars. Extrasolar planets in the in-
termediate region with MA < 1 are possible in the opposite case,
i.e. for large and young stars, which have a large rotation rate
and thus a strong magnetic field (see Sect. 4.1). Yet observed
extrasolar planets in the outer regions mostly orbit very young
stars. Thus nearly all extrasolar planets in this region are, at first
glance surprisingly, subject to a sub-Alfvénic plasma interaction.
The currently most distant planet with MA < 1 is according to
our model SR 12 AB c. As will be discussed below, many of
these extrasolar planets, however, still cannot connect magneti-
cally to the host star due to unsuitable directions of their Alfvén
wings.

The total Poynting flux generated at each extrasolar planet
where the interaction is sub-Alfvénic is shown in Fig. 11 with
the color code displaying the stellar class of the central star. The
values of the total Poynting flux vary by many orders of mag-
nitude and have a general tendency to decrease with radial dis-
tance. For some of the extrasolar planets, our calculated stellar
wind properties are in a parameter space such that condition (56)
is violated. In this case, we calculate a lower limit by decreasing
the interaction strength α until condition (56) is met. These cases
are displayed as circles in Fig. 11.

Large Poynting fluxes are observed for extrasolar plan-
ets very close to the central stars and at radial distances
around 1 AU, while the lowest Poynting fluxes are achieved
for planets around 0.1 AU. Within the studied ensemble of ex-
tra solar planets, no Poynting flux arrives at the central star for
rexo � a few AU for reasons to be discussed in the follow-
ing paragraph. According to (55) the total Poynting flux is pro-
portional B3

0
ρ−1 cos2Θ. The product of B3

0
ρ−1 decreases by

roughly 15 orders of magnitude according to Fig. 9 within 0.01
and 1000 AU, which generates the decreasing trend with ra-
dial distance. But the angular deviations Θ from the flow be-
ing perpendicular to the stellar wind magnetic field also play a
pronounced role (Fig. 9d). Near 0.1–0.3 AU we find a corridor
with Θ ≈ 90◦ where the flow and the magnetic field are nearly
aligned with each other (Fig. 9d). In this corridor, cos2Θ ≈ 0
and the motional electric field vanishes. Thus no or only very
little Poynting flux is generated in the interaction. This effect is
responsible for the local minimum of the total Poynting fluxes
in the corridor between 0.1–0.3 AU displayed in Fig. 11. The
effect of a vanishing motional electric field in this corridor was
first noticed in Zarka et al. (2001) and then applied in Zarka
(2007) to calculations of the energy fluxes convected onto extra-
solar planets. Particular large Poynting fluxes are also observed
for some extrasolar planets near 1 AU. This region is outside
the “corridor” region and the flow direction and the magnetic
field direction are again sufficiently different to generate large
Poynting fluxes. The extrasolar planets in this region with the
largest Poynting fluxes orbit the largest stars of our ensemble of
stars with an interaction with MA < 1. These extrasolar planets
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Fig. 10. Alfvén Mach number MA as a function of radial distance
for the sample of 850 planets considered in this study. The spectral
classes of the extrasolar planet hosting stars are color coded. The thin
solid line represents MA in the solar wind of our solar system. Planets
with MA < 1 whose wings still do not couple to the central star are
marked with crosses (see text).

are also relative large in size and thus generate according to the
scaling law of (59) after Olson & Christensen (2006) large plan-
etary magnetic moments.

An Alfvén Mach number less than one is, however, not a
sufficient condition to establish an electromagnetic coupling be-
tween an extrasolar planet and its central star. In several cases,
marked with crosses in Fig. 10, MA is less than one, but the di-
rections of both wings point away from the star. This is the case
when the stellar wind’s azimuthal magnetic field component is
large, i.e. the Parker magnetic field spiral is sufficiently wound
up. Then the two Alfvén wings are directed away from the star.
This is for example the case for HD 11977 b as shown with the
two red wings (c+

A
and c−

A
) in Fig. 12. In the same figure, we

place a hypothetical planet at closer radial distance to demon-
strate the case when one wing points toward the star (green dot-
ted line) and thus electromagnetically couples to the star. For the
wing that couples to the star a phase lag between the exoplanet
and its “footprint” on the star is generated as discussed, e.g., in
Preusse et al. (2006) or Kopp et al. (2011). In case where MA < 1
and both wings point away from the star, the Poynting fluxes cal-
culated with the full nonlinear expression (53) consistently lead
to negative values and are thus not shown in Fig. 11.

Alfvén waves travel parallel to the magnetic field in the rest-
frame of the unperturbed plasma. The exact criterion that at least
one wing points toward the star thus reads

u0|r < uA|r, (60)

i.e., the radial component of the relative velocity between the
stellar wind and the planet u0|r needs to be slower than the radial
component of the Alfvén velocity uA|r = B0|r/

√
µ0ρ. If the stel-

lar wind is azimuthally symmetric, then the wing which points
toward (away from) the star will (not) connect to the star. For
example, if the magnetic field B0 is perpendicular to the radial
stellar wind velocity usw, then the radial component of the Alfvén
velocity is zero and both wings always point away from the star
(if vsw is directed away from the star).
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Fig. 11. Total Poynting fluxes carried in Alfvén wings as a function of
distance from the star for all 258 planets with sub-Alfvénic plasma in-
teraction which connect to the central star. The classes of the central
stars are color coded. Planets marked with a cross generate two Alfvén
wings, which are both pointed away from the star and thus do not con-
nect to the central star. For extrasolar planets where condition (56) is
met, we accordingly lower the interaction strength α and thus provide a
lower limit for the Poynting flux shown as circles.
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Fig. 12. Alfvén wings for HD 11977 b and a hypothetical planet
at closer radial distance. Both Alfvén wings (in red) generated at
HD 11977 b point away from the star and thus do not connect to it.
A hypothetical planet at closer radial distance displays one wing that
points toward the star and one wing away from it (shown in green). The
black solid line displays a magnetic field line in the stellar wind and the
dashed lines the orbital distances of the two planets.

Note, that for extrasolar planets the central body is gener-
ally not located purely in the upstream direction of the relative
flow because the relative velocity between the stellar wind and
the planet generally possesses an azimuthal component due to
the orbital velocity of the planet. Also note that condition (60)
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Table 3. Overview of measured, estimated and calculated properties leading to the total Poynting flux of HD 179949 b.

Measured properties Estimated properties similar to sun system Interaction properties
(http://exoplanets.eu/) (see Sect. 4.1) (see Sect. 4.1)

mexo 0.95 mJ T⋆ ≈ T⊙ 106 K vsw 162.8 km s−1

Pexo 3.09 days F⋆ ≈ F⊙ 2.17 × 10−10 kg s−1 m−2 vorbit 158.3 km s−1

rexo 0.045 AU B⋆ ≈ B⊙P⊙/P⋆ 4.31 × 105 nT Br 6511 nT
m⋆ 1.28 m⊙ Bϕ –2175 nT

R⋆ 1.19 R⊙ ρ 2.02 × 10−17 kg m−3

a⋆ 2.05 Gyr

Rexo n.a. Rexo ≈ (3mexo/(4πρJ))
1/3 0.983 RJ Mexo 1.47 × 1027 A m2

P⋆ 9 daysa

Notes. (a) Shkolnik et al. (2005); Preusse et al. (2006).

can be fulfilled if the interaction is super-Alfvénic, i.e. MA > 1.
However, the theoretical model of the Alfvén wings applied in
this paper is designed for sub-Alfvénic interaction only as the
nature of the interaction changes for MA > 1.

The geometrical situation when both wings point away from
the star is similar to the sub-Alfvénic interaction at the satellites
of Jupiter and Saturn. At these satellites the magnetic field and
the plasma flow are nearly perpendicular and thus the waves do
not travel upstream, but are inclined toward the downstream di-
rection. However, the central body, i.e. Jupiter and Saturn, are
not upstream of the satellites, but nearly perpendicular to the
flow direction and there is no (or only very little) relative veloc-
ity between the satellites and their central planets (in the radial
and latitudinal direction).

The five extrasolar planets with the largest Poynting fluxes
in decreasing order are WASP-12 b (3.1 × 1019 W), KOI-13 b
(3.0 × 1019 W), WASP-78 b (1.4 × 1019 W), HD 208527 b
(1.4 × 1019 W), WASP-33 b (1.4 × 1019 W). As supplementary
information we provide the plasma properties and the calculated
Poynting fluxes for all 850 extrasolar planets considered in this
study in a Table available at the CDS. Our estimated stellar wind
properties might be helpful for other studies of the interaction of
extrasolar planets with their surrounding plasma environment.
This table includes the names of the extrasolar planets, their dis-
tances from the host stars, the Kepler velocities of the extraso-
lar planets, the stellar wind velocities calculated with the Parker
model, the radial and azimuthal components of the stellar wind
magnetic fields, the stellar wind mass densities, the Alfvén Mach
numbers, the total Poynting fluxes generated by the interaction,
and details about the nature of the possible interactions and our
calculations. The stellar wind properties provided in the online
table are estimated near the vicinity of the extrasolar planets.
Note, in many cases stellar properties are unknown and had to be
estimated. Similarly, the existences, strengths and orientations
of the magnetic moments of extrasolar planets are unknown. We
used a scaling law to derive their magnetic moments which enter
into our calculations of the total Poynting fluxes (see Sect. 4.1).

We also investigate if the kinetic or thermal energy flux can
be positive toward the star with expressions (41) to (46) and find
this is the case for only 8 of the extrasolar planets under con-
sideration. These extrasolar planets are very close to the central
star and the stellar wind magnetic field is still nearly radial. The
resulting kinetic and thermal energy fluxes are, however, at least
three orders of magnitude smaller compared to the respective
Poynting fluxes and thus can be neglected.

In our calculations, the corona temperatures and the mass
fluxes of the stars are assumed parameters based on typical val-
ues of our sun. We also studied how the number of extrasolar

planets subject to sub-Alfvénic plasma flow and their resultant
total Poynting fluxes vary if we, for example, increase the corona
temperature to 2× 106 K or modify the coronal mass outflow
by a factor of two. Even though individual values change, we
find that the overall statistical distributions shown in Fig. 10
and Fig. 11 do not change qualitatively. For a factor of two
larger/smaller mass fluxes, for example, the average Alfvén
Mach number and the average total Poynting flux are some-
what enhanced/lowered, but still stay within the range of 1013

to 1020 W. According to Preusse et al. (2005) for a corona tem-
perature of 2 × 106 K, the differences between the stellar wind
model after Parker (1958) and Weber & Davis (1967) become
very small even for very fast rotating stars.

We note that not all of the energy in the Poynting flux gen-
erated at the extrasolar planets and traveling toward the central
star will actually reach the central star. Part of the wave energy
will be reflected/filamented in inhomogeneous plasma densities
and magnetic fields or converted into heat and particle accelera-
tion. Similar processes also occur to the Alfvén waves generated
at the satellites of Jupiter and Saturn (Wright & Schwartz 1989;
Chust et al. 2005; Jacobsen et al. 2007; Hess et al. 2010a).

The statistical study of the Poynting fluxes shows largely
varying energy fluxes by many orders of magnitude. Only a
few of the extrasolar planets generate energy fluxes on the order
of 1019 W while the majority of the extrasolar planets generates
fluxes many orders of magnitude smaller. These large variations
are even seen within close radial distances of 0.1 AU. This could
be a natural explanation why statistical studies of planet star in-
teractions such as performed by Poppenhaeger et al. (2010) and
Poppenhaeger & Schmitt (2011) do not find a statistically signif-
icant correlation between stellar emission and close-in extrasolar
planets. Therefore strong and thus directly observable planet star
coupling might only be possible for a few individual targets.

4.3. Poynting flux generated by HD 179949 b

Shkolnik et al. (2005) measure the excess energy flux in the chro-
mospheric emission ascribed to magnetic planet star coupling for
HD 179949 b to be ∼1020 W. This value can be quantitatively
compared with the calculations from Sect. 4.2. Table 3 gives an
overview of the measured and estimated values to calculate the
Poynting flux.

In the vicinity of HD 179949 b we calculate for the un-
perturbed stellar wind a relative velocity of 227 km s−1, a
plasma density of 2.02× 10−17 kg m−3, a magnetic field strength
of 6870 nT, and the deviation of the flow from being perpendic-
ular to the magnetic field of Θ = 115.7◦. If we assume a dipole
moment of HD 179949 b according to the scaling law in Eq. (59)
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Fig. 13. Total Poynting flux generated at
HD 179949 b as a function of a) stellar mass
flow density F⋆ and planetary magnetic mo-
ment Mexo and b) stellar mass flow density F⋆
and field strength B⋆ with Mexo = 12MJ. The
reference model with Mexo = 0.94MJ is calcu-
lated with scaling law (59) and labeled model;
the reference model with Mexo = 12MJ is la-
beled model⋆.

of Mexo = 1.47×1027 A m2 which corresponds to a surface mag-
netic field of 4.25 × 105 nT, we find that HD 179949 b gener-
ates a total Poynting flux of 3.36 × 1017 W. Here we assumed
that the dipole moment is perpendicular to the stellar magnetic
field (ΘM = 90◦). Our value of the total Poynting flux is a fac-
tor of 2.5 higher compared to the estimate in Lanza (2009), but
still a factor of ∼300 smaller compared to the energies quoted in
Shkolnik et al. (2005).

Because there are uncertainties of the used values, we ex-
plore parameter space to see what conditions are required to
achieve a Poynting flux on the order of 1020 W. To calculate the
total Poynting flux for HD 179949 b, we made assumptions on
four properties: the corona temperature T⋆, the mass flow den-
sity F⋆ and magnetic field B⋆ of the central star are not avail-
able without assuming solar system values and/or scaling laws.
As the existence and possible strengths of intrinsic magnetic
fields of extrasolar planets have not been observationally demon-
strated, the magnetic dipole moment Mexo of HD 179949 b is
also entirely uncertain. We thus investigate the influence of these
four parameters. A guide for the dependence of some of the pa-
rameters can be achieved by using the simplified expression for
the Poynting flux (55) and the extension of the Alfvén wing (57)
which leads to

S total ∝ B
1/3

0
M2/3

exoρ
1/2v2 . (61)

Note that the values in this expression describe the properties
near the planet and not at the star.

Our chosen stellar corona temperature already renders
Poynting fluxes near its maximum value. A factor 10 lower value
would cause a much weaker total energy flux of ∼4 × 1012 W.
Assuming higher corona temperatures would basically lower the
Poynting flux, too.

In Fig. 13a we show the total Poynting flux as function of
stellar mass flow density F⋆ and planetary magnetic dipole mo-
ment Mexo. For high mass flow densities there is a large pa-
rameter space where MA turns larger than 1. The high plasma
density ρ, resulting from high F⋆, decreases the Alfvén veloc-
ity and prohibits an energy flux directed to the central star. In a
small interval of F⋆ condition (56) is fulfilled. Here we approx-
imate S total with expression (55). For comparability the values
of our standard model are marked with a cross. In logarithmic
presentation S total is a linear function of the magnetic dipole mo-

ment as the Poynting flux scales with M
2/3
exo .

The surface magnetic field strength of HD 179949 b would
need to be a factor of 4000 stronger than at Jupiter to ex-
plain a Poynting flux of 1020 W. Christensen et al. (2009) argue
that extrasolar planets can have a magnetic field with a surface

strength of 5–12 times the field strength of Jupiter. Using a fac-
tor of 12 the Poynting flux can not reach an order of 1020 W
even with the assumption of a higher mass flow density. If F⋆ is
a factor 10 higher than on the sun, the planetary magnetic mo-
ment still has to be a factor 500 stronger to produce a Poynting
flux consistent with the energy fluxes quoted in Shkolnik et al.
(2005). Because this is a rather unrealistic magnetic moment we
look for other options to simulate the measurements. Varying B⋆
in our calculations linearly changes the stellar magnetic field
near the extrasolar planet B0 and yields a weakly increasing en-
ergy flux with stronger magnetic fields (see Fig. 13 and Eq. (61)).
The influence of B⋆ is too weak to achieve an order of 1020 W.
The magnetic field would need to be a factor 100 stronger to
reach only a slightly higher energy flux of ∼1018 W. Note, our
expressions for the Poynting fluxes even yield a weaker depen-
dence on B0 compared to previous estimates with more sim-
plified expressions of the local energetics (e.g., Lanza 2009).
Figure 13b shows the dependency of the Poynting flux from
stellar mass flow density F⋆ and magnetic field B⋆. To avoid
exotic planetary properties, we set the magnetic dipole moment
of HD179949 b equal to 12 times the field strength of Jupiter
for this calculation. Next to this assumption F⋆ and B⋆ both still
have to be at least a factor 100 higher, which is rather unlikely.
Zarka (2007) and Lanza (2009) also come to similar conclusions
that the observed fluxes by Shkolnik et al. (2005) require large
or unrealistically large planetary and stellar fields, respectively,
if the only energy source is the energy of the local interaction.

We also note that additionally not all the energy in the
Poynting fluxes will be fully delivered to the star as the Alfvén
waves experience filamentation and probably also scattering in a
possibly turbulent stellar wind.

If the energy flux in the star planet interaction at
HD 179949 b is indeed as strong as estimated by Shkolnik et al.
(2005), then energy releases in coronal loops as suggested by
Lanza (2009) might be an additional mean to produce the re-
quired energy. These releases, however, will be triggered and
the associated planet star coupling will be energetically supple-
mented by the Alfvén waves launched at the planets calculated
in this paper.

5. Conclusions and discussion

In this work we derive expressions for the Poynting flux in sub-
Alfvénic plasma interaction, which can be applied to planetary
moons in the outer solar system, but also to the coupling between
extrasolar planets and their central stars. The expressions are cal-
culated based on full nonlinear solutions of shear Alfvén waves
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within the framework of MHD (Neubauer 1980). We also pro-
vide simplified expressions for the total Poynting flux for small
Alfvén Mach numbers (see Eqs. (54) or (55)), which are “user
friendly” applicable, compared to our full expressions. Our ex-
pressions provide values for the Poynting flux generated near
the planetary obstacles and thus likely present upper limits for
the energy fluxes deposited into the central bodies since a frac-
tion of the wave energy might be partially reflected or dissipated
while traveling to the central bodies.

The flux values calculated in this work are consistent with
footprint brightnesses observed at Jupiter’s moons Io, Europa,
and Ganymede and Saturn’s moon Enceladus. We also model
how the Poynting fluxes generated at the Galilean satellites vary
as a function of system III in Jupiter’s magnetosphere.

We perform a statistical analysis on the existence and
strength of magnetic planet star coupling based on all extraso-
lar planets known until 2012 November 14. We find that 295
of 850 extrasolar planets are embedded in a sub-Alfvénic, i.e.
in an MA < 1 plasma environment. This is, however, only a
necessary but not a sufficient condition that the Alfvénic inter-
action can transport energy upstream to the star. An additional
requirement is that one of the two Alfvén wings generated in the
interaction has a directional component toward the central star.
This reduces the number of extrasolar planets within our ensem-
ble which can magnetically couple to the star to 258. We find
that the total Poynting fluxes generated at extrasolar planets in
generally strongly decrease as a function of the planets distance
from the central star within the first 0.1 AU. A local minimum
of the flux is found near 0.1 AU because the local stellar wind
magnetic field and the relative plasma velocities are often nearly
parallel at theses distances (Zarka 2007).

Our modeled energy flux generated by HD 179949 b is more
than two orders of magnitude smaller compared to the ∼1020 W
derived by Shkolnik et al. (2005). Only with rather exotically
strong magnetic fields of the star HD 179949 and its companion
values as derived by Shkolnik et al. (2005) can be achieved. The
maximum modeled energy fluxes of our statistical study are on
the order of 1019 W and thus still an order of magnitude smaller
than the values derived by Shkolnik et al. (2005). If indeed ob-
servable planet star interaction requires energy fluxes on the or-
der of 1020 W, then further energy sources are likely necessary.
For example, the energy flux in the Alfvén waves originating at
the extrasolar planets might trigger magnetic energy releases in
coronal loops as suggested by Lanza (2009). In this case, still
a threshold energy flux will be needed to trigger the additional
release of coronal energy.

Our statistical analysis shows that the energy fluxes within
the subset of extrasolar planets with MA < 1 vary by many
orders of magnitudes even for the close-in extrasolar planets
within 0.1 AU. Our findings might provide a natural explanation
why statistical studies based on observations by Poppenhaeger
et al. (2010) and Poppenhaeger & Schmitt (2011) find no sta-
tistical correlation between X-ray and optical luminosity of the
stars and close-in extrasolar planets, but do not rule out the ex-
istence of electromagnetic planet star interaction for individual
extrasolar planets.
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