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ABSTRACT

We report our results from a set of high-resolution, two-fluid, non-linear simulations of the magnetized Rayleigh Taylor instability
(RTI) at the interface between a solar prominence and the corona. These data follow results reported earlier on linear and early non-
linear RTI dynamics in this environment. This paper is focused on the generation and amplification of magnetic structures by RTI.
The simulations use a two-fluid model that includes collisions between neutrals and charges, including ionization and recombination,
energy and momentum transfer, and frictional heating. The 2.5D magnetized RTI simulations demonstrate that in a fully developed
state of RTI, a large fraction of the gravitational energy of a prominence thread can be converted into quasi-turbulent energy of the
magnetic field. The RTI magnetic energy generation is further accompanied by magnetic and plasma density structure formation,
including dynamic formation, break-up, and merging of current sheets and plasmoid sub-structures. The flow decoupling between
neutrals and charges, as well as ionization and recombination reactions, are shown to have significant impact on the structure formation
in a magnetized RTI.
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1. Introduction

The Rayleigh Taylor instability (RTI) occurs in a number
of astrophysical contexts when a heavier fluid is acceler-
ated against a lighter one. In the Sun, the RTI is routinely
detected in high-resolution observations of solar prominences.
This instability manifests itself as small-scale upflows and down-
flows at the interface between prominences and the corona
(Berger et al. 2017). Several numerical models of the magnetic
RTI for solar conditions have been reported in the literature (see
e.g., Hillier et al. 2012a,b; Keppens et al. 2015; Terradas et al.
2016). These models, carried out under a magnetohydrody-
namic (MHD) approximation, allowed us to access the non-
linear stages of the instability and study the plasma mixing and
reconnection, along with the associated dynamical events.

We note, however, that solar prominences are composed of
partially ionized chromospheric material, which is much denser
and cooler than the surrounding corona (Labrosse et al. 2010).
The collisional timescale between neutrals and charges in promi-
nences is comparable to the hydrodynamic timescale. Therefore,
single-fluid MHD modeling of prominence RTI is not sufficient
to describe the physics at small scales and multi-fluid models of
RTI are required. In our recent work (Popescu Braileanu et al.
2021a,b), RTI was modeled in the two-fluid approximation in
a configuration initially proposed by Leake et al. (2012). These
simulations have demonstrated how the RTI cut-off can be
affected by ion-neutral effects and have shown the complex non-
linear dynamical phenomena due to a decoupling between the
charged and neutral components. The aim of the current paper
is to study in detail the dynamics and the structure formation
associated with non-linear magnetized RTI development.

The impact of the magnetized RTI dispersion relation for
a given system on its non-linear development in a single-fluid
approximation has previously been studied by Hillier (2016).
During the non-linear phases of the instability, the in-plane mag-
netic field lines are stretched and the field is amplified (Jun et al.
1995; Zhou et al. 2021), as the mixing of the fastest grow-
ing modes becomes turbulent. The magnetic energy dominates
at small scales (Hillier 2016), where the dynamics becomes
increasingly important as the nonlinear phase evolves; these
are also the scales most impacted by the two-fluid ion-neutral
effects.

The turbulent mixing of the magnetized plasma leads to mag-
netic field lines of opposite polarity being brought together by
the flow, leading to the creation of current sheets and mag-
netic reconnection (Cowley et al. 1997). Because the value of
the Ohmic resistivity coefficient in the solar corona is very small,
this non-ideal effect is only relevant at very small scales, where
it is possible to have very high values of current density concen-
trated in thin current sheets (Hornig & Priest 2003). Observa-
tions have shown bidirectional jets emerging from null points in
the corona and photosphere (Schmieder et al. 2022; Schmieder
2022), as well as in prominences (Hillier & Polito 2021), with
velocities similar to the Alfvén speed, as is consistent with basic
reconnection theory. The current sheets can become unstable,
creating secondary magnetic structures often referred to as plas-
moids (Shibata & Tanuma 2001).

There have been a number of studies where magnetic recon-
nection was investigated using a two-fluid ion-neutral model
under controlled and idealized setups. It has been demon-
strated that when ions and neutrals are allowed to have indepen-
dent dynamics, they can collisionally decouple in inflows, but
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remain coupled in outflows (Leake et al. 2012). Two-fluid effects
have been shown to increase the reconnection rates compared
to a classical Sweet-Parker model (Leake et al. 2012; Ni et al.
2018a) in some collisionality regimes. The incomplete colli-
sional coupling between charges and neutrals creates thinner
current sheets relative to the single-fluid MHD approximation,
as only the charged particles are influenced by the magnetic
forces on scales below the neutral-ion collisional mean free path.
The two-fluid simulations show faster thinning of the current
sheets and increased growth of the plasmoids compared to the
MHD case (Murtas et al. 2021). The formation of plasmoids
in the current sheet, as well as to some extent the Hall effect,
also enhance the reconnection rates (Leake et al. 2013; Ni et al.
2018a; Ni & Lukin 2018); while ionization-recombination reac-
tions and radiative losses can have significant impact on the ther-
modynamic properties of a reconnecting current sheet (Ni et al.
2018a).

We note that the vast majority of the numerical magnetic
reconnection studies cited above have focused on exploring the
physics of a single pre-formed reconnection region; or a mag-
netic configuration pre-configured to form a single reconnection
region. Here, we explore a different situation where the recon-
necting current sheets are naturally created by the dynamics
associated with the RTI. To our knowledge, this is the first explo-
ration of self-consistently emergent turbulent magnetic recon-
nection in the two-fluid partially ionized regime associated with
the RTI in solar prominences.

In the following sections, we describe a high-resolution sim-
ulation of a RTI in a 2.5D geometry with parameters correspond-
ing to a solar prominence thread1. The magnetic field, of an
approximate strength of 10 G, is directed out of the perturba-
tion plane, inclined by 1◦, and sheared over 1 Mm scale. There
is a smooth transition between the prominence thread and the
corona. The two-fluid equations and the detailed initial condi-
tions are presented in Sect. 2. We describe the overall dynamics
of the RTI and the magnetic field amplification in Sect. 3. We
analyze the formation of reconnection current sheets, secondary
plasmoid instabilities, and the resulting spectra of magnetic and
plasma density structures in Sect. 4. We present our conclusions
in Sect. 5.

2. Description of the problem

The two-fluid equations solved numerically by the Mancha3D-
2F code are (Popescu Braileanu et al. 2019):

∂ρn
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1 A structure that is thin in one dimension becomes a sheet in a 2.5D
geometry; and, in fact, some of the threads observed in prominences
might be sheets projected in the plane of sky.
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where we note that we utilize the ideal Ohm’s Law for evolv-
ing the magnetic field. The collisional terms, S n, Rn, and Mn,
which appear in the continuity, momentum, and energy equa-
tions, respectively, are as follows:
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Expressions for Γion and Γrec as functions of ne and Te are
given in Voronov (1997), Smirnov (2003). Their expressions as
they are implemented in Mancha3D-2F are presented in the
appendix in Popescu Braileanu et al. (2019):

Γrec ≈
ne
√

T ∗e
2.6 × 10−19; s−1, (3)

Γion ≈ neA
1

X + φion/T ∗e

(
φion

T ∗e

)K

e−φion/T ∗e ; s−1, (4)

where φion = 13.6 eV, T ∗e is the electron temperature in eV, A =
2.91 × 10−14, K = 0.39, and X = 0.232.

The collisional parameter α combines the elastic collisions
and the charge-exchange interactions:

α = αel + αcx. (5)

The elastic collisions include both collisions between ions and
neutrals and between electrons and neutrals:

αel =
min

mn
2

√
8kBTcn

πmin
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men

mn
2

√
8kBTcn

πmen
Σen. (6)

In Eq. (6), Tαβ = (Tα + Tβ)/2 is the average temperature and
mαβ = mαmβ/(mα + mβ) is the reduced mass of particles α and β.

The charge-exchange (elastic) collisional parameter between
particles of species α (ions) and particles of species β (neutrals),
is approximately expressed as (see, e.g., Meier & Shumlak
2012):
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with:
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Σcx = 1.12 × 10−18−7.15 × 10−20ln(Vcx
0 ), (8)
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where vTα, and vrelαβ are the thermal velocity of particles of
species α, and the module of the relative velocity between parti-
cles of species α and particles of species β, respectively:

vTα =

√
2kBTα

mα

vrelαβ =| uα − uβ | . (9)

For the simulation presented in this paper, we considered the
viscosity of neutrals and charges and the thermal conductivity of
the neutrals. The viscosity is included in the pressure tensor:

p̂α = pαI − τ̂α, (10)

where the elements of the viscosity tensor are:

ταi j = ξα

(
∂vαi

∂x j
+
∂vα j

∂xi

)
. (11)

The viscosity and thermal conductivity coefficients are
expressed as (derived by Braginskii 1965):

ξα =

√
πkBTαmα

4Σαα
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√
πkBTα

mα

1
4Σαα

, (12)

and depend only on the temperature. The collisional cross sec-
tions used were: Σnn = 2.1 × 10−18 m2, Σin = 1.16 × 10−18 m2,
and Σen = 10−19 m2. For the viscosity of the charges, only ion-
ion collisions are taken into account: Σii = 40π

3

(
e2

4πε0kBTc

)2
, where

e is the elementary charge and ε0 the permittivity of free space.
The setup of the prominence thread simulation is described

as L1-WN in Table 1 in Popescu Braileanu et al. (2021a). The
numerical box of a size 2 × 8 Mm is covered by 2048 × 8192
grid points, which is a four times higher resolution than in our
previous work. For completeness, we repeat the initial conditions
here (Popescu Braileanu et al. 2021a; Leake et al. 2014):

ni0 = n0 exp
(
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)
, (13)
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)
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T0 = Tb f (z), (15)
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1
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2
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) ]}0.5

, (16)

pn0 = nn0kBT0,

pc0 = 2ni0kBT0, (17)

where the ion number density at z = 0, n0 = 1015 m−3, the peak
neutral number density reached at z = L0/2, is nn00 = 1016 m−3,
the background temperature of the corona, Tb = 2.02 × 105 K,
the neutral number density corresponding to the corona temper-
ature (Tb), nnb = 3.5 × 109 m−3, B00 = 10−3 T, and the charges
gravitational scale height, Hc = 2kBTb/(mHg). The characteristic
length scale is L0 = 1 Mm. The plasma βp = 2n0kBTb/(B2

00/2µ0)
is calculated at z = 0, using B00 as the value of the magnetic
field, and has a value of βp ≈ 1.4 × 10−2.

The temperature profile, shown in Eq. (15), is described
using the function f (z):

f (z) =
cosh2

(
z

L0
− 0.5

)
(

z
L0
− 0.5

)2
+ Lt

, (18)

with the value of Lt = 20 chosen so that the temperature is clos-
est to the values observed in the Sun and the ionization fraction
ξi = ρc/(ρc + ρn) = 0.091 remains small (see Leake et al. 2014).

The sheared magnetic field is contained initially in the xy
plane, with the variation only in the z-direction:

Bx0 = B0sin(θ), By0 = B0cos(θ), with:

θ(z) = tanh
(

z
Ls

)
θ0 × π/180, (19)

where the values used in the simulation are Ls = 1 Mm and θ0 =
1◦.

The boundary conditions are periodic in the x-direction. In
the z-direction, we use antisymmetric boundary conditions for
the vertical velocity of charges and neutrals and symmetric for
the rest of the variables. We note that the boundaries in the
z-direction are located sufficiently far from the prominence
thread so as not to impact the dynamics of the simulation.

3. Magnetized RTI dynamics and magnetic field
amplification

We show, in Fig. 1, the time evolution of the Rayleigh-Taylor
instability from the early non-linear through the fully developed
phase. Non-linear development of the RTI leads to formation
of downflows (spikes) and upflows (bubbles). The mass density
of the charges (top row) and the mass density of the neutrals
(bottom row) show similar isodensity contours, with regions of
high neutral density corresponding to regions of low density of
charges. As bubbles and spikes form, the in-plane magnetic field
lines are dragged and stretched by the motion of the plasma. This
is shown in the top panels of Fig. 1, where the magnetic field
lines are plotted over the colormap of density of the charges.
We observe the field lines to follow the isodensity contours and
observe a significant increase in the magnitude of the in-plane
field (illustrated as the density of field lines), enveloping the
spikes and upflows over time. Around the time of 534.5 s (mid-
dle panels), we can observe that two bigger drops are brought
together by the flow and start merging. This merging results
in formation of one single spike, visible in the last two pan-
els, which has a complex internal structure. In particular, we
can observe a formation of current sheets and plasmoids. One
of the bigger plasmoids is clearly visible at the last panel as a
dark (bright) circular structure in the charged (neutral) density
images, shown at the top and bottom, respectively. It is filled
with the hotter and more ionized coronal-like material.

The large-scale structures developed by the instability drag
the in-plane magnetic field lines and we expect the in-plane mag-
netic energy to be concentrated around these structures. The gen-
eration of in-plane magnetic energy by the RTI is quantified in
Fig. 2. The left-hand side panel of Fig. 2 shows the horizontal
average of the out-of-plane magnetic energy, 〈Em

y 〉x
, (solid lines,

numbers on the left axis) and in-plane magnetic energy, 〈Em
xz〉x,

(dotted lines, numbers on the right axis) as a function of height
for the same time moments as in Fig. 1. We observe that the
amount of in-plane magnetic energy rapidly grows as the RTI
develops, with concentrations of energy immediately above and
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Fig. 1. Snapshots of the non-linear evolution of the RTI at t = [318.7 s, 437.9 s, 534.5 s, 598.1 s, 612.9 s] for (x, z) ∈ [−L0, L0] × [−2.5 L0, 2.5 L0].
Top panels illustrate the evolution of the in-plane projection of the magnetic field lines overlaid on a grayscale colormap of the mass density of
the charges. The bottom panels similarly show the spatial distribution and dynamical evolution of the mass density of the neutrals. The rectangular
box marked in the t = 534.5 s panels corresponds to the zoom-in views of a reconnecting current sheet shown in Figs. 3 and B.1 below.

below the bubbles and spikes. The two peaks in the magnetic
energy, located at the height of spikes and bubbles, steepen. The
out-of-plane magnetic energy is redistributed within the promi-
nence thread region, but does not appear to change significantly.
In this last phase, the small-scale dynamics dominates the evo-
lution, similar to the results of Hillier (2016) and to the time
evolution shown in Fig. 1, where the height reached by the large
scale structures barely changes in the last two snapshots.

The right-hand side panel of Fig. 2 shows the time change
in the spatially averaged out-of-plane magnetic energy, with
respect to the initial one at t = 0, computed as 〈Em

y 〉 − 〈E
m0
y 〉

(indicated by the solid orange line). Similarly, it also shows the
time change in the in-plane magnetic energy, 〈Em

xz〉−〈E
m0
xz 〉, indi-

cated by solid green line. For comparison, the time evolution of
the sum of the kinetic energy density of charges and neutrals,
Ec + En is shown in red solid line. We note that the initial free
energy is mostly in the gravitational energy of the prominence
thread, with high neutral density supported by a small increase
in magnetic field strength at the prominence-corona interface.

The right-hand panel of Fig. 2 demonstrates that most of the free
energy goes into the generation of the in-plane magnetic field.
There is a small decrease in the amount of out-of-plane mag-
netic energy, but it does not appear to be dynamically signifi-
cant. While we observe an initial increase in the kinetic energy
of neutrals, and to a smaller extent charges, as the bubbles and
spikes accelerate, the in-plane magnetic field appears to contain
and absorb plasma flows. At the conclusion of the simulation,
we observe the increase in the magnetic energy (solid green
line) to be approximately twice the kinetic energy of neutrals
and charges (solid red line). In this last phase, as the small scale
dynamics dominates the evolution, the magnetic energy contin-
ues to grow while the kinetic energy begins to get saturated,
which is consistent with the conclusion of Hillier (2016).

To verify our conclusions and estimate the amount of numer-
ical dissipation impacting magnetic field generation, we also
calculated the work done by RTI flows against both the in-
plane, −

∫ t
0 〈W

J×B
xz 〉dt′, and out-of-plane, −

∫ t
0 〈W

J×B
y 〉dt′, com-

ponents of the Lorentz force. These two components of the
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Fig. 2. Magnetic energy. Left panel: out-of-plane magnetic energy component (solid lines, values on the left axis) and the in-plane magnetic energy
(dotted lines, values on the right axis), as a function of height at several time moments. The values are averaged in horizontal direction. Right
panel: time evolution of the spatially averaged in-plane magnetic energy (green solid line), out-of-plane magnetic energy (orange solid line), and
the sum of the kinetic energies of charges and neutrals (red line), taken with respect to t = 0 values. Green dotted and orange dotted lines show the
force working against the Lorentz force by the in-plane and out-of-plane magnetic field components, correspondingly.

work are computed as W J×B
xz = Jy

(
Bzvcx − Bxvcz

)
and W J×B

y =

By
(
Jxvcz − Jzvcx

)
, with W J×B = F · uc = W J×B

xz + W J×B
y . The

results of these calculations are shown as green dotted line (for
Wxz) and orange dotted line (for Wy) in the right panel of Fig. 2.
For both components, we observe that the corresponding mag-
netic energy curve shows slightly smaller values. This difference
is due to the numerical magnetic diffusivity, as discussed below
and quantified in Appendix A.

4. Formation of current sheets, magnetic, and
plasma structures

The magnetic field is frozen into the plasma fluid at large scales
and the non-linear interaction between the spikes brings field
lines of opposite polarity close to each other, thus creating cur-
rent sheets. At small scales, magnetic diffusivity acts to recon-
nect the magnetic field lines.

We recall that the simulations described here, and given in
Popescu Braileanu et al. (2021a,b), do not include an explicit
resistivity term in the Ohm’s Law and the magnetic diffusiv-
ity is numerical. The functional form of the numerical diffusiv-
ity and the value of the corresponding coefficient in the present
Mancha3D-2F implementation are described in Appendix A.
In particular, we estimate that numerical magnetic diffusivity
within the observed current sheets for the simulation described
in this paper is more than an order of magnitude greater than
the physical diffusivity due to Spitzer resistivity would be.
Thus, given the practical limitations of a numerical simula-
tion, we are justified in omitting the resistivity term from the
Ohm’s Law.

Figure 3 shows the evolution of charged fluid density in the
window drawn in the middle panels of Fig. 1, which captures the
two merging spikes. The current density contours are overplot-
ted and we observe formation of current sheets associated with

diffusion of the magnetic field. As the system evolves, the cur-
rent sheets repeatedly elongate and break up, leading to the for-
mation of smaller secondary magnetic structures. The series of
snapshots in Fig. 3 documents at least five such instances, with
the resulting small plasmoids themselves merging and several
joining into a larger one seen at the bottom of the window. The
critical length-to-width ratio of the current sheets before they
break up consistently appears to be ≈20. We also observe that
the merging plasmoids lead to formation of not only magnetic
but also density structures, with the electron density in the large
resulting plasmoid significantly exceeding the ambient coronal
electron density prior to RTI development.

As the spikes filled with largely neutral material attempt to
merge, the Lorentz force slows down the charged particles across
the field lines while the neutrals are not affected by the magnetic
field. The decoupling in velocity between charges and neutrals
is shown in Fig. 3 by orange arrows and appears largest around
the edges of the spikes and across the current sheet.

In order to study a reconnecting current sheet in more detail,
we chose a moment of time when a single current sheet is clearly
defined. We choose time t = 534.5 s, which corresponds to the
second snapshot in the sequence shown in Fig. 3. We then project
different quantities across the current sheet as shown in the 1D
profiles in Fig. 4. We note that the location and extent of the pro-
jection are shown in Fig. B.1 (see the dashed red line labeled “⊥”
in Fig. B.1). The projection was calculated to be in the direction
perpendicular to the current sheet.

The 1D profiles capture the outer inflow region of the recon-
nection current sheet, showing the two spikes consisting mainly
of neutral material approaching each other. This is reflected in
panel a of Fig. 4, with the neutral density shown with the dashed
line being larger outside the current sheet, but diminishing within
the current sheet with the plasma becoming close to fully ion-
ized. The edges of the spikes become ionized while moving into
the much hotter corona and this fact is reflected in the two small
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525.2 s 534.5 s 542.4 s 547.9 s

553.5 s 559.1 s 564.6 s 569.8 s
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Fig. 3. Snapshot sequence of dynamic evolution of a reconnecting current layer with recurring plasmoid formation is shown with color contours
of the out-of-plane current density Jy and arrows showing difference in the in-plane flow between charges and neutrals (uc − un)xz plotted over
a colormap of the mass density of charges. The snapshot window is illustrated in the t = 534.5 s panels of Fig. 1 and has coordinates (x, z) ∈
[−0.4 Mm, 0.1 Mm] × [−1.4 Mm, −0.7 Mm]. An arrow with length of 50 km corresponds to a speed difference of |(uc − un)xz| = 128 m s−1.
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Fig. 4. Profiles across a reconnecting current sheet at t = 534.5 s along the cut marked with the dashed blue line, labeled “⊥” in left panel of
Fig. B.1 and centered with the 0 location along the cut to correspond to the X-point location in Fig. B.1. The panels show (a) mass density of
neutrals (dashed orange line) and charges (solid blue line); (b) the flow velocity along the direction of the cut for the charges (solid blue line, left
axis) as well as the relative drift between charges and neutrals (dashed red line, right axis); (c) the in-plane magnetic field component normal to
the cut and along the current sheet; (d) the out-of-plane current density Jy; and (e) the out-of-plane magnetic field By. Panel f shows the calculated
ideal electric field Ey = −ŷ · [(uc − u

X
c ) × B] in the frame of reference of the charged fluid at the X-point (solid black line), and the ŷ-component

of the effective dissipative electric field, η6µ0∇
4 Jy, present due to numerical dissipation (dashed green line). The width of the reconnection current

sheet is measured to be λJ = 5.323 km as the full width at half max of the Jy profile in panel d.

peaks in the charged density outside the current sheet, shown
with the solid line in panel a.

Panel b of Fig. 4 shows that plasma is flowing into the cur-
rent sheet from both left and right, while the overall motion of
the spikes downwards and to the left leads to the drift of the
whole current sheet system. This inflow is driven by the neutral
pressure gradients associated with the density profile shown in
the panel a. The decoupling in velocities, shown with the dashed
line in the panel b is significant, eventually making up more than
20% of the inflow velocity. We note that the symmetric nature
of the decoupling centered at the current sheet confirms that the
decoupling is indeed associated with the reconnection process.
The neutrals, which are dominant in the spikes, are flowing into
the current sheet faster, making the decoupling velocity between
charges and neutrals point outwards in the current sheet.

The reversal of the reconnecting component of the magnetic
field is illustrated in the panel c and the magnitude of the recon-
nection current, Jy, in the panel d of Fig. 4. The width of the
reconnection current sheet, measured as the full width at half
maximum of Jy to be λJ = 5.323 km is similar to the collisional

mean-free path between ions and neutrals, λin = 2 km, calcu-
lated with the value of the plasma parameters at the reconnection
point. This confirms that the two-fluid effects are expected to be
important. We note that the reconnecting field of ≈5 × 10−5 T
is 5% of the out-of-plane “guide” magnetic field shown in the
panel e. We also note that the guide field peaks at the center
of the reconnection current sheet. An estimate of the variation
in the reconnecting and guide field components of the magnetic
field from the panels c and e shows that the magnitude of the
magnetic field strength is approximately constant across the cur-
rent sheet. Thus, while the in-plane and out-of-plane magnetic
field components both have spatial structure on the current sheet
scales, the magnitude of the B field appears to have less structure
on the smallest scales.

Panel f of Fig. 4 shows the contributions to the out-of-plane
component of the electric field in the frame of reference of the
moving current sheet: the ideal contribution (solid black line)
that drives the reconnection process and the non-ideal contri-
bution (dashed green line) due to the numerical diffusion, esti-
mated in Appendix A, that represents the resulting reconnection

A31, page 7 of 12



A&A 670, A31 (2023)

0.10 0.05 0.00 0.05
[Mm]

0.2

0.4

0.6

0.8

1.0

1.2
1e4

vcxz [m/s]

2

0

2

4

6
1e2

vcxz vnxz [m/s]

Fig. 5. Outflow profiles along the reconnecting current sheet, the direc-
tion indicated by “‖” in Fig. B.1 at time t = 534.5 s. Blue solid line
is for the charged velocity with values indicated at the left axis, red
dashed line is for the decoupling velocity, with values indicated at the
right axis. The location of 0 on the x-axis corresponds to the location
the points marked by “X” along the current sheet in Fig. B.1.

rate. We note that the total Ey-field, namely, the sum of the two
contributions, has a minimum at the center of the current sheet,
which is typical for driven magnetic reconnection (Birn & Hesse
2007).

Figure 5 shows the outflow velocity of charges and the veloc-
ity decoupling along the current sheet at a time of t = 534.5 s. We
note that the outflow velocities are sufficiently large to be poten-
tially detectable in observations. The magnitude of the outflow is
comparable to the Alfvén speed, vA ≈ 2 × 104 m s−1, calculated
using the value of the reconnecting field of 5 × 10−5 T and the
value of density of 4× 10−12 kg m−3. We observe that the decou-
pling in the outflow is approximately 2% of the outflow velocity
being much smaller than the decoupling in the inflow (by a fac-
tor of 10). This conclusion is similar to that of Leake et al. (2012,
2013), who find that the outflows are coupled, while there is sig-
nificant decoupling in the inflow.

In the simulation presented here, the reconnection current
sheet plasmoids, as the current sheets themselves, form dynam-
ically and self-consistently. As shown in Fig. 3, the plasmoids
break up the current sheets, which then reform and elongate until
they reach the aspect ratio of ≈20 and are again disrupted by
the next plasmoid formation. This process re-occurring at mul-
tiple sites as the RTI develops leads to structure formation in
both magnetic field and plasma density. The spatial correlation
between the in-plane and out-of-plane magnetic structures can
be observed in the spectra of component contributions to mag-
netic energy shown for the latest time of the simulation in the
left panel of Fig. 6. At intermediate and small scales, the content
of magnetic energy is very similar for the in-plane and out-of-
plane components, with much less content in the total magnetic
energy. This is consistent with the magnetic field profiles across
the current sheet shown in Fig. 4 and the conclusion reached
in Popescu Braileanu et al. (2021a) for small-scale magnetic
structures.

The left panel of Fig. 6 also shows the structure spectrum for
mass density of the charged fluid. A linear fit in the intermediate
scale range was carried out for the spectra of the total magnetic
energy (blue) and the charged fluid density (light green), show-
ing that the two are distinct within the standard deviation of the
fit procedure described in the figure caption. The right panel of
Fig. 6 demonstrates that towards the end of the simulation the

slopes of both spectra evolve to a stationary value, indicating
that the simulation appears to have reached a fully developed
non-linear RTI state.

5. Conclusions

The results described above demonstrate that a fully developed
RTI in a weakly sheared magnetic field background can act to
transfer the bulk of the released gravitational energy into ampli-
fication of magnetic field with associated magnetic and plasma
structure formation on multiple scales. The mixing between neu-
tral and ionized fluids leads to stretching of magnetic field lines
around RTI fingers that begin to interact via current sheets. The
current sheets, in turn, become unstable to secondary instabil-
ities that lead to further magnetic and plasma structure for-
mation, including generation and merging of magnetic flux
ropes, enhanced plasma heating, and formation of highly ionized
plasma structures with electron density significantly above ambi-
ent corona electron density. This multi-scale process is strongly
influenced by two-fluid ion-neutral effects at the smallest scales
associated with diffusion and magnetic reconnection.

As described in Popescu Braileanu et al. (2021a,b), the lin-
ear and early non-linear evolution of a magnetized RTI in a
sheared magnetic field can strongly depend on the shear scale
relative to the density gradient scale driving the RTI. In this
paper, we focus on a prominence thread configuration with the
same magnetic shear and density gradient scales. This configu-
ration allows for simultaneous growth and development of sev-
eral RT modes, which leads to robust mixing between the high
density and dominantly neutral prominence material and the low
density, magnetized, and well-ionized coronal plasma. At the
same time, due to the stabilizing presence of the sheared mag-
netic field, there is limited plasma mixing on short spatial scales,
and the potential gravitational energy initially stored in the high
density neutral material is largely deposited into the magnetic
field energy by stretching the magnetic field lines on intermedi-
ate spatial scales.

We note that the conclusions presented here are limited by
the fact that we use a 2.5D geometry. The growth of and inter-
action between different modes in a fully 3D system are likely
to introduce additional complexity to the non-linear evolution of
the RTI (Stone & Gardiner 2007; Hillier 2016).

The interaction between magnetic field structures resulting
from the early non-linear RTI development inevitably leads to
formation of current sheets and associated dissipation of the
magnetic energy. While the set of two-fluid MHD equations
evolved in this study does not include explicit dissipation terms
in the Ohm’s Law, we demonstrate that the sixth order spatial
filtering procedure applied during the temporal advance of the
PDEs in the Mancha3D-2F code is the primary source of the
dissipation of the magnetic field in current sheets.

To estimate the effective diffusion due to two-fluid effects,
we calculate the value of the ambipolar coefficient as:

ηA =
ρnB2

ρc(ρc + ρn)2α
· (20)

We note that while the ambipolar diffusion does not constitute
a formal dissipation mechanism for the magnetic field, compar-
ing the magnitude of ambipolar diffusion to that of the magnetic
field dissipation due to numerical filtering provides a good mea-
sure of the relative impact of the two. Using the value of the
magnetic field of B = 5 × 10−5 T, along with the values for the
collisional parameter α and the density of charges and neutrals
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at the center of the current sheet studied in Fig. 4, we get a value
of ηA = 2.19 Ωm. This is three orders of magnitude greater than
the value of the magnetic numerical dissipation, as calculated in
Appendix A, and reaffirms the necessity for two-fluid modeling
of the system under consideration.

Magnetic reconnection between the RTI-generated magnetic
structures observed in the simulation is driven by the convec-
tive flows of the RTI fingers and the neutral fluid pressure
gradient at their edges. It is driven two-fluid magnetic recon-
nection with a strong guide field, with neutral flows push-
ing the magnetic fields with oppositely directed in-plane com-
ponents towards each other and producing flow decoupling
between the neutral and charged inflows at ≈20% of the neu-
tral inflow speed. This neutral flow driven two-fluid reconnection
regime is distinctly different from previously considered cases of
magnetically driven reconnection in two-fluid partially ionized
plasmas (Leake et al. 2012, 2013; Murtas et al. 2021). The con-
current ionization of the inflowing neutral prominence material
due to higher ambient temperature of the plasma between RTI
fingers, as well as dissipative heating, results in current sheets
being embedded within plasma structures with a high ionization
fraction and electron density.

Unlike prior works on two-fluid guide field reconnection in a
weakly ionized plasma by Ni et al. (2018a,b), the ionization and
recombination processes do not play a dynamical role in deter-
mining the sub-structure of the reconnection current sheet in the
present work. This is due to several factors, including the ambi-
ent plasma parameters with lower ionization and recombination
rates relative to the current sheet formation time, as well as the
driven (rather than spontaneous) nature of the reconnection pro-
cess. It is also important to note that the present model does not
include optically thin radiative losses included in the two-fluid
model used by Ni et al. (2018a,b), which was shown in Ni et al.

(2018a) to strongly impact the temperature and density current
sheet sub-structure in some plasma regimes.

The driven reconnection process results in recurring forma-
tion of small-scale magnetic flux ropes within the current sheet,
often referred to as plasmoids, when the current sheet length-
to-width aspect ratio approaches ≈20, a value that is a factor
of a few lower than that reported by Ni & Lukin (2018). While
the numerical nature of the dissipation in the present simulation
makes it difficult to generalize this result to other driven recon-
nection systems, this appears to be a robust feature of the present
system as demonstrated in Fig. 3. Further dedicated effort to
explore stability of driven current sheets in a partially ionized
plasma would be necessary to make more definitive conclusions
regarding specific current sheet aspect ratio stability thresholds.

The RTI-driven plasma and magnetic field mixing, formation
of current sheets within well-ionized plasma layers between the
RTI fingers, and the recurring formation of secondary magnetic
and plasma substructures naturally leads to the development of
a spectrum of structures at different scales. We demonstrate that
a fully developed magnetized RTI can lead to emergence of sta-
tionary power spectra for structures in magnetic pressure and
density of the charges (or electron density) in what may be analo-
gous to the inertial range in turbulence. We further show that the
power spectra for the two quantities are different, although the
interpretation of the specific power spectra obtained is beyond
the scope of this paper and stands as a subject for future works.

High-resolution observations of prominences have been
used to construct the power spectra of the structures over the
regions with RTI dynamics (Hillier et al. 2017; Freed et al. 2016;
Freed & McKenzie 2018), with the attention focused mostly on
the velocity data. Assuming observed intensity to be a proxy
for the plasma density, using different spectral lines for obser-
vations, for instance, neutral hydrogen Hα line or a line of an
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ionized element, for instance, CaIIH, we could also explore
differences in density structure power spectra for plasma ele-
ments at different temperatures. As for the magnetic field power
spectra, these require much more demanding spectropolarimet-
ric observations and inversions. However, even maps of circular
or linear polarization spectra can be used as a proxy. The next
generation of 4-m class solar telescopes (DKIST, EST) should
allow for such analyses in the future. It will help improve our
understanding of the relationship between the electron density
structure spectrum and the magnetic pressure structure spec-
trum, and it may enable identification of the range and spectrum
of magnetic structure scales present at solar prominence-corona
interfaces.
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Appendix A: Evaluation of numerical dissipation

The simulation studied in this work was performed with ide-
alized Ohm’s law and strictly zero Ohmic diffusion coefficient.
Likewise, the artificial analogues of the numerical magnetic dif-
fusivity, viscosity, and conductivity were all set to zero. The only
stabilizing method employed was the filtering. Therefore, the fil-
tering provides the numerical dissipation mechanism that allows
for dissipation of the currents and magnetic reconnection in our
model. In order to evaluate the amount of this numerical dissipa-
tion we consider the numerical details of how the filtering acts.
The filter employed in Mancha3D-2F is a sixth-order digital
filter following Parchevsky & Kosovichev (2007). It is based on
the filtering function G(k∆x) = 1 − sin6

(
k∆x

2

)
. The frequency of

application of the filter in this simulation was every 5 time steps.
If we consider that the application of the filter at a given time

step consists of changing a variable by

∂u
∂t

=
(u(x) − ufilt(x))

∆t
=

3∑
m=−3

dmu(x + m∆x)/∆t, (A.1)

where u is a variable before filtering, Bfilt is after filtering, and
∆t is the time interval between two successive application of the
filtering. The coefficients, dm, take the following values:

dm = [d−3, d−2, d−1, d0, d1, d2, d3] (A.2)
= [−1, 6,−15, 20,−15, 6,−1]/64.

Since the filter is of the sixth order, it introduces a sixth-order
dissipation, which can be related to the time-change of u as:

∂u
∂t

= ηF
6 ∆6u, (A.3)

where ηF
6 is the dissipation coefficient we are looking for.

Assuming a discrete second-order sixth derivative of u on a sym-
metric stencil along the direction x:

∆6u =
∂6u
∂x6 =

3∑
m=−3

cmu(x + m∆x)/∆x6, (A.4)

with cm = 64dm, the coefficient ηF
6 can now be evaluated as:

ηF
6 =

∆x6

64∆t
· (A.5)

In this estimate, ∆x is the size of our numerical grid. After intro-
ducing the values of ∆x and ∆t from simulations, the coefficient
of the numerical dissipation obtained using Eq. (A.5) has a value
of ηF

6 = 4.714 × 1018 m6 s−1.
In order to check the correctness of the above order of mag-

nitude estimate and to get a better understanding of the numer-
ical dissipation caused by the filtering, we computed ηF

6 from
the simulation data. For that purpose, we re-ran the simula-
tions for a short interval of time between 534.5 and 535.0 sec,
applying the filtering either every 1, 5, or 20 time steps. Using
these data, we made the linear regression between the corre-
sponding terms in the induction equation, assuming a sixth-order
dissipation,

y = ηF
6 s + c, (A.6)

where

s = ∆6B; (A.7)

y =
∂B
∂t
− ∇ × (v × B) .

The regression was made separately for the x and z compo-
nents of B, giving similar results for the ηF

6 . The results of
this calculation are shown in Figure A.1. The left panel of this
figure demonstrates a well-defined linear dependence between
y = ∂B/∂t − ∇ × (v × B) and s = ∆6B, with a very narrow scat-
ter of the data points, confirming that our numerical dissipation
is well represented by the sixth order. The value of the dissipa-
tion coefficient, obtained after the linear fit to the data points,
ηF

6 = 4.5 × 1018 m6 s−1, coincides extremely well with the order
of magnitude estimate given by the Eq. (A.5).

The right-hand side panel of Figure A.1 shows how the value
of ηF

6 , obtained after fitting the numerical data, depends on the
frequency of application of the filter (lines of different color)
and on the mode number of the structures in the simulations. In
order to obtain the dependence on the mode number, we applied
a 2D high-pass Fourier filter to y(x, z) = ∂B/∂t−∇× (v × B) and
s(x, z) = ∆6B variables calculated for a given snapshot, prior to
computing the linear regression. We retained all the modes with
a mode number above a given value n, with n as the mode num-
ber shown at the horizontal axis of the right-hand side panel of
Figure A.1. One can appreciate that the dependence of ηF

6 on the
mode number is rather weak, meaning that our numerical dissi-
pation equally affects the scales up to n = 300, namely, down
to L = 1/n ≈ 6.8 grid points. The values of ηF

6 also scale well
with the frequency of application of the filter. After we have re-
scaled the curves for the different filtering frequency, the result-
ing values vary between 4 × 1018 and 5 × 1018 m6 s−1, which
is, again, very close to our order of magnitude estimate from
Eq. (A.5).

The effects of numerical diffusivity can be compared to the
magnetic diffusivity due to the physical Spitzer resistivity at a
given spatial scale. For this purpose, we calculated the Spitzer
resistivity as η‖ = η⊥/1.96, with η⊥ as given in Huba (2007):

η⊥ = 1.03 × 10−4Zln(Λ)T−3/2
eV Ω m. (A.8)

Here, TeV is the temperature in eV units, Z = 1 in our case,
and we consider ln(Λ) = 10. Using the temperature at the center
of the current sheet T = 2.2 × 104 K, we can obtain the value
of η‖ = 2.01 × 10−4 Ω m. Comparing the sixth-order numerical
diffusivity with the physical resistivity on the current sheet scale,
we consider the length unit L as being the width of the current
sheet measured from the simulation, namely, L = λJ = 5.3 km
(see Fig. 4) and calculate η2 = ηF

6 µ0/L4 = 7.51×10−3Ω m � η‖.
We thus observe that the numerical dissipation on the current
sheet scale is more than an order of magnitude greater than the
expected physical dissipation, justifying the fact that the latter
has been neglected in the simulation.

As an additional check on the numerical accuracy of the
presented results, we measured the spatial average of the abso-
lute value of the divergence of the (in-plane) magnetic field
throughout the simulation. We observe that the maximum value
of this quantity normalized to Bref/L is below 4 × 10−4, where
we consider Bref = 5 × 10−5 T and L = λJ = 5.323 km to
be the magnitude of the reconnecting field and the width of
the current sheet, respectively. Thus, we consider ∇ · B to be
small enough not to impact any of the results presented in this
paper.
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Fig. A.1. Fit of the sixth order numerical diffusivity coefficient ηF
6 . Left: Scatter plot showing the dependence between the terms of the induction

equation, y = ∂B/∂t−∇× v×B (vertical axis) and s = ∆6B (horizontal axis). The intensity of the color indicated the number of spatial data points
with the given values of (s,y) in log10 units. The green line shows the linear fit to the distribution, with the value of the slope ηF

6 indicated in the
figure. Right: Dependence of the slope ηF

6 on the spatial mode number, obtained after the fitting to the simulation data (as those from the left panel)
for three simulations with different values of the filtering frequency: every 1 time step (green line), every 5 time steps (red line), and every 20 time
steps (black line). The dependence on the mode number is obtained after applying a 2D Fourier high-pass filter to y = ∂B/∂t − ∇ × (v × B) and
s = ∆6B variables in each case.

Appendix B: Image with the projection lines used
for plotting quantities across and along the
current sheet
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Fig. B.1. Snapshot of a reconnecting current sheet at t = 534.5 s with
contours denoting in-plane projection of magnetic field lines, and a col-
ormap of the density of the mass density of charges ρc. The snapshot
window is the same as in Fig. 3. The center x-point of the current sheet
determined as the location of the maximum out-of-plane current den-
sity Jy is marked with ‘X’ in the image. The dashed red line marks a cut
along and across the current sheet in the direction parallel and perpen-
dicular to the reconnecting magnetic field lines, respectively, as marked
in the figure.
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