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We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat

transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors,

the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that

irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic

reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking

behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only

affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the

near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate

the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates,

the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic

field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer

to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high

tunability can be achieved with accessible magnetic fields and very common materials like n-doped InSb or Si.

Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic

thermal emitters without the need to resort to complicated metamaterials.

DOI: 10.1103/PhysRevB.92.125418 PACS number(s): 44.40.+a, 81.05.Xj, 78.20.Ls

I. INTRODUCTION

Radiative heat transfer is a topic with numerous funda-

mental and technological implications across disciplines [1].

Presently, the investigation of radiative heat transfer between

closely spaced objects is receiving great attention [2–6]. The

basic challenges now are the understanding of the mechanisms

governing thermal radiation at the nanoscale and the ability to

control this radiation for its use in novel applications. For a

long time, it was believed that the maximum radiative heat

transfer between two objects was set by the Stefan-Boltzmann

law for black bodies. However, this is only true when objects

are separated by distances larger than the thermal wavelength

(9.6 μm at room temperature) and the radiative heat transfer

is dominated by propagating waves. When two objects are

brought in closer proximity, the thermal radiation is dominated

by interference effects and, more importantly, by the near

field emerging from the materials surfaces in the form of

evanescent waves. This was first established theoretically by

Polder and Van Hove in 1971 [7] using Rytov’s framework

of fluctuational electrodynamics [8,9]. These researchers

predicted that the NFRHT could overcome the blackbody limit

by several orders of magnitude, achieving what is referred to

as super-Planckian thermal emission. Although this NFRHT

enhancement was already hinted at in several experiments

in the late 1960s [10,11], its unambiguous confirmation

came only in recent years [12–27]. These experiments, in

turn, have triggered off the hope that NFRHT may have an

impact in different technologies such as heat-assisted magnetic
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recording [28,29], thermal lithography [30], scanning thermal

microscopy [31–33], coherent thermal sources [34,35], near-

field based thermal management [22,36–38], thermophoto-

voltaics [39,40], and other energy conversion devices [41].

Presently, one of the central research lines in the field

of radiative heat transfer is the search for materials where

the NFRHT enhancement can be further increased. So far,

the largest enhancements have been experimentally reported

in polar dielectrics [15,16,26], where the near-field thermal

radiation is dominated by the excitation of surface phonon

polaritons (SPhPs) [42]. Similar enhancements have been

predicted and observed in doped semiconductors due to surface

plasmon polaritons (SPPs) [23,27,43,44]. Recently, it has

been predicted that hyperbolic metamaterials could behave

as broadband super-Planckian thermal emitters [45–47]. Hy-

perbolic metamaterials are a special class of highly anisotropic

media that have hyperbolic dispersion. In particular, they are

uniaxial materials for which one of the principal components

of either the permittivity or the permeability tensors is opposite

in sign to the other two principal components [48]. Hyperbolic

media have been mainly realized by means of hybrid metal-

dielectric superlattices and metallic nanowires embedded in

a dielectric host [49,50]. It has been demonstrated that these

metamaterials exhibit exotic optical properties such as negative

refraction, subwavelength imaging, and focusing, and they

can be used to do density of states engineering [49,50].

In the context of radiative heat transfer, what makes these

metamaterials so special is the fact that they can support

electromagnetic modes that are evanescent in a vacuum gap,

but they are propagating inside the material. This leads to

a broadband enhancement of transmission efficiency of the

evanescent modes [46]. This special property has motivated a
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lot of theoretical work on the use of hyperbolic metamaterials

for NFRHT [51–61]. However, no experimental investigation

of this issue has been reported so far, which is mainly due

to the difficulties in handling these metamaterials. In this

sense, it would be highly desirable to find much simpler

realizations of hyperbolic thermal emitters and, ideally, with

tunable properties.

Another key issue in the field of radiative heat transfer is

the active control and modulation of NFRHT. In this respect,

several proposals have been put forward recently. One of the

them is based on the use of phase-change materials [62,63],

where the change of phase leads to a significant change in

the material dielectric function. These materials include an

alloy called AIST, where the phase change can be induced by

applying an electric field [63], and VO2, which undergoes a

metal-insulator transition as a function of temperature [62].

It has also been suggested that the NFRHT between chiral

materials with magnetoelectric coupling can be tuned by

ultrafast optical pulses [64]. Another proposal to tune the

NFRHT is to use ferroelectric materials under an external

electric field [65], although the predicted changes are rather

modest (<17%). Let us also mention that very recently it has

been proposed that the heat flux between two semiconductors

can be controlled by regulating the chemical potential of

photons by means of an external bias [66]. So, in short,

although these proposals are certainly interesting, some of

them are not easy to implement and others are either not very

efficient or they are restricted to very specific materials. In this

sense, the challenge remains to introduce strategies to actively

control NFRHT in an easy and relatively universal way.

In this work we tackle and resolve some of the open

problems described above by presenting an extensive theo-

retical analysis of the influence of an external dc magnetic

field in the radiative heat transfer between two parallel plates

made of a variety of materials. We show that an applied

magnetic field can indeed largely affect the NFRHT in a

broad class of materials, namely doped (polar and nonpolar)

semiconductors. We find that, irrespective of its orientation,

the magnetic field reduces the NFRHT with respect to the

zero-field case and we show that the reduction can be as large

as 700% for fields of about 6 T at room temperature. This

effect originates from the fact that the magnetic field not only

strongly modifies the surface waves that dominate the NFRHT

in doped semiconductors (both SPhPs and SPPs), but it also

generates broadband hyperbolic modes that tend to govern

the heat transfer as the field is increased. In particular, when

the applied field is perpendicular to the plates’ surfaces, the

semiconductors behave as hyperbolic thermal emitters with

highly tunable properties. By changing the field magnitude

one can continuously tune the system and realize situations

where (i) surface waves dominate the NFRHT, (ii) both surface

waves and hyperbolic modes contribute significantly to the

near-field thermal radiation, and (iii) only hyperbolic modes

contribute to the NFRHT and surface waves cease to exist.

On the other hand, when the field is parallel to the surfaces

the NFRHT is nonmonotonic as a function of the magnetic

field. For moderate fields, surface waves and hyperbolic modes

coexist, while for high fields the NFRHT is largely dominated

by hyperbolic modes. We emphasize that all these striking

predictions are amenable to measurements and do not require

the use of any complicated metamaterial. Thus our work offers

a simple strategy to actively control NFRHT in a broad variety

of materials and it also provides a very appealing recipe

to realize near-field hyperbolic thermal emitters with highly

tunable properties.

The remainder of this paper is structured as follows.

Section II describes the system under study and the general

formalism for the description of NFRHT in the presence of

a magnetic field. We then turn in Sec. III to the application

of the general results to the case of n-doped InSb as an

example of a polar semiconductor. We discuss in this section

both the results for different magnetic field orientations and

the realization of highly tunable hyperbolic thermal emitters.

Section IV is devoted to the case of Si as an example of

nonpolar semiconductor. Section V summarizes our main

results and discusses future directions. Finally, four appendixes

contain the technical details of the general formalism and some

additional calculations that support the claims in this paper.

II. RADIATIVE HEAT TRANSFER IN THE PRESENCE

OF A MAGNETIC FIELD: GENERAL FORMALISM

Our main goal is to compute the radiative heat transfer in the

presence of an external dc magnetic field within the framework

of fluctuational electrodynamics [8,9]. For simplicity, we shall

concentrate here in the heat exchanged between two infinite

parallel plates made of arbitrary nonmagnetic materials and

that are separated by a vacuum gap of width d; see Fig. 1(a).

The magnetic field can point in any direction and, following

Fig. 1(a), we shall refer to the left plate as medium 1, the

vacuum gap as medium 2, and the right plate as medium 3.

When a magnetic field is applied to any object, it results in

an optical anisotropy that can be described by the following

general permittivity tensor [67]:

ǫ̂ =

⎛

⎜

⎝

ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz

⎞

⎟

⎠
, (1)

where, according to Fig. 1(a), x and y lie in the interface planes

and z corresponds to the surface normal. The components

of the permittivity tensor depend on the applied magnetic

field, as we shall specify below, and on the frequency (local

approximation). Let us recall that the off-diagonal elements in

Eq. (1) are responsible for all the well-known magneto-optical

effects (Faraday effect, Kerr effects, etc.) [67]. Thus our

problem is to compute the radiative heat transfer between

two anisotropic parallel plates. This generic problem has been

addressed by Biehs et al. [68] and we just recall here the central

result. The net power per unit of area exchanged between

the parallel plates is given by the following Landauer-like

expression [68]:

Q =
∫ ∞

0

dω

2π
[�1(ω) − �3(ω)]

∫

dk

(2π )2
τ (ω,k,d), (2)

where �i(ω) = �ω/[exp(�ω/kBTi) − 1], Ti is the absolute

temperature of the layer i, ω is the radiation frequency,

k = (kx,ky) is the wave vector parallel to the surface planes,

and τ (ω,k,d) is the total transmission probability of the

electromagnetic waves. Notice that the second integral in
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FIG. 1. (Color online) (a) Schematic representation of the system

under study: two parallel plates at temperatures T1 and T3 separated

by a vacuum gap of width d . (b) Heat transfer coefficient of n-doped

InSb as a function of the gap at zero magnetic field. We show the total

result and the individual contributions of s- and p-polarized waves

(both propagating and evanescent). (c) The corresponding zero-field

spectral heat flux as a function of frequency (and wavelength) for

three different gaps.

Eq. (2) is carried out over all possible directions of k and

it includes the contribution of both propagating waves with

k < ω/c and evanescent waves with k > ω/c, where k is the

magnitude of k and c is the velocity of light in vacuum. The

transmission coefficient τ (ω,k,d) can be expressed as [68]

τ (ω,k,d)

=

{

Tr{[1̂ − R̂21R̂
†
21]D̂†[1̂ − R̂

†
23R̂23]D̂}, k < ω/c,

Tr{[R̂21 − R̂
†
21]D̂†[R̂

†
23 − R̂23]D̂}e−2|q2|d , k > ω/c,

(3)

where q2 =
√

ω2/c2 − k2 is the z component of the wave

vector in the vacuum gap and the 2 × 2 matrices R̂ij are the

reflections matrices characterizing the two interfaces. These

matrices have the following generic structure:

R̂ij =

(

r
s,s
ij r

s,p

ij

r
p,s

ij r
p,p

ij

)

, (4)

where r
α,β

ij with α,β = s,p is the reflection amplitude for

the scattering of an incoming α-polarized plane wave into

an outgoing β-polarized wave. Finally, the 2 × 2 matrix D̂
appearing in Eq. (3) is defined as

D̂ = [1̂ − R̂21R̂23e
2iq2d ]−1. (5)

Notice that this matrix describes the usual Fabry-Pérot-like

denominator resulting from the multiple scattering between

the two interfaces.

In Appendixes A and B we provide an alternative derivation

of the central result of Eq. (3) that emphasizes the nonre-

ciprocal nature of our problem. More importantly, we show

explicitly how the different reflection matrices appearing in

Eq. (3) can be computed within a scattering-matrix approach

for anisotropic multilayer systems. This approach provides, in

turn, a natural framework to analyze different issues that will

be crucial later on such as the nature of the electromagnetic

modes responsible for the heat transfer.

The result of Eqs. (2) and (3) reduces to the well-known

result for isotropic media first derived by Polder and Van

Hove [7]. In that case, the reflections matrices of Eq. (4) are

diagonal and the nonvanishing elements are given by

r
s,s
ij =

qi − qj

qi + qj

, (6)

r
p,p

ij =
ǫjqi − ǫiqj

ǫjqi + ǫiqj

, (7)

where qi =
√

ǫiω2/c2 − k2 is the transverse or z component

of the wave vector in layer i and ǫi(ω) is the corresponding di-

electric constant. Thus the total transmission can be written as

τ (ω,k,d) = τs(ω,k,d) + τp(ω,k,d), where the contributions

of s- and p-polarized waves are given by

τα=s,p(ω,k,d)

=
{

(1 − |rα,α
21 |2)(1 − |rα,α

23 |2)/|Dα|2, k < ω/c,

4 Im{rα,α
21 }Im{rα,α

23 }e−2|q2|d/|Dα|2, k > ω/c,
(8)

where Dα = 1 − r
α,α
21 r

α,α
23 e2iq2d . Throughout this work we

focus on the analysis of the radiative linear heat conductance

per unit of area, h, which is referred to as the heat transfer

coefficient. This coefficient is given by

h(T ,d) = lim
	T →0+

Q(T1 = T + 	T,T3 = T ,d)

	T
, (9)

where T is the absolute temperature that we assume equal

to 300 K throughout this work. Additionally, we define the

spectral heat flux as the heat transfer coefficient per unit of

frequency. In the following sections, we apply the general

results presented here to different materials and magnetic field

configurations.

III. POLAR SEMICONDUCTORS: InSb

The first obvious question to be answered is the following:

in which materials can a magnetic field modify the NFRHT?

Since the thermal radiation of an object is primarily determined

by its dielectric function, we need materials in which this

function can be modified by an external magnetic field,

that is we need magneto-optical (MO) materials. Focusing
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on room temperature experiments, the MO activity must be

exhibited in the midinfrared. Thus doped semiconductors,

where the MO activity is due to conduction electrons, are

ideal candidates [69]. In these materials, one can play with

the doping level to tune the plasma frequency to values

comparable to the cyclotron frequency at experimentally

achievable magnetic fields, which is an important requirement

to have sizable magnetic-induced effects in the NFRHT (see

discussion below). Moreover, in semiconductors the NFRHT

in the absence of field is typically dominated by surface

electromagnetic waves (both SPhPs and SPPs), which in turn

are known to be strongly influenced by an external magnetic

field [69,70]. Thus it seems natural to expect a magnetic field

modulation of NFRHT in semiconductors.

There is a variety of semiconductors that we could choose

to illustrate our predictions. In this section we focus on InSb

for several reasons. First, it is a polar semiconductor where the

NFRHT in the absence of field is dominated by two different

types of surface waves (SPhPs and SPPs), which allows us

to study a very rich phenomenology. Second, InSb has a

small effective mass, which enables one to tune the cyclotron

frequency to values comparable to those of the plasma

frequency with moderate fields. Finally, InSb has been the most

widely studied material in the context of magnetoplasmons and

coupled magnetoplasmons-surface phonon polaritons. Thus

the magnetic field effect in the surface waves has been very

well characterized experimentally [71–74].

A. Perpendicular magnetic field: The realization of hyperbolic

near-field thermal emitters

Let us first discuss the radiative heat transfer between two

identical plates made of n-doped InSb when the magnetic

field is perpendicular to the plate surfaces, i.e., H = Hzẑ; see

Fig. 1(a). In this case, the permittivity tensor of InSb adopts

the following form [73]:

ǫ̂(H ) =

⎛

⎜

⎝

ǫ1(H ) −iǫ2(H ) 0

iǫ2(H ) ǫ1(H ) 0

0 0 ǫ3

⎞

⎟

⎠
, (10)

where

ǫ1(H ) = ǫ∞

(

1 +
ω2

L − ω2
T

ω2
T − ω2 − iŴω

+
ω2

p(ω + iγ )

ω
[

ω2
c − (ω + iγ )2

]

)

,

ǫ2(H ) =
ǫ∞ω2

pωc

ω
[

(ω + iγ )2 − ω2
c

] , (11)

ǫ3 = ǫ∞

(

1 +
ω2

L − ω2
T

ω2
T − ω2 − iŴω

−
ω2

p

ω(ω + iγ )

)

.

Here, ǫ∞ is the high-frequency dielectric constant, ωL is

the longitudinal optical phonon frequency, ωT is the trans-

verse optical phonon frequency, ω2
p = ne2/(m∗ǫ0ǫ∞) defines

the plasma frequency of free carriers of density n and effective

mass m∗, Ŵ is the phonon damping constant, and γ is the

free-carrier damping constant. Finally, the magnetic field

enters in these expressions via the cyclotron frequency ωc =
eH/m∗. The important features of the previous expressions

are as follows: (i) the magnetic field induces an optical

anisotropy (via the modification of the diagonal elements

and the introduction of off-diagonal ones), (ii) there are

two major contributions to the diagonal components of the

dielectric tensor: optical phonons and free carriers, and (iii)

the MO activity is introduced via the free carriers, which

illustrates the need to deal with doped semiconductors. In

what follows we shall concentrate in a particular case taken

from Ref. [73], where ǫ∞ = 15.7, ωL = 3.62 × 1013 rad/s,

ωT = 3.39 × 1013 rad/s, Ŵ = 5.65 × 1011 rad/s, γ = 3.39 ×
1012 rad/s, n = 1.07 × 1017 cm−3, m∗/m = 0.022, and ωp =
3.14 × 1013 rad/s. As a reference, let us say that with these

parameters ωc = 8.02 × 1012 rad/s for a field of 1 T. Let us

point out that in this configuration, and due to the structure of

the permittivity tensor, the transmission coefficient appearing

in Eq. (2) only depends on the magnitude of the parallel wave

vector, which considerably simplifies the calculation of the

radiative heat transfer.

Let us now briefly review the expectations for the heat

transfer in the absence of magnetic field. As we show in

Fig. 1(b), the heat transfer coefficient features a large near-field

enhancement for gaps below 1 μm. For d < 100 nm this

enhancement is largely dominated by p-polarized evanescent

waves and the heat transfer coefficient increases as 1/d2

as the gap decreases, which are two clear signatures of a

situation where the heat transfer is dominated by surface

electromagnetic waves. This can be further confirmed with

the analysis of the spectral heat flux, see Fig. 1(c), which in

the near-field regime is dominated by two narrow peaks that

can be associated to SPPs (low-frequency peak) and SPhPs

(high-frequency peak), as it will become evident below. Thus

the case of InSb constitutes an interesting example where two

types of surface waves contribute significantly to the NFRHT.

Let us now see how these results are modified in the presence

of a magnetic field.

In Fig. 2(a) we show the heat transfer coefficient as a

function of the gap size for different values of the perpendicular

magnetic field. There are three salient features: (i) the far-field

heat transfer is fairly independent of the magnetic field, (ii)

in the near-field regime (below 300 nm) the magnetic field

suppresses the heat transfer by up to a factor of 3 (see inset),

and (iii) by increasing the field, the heat transfer coefficient

tends to saturate at around 6 T, although it is slightly reduced

upon further increasing the field above 10 T (not shown here).

The strong modification of heat transfer due to the magnetic

field is even more apparent in the spectral heat flux. As one can

see in Fig. 2(b), the magnetic field not only distorts and reduces

the height of the peaks related to the surface waves, but it also

generates a new peak that shifts to higher frequencies as the

field increases. This additional peak appears at the cyclotron

frequency and its presence illustrates the high tunability that

can be achieved. Notice, for instance, that for a field of 6 T the

thermal emission at the cyclotron frequency is increased by

almost three orders of magnitude with respect to the zero-field

case.

To shed more light on these results it is convenient to

examine the transmission of the p-polarized waves, which can

be shown to dominate the heat transfer for any field. We present

in Fig. 3 this transmission as a function of the magnitude of the

parallel wave vector, k, and the frequency for a gap d = 10 nm

and different values of the magnetic field. As one can see,
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FIG. 2. (Color online) (a) Heat transfer coefficient for n-doped

InSb as a function of the gap for different values of the magnetic field

perpendicular to the plate surfaces. The inset shows the ratio between

the zero-field coefficient and the coefficient for different values of

the field in the near-field region. (b) The corresponding spectral heat

flux as a function of the frequency (and wavelength) for a gap of

d = 10 nm and different values of the perpendicular field. The solid

lines correspond to the exact calculation and the circles to the uniaxial

approximation where the off-diagonal terms of the permittivity tensor

are assumed to be zero.

at low fields the transmission maxima are located around

a restricted area of k and ω, clearly indicating that surface

waves dominate the NFRHT. Notice also that their dispersion

relation is modified by the field; see Fig. 3(b). By increasing the

field, those areas are progressively replaced by areas where the

maximum transmission is reached for a broad range of k values

and, finally, the surface waves are restricted to the reststrahlen

band ωT < ω < ωL for the highest fields; see Fig. 3(d). What

is the nature of these magnetic field induced modes?

To answer this question and explain all the results just

described, it is important to realize that the off-diagonal

elements of the permittivity tensor do not play a major role

in this configuration. This is illustrated in Fig. 2(b) where we

show that the approximation consisting in setting ǫ2 = 0 in

Eq. (10) reproduces very accurately the exact results for the

spectral heat flux for arbitrary magnetic fields. This means

that the polarization conversion is irrelevant and the plates

effectively behave as uniaxial media where their permittivity

tensors are diagonal: ǫ̂ = diag[ǫxx,ǫxx,ǫzz], where ǫxx = ǫ1

and ǫzz = ǫ3. Within this approximation, which hereafter we

refer to as uniaxial approximation, it is easy to compute the

dispersion relation of the surface electromagnetic modes in our

geometry (see Appendix D). In the electrostatic limit k ≫ ω/c,

the dispersion relation of these cavity modes is given by

kSW =
1

d
ln

(

±
ǫxx −

√
ǫxx/ǫzz

ǫxx +
√

ǫxx/ǫzz

)

, (12)

with the additional constraint that both ǫxx and ǫzz must

be negative. In the zero-field limit, this expression reduces

to the known result for cavity surface modes in isotropic

materials [26]. As we show in Fig. 3, see white solid lines, the

dispersion relation of Eq. (12) nicely reproduces the structure

of the transmission maxima in those frequency regions in

which surfaces waves are allowed (ǫxx,ǫzz < 0). It is worth

stressing that this dispersion relation describes in a unified

manner both the SPPs that appear below the reststrahlen band

and the SPhPs due to the optical phonons. More importantly,

this dispersion relation tells us that the magnetic field reduces

the magnitude of the parallel wave vector of the surface waves,

which is one of one the causes for the reduction of the NFRHT.

Moreover, the analysis of Eq. (12) tells us that the magnetic

field also restricts the frequency region where the surface

waves exist. Indeed, at high fields the SPPs disappear, while

the SPhPs are restricted to the reststrahlen band, Fig. 3(d).

These two effects are actually the cause of the reduction of the

NFRHT in the presence of a magnetic field. But what about the

other modes that appear by increasing the field? Their nature

can also be understood within the uniaxial approximation. As

we show in Appendix C, the allowed values for the transverse

component of the wave vector inside these uniaxial materials

are given by qo =
√

ǫxxω2/c2 − k2 for ordinary waves and

qe =
√

ǫxxω2/c2 − k2ǫxx/ǫzz for extraordinary waves. The

dispersion of the extraordinary waves can be rewritten as

k2
x + k2

y

ǫzz

+
q2

e

ǫxx

=
ω2

c2
, (13)

a dispersion that becomes hyperbolic when ǫxx and ǫzz have

opposite signs [48]. This is exactly what happens in our case

in certain frequency regions at finite field. This illustrated

in Figs. 3(b)–3(d), where we have indicated the hyperbolic

regions defined by the condition ǫxxǫzz < 0. Notice that those

regions correspond exactly to the areas where the transmission

reaches its maximum for a broad range of k values. This fact

shows unambiguously that our InSb plates effectively behave

as hyperbolic materials. More importantly, and as it is evident

from Fig. 3, we can easily modify the hyperbolic regions

by changing the field. Thus we can change from situations

where the hyperbolic modes (HMs) coexist with both types

of surface waves to situations where the HMs dominate the

NFRHT, which is what occurs at high fields; see Fig. 3(d).

Moreover, contrary to what happens in most hybrid hyperbolic

metamaterials, we can have in a single material HMs of type I

(HMI), where ǫxx > 0 and ǫzz < 0, and HMs of type II (HMII),

where ǫxx < 0 and ǫzz > 0; see Figs. 3(b)–3(d).

Let us recall that what makes HMs so special in the

context of NFRHT is the fact that, as it is evident from their

dispersion relation, they are evanescent in the vacuum gap

and propagating inside the hyperbolic material for k > ω/c

(HMI) or k >
√

|ǫzz|ω/c (HMII). Thus they are a special

125418-5



E. MONCADA-VILLA et al. PHYSICAL REVIEW B 92, 125418 (2015)

FIG. 3. (Color online) Transmission coefficient for p-polarized waves as a function of the magnitude of the parallel wave vector and

frequency for InSb and a gap of d = 10 nm. The different panels correspond to different values of the magnetic field that is perpendicular to the

surfaces. The horizontal dashed lines separate the regions where transmission is dominated by surface waves (SPPs and SPhPs) or hyperbolic

modes of type I and II (HMI and HMII). The white solid lines correspond to the analytical dispersion relation of the surface waves of Eq. (12).

kind of frustrated internal reflection modes that exhibit a

very high transmission over a broad range of k values that

correspond to evanescent waves in the vacuum gap [46]. As

shown in Ref. [46], the number of HMs that contributes to

the NFRHT is solely determined by the intrinsic cutoff in

the transmission, which has the form τ (ω,k) ∝ exp(−2kd) for

k ≫ ω/c. From this condition it follows that the heat flux due

to HMs scales as 1/d2 for small gaps, as the contribution of

surface waves. This explains why the appearance of HMs as the

field increases does not modify the parametric dependence of

the NFRHT with the gap size. Notice, however, that in spite of

the high transmission of these HMs, their appearance does not

enhance the NFRHT because their wave vector cutoffs (beyond

which they give a negligible contribution) are clearly smaller

than the k values of the surface waves that they replace (notice

that the conditions of HMs and surface waves are mutually

excluding). Thus we can conclude that the NFRHT reduction

induced by the magnetic field is due to both the modification of

the surface waves and their replacement by HMs that, in spite

of their propagating nature inside the material, turn out to be

less efficient transferring the radiative heat in the near-field

region than the surface waves.

Let us point out that within the uniaxial approximation,

the heat transfer can be obtained in a semianalytical form. In

this case, the transmission coefficient is given by the isotropic

result of Eq. (8), where the reflections coefficients adopt now

the form

r
s,s
21 = r

s,s
23 =

q2 − qo

q2 + qo

, (14)

r
p,p

21 = r
p,p

23 =
ǫxxq2 − qe

ǫxxq2 + qe

. (15)

The uniaxial approximation is also useful to understand the

high field behavior of the NFRHT. The tendency to saturate

the thermal radiation as the field increases is due to the fact

that the cyclotron frequency becomes larger than the plasma

frequency and the last term in the expression of ǫxx = ǫ1,

see Eq. (11), progressively becomes more irrelevant. Thus the

permittivity tensor becomes field independent and the heat

transfer is simply given by the result for uniaxial media, where

ǫzz = ǫ3 has the form in Eq. (11), but ǫxx = ǫ1 does not contain

the last term in the first expression of Eq. (11). We find that the

strict saturation of the NFRHT occurs at around 20 T and there

is an intermediate regime, between 6 and 20 T, in which the

near-field thermal radiation slightly increases upon increasing

the field (not shown here), leading to a nonmonotonic behavior.

This behavior is due to an increase in the efficiency of the HMs

that dominate the NFRHT in this high-field regime.

To conclude this subsection, let us explain why the far-field

heat transfer is rather insensitive to the magnetic field. For

gaps much larger than the thermal wavelength (9.6 μm), the

heat transfer is dominated by propagating waves and, as we

show in Fig. 4, the spectral heat flux in the absence of field

exhibits a broad spectrum with a peak at around 1.5 × 1014

rad/s. Indeed, the spectrum is very similar to that of a dielectric

with a frequency-independent dielectric constant ǫ̂ = ǫ∞1̂; see

dotted line in Fig. 4. As we illustrate in that figure, the presence

of a magnetic field only modifies this spectrum in a significant

way in a small region around the cyclotron frequency. This

fact leads to a tiny modification of the heat transfer upon the
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FIG. 4. (Color online) Far-field spectral heat flux for InSb as a

function of the frequency (and wavelength) for different values of

the perpendicular field. These spectra have been computed for a gap

d = 1 m. The dotted line corresponds to the result for plates made of

a dielectric with a frequency-independent dielectric constant equal to

ǫ∞. The inset shows the corresponding ratio between the zero-field

heat transfer coefficient and the coefficient for different values of the

field.
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application of an external field. As it can be seen in the inset

of Fig. 4, the magnetic field reduces the far-field heat transfer

coefficient as the magnetic field increases, but this reduction

is quite modest and, for instance, it amounts to only 2.5% at a

very high field of 20 T.

B. Parallel magnetic field

Let us now turn to the case in which the magnetic field is

parallel to the plate surfaces. For concreteness, we consider that

the field is applied along the x axis, H = Hx x̂, but obviously

the result is independent of the field direction as long as it

points along the surface plane, as we have explicitly checked.

In this case, the permittivity tensor of InSb adopts the form

ǫ̂(H ) =

⎛

⎜

⎝

ǫ3 0 0

0 ǫ1(H ) −iǫ2

0 iǫ2(H ) ǫ1(H )

⎞

⎟

⎠
, (16)

where the ǫ’s are given by Eq. (11). Let us emphasize that

in this case the transmission coefficient appearing in Eq. (2)

depends both on the magnitude of the parallel wave and on its

direction, which makes the calculations more demanding. Let

us also say that we consider here the same parameter values

for the n-doped InSb as in the example analyzed above.

The results for the magnetic field dependence of the

heat transfer coefficient for the parallel configuration are

summarized in Fig. 5(a). As in the perpendicular case, the

far field is barely affected by the magnetic field, the near-field

thermal radiation is suppressed by the field, and at high fields

the NFRHT tends to saturates. Interestingly, it saturates to the

same value as in the perpendicular configuration. In spite of the

similarities, there are also important differences. In this case,

the NFRHT is much more sensitive to the field and a significant

reduction is already achieved at 1 T. Notice also that in this

case the heat transfer coefficient is clearly nonmonotonic and

the maximum reduction is reached at around 6 T. Finally,

notice also that the reduction is more pronounced than in the

perpendicular case and the NFRHT can be diminished by up

to a factor of 7 with respect to the zero-field case; see inset

of Fig. 5(a). This more pronounced reduction in the parallel

configuration is also apparent in the spectral heat flux, as one

can see in Fig. 5(b). Notice that also in this case there appears

a high-frequency peak that is blueshifted as the field increases.

This peak appears at the cyclotron frequency and it has the

same origin as in the perpendicular case.

Again, to understand this complex phenomenology, it is

convenient to examine the transmission of the p-polarized

waves, which dominate the NFRHT for any field. Since in this

case the transmission also depends on the direction of k, we

choose to analyze the two most representative directions. In

the first one, the in-plane wave vector k is parallel to the field,

i.e., k = (kx,0), and in the second one, k is perpendicular to

the field, i.e., k = (0,ky). The transmission of p-polarized

waves for these two directions is shown in Fig. 6 as a function

of the magnitude of the wave vector and as a function of the

frequency for different values of the field. As one can see, the

transmission exhibits very different behaviors for these two

directions. While for k ‖ H the situation resembles that of a

perpendicular field (see discussion above), for k ⊥ H it seems
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FIG. 5. (Color online) (a) Heat transfer coefficient for n-doped

InSb as a function of the gap for different values of the magnetic field

applied along the surfaces of the plates. The inset shows the ratio

between the zero-field coefficient and the coefficient for different

values of the field in the near-field region. (b) The corresponding

spectral heat flux as a function of the frequency (and wavelength) for

a gap of d = 10 nm and different values of the parallel field.

like the transmission is dominated by surface waves that are

severely affected by the magnetic field (with the appearance

of gaps in their dispersion relations). These very different

behaviors can be understood with an analysis of both the

surface waves and the propagating waves inside the material

in these two situations. In the case k ‖ H, one can show that

a uniaxial approximation, similar to that discussed above,

accurately reproduces the results for the transmission found in

the exact calculation. In this case, the permittivity tensor can

be approximated by ǫ̂ = diag[ǫxx,ǫzz,ǫzz], where ǫxx = ǫ3

and ǫzz = ǫ1. Within this approximation, the dispersion

relation of surface waves in the electrostatic limit k ≫ ω/c

is also given by Eq. (12) (see Appendix D). As we show in

Figs. 6(a)–6(c), this dispersion relation nicely describes the

structure of the transmission maxima in the regions where the

surface waves can exist (ǫxx,ǫzz < 0). On the other hand, as

we show in Appendix C, the allowed values for the transverse

component of the wave vector inside these uniaxial-like

materials are given by qo =
√

ǫzzω2/c2 − k2 for ordinary

waves and qe =
√

ǫxxω2/c2 − k2ǫxx/ǫzz for extraordinary

waves. Again, the dispersion of these extraordinary waves

is of hyperbolic type when ǫxx and ǫzz have opposite signs.

In Figs. 6(a)–6(c) we identify the frequency regions where
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FIG. 6. (Color online) Transmission coefficient for p-polarized waves as a function of the magnitude of the parallel wave vector and

frequency for InSb and a gap of d = 10 nm. In all cases the field is parallel to the plate surfaces, H = Hx x̂. The panels (a)–(c) correspond to

different values of the magnetic field for wave vectors parallel to field, k = (kx,0), while panels (d)–(f) correspond to wave vectors perpendicular

to the field, k = (0,ky). The horizontal dashed lines separate the regions where transmission is dominated by surface waves (SPPs and SPhPs)

or hyperbolic modes of type I and II (HMI and HMII). The white solid lines correspond to the analytical dispersion relation of the surface

waves of Eq. (12) in panels (a)–(c) and of Eq. (17) in panels (d)–(f).

the HMs exist with the condition ǫxxǫzz < 0, regions that

progressively dominate the transmission as the field increases.

Thus we see that for k ‖ H the situation is very similar to

that extensively discussed in the case in which the field is

perpendicular to the materials’ surfaces.

On the contrary, the situation is very different for k ⊥ H. In

this case, there are no HMs and no uniaxial approximation

can describe the situation. As we show in Appendix C,

the allowed q values are given by qo,1 =
√

ǫxxω2/c2 − k2

and qo,2 =
√

(ǫ2
yy + ǫ2

yz)ω
2/(c2ǫyy) − k2, which both describe

waves with no hyperbolic dispersion. On the other hand, the

dispersion relation of the surface waves in the electrostatic

limit is given by

kSW =
1

2d
ln

(

(ηyy − 1 + iηyz)(ηyy − 1 − iηyz)

(ηyy + 1 + iηyz)(ηyy + 1 − iηyz)

)

, (17)

where ηyy = ǫyy/(ǫ2
yy + ǫ2

yz) and ηyz = −ǫyz/(ǫ2
yy + ǫ2

yz). As

we show in Figs. 6(d)–6(f), this dispersion relation explains

the complex structure of the transmission maxima in this case.

We emphasize that this dispersion relation is reciprocal in our

symmetric geometry and for this reason we only show results

for ky > 0. Notice that this dispersion is very sensitive to the

magnetic field and already fields of the order of 1 T strongly

affect the surface waves. Notice also the appearance of gaps

in the dispersion relations, a subject that has been extensively

discussed in the case of a single interface [69,70]. Overall, the

field rapidly reduces the k values of the surface waves and re-

stricts the regions where they can exist. This strong sensitivity

of the surface waves with k ⊥ H is the reason for the more pro-

nounced reduction of the NFRHT for this field configuration.

In general, for an arbitrary direction k = (kx,ky) the

situation is somehow a combination of the two types of

behaviors just described. The complex interplay of these

behaviors for different k directions is responsible for the

nonmonotonic dependence with magnetic field, along with

the change in efficiency of the HMs upon varying the field.

On the other hand, at very high fields the cyclotron frequency

becomes much larger than the plasma frequency and the off-

diagonal elements of the permittivity tensor become negligible.

At the same time, the field-dependent terms in the diagonal

elements also become very small. Thus the systems effectively

become uniaxial and field independent and the heat transfer is

identical to the case in which the field is perpendicular. Finally,

in the far-field regime, the heat transfer is not very sensitive to

the magnetic field for the same reason as in the perpendicular

configuration.

Let us conclude this section with two brief comments. First,

as it is obvious from the discussions above, another way to

modulate the NFRHT is by rotating the magnetic field, while

keeping fixed its magnitude. Actually, we find that for any

field magnitude, the NFRHT is always smaller in the parallel

configuration. Thus one can increase or decrease the near-field

thermal radiation by rotating appropriately the magnetic field.

Second, we have focused here in the case of doped InSb, but

similar results can in principle be obtained for other doped

polar semiconductors, such as GaAs, InAs, InP, PbTe, SiC,

etc.

IV. NONPOLAR SEMICONDUCTORS: Si

In the previous section we have seen that when the field is

parallel to the surfaces, one can have hyperbolic emitters, but
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the HMs always coexist to some degree with surface waves

(even at the highest field). We show in this section that in the

case of nonpolar semiconductors, where phonons do not play

any role, it is possible to tune the system with a magnetic field

to a situation where only HMs contribute to the NFRHT. For

this purpose, we choose Si as the material for the two plates. As

mentioned in the Introduction, it has been predicted [43,44],

and experimentally tested [23,27], that in doped Si the NFRHT

in the absence of field can be dominated by SPPs even at room

temperature. Let us see now how this is modified upon applying

a magnetic field.

The dielectric properties of doped Si are similar to those

of InSb, the only difference being the absence of a phonon

contribution. Thus the dielectric functions of Eq. (11) now

read

ǫ1(H ) = ǫ∞

(

1 +
ω2

p(ω + iγ )

ω
[

ω2
c − (ω + iγ )2

]

)

,

ǫ3 = ǫ∞

(

1 −
ω2

p

ω(ω + iγ )

)

, (18)

while ǫ2(H ) remains unchanged. Using the results of Ref. [43]

for the dielectric constant of doped Si, we focus on a

room temperature case where the electron concentration is

n = 9.3 × 1016 cm−3, ǫ∞ = 11.7, γ = 8.04 × 1012 rad/s,

m∗/m = 0.27, and ωp = 9.66 × 1012 rad/s. We have chosen

this doping level to have a situation in which the plasma

frequency is not too high so that we can affect the NFRHT

with a magnetic field, and not too low so that the NFRHT in

the absence of field is still dominated by SPPs.

The results for the heat transfer coefficient and spectral

heat flux for a perpendicular magnetic field are displayed in

Fig. 7. Although there are several features that are similar to

those of the InSb case, there are also some notable differences.

To begin with, notice that now higher fields are needed to

see a significant reduction of the NFRHT (the required fields

are around an order of magnitude higher than for InSb) and

the reduction factors are clearly more modest; see inset of

Fig. 7(a). This is mainly a consequence of the smaller cyclotron

frequency in the Si case for a given field due to its larger

effective mass. Another consequence of the small cyclotron

frequency is the fact that there is no sign of saturation of the

NFRHT for reasonable magnetic fields. On the other hand,

the spectral heat flux at low fields is dominated this time by

a single broad peak that originates from SPPs (see discussion

below). As the field increases, the peak height is reduced and

the peak itself is broadened and deformed. As we show in what

follows, this behavior is due to the appearance of HMs that at

high fields completely replace the surface waves.

Again, we can gain a further insight into these results

by analyzing the transmission of the p-polarized waves for

different fields, which is illustrated in Fig. 8. As one can see, the

transmission is dominated by evanescent waves (in the vacuum

gap) in a frequency region right below the plasma frequency.

The origin of the structure of the transmission maxima can be

understood with the uniaxial approximation discussed above in

the context of InSb. Again, this approximation reproduces very

accurately all the results for arbitrary perpendicular fields (not

shown here). Within this approximation, one can see that at low
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FIG. 7. (Color online) (a) Heat transfer coefficient for n-doped

Si as a function of the gap for different values of the magnetic field

perpendicular to the plate surfaces. The inset shows the ratio between

the zero-field coefficient and the coefficient for different values of

the field in the near-field region. (b) The corresponding spectral heat

flux as a function of the frequency (and wavelength) for a gap of

d = 10 nm.

fields the transmission is dominated by SPPs, as we illustrate in

Figs. 8(a) and 8(b) in which we have introduced the dispersion

relation of the SPPs given by Eq. (12). As soon as the magnetic

field becomes finite, the system starts to develop HMs of type

I in a tiny frequency region right above the region of existence

of the SPPs; see Fig. 8(b). The origin of these HMs is identical

to that of the InSb case, but the main difference in this case is

that upon increasing the field, one reaches a critical field value

(of 4.36 T for this example) for which the surface waves cease

to exist and the transmission is completely dominated by HMs

turning the Si plates into “pure” hyperbolic thermal emitters;

see Figs. 8(c) and 8(d).

For completeness, we have also studied the heat transfer

in the parallel configuration and the results for the heat

transfer coefficient and spectral heat flux are shown in Fig. 9.

In this case the results are rather similar to those of the

perpendicular configuration. In particular, contrary to the InSb

case we do not find a nonmonotonic behavior. Moreover, the

NFRHT reduction is not much more pronounced than in the

perpendicular case, although one can reach reduction factors of

50% for 12 T. Finally, saturation is not reached for these high

fields for the same reason as in the perpendicular configuration.

As in the case of InSb, all these results can be understood in
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FIG. 8. (Color online) Transmission coefficient for p-polarized waves as a function of the magnitude of the parallel wave vector and

frequency for Si and a gap of d = 10 nm. The different panels correspond to different values of the magnetic field that is perpendicular to the

surfaces. The horizontal dashed lines separate the regions where transmission is dominated by surface plasmon polaritons (SPPs) or hyperbolic

modes of type I (HMI). The white solid lines correspond to the analytical SPP dispersion relation of Eq. (12).

terms of the modes that govern the near-field thermal radiation.

In this sense, for a direction where k ‖ H, the SPPs that

dominate the NFRHT at low fields are progressively replaced

by HMIs upon increasing the field and above 4.36 T they “eat

out” all surface waves. On the contrary, for k ⊥ H there are no

HMs and the only magnetic field effect is the modification of
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FIG. 9. (Color online) (a) Heat transfer coefficient for n-doped

Si as a function of the gap for different values of the magnetic field

applied along the surfaces of the plates. The inset shows the ratio

between the zero-field coefficient and the coefficient for different

values of the field in the near-field region. (b) The corresponding

spectral heat flux as a function of the frequency (and wavelength) for

a gap of d = 10 nm.

the SPP dispersion relation. Again, the interplay between these

two characteristic behaviors among the different k directions

explains the evolution of the NFRHT with the field.

Let us conclude this section by saying that the behavior

reported here for Si could also be observed for other nonpolar

semiconductors such as Ge.

V. OUTLOOK AND CONCLUSIONS

The results reported in this work raise numerous inter-

esting questions. Thus, for instance, in all cases analyzed

so far, we have found that the magnetic field reduces the

NFRHT as compared to the zero-field result. Is there any

fundamental argument that forbids a magnetic field induced

enhancement? In principle, there is no such an argument.

The reduction that we have found in doped semiconductors

is due to the fact that we have explored cases where surface

waves, which are extremely efficient, dominate the NFRHT

in the absence of field. In this sense, one may wonder if

a field-induced enhancement could take place in a situation

where the NFRHT in the absence of field is dominated by

standard frustrated internal reflection modes, as it happens in

metals [75]. Obviously, metals are out of the question due to

their huge plasma frequency, but one can investigate nonpolar

semiconductors with a low doping level. Indeed, we have done

it for the case of Si and, again, we find that the magnetic field

reduces the NFRHT and, moreover, exceedingly high fields are

required to see any significant effect. Of course, we have by no

means exhausted all possibilities and, for instance, we have not

explored asymmetric situations with different materials. Thus

the question remains of whether the application of a magnetic

field can under certain circumstances enhance the near-field

thermal radiation.

The discovery in this work of the induction of hyperbolic

modes upon the application of a magnetic field may also

have important consequences for layered structures involving

thin films. Recently, it has been demonstrated that thin films

made of polar dielectrics may support NFRHT enhancements

comparable to those of bulk samples when the gap size is

smaller than the film thickness [26], which is due to the

excitation of SPhPs. Since the NFRHT in doped semicon-

ductors is also dominated by surface electromagnetic waves,

all the field-induced effects discussed in this work will also
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take place in thin films of these materials. However, there

could be quantitative differences. The hyperbolic modes have

a propagating character inside the material and, therefore,

they may be severely affected in a thin film geometry by

the presence of a substrate. Thus one could expect much

more dramatic magnetic-field effects in systems coated with

semiconductor thin films.

Obviously, the question remains of whether one can

modulate the NFRHT with a magnetic field in other classes

of materials. For instance, since a magneto-optical activity

is required, what about ferromagnetic materials? Ideally, one

could imagine to tune the NFRHT by playing around with

the relative orientation of the magnetization, following the

spin-valve experiments in the context of spintronics.

Another question of general interest for the field of

metamaterials is if a doped semiconductor under a magnetic

field could exhibit the plethora of exotic optical properties

reported in hybrid hyperbolic metamaterials [49,50]. We have

shown here that it can behave as a hyperbolic thermal emitter,

but can it also exhibit negative refraction or be used to do

subwavelength imaging and focusing in the infrared? These

are very important questions that we are currently pursuing.

So, in summary, we have presented in this work a very

detailed theoretical analysis of the influence of a magnetic field

in the NFRHT. By considering the simple case of two parallel

plates, we have demonstrated that for doped semiconductors

the near-field thermal radiation can be strongly modified by

the application of an external magnetic field. In particular, we

have shown that the magnetic field may significantly reduce the

NFRHT and the reduction in polar semiconductors can be as

large as 700% at room temperature. Moreover, we have shown

that when the field is perpendicular to the parallel plates, doped

semiconductors become ideal hyperbolic thermal emitters with

highly tunable properties. This provides a unique opportunity

to explore the physics of thermal radiation in this class of

metamaterials without the need to resort to complex hybrid

structures. Finally, all the predictions of this work are amenable

to measurements with the present experimental techniques,

and we are convinced that the multiple open questions that

this work raises will motivate many new theoretical and

experimental studies of this subject.
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APPENDIX A: SCATTERING MATRIX APPROACH FOR

ANISOTROPIC MULTILAYER SYSTEMS

Our analysis of the radiative heat transfer in the presence of

a static magnetic field is based on the combination of Rytov’s

fluctuational electrodynamics (FE) and a scattering matrix

formalism that describes the propagation of electromagnetic

waves in multilayer systems made of optically anisotropic

materials. As we show in Appendix B, the radiative heat

transfer can be expressed in terms of the scattering matrix

of our system. Thus it is convenient to first discuss in this

appendix the scattering matrix approach employed in this work

ignoring for the moment the fluctuating currents that generate

the thermal radiation. Later, in Appendix B, we show how this

approach can be combined with FE. We follow here Ref. [76],

which presents a generalization of the formalism introduced

by Whittaker and Culshaw in Ref. [77] for isotropic systems.

Let us first describe the Maxwell’s equations to be

solved. Assuming a harmonic time dependence exp(−iωt),

the Maxwell’s equations for nonmagnetic materials and in the

absence of currents adopt the following form: ∇ · ǫ0ǫ̂E = 0,

∇ · H = 0, ∇ × H = −iωǫ0ǫ̂E, and ∇ × E = iωμ0H, where

the permittivity is in general a tensor given by Eq. (1). The first

Maxwell’s equation is automatically satisfied if the third one is

fulfilled, and the second one can be satisfied by expanding the

magnetic field in terms of basis functions with zero divergence.

Following Ref. [77], it is convenient to introduce the rescaling:

ωǫ0E → E and
√

μ0ǫ0ω = ω/c → ω. Thus the final two

equations to be solved are

∇ × H = −iǫ̂E, (A1)

∇ × E = iω2H. (A2)

We consider here a planar multilayer system grown along

the z direction in which the tensor ǫ̂ is constant inside every

layer, i.e., it is independent of the in-plane coordinates r ≡
(x,y). Thus, for an in-plane wave vector k ≡ (kx,ky), we can

write the fields as

H(r,z) = h(z)eik·r and E(r,z) = e(z)eik·r. (A3)

With this notation, Eqs. (A1) and (A2) can be rewritten as

ikyhz(z) − h′
y(z) = −i

∑

j

ǫxjej (z), (A4)

h′
x(z) − ikxhz(z) = −i

∑

j

ǫyjej (z), (A5)

ikxhy(z) − ikyhx(z) = −i
∑

j

ǫzjej (z), (A6)

and

ikyez(z) − e′
y(z) = iω2hx(z), (A7)

e′
x(z) − ikxez(z) = iω2hy(z), (A8)

ikxey(z) − ikyex(z) = iω2hz(z), (A9)

where the primes stand for ∂z.

Now our task is to solve the Maxwell’s equations for an

unbounded layer. For this purpose, we write the magnetic field

h(z) as follows:

h(z) = eiqz

{

φx x̂ + φy ŷ −
1

q
(kxφx + kyφy)ẑ

}

, (A10)

where x̂, ŷ, and ẑ are the Cartesian unit vectors and q is

the z component of the wave vector. Here, φx and φy are

the expansion coefficients to be determined by substituting
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into Maxwell’s equations. Notice that this expression satisfies

∇ · H = 0. Now, it is convenient to rewrite the previous

expression in the vector notation:

h(z) = eiqz

(

φx,φy, −
1

q
(kxφx + kyφy)

)T

. (A11)

With this notation, Eqs. (A4)–(A6) can be written as

Ĉh(z) = ǫ̂e(z), where Ĉ =

⎛

⎜

⎝

0 q −ky

−q 0 kx

ky −kx 0

⎞

⎟

⎠
. (A12)

On the other hand, Eqs. (A7)–(A9) adopt now the form

ĈT e(z) = ω2h(z). (A13)

From Eq. (A12) we obtain the following expression for the

electric field:

e(z) = η̂Ĉh(z), (A14)

where η̂ = ǫ̂−1. Substituting this expression in Eq. (A13) we

obtain the following equation for the magnetic field:

ĈT η̂Ĉh(z) = ω2h(z), (A15)

which defines an eigenvalue problem for ω2. Indeed, only

two of the three identities obtained from this equation, one

for each x̂, ŷ, and ẑ, are independent. From the first two

identities, and using Eq. (A11), we obtain the following

equations determining the allowed values for q:
(

Â2q
2 + Â1q + Â0 + Â−1

1

q

)

φ = 0, (A16)

where φ = (φx,φy)T and the 2 × 2 matrices Ân are defined by

Â2 =
(

ηyy −ηyx

−ηxy ηxx

)

, Â1 = Â
(a)
1 + Â

(b)
1 =

(

−kyηzy kyηzx

kxηzy −kxηzx

)

+
(−kyηyz kxηyz

kyηxz −kxηxz

)

,

Â0 = Â
(a)
0 + Â

(b)
0 − ω21̂ =

(

k2
yηzz −kxkyηzz

−kxkyηzz k2
xηzz

)

+

(

k2
xηyy − kxkyηyx kxkyηyy − k2

yηyx

kxkyηxx − k2
xηxy k2

yηxx − kxkyηxy

)

− ω2

(

1 0

0 1

)

,

Â−1 =

(

k2
ykxηzx − k2

xkyηzy k3
yηzx − k2

ykxηzy

k3
xηzy − k2

xkyηzx k2
xkyηzy − k2

ykxηzx

)

. (A17)

This eigenvalue problem leads to the following quartic secular equation:
∑4

n=0 Dnq
n = 0, where the coefficients are given by

D4 = ηxxηyy − ηxyηyx,

D3 = kx[ηxyηyz + ηyxηzy − ηyy(ηxz + ηzx)] + ky[ηyxηxz + ηxyηzx − ηxx(ηyz + ηzy)],

D2 = k2
x[ηyy(ηxx + ηzz) − ηxyηyx − ηyzηzy] + k2

y[ηxx(ηyy + ηzz) − ηxyηyx − ηxzηzx]

+ kxky[ηxz(ηyz + ηzy) + ηyz(ηzx − ηxz)ηzz(ηxy + ηyx)] − ω2(ηxx + ηyy),

D1 = k3
x[ηxyηyz + ηyxηzy − ηyy(ηxz + ηzx)] + k3

y[ηyxηxz + ηxyηzx − ηxx(ηyz + ηzy)]

+ k2
xky[ηxyηzx + ηxzηyx − ηxx(ηyz + ηzy)] + k2

ykx[ηyxηzy + ηyzηxy − ηyy(ηxz + ηzx)]

+ω2[k2
x(ηxz + ηzx) + k2

y(ηyz + ηzy)],

D0 = k4
x(ηyyηzz − ηyzηzy) + k4

y(ηxxηzz − ηxzηzx) + k3
xky[ηxzηzy + ηyzηzx − ηzz(ηxy + ηyx)]

+ k3
ykx[ηyzηzx + ηxzηzy − ηzz(ηyx + ηxy)] + k2

xk
2
y[ηzz(ηxx + ηyy) + ηxyηyx − ηxzηzx − ηyzηzy]

+ω2[ω2 − k2
x(ηyy + ηzz) − k2

y(ηxx + ηzz) + kxky(ηxy + ηyx)]. (A18)

In general, this secular equation has to be solved numerically,

but in many situations of interest the allowed values for q can

be obtained analytically (see Appendix C). The solution of

Eq. (A16) provides four complex eigenvalues for q; two lie in

the upper half of the complex plane and the other two in the

lower half.

The next step toward the solution of the Maxwell’s

equations in a multilayer structure is the determination of the

fields in the different layers. This can be done by expressing the

fields as a combination of forward and backward propagating

waves with wave numbers qn (with n = 1,2), and complex

amplitudes an and bn, respectively. These amplitudes will

be determined later by using the boundary conditions at the

interfaces and surfaces of the multilayer structure. Since the

boundary conditions are simply the continuity of the in-plane

field components, we focus here on the analysis of the field

components ex , ey , hx , and hy . From Eq. (A11), the in-plane

components of h can be expanded in terms of propagating

waves as follows:

(

hx(z)

hy(z)

)

=
2

∑

n=1

{(

φxn

φyn

)

eiqnzan +
(

ϕxn

ϕyn

)

e−ipn(d−z)bn

}

,

(A19)
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where d is the thickness of the layer. Here, an is the coefficient

of the forward going wave at the z = 0 interface, and bn is

the backward going wave at z = d. On the other hand, qn

correspond to the eigenvalues of Eq. (A16) with Im{qn} > 0

and pn are the eigenvalues with Im{pn} < 0.

To simplify the notation, we now define two 2 × 2 matrices

�̂+ and �̂− whose columns are the vectors φn and ϕn,

respectively. Moreover, we define the diagonal 2 × 2 matrices

f̂+(z) and f̂−(d − z), such that [f̂+(z)]nn = eiqnz and [f̂−(d −
z)]nn = e−ipn(d−z), and the two-dimensional vectors h‖(z) =
(hx(z),hy(z))T , a = (a1,a2)T , and b = (b1,b2)T . In terms of

these quantities, the in-plane magnetic field components

become

h‖(z) = �̂+ f̂+(z)a + �̂−f̂−(d − z)b. (A20)

Similarly, from Eq. (A14) it is straightforward to show

that the in-plane components of the electric field, e‖(z) =
(−ey(z),ex(z))T , are given by

e‖(z) =
(

Â
(b)
0 �̂+q̂−1 + Â

(b)
1 �̂+ + Â2�̂+q̂

)

f̂+(z)a

+
(

Â
(b)
0 �̂−p̂−1 + Â

(b)
1 �̂− + Â2�̂−p̂

)

f̂−(d − z)b,

(A21)

where the Â’s are defined in Eq. (A17) and we have defined

the 2 × 2 diagonal matrices q̂ and p̂ such that q̂nn = qn and

p̂nn = pn.

We can now combine Eq. (A20) and (A21) into a single

expression as follows:

(

e‖(z)

h‖(z)

)

= M̂

(

f̂+(z)a

f̂−(d − z)b

)

=

(

M̂11 M̂12

M̂21 M̂22

)(

f̂+(z)a

f̂−(d − z)b

)

, (A22)

where the 2 × 2 matrices Mij are defined as

M̂11 = Â
(b)
0 �̂+q̂−1 + Â

(b)
1 �̂+ + Â2�̂+q̂,

M̂12 = Â
(b)
0 �̂−p̂−1 + Â

(b)
1 �̂− + Â2�̂−p̂,

M̂21 = �̂+, M̂22 = �̂−. (A23)

The final step in our calculation is to use the scattering

matrix (S matrix) to compute the field amplitudes needed

to describe the different relevant physical quantities. By

definition, the S matrix relates the vectors of the amplitudes

of forward and backward going waves, al and bl , where l now

denotes the layer, in the different layers of the structure, as

follows:

(

al

bl′

)

= Ŝ(l′,l)

(

al′

bl

)

=

(

Ŝ11 Ŝ12

Ŝ21 Ŝ22

)

(

al′

bl

)

. (A24)

The field amplitudes in two consecutive layers are related

via the continuity of the in-plane components of the fields

in every interface and surface. If we consider the interface

between the layer l and the layer l + 1, this continuity leads to

(

e‖(dl)

h‖(dl)

)

l

=
(

e‖(0)

h‖(0)

)

l+1

, (A25)

where dl is the thickness of layer l. From this condition,

together with Eq. (A22), it is easy to show that the amplitudes

in layers l and l + 1 are related by the interface matrix

Î (l,l + 1) = M̂−1
l M̂l+1 in the following way:

(

f̂ +
l al

bl

)

= Î (l,l + 1)

(

al+1

f̂ −
l+1bl+1

)

=

(

Î11 Î12

Î21 Î22

)(

al+1

f̂ −
l+1bl+1

)

, (A26)

where f̂ +
l = f̂l,+(dl) and f̂ −

l+1 = f̂l+1,−(dl+1).

Now, with the help of the interface matrices, the S matrix

can be calculated in an iterative way as follows. The matrix

Ŝ(l′,l + 1) can be calculated from Ŝ(l′,l) using the definition

of Ŝ(l′,l) in Eq. (A24) and the interface matrix Î (l,l + 1).

Eliminating al and bl we obtain the relation between al′ , bl′

and al+1, bl+1, from which Ŝ(l′,l + 1) can be constructed. This

reasoning leads to the following iterative relations

Ŝ11(l′,l + 1) = [Î11 − f̂ +
l Ŝ12(l′,l)Î21]−1f̂ +

l Ŝ11(l′,l),

Ŝ12(l′,l + 1) = [Î11 − f̂ +
l Ŝ12(l′,l)Î21]−1

×(f̂ +
l Ŝ12(l′,l)Î22 − Î12)f̂ −

l+1,

Ŝ21(l′,l + 1) = Ŝ22(l′,l)Î21Ŝ11(l′,l + 1) + Ŝ21(l′,l),

Ŝ22(l′,l + 1) = Ŝ22(l′,l)Î21Ŝ12(l′,l + 1) + Ŝ22(l′,l)Î22f̂
−
l+1.

(A27)

Starting from Ŝ(l′,l′) = 1, one can apply the previous recursive

relations to a layer at a time to build up Ŝ(l′,l). Let us conclude

this appendix by saying that from the knowledge of the S

matrix one can easily compute the field amplitudes in every

layer and, in turn, the fields everywhere in the system [77].

APPENDIX B: THERMAL RADIATION IN ANISOTROPIC

MULTILAYER SYSTEMS

In this Appendix we show how the scattering matrix

approach of Appendix A can be used to describe the thermal ra-

diation between planar multilayer systems made of anisotropic

materials. For this purpose, we first discuss how a generic

emission problem can be formulated in the framework of the

S-matrix formalism and then, we show how such a formulation

can be used to describe the thermal emission of a multilayer

system.

1. Emission in the scattering matrix approach

For concreteness, let us assume that there is a set of oscillat-

ing point sources, with harmonic time dependence, occupying

the whole plane defined by z = z′. The corresponding electric

current density J is given by

J(r,z) = J0δ(z − z′) = j0e
ik·rδ(z − z′), (B1)

where j0(k) = J0e
−ik·r. This current density enters as a source

term in Ampère’s law, Eq. (A1), which now becomes ∇ × H =
J − iǫ̂E, while Eq. (A2) (Faraday’s law) remains unchanged.
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Thus Eqs. (A4)–(A6) adopt now the following form:

ikyhz(z) − h′
y(z) = j0xδ(z − z′) − i

∑

j

ǫxjej (z), (B2)

h′
x(z) − ikxhz(z) = j0yδ(z − z′) − i

∑

j

ǫyjej (z), (B3)

ikxhy(z) − ikyhx(z) = j0zδ(z − z′) − i
∑

j

ǫzjej (z). (B4)

The presence of the source term induces discontinuities in

the fields across the plane z = z′, as we proceed to show. First,

let us consider the effect of the in-plane components of the

current density by putting jz = 0. To cancel the singular term

due to the source in Eqs. (B2) and (B3), there must be discon-

tinuities in hx and hy at z = z′ equal to j0y and −j0x , respec-

tively. All the other field components are continuous, except

for ez that exhibits a discontinuity equal to (kxj0x + kyj0y)/ǫzz

in virtue of Eq. (B4). Let us analyze now the role of the

perpendicular component of J by putting j0x = j0y = 0. From

Eq. (B4), it is clear that in this case ez must contain a singularity

to cancel the singular term associated to the current source,

that is ez(z) = −i(j0z/ǫzz)δ(z − z′)+ nonsingular parts. This

introduces singular terms in the left-hand side of the Maxwell

Eqs. (A7) and (A8), which are canceled by discontinuities

in ex and ey equal to kxj0z/ǫzz and kyj0z/ǫzz, respectively.

Additionally, it is obvious from Eqs. (B2) and (B3) that

hx and hy acquired discontinuities equal to −ǫyzj0z/ǫzz and

ǫxzj0z/ǫzz, respectively. Defining the following vectors:

p‖ = (j0y − ǫyzj0z/ǫzz, − j0x + ǫxzj0z/ǫzz)
T , (B5)

pz = (−kyj0z/ǫzz,kxj0z/ǫzz)
T , (B6)

the boundary conditions on the in-plane components of the

fields are thus

e‖(z′+) − e‖(z′−) = pz, h‖(z′+) − h‖(z′−) = p‖. (B7)

These discontinuity conditions can now be combined with

the S-matrix formalism of the previous appendix to calculate

the emission throughout the system. Let us consider that the

emission plane defines the interface between layers l and l + 1

in our multilayer structure. Thus the boundary conditions in

this interface become
(

e‖(0)

h‖(0)

)

l+1

−
(

e‖(dl)

h‖(dl)

)

l

=
(

pz

p‖

)

. (B8)

Using now the expression of the fields in terms of the layer

matrices (M̂’s), see Eq. (A22), we can write

M̂l+1

(

al+1

f̂ −
l+1bl+1

)

− M̂l

(

f̂ +
l al

bl

)

=
(

pz

p‖

)

. (B9)

The external boundary conditions for an emission problem

is that there should be only outgoing waves, that is a0 = bN =
0, where 0 denotes here the first layer of the structure and N

the last one. Using the definitions of the S matrices Ŝ(0,l) and

Ŝ(l + 1,N ) from Eq. (A24), it follows that

al = Ŝ12(0,l)bl, (B10)

bl+1 = Ŝ21(l + 1,N )al+1. (B11)

Substituting for al and bl+1 from Eqs. (B10) and (B11) in

Eq. (B9) and rearranging things, we arrive at the following

central result:

(

M̂11,l+1 + M̂12,l+1f̂
−
l+1Ŝ21(l + 1,N ) −[M̂12,l + M̂11,l f̂

+
l Ŝ12(0,l)]

M̂21,l+1 + M̂22,l+1f̂
−
l+1Ŝ21(l + 1,N ) −[M̂22,l + M̂21,l f̂

+
l Ŝ12(0,l)]

)

(

al+1

bl

)

=
(

pz

p‖

)

, (B12)

which allows us to compute the field amplitudes on the left and

on the right-hand side of the emitting plane. From the solution

of this matrix equation we can compute the field amplitude

everywhere inside and outside the multilayer structure from

the knowledge of the scattering matrix.

2. Radiative heat transfer

Let us now show that the previous results can be used to

describe the radiative heat transfer. First of all, we need to

specify the properties of the electric currents that generate the

thermal radiation. In the framework of fluctuational electro-

dynamics [9], the thermal emission is generated by random

currents J inside the material. While the statistical average

of these currents vanishes, i.e., 〈J〉 = 0, their correlations are

given by the fluctuation-dissipation theorem [78,79]

〈Jk(R,ω)J ∗
l (R′,ω′)〉 =

4ǫ0ωc

π
�(ω,T )δ(R − R′)δ(ω − ω′)

×[ǫkl(R,ω) − ǫ∗
lk(R,ω)]/(2i), (B13)

where R = (r,z) and �(ω,T ) = �ωc/[exp(�ωc/kBT ) − 1], T

being the absolute temperature. Let us remind the reader that

with the rescaling introduced at the beginning of Appendix A,

ω has dimensions of wave vector in our notation. Notice that in

the expression of �(ω,T ) a term equal to �ωc/2 that accounts

for vacuum fluctuations has been omitted since it does not

affect the neat radiation heat flux. Notice also that we are using

here the most general form of this theorem that is suitable for

nonreciprocal systems. The fact that the current correlations

are local in space and diagonal in frequency space reduces

the problem of the thermal radiation to the description of the

emission by point sources for a given frequency, parallel wave

vector, and position inside the structure. Thus we can directly

apply the results derived in the previous subsection.

Let us now consider our system of study, namely two

parallel plates at temperatures T1 and T3 separated by a vacuum

gap of width d; see Fig. 10. Our strategy to compute the net

radiative heat transfer between the two plates follows closely

that of the seminal work by Polder and Van Hove [7]. First,

we compute the radiation power per unit of area transferred
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FIG. 10. (Color online) Two parallel plates separated by a vac-

uum gap of width d . The vertical dashed line inside the left plate

indicates the position of an emitting plane that contains the radiation

sources that generate the field amplitudes b0 and a1.

from the left plate to the right one, Q1→3. For this purpose,

we first compute the statistical average of the z component of

the Poynting vector describing the power emitted from a plane

located at z = z′ inside the left plate for a given frequency and

parallel wave vector and then we integrate integrate the result

over all possible values of z′, ω, and k, i.e.,

Q1→3(d,T1) =
∫ ∞

0

dω

∫

dk

∫ ∞

0

dz′〈Sz(ω,k,z′)〉. (B14)

A similar calculation for the power Q3→1 transferred from the

right plate to the left one completes the computation of the net

transferred power per unit of area.

Let us focus now on the analysis of the power emitted by

a plane inside the left plate; see Fig. 10. This emitting plane

defines a fictitious interface between layers 0 and 1, which are

both inside the left plate. To determine the power emitted to

the right plate we first compute the field amplitudes a1 on the

right-hand side of the plane. For this purpose we make use of

Eq. (B12), where in this case l = 0 and N = 3. Taking into

account that Ŝ12(0,0) = 0, it is straightforward to show that

a1 =
[

M̂11,1 − M̂12,1M̂
−1
22,1M̂21,1

]−1
pz

+ [M̂21,1 − M̂22,1M̂
−1
12,1M̂11,1]−1 p‖

=
[

M̂−1
1

]

11
pz +

[

M̂−1
1

]

12
p‖. (B15)

To compute Q1→3, it is convenient to calculate the Poynting

vector in the vacuum gap. For this purpose, we need the field

amplitudes in that layer. From Eq. (A24), it is easy to deduce

that these amplitudes are given in terms of a1 as follows:

a2 = D̂Ŝ11(1,2)a1, (B16)

where D̂ ≡ [1̂ − Ŝ12(1,2)Ŝ21(2,3)]−1 and

b2 =
[

1̂ − Ŝ21(2,3)Ŝ12(1,2)
]−1

Ŝ21(2,3)Ŝ11(1,2)a1

= Ŝ21(2,3)a2. (B17)

It is worth stressing that the different elements of the scattering

matrix that appear in the previous expressions can be factorized

into scattering matrices S̃ containing only information about

the interfaces of the layered system, which are basically the

Fresnel coefficients of the structure, and phase factors describ-

ing the propagation between these interfaces. In particular,

from Eq. (A27) it is easy to show that

Ŝ11(1,2) = S̃11(1,2)f̂ +
1 (z′), (B18)

Ŝ12(1,2) = S̃12(1,2)eiq2d , (B19)

Ŝ21(2,3) = S̃21(2,3)eiq2d , (B20)

where q2 =
√

ω2 − k2 is the z component of the wave vector

in the vacuum gap and

f̂ +
1 (z′) =

(

eiq1,1z
′

0

0 eiq2,1z
′

)

. (B21)

Here, qi,1 (with i = 1,2) are the z components of the two

allowed wave vectors in the medium 1. On the other hand,

the S̃ matrices can be computed directly from the interface

matrices as follows [see Eq. (A27)]:

S̃11(1,2) = Î−1
11 (1,2), (B22)

S̃12(1,2) = −Î−1
11 (1,2)Î12(1,2), (B23)

S̃21(2,3) = Î21(2,3)Î−1
11 (2,3). (B24)

In terms of the amplitudes a2 and b2, the fields in the

vacuum gap at z = 0 are given by [see Eq. (A22)]

(

e‖(0)

h‖(0)

)

2

=

(

M̂11,2

[

a2 − eiq2d b2

]

a2 + eiq2d b2

)

, (B25)

where we have used that M̂12,2 = −M̂11,2, valid for any

isotropic system. Thus the z component of the Poynting vector

evaluated at z = 0 in the vacuum gap reads

Sz(ω,k,z′) =
1

4ω

√

μ0

ǫ0

{h
†
‖(0)e‖(0) + e

†
‖(0)h‖(0)}2

=
1

4ω

√

μ0

ǫ0

{a
†
2(M̂11,2 + M̂

†
11,2)a2

−ei(q2−q∗
2 )d b

†
2(M̂11,2 + M̂

†
11,2)b2

+e−iq∗
2 d b

†
2(M̂11,2 − M̂

†
11,2)a2

−eiq2d a
†
2(M̂11,2 − M̂

†
11,2)b2}. (B26)

Moreover, since

M̂11,2 =
1

q2

(

ω2 − k2
y kxky

kxky ω2 − k2
x

)

≡
1

q2

Â (B27)

and q2 is either real (for k < ω) or purely imaginary (for k > ω),

Eq. (B26) reduces to

Sz(ω,k,z′) =
1

2q2ω

√

μ0

ǫ0

×

{

a
†
2Âa2 − b

†
2Âb2, k < ω,

e−iq∗
2 d b

†
2Âa2 − eiq2d a

†
2Âb2, k > ω,

(B28)

where the first term provides the contribution of propagating

waves and the second one corresponds to the contribution of

evanescent waves.
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From this point on, the rest of the calculation is pure algebra

and we will not describe it here in detail. Let us simply say

that the basic idea is to use Eqs. (B16) and (B17) to express the

Poynting vector in Eq. (B28) in terms of the field amplitude a1.

Then, using Eq. (B15) and the fluctuation-dissipation theorem

of Eq. (B13) one can calculate the statistical average of the

Poynting vector. Let us mention that the calculation can be

greatly simplified by rotating every 2 × 2 matrix appearing

in the problem from the Cartesian basis (x-y) to the basis of

s- and p-polarized waves. This can be done via the unitary

matrix

R̂ ≡
1

k

(

kx ky

ky −kx

)

, (B29)

which is the matrix that defines the transformation that

diagonalizes the matrix Â, i.e.,

Âd ≡ R̂ÂR̂ =
(

ω2 0

0 q2
2

)

. (B30)

Finally, after integrating over all possible values of ω, k, and z′,
see Eq. (B14), one arrives at the following result for the power

per unit of area transferred from the left plate to the right one:

Q1→3(d,T1) =
∫ ∞

0

dω

2π
�(ω,T1)

∫

dk

(2π )2
τ (ω,k,d), (B31)

where τ (ω,k,d) is the total transmission coefficient of the

electromagnetic modes and it is given by

τ (ω,k,d) =

{

Tr{[1̂ − S̄12(1,2)S̄
†
12(1,2)]D̄†[1̂ − S̄

†
21(2,3)S̄21(2,3)]D̄}, k < ω (propagating waves),

Tr{[S̄12(1,2) − S̄
†
12(1,2)]D̄†[S̄

†
21(2,3) − S̄21(2,3)]D̄}e−2|q2|d , k > ω (evanescent waves).

(B32)

Here, the 2 × 2 matrices indicated by a bar are defined as

follows:

D̄ ≡ Â
1/2

d R̂D̂R̂Â
−1/2

d , (B33)

D̄† ≡ Â
−1/2

d R̂D̂†R̂Â
1/2

d . (B34)

Following a similar reasoning, one can compute the power

per unit of area transfer from the right plate to the left one and

the final result reads

Q3→1(d,T3) =
∫ ∞

0

dω

2π
�(ω,T3)

∫

dk

(2π )2
τ (ω,k,d), (B35)

where τ (ω,k,d) is also given by Eq. (B32). Thus the net

power per unit of area exchanged by the plates is given by

Eqs. (2) and (3) in Sec. II. To conclude, let us stress that in the

manuscript ω is meant to be an angular frequency.

APPENDIX C: DISPERSION RELATIONS

In this appendix we provide the solution of the eigenvalue

problem of Eqs. (A16) and (A17) that give the dispersion

relations of the electromagnetic modes that can exist inside

the materials considered in this work. In particular, we focus

here on three cases of special interest for our discussions in

the main body of the manuscript.

Case 1: ǫ̂ = diag[ǫxx,ǫxx,ǫzz]. This situation is of relevance

for the case in which the magnetic field is perpendicular to the

plate surfaces; see Sec. III A. In this case, the allowed q values

are given by

q2
o = ǫxxω

2 − k2, q2
e = ǫxxω

2 − k2ǫxx/ǫzz. (C1)

Case 2: ǫ̂ = diag[ǫxx,ǫzz,ǫzz]. This situation is relevant for

the case in which the magnetic field is parallel to the plate

surfaces, see Sec. III B, and the allowed q values are given by

q2
o = ǫzzω

2 − k2, q2
e = ǫxxω

2 − k2ǫxx/ǫzz. (C2)

Case 3: the diagonal elements of ǫ̂ are ǫxx and ǫyy =
ǫzz, while the only nonvanishing off-diagonal elements are

ǫyz = −ǫzy . This situation is relevant for the case in which the

magnetic field is parallel to the plate surfaces; see Sec. III B.

In this case, the allowed q values adopt the following form:

q2
o,1 = ǫxxω

2 − k2, q2
o,2 =

(

ǫ2
yy + ǫ2

yz

)

ω2/ǫyy − k2. (C3)

APPENDIX D: SURFACE ELECTROMAGNETIC MODES

We briefly describe here how we determine the dispersion

relation of the surface electromagnetic modes in our system

and we also provide the results for some configurations of

special interest.

Let us consider a structure containing N planar layers. From

Eq. (A26), it is easy to show that the field amplitudes in layers

l and l + 1 are related as follows:

(

al

bl

)

=

(

f̂ +
l 0̂

0̂ 1̂

)−1

Î (l,l + 1)

(

1̂ 0̂

0̂ f̂ −
l+1

)

(

al+1

bl+1

)

≡ Î ′(l,l + 1)

(

al+1

bl+1

)

. (D1)

Now, using this relation recursively we can relate the field

amplitudes in the first and last layers as follows:

(

a1

b1

)

=

[

N−1
∏

l=1

Î ′(l,l + 1)

]

(

aN

bN

)

≡ Î S

(

aN

bN

)

. (D2)

The condition for an eigenmode of the system is that

a1 = bN = 0, which from the previous equation implies that

Î S
11aN = 0. The condition for having a nontrivial solution of

this equation is that det Î S
11 = 0, which is the condition that

surface electromagnetic modes must satisfy. In our plate-plate

geometry, the 4 × 4 matrix Î S is simply given by

Î S = Î (1,2)

(

e−iq2d 1̂ 0̂

0̂ eiq2d 1̂

)

Î (2,3), (D3)
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where let us recall that q2 =
√

ω2 − k2. Thus the condition for

an eigenmode of the system reads

det[Î11(1,2)Î11(2,3)e−iq2d + Î12(1,2)Î21(2,3)eiq2d ] = 0.

(D4)

In what follows, we provide the explicit equations satisfied by

the dispersion relation of the surface waves in the three cases

considered in Appendix C.

Case 1. In this case, Eq. (D4) leads to

e−iq2d = ±
(

qe − ǫxxq2

qe + ǫxxq2

)

, (D5)

where qe is given in Eq. (C1). This equation reduces to Eq. (12)

in the electrostatic limit k ≫ ω/c.

Case 2. Here, assuming that the surface wave propagates

along the x direction, its dispersion relation satisfies the

following relation:

e−iq2d = ±
(

qe − ǫxxq2

qe + ǫxxq2

)

, (D6)

where qe is given in Eq. (C2). In the electrostatic limit, this

equation reduces to Eq. (12).

Case 3. In this case, and assuming that the surface waves

propagate along the y direction, its dispersion relation is given

by the solution of the following equation:

e−2iq2d =
(ηyyqo,2 − q2 + ηyzk)(ηyyqo,2 − q2 − ηyzk)

(ηyyqo,2 + q2 + ηyzk)(ηyyqo,2 + q2 − ηyzk)
,

(D7)

where ηyy = ǫyy/(ǫ2
yy + ǫ2

yz), ηyz = −ǫyz/(ǫ2
yy + ǫ2

yz), and qo,2

is given in Eq. (C3). In the electrostatic limit this equation

reduces to Eq. (17).
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