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Recent two publications by Yosida and Yoshimori have clarified the detailed electronic
structure of the singlet collective bound state developed so far by them and by Okiji. In this
paper, by means of their method, the magnetic-field dependence of the local electronic struc-
ture of the ground state is investigated. In particular, it is shown that the z-component of
the spin correlation which sticks around the impurity remains unchanged even in the limit
of increasing field. From this calculation, an expression for the magnetoresistance is inferred
with the aid of the Friedel sum rule: »

_ o4
R(d) = Rycos o (Biy )i
where E; denotes the binding energy of the singlet state and 4 the Zeeman energy of the
free spin. It is to be noticed that this has no logarithmic field dependence. It is further

shown that the relation (o= (pJ/2N)<{S,> holds generally between the spin polarization of the
conduction electrons and the induced localized spin.

§ 1. Introduction

Since Yosida® has shown by the generalized perturbation method that the
singlet collective bound state is realized as the ground state of the system con-
sisting of conduction electrons and a localized spin which are coupled with an

»~% have been developed

antiferromagnetic s-d exchange interaction, theories
on the basis of this work and many properties of this singlet bound state have
been clarified.

Among these, Yoshimori and Yosida” (hereafter referred to as I) revealed
partially the local electronic structure of the singlet bound state by calculating
the charge density and the spin correlation density at the impurity site. Accord-
ing to this, the charge density at the impurity site which is finite at the start-
ing approximation of the generalized perturbation theory completely vanishes in
the final stage. This fact indicates that the bound state is not of the charge
density but of the spin correlation density. Moreover, the recent work of Yosida
and Yoshimori” (hereafter referred to as II) has completely proved the physical
picture of the singlet bound state as has been drawn in I by calculating the total

charge and the total spin correlation accumulated around the localized spin.
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Magnetic-Field Dependence of the Local Electronic Structure 579

That is, one of the two components of the singlet bound state is composed by
the up-spin state of the localized spin and down-spin cloud made of half an elec-
tron with down-spin and half a hole with up-spin which are both trapped around
the impurity, and the other component is the one obtained from the former by
the reverse of all spin directions. The anomalous binding energy E is under-
stood as a consequence of the formation of such a bound state. From the con-
sideration of the phase shift for the conduction electrons, they have also proved
the unitarity limit value for the electrical resistivity.

In previous papers,”® as part of a series of work, we have partially made
the extension of this theory to the case in which the magnetic field is applied.
Magnetic field tends to fix the spin direction so as to gain the Zeeman energy
and it has an effect of preventing the spin flip process due to the exchange in-
teraction which is essential to the anomalous binding energy. By these two
factors the ground state is determined. The obtained energy is expressed as a
function of the applied field and from it an induced magnetization and a finite
susceptibility are obtained at 0°K. It is further concluded within a weak coupl-
ing limit that the bound state does not vanish at a finite value of magnetic field,
but approaches the normal state asymptotically at high field. Though calculations
have been done for the magnetic field acting on only the localized spin, it has
been shown? that there arises no change in the local character of the results for
the case where the applied field also interacts with the conduction electrons.

It is the purpose of the present paper to investigate the magnetic field-
dependence of the results obtained 'in I and IT according to the method developed
in them, namely the local distributions of the charge and the spin polarization
in each of the two components ¢, and ¢, by calculating their densities at the
impurity site and the total localized amounts of them, where ¢, and ¢, are two
components of the ground state wave function associated with up- and down-spin
states of the localized spin, respectively. As combinations of these quantities,
the spin correlation, the spin polarization and the charge localized around the
impurity are obtained. Further, the interpretation of these in terms of the phase
shift makes it possible to derive the magnetoresistance at 0°K. All calculations
in later sections will be made in the case where the applied field interacts only
with the localized spin. Section 2 is devoted to a brief summary of the results
obtained previously®® which are necessary for later sections. In §3, densities of
the charge, of the spin polarization and of the z-component of the spin correla-
tion at the impurity site are calculated, and by the use of these and also of the
Feynman relation the spin correlation density at the impurity site, the kinetic
energy and the exchange energy of the system are obtained. In §4, the total
localized charge and the spin polarization are calculated separately for ¢, and
¢ components. With this result, we make a consideration for the magnetore-
sistance in §5. In §6, by the use of the general method valid for a nondegen-

erate state it is shown that the relation between the total localized spin polari-
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580 H. Ishii

zation of the conduction electrons and the magnitude of the localized spin in-
duced in the ground state is a general one common to that obtained in the second
order perturbation theory or RKY theory® and that in the usual perturbation

theory up to an infinite order.” Conclusion and discussion are given in the last
section. ‘

§2. Results obtained in previous papers

In this section we summarize the main results obtained in the previous two
papers which treated the effect of a magnetic field on the singlet ground state.

We consider the system consisting of a localized spin and conduction elec-
trons which are coupled with an antiferromagnetic s-d exchange interaction. For
the purpose of investigating the effect of the magnetic field on the local property
of this system, it is sufficient to consider the field applied only to the localized
spin, as mentioned in §1. The Hamiltonian is written as

H= Z}cd@kd;ckaaka + 245,
- Z_JZ\;ZM‘: [ (a/yg’fakj‘ - affﬂk;) S, + CZZEIT(lmS— + Cl}fw(lkTS»k] > €]

where

and the notations are the same as those given in the previous papers.”® In
Yosida’s theory, the ground state wave function is constructed as follows:

¢=1214 (I "afic+ ]”lﬁa;‘}ﬂ)
+ 2123 (F 1(;}3(Zi1ia'ﬁa3¢a + 1 1@?361;{%42’?(13@8 + 1T 1%,Tadﬁa§asff@ + T 1@}3diﬁa§iﬂs¢3 )
+ 2 s (UiSisatiadiafianasa + Nl satababananf
+ I'iilsatiadiadagana+ I v watiahalanas,S
+ 1 1%?45511’@&2"}613’?@76157@ +1" 1@%}450??45'@4:%@4%&3 )
+odde, (3

where a and f respectively denote the spin-up and spin-down states of the lo-
calized spin of which magnitude is assumed to be one half, ¢» the state of the
unpolarized Fermi sea, and the coefficients I'%ly and I, are defined in the same
way as in references 1), 4) and 8), so that Il defined in references 2) and 9) is
given by —TI'#', in the present definition. In later calculations, we will often
consider the components of the wave function separated as

O=¢at g, 4)

where

Pa=laplalgy  and  ¢p=[8><Bl¢ .
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Magnetic-Field Dependence of the Local Electronic Structure 581

Inserting Eqgs. (1) and (3) into the Schrédinger equation,
(H-E)¢y=0, ()

we set up an infinite set of the simultaneous equations for the coefficients I
The first parts of these are as follows:

rf(el—EM)+Z‘Zl\[~zlrﬁ—%Zlnﬂ—fﬁzxreﬁlﬁrl 2T =0, (6)

F[?%],3<81+82—83—E+ 4) + zlziv—(rla*rza) + 4%24(F[‘Z%],3+F[ﬁ],3+F[(;ﬁz;

— 2@+ 2I°8%) + —“245 (It psan -+ T80+ 20 it cosy) =0, )
I'h(ate—e—E+4) —== (n —2Iy®) + ——24( AT+ T — 2 s

— 28 —Zj'vz@ (Tt s+ T o + 2700 =0, ®)
I um(@tata—ea—e—E+4) + S ( T+ T+ i

J | } !
— T — bt TEe) + ZN_Z6 (I itk oasy + T8 s+ T b, e
' ,
-1 [‘sz'%], res1 I ﬁ%%],[m] —2I 6%5%],[45] —2I' e%%], [451 2’ 6%%],[45]) + o= 0 ’ (9)

r[?%§3,45(51+52+€3—54*55 E+A>+-—“(r[12]4 F235 Tf;Ts’{“Z]au

—2I'g4y) + —-Zs (I Ce3is, 45 T I [%%3 s—1 [‘;%6,45 — 1T [?%33, st [C{%SA(S
+ ZT [33]1 54 Zr [6‘{]2 54 + 2r a’ﬁ%}, [46]> A= 0 s (10}

r1“[§§j,[45](51+52+€3_€4“Co E+4) + —"( 124 12, 5‘F13 4+r13 5

J
+ 21 [gg],‘i —2I' [‘gg], 5) -+ 4—~NZG (F sﬁgj, (451 — I fE(ng], 451 I 1@3}, [457

+ I 1%%],[65] + I 1%%], r461 2r [{;gg],[ziﬁj + 27 [%%1,46 — 21 [g%l, 56) + = 0 s (11)

where [12], etc., attached to the coefficients denote the antisymmetrized sum.
Equations corresponding to I#, I'™, --- are obtained from Egs. (6) ~(11) by
replacing 4 with —4 and reversing all spin suffixes. Eliminating I';,s and also
higher order terms from these equations, we can obtain simultaneous integral
equations for I';* and I}°. By the method of collecting all the most divergent
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582 H. Ishi:

terms in the integration kernel® and by the assumption of a constant density of

states p for |e|<{D (D is the half of the band width), these equations are solved®
in a closed form for a magnetic field such as

4 —E
1 <1+wE /1 2y <L 12
og ) 0g — < (12)

where E is an anomalous part of the energy given below.
The obtained results which are correct with respect to the most divergent
terms are as follows. The ground state energy consists of two parts,

E=AE+ (E+4), (13)
where 4E is the energy shift of the normal part,”
dE= —f— i<~9iz—>2D log 24 -, (14)
4\ N
and E is the anomalous part,
E=— (B} + )7 (15)
with E, the binding energy in the absence of the field,”""
Ey= — D¢, (16)

Though the energy shift obtained by the usual perturbation theory has also a
field dependence, it is smaller than 4 and E by the factor of pJ/N, and there-
fore it should be neglected in the present approximation. The wave functions
I'“(e) and I'”(e) associated with the energy, Eq. (13), are expressed as

-1 oJ | e—F,\
S
© =5, N D
_l (0T g, B\ 2( _oJ g—E) - 4]
3 <1 N log~D———) 1 N og 5 | (17a)
1 oJ e — E,\ v
e :_m___,_u[ 10 0>
© e—E—4 < N o8 D
N1 a_ TF N\ —3/4
1 <1 _ o log EO) <1 _oJ og LEE) ] (17b)
3 N D N D

As stated in II, the second term in the parentheses of Eqs. (17a, b) cannot be
omitted for later calculations in spite of the factor of [1— (pJ/N) log (— E,/D)]",
because the first term becomes of the same order as the second at ¢=0. In
deriving the simultaneous equations for I"“(¢) and I®(e) of which solution is
given above and for later calculations, we use the following expansion forms
for the coefficients I'ily,, I'Sh, T58y s 54 and '8 s

J I N [ =B+ T+ | 5T — T —2I°
r133, 34123 AN ( 1 ") AN 2 i D,y Dy
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Magnetic-Field Dependence of the Local Electronic Structure 583

eIy ] B < ,,,> L45[ <13r1“ — 51" — 4l
D124 D143 D153

——5]"4“—3F5“+2T45+2F‘3 eI —1OT4>

!

D453 D145
1 (13F2“—5F5“~4]1,/3+ — 5 —3I#+2I° + 2I°°
D243 Dzss D453
S s 1011ﬂ> L1 < Iy 4 T+ 20" | 51 — T = 2T
D245 D124 D154 -D204
AR ) L1 <2r2“+r4a AN N e et
D125 D12546 D245 D145 . D143
@ s g I L\C
D243 D125
J revary —aerf | -2
D ——<_M.«_> % — 2[‘5 + < > [ 2 L 1 4
12 gd/123 N ( > 2_.14 D433 19143
— 5+ 46° ] <J>3~1 [ 1 <F1"‘~21”55 — I 4-4rf—2rs
p 2L TR | () 3 = +
124 ® D143 D153 D453
L oS HAnSY 1 <5r5“~14r2/3 +4rf | 1~ 4L+ 1008
D145 D243 D253 D453
+5Z“4"‘~—2F2'8—2['4‘*>_‘_ 1 <7F1“—4F5" T —3re—-2If+2r°
D245 D124 D154 D254
. 13]1"‘—14Tf>+ 1 (—4F4“+4]"? —2I'f +—2]} — I
D125 D12345 D245 D145

- _a_ B B @ B
P U e i N K e L | PR )

D D,y Dy
AN I A Fl &'ty o HAd KSR Kbt k'
e D 5=<ﬂﬂ>[ ; —+ = e
[12383, [45]4" 1284 4N D124 D125 D134 D135
Y S it 3“..]+~- (20)
D234 D235
JN[ = T =2l D=2l 21 — 4l
T 5 Digsss = <l> [ 1 LA 3. L s 2l !
[1373, 454712345 AN Dy Dy D5 Dy,
2]—'38_4]_'2'1]
L 2reare ], (21)
D234
, JN\[_ Me—2rf | =20y | D=2
ret D =<—*>[_ 1 L s :
I'igia, sy ssss AN Dy D5 Dy,
a IS s _ B #
_IE—2rf | 2l -2l 20 -2l ] b, (22)
Dy Dy, Dy
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584 H. Ishii

where o
Diyy=¢,+ G—&—E,

D12345:€1+82+63—84-—S5—E0 .

Coeflicients with the index B corresponding to Egs. (18) ~ (22) are obtained
from them by reversing all spin directions.

We should add a remark on these expressions. When these are derived
first from Eqgs. (6) ~ (11) by the iteration method, (&+ ¢;— &5 — & & 4) and (& +e,
+83~84~e5—E4_~A) occur in place of Dy and Dy, respectively. However, in
calculations so far and later I'i5,3, Tias,es are used only in the integrated form and
at that time 1/ (e, + 6, —6;— £ = 4) comes in a form such as log (e1-+ 6, —¢e;— E 4 4)/D,
which is rewritten as

ets—a-Eid joeate—a-B | oata—e—Fi1d
D D

log ~rt4
61 "}‘ 82 _ 83 - Eo

2

the second term of this expression is very small compared with the first by the
condition of (12). On the other hand, 1/(—E4+4) comes directly from the
normalization integral (23a, b) given below and also from I"*(0) and I (0) which
appear in the calculation of §4. Field dependence in the argument of logarithm
is thus very small compared with that of 1/(~Eid) and can be neglected.
Therefore the field dependence of Egs. (18) ~ (22) appears only through that of
I'“(¢) and I”(e) and such an approximation is sufficient for the calculations of
the following sections. Similar circumstances have been seen in Egs. (17a, b)
where the effect of the magnetic field appears only in the first factor. This fact
makes calculations remarkably easy.

In order to calculate physical quantities, the normalization integral of the
wave function ¢ is obtained in the same manner as I,

019> =Lbalpay +<Psldsy, (23)
altpay = 20 Ty + 5D 1as (T 00 + o (L) 4 oo

Contributions from Iy and other higher order terms to {¢alppe) can be neglected

in comparison with the first term, and the first term is calculated by the use of
Eq. (17a) as

a 4 1 oJ —EN-
alPay = %)= — “W’*‘(l"_‘*—*—l ~—~—°> . 23
balay =201 Ay A og— (23a)
In the same way we obtain
S 4 1 J —E\
$holper =201y = ‘gpjgjj (1 ——%log —~bi> . (23Dh)

Induced localized spin is calculated by the use of these equations:

_ <¢]Szl¢> — 1 <¢)o¢’¢1a>_<¢)bl¢}ﬁ>ﬁ 1 A
A _ -1 4 24
o=l T2 Gl 2 (T oy (24)
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Magnetic-Field Dependence of the Local Electronic Structure 585

and from this a finite susceptibility can be obtained. This field-dependence of
the magnetization is particularly significant in the sense that it does not include
any logarithmic function of field. These results are completely incompatible with
those obtained by the Suhl-Nagaoka theories.™

As mentioned before, all these results have been derived under the condi-
tion of (12), which can be rewritten with the use of Eq. (15) as 4< —E,
X exp(—N/3pJ). Another condition which is omitted in references 4) and 8) is
caused by the following consideration. Equation (15) indicates that E+4 is
always negative and this means that the bound state is more stable than that
obtained by the usual perturbation theory including the magnetic field. However,
for increasing field, E+ 4 decreases gradually and if it becomes the order of
4pJ/N, any decisive conclusion cannot be drawn down, because at that field
E+ 4 is comparable with terms neglected in the calculations. This leads to
another condition about the applied field:

o 4 o - (25)

which is rewritten as A< —E,/Vo|J|/N by the use of Eq. (15), and it is a more
severe condition than (12). Anyway for a magnetic field such as

d=c|E,|, c¢: any finite value independent of pJ/N, (26)

namely for much larger field than \E,|, inequalities (12) and (25) are both sat-
isfied thoroughly in the weak coupling limit. Therefore, a significant result is
that the anomalous binding energy decreases but never vanishes by an external

field.

§ 3. Spin polarization density and spin correlation
density at the impurity site

In this section and the next one, local electron distributions with up- and down-
spins are investigated separately in each of two components ¢, and ¢z by the
use of the results described in the previous section, in parallel with II. In order
to calculate these quantities, we calculate summations of {¢a|airam|d.y and
{palak ar|pay, of which expressions have different forms according as k or &’
is an electron state or a hole state, as given in Egs. (18)~ (23) of II in slightly
different notations. For simplicity we omit the contribution from the Fermi
sphere, and only deviations from it are given.

We calculate first the charge density at the impurity site in the component

Ga:
L A Thkpulaban atianlto

1 1 ,
- = O 4 23 e (T -+ T,
V<M>{<Z P4 23l 1% )

703 (0) +724,(0) =
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T @ T a a @ 1 [¢3
+ 21234 [r12j3 (FLJ?S - ] 12,T4 + ]—':U?o) + F[l%], 3 <F[1:1L],3 - _Z"FEI%], 4>:‘

- 212345 [F ﬁ%], 3 (r [(;%4.35 —1I Eli%?‘f], [35]> - 21 11?3 (r ICE;I] [35] +17] [cfﬁz, 53)] + - } ’

27

where V denotes the total volume of the crystal. By the use of Egs. (18) ~
(22), this is expressed with /\* and I'\® alone. After calculating integrals to be
correct for the most divergent contributions, we obtain up to third order in J

1 1 o
Ry 0 @ 0)=— -~ __‘1[—,10:2
1(0) + 7244 (0) V@W[(L )

_lefla <l I® _]"'zﬁ> <X12+ _1_X1‘~;_;_ _1_ ng -+ >J, (28)
2 2 3
where

D b
and by assuming that the #-th term in the parentheses is (1/2)X{% this can be
written as

J &t e—E,
Xm:% 0g Gt -

oy (O) + g (0) = “1; *@1,*@[(er1“)2+ 212[’10‘ <‘;—an "‘F2B> Iog (1 ~4XV12)]. (29)

With the use of Eq. (17a), each term in the parentheses is integrated in the
weak coupling limit as

s o167 N\ ? oJ —E+4 oJ | —E,\ v
o) = —<_> [1+ 1 T <1~.m1 ﬁ%> ,
(2l s oJ N 08 —E, N %D

2
Sl log (1— Xy) = —p* o2 (ﬂ)

27\ pJ
J —E+4 oJ — Fy\
s |14+207 _-«—,V‘_(1-~_1 °) J
[ N ®TCE N %D
. 2
Z;zfl‘“rg‘glog(l—Xlz)2022—?<§}>. (30)

In these expressions, field dependence is only in the form of log[ (—E + 4)/—E,]
and this part is of the next divergent order for the magnetic field of Eq. (26)
compared with the field-independent terms as remarked in the previous section.
On the other hand, the normalization integral {¢l¢> which is given in Eq. (23)
has a stronger field dependence of the form of 1/(—E+4) and other weak field-
dependent terms are neglected in the normalization integral as next divergent
terms. Therefore for the calculation of Eq. (29), only the most divergent (field
independent) terms in Eq. (30) are significant. Thus we obtain
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Magnetic-FieZcZ Dependénce of: the Local Electronic Structure 587

o (0) + 7ay (O) =0, (31),
and by the symmetry relation,

761(0) +15,(0) =0. (32)

That is, there appears no charge density at the impurity site.
Next we calculate the spin polarization density at the impurity site by the
same step of calculations. Its component for ¢, is expressed as

% [72a1(0) — 724, (0) ]

1

= 2—‘7 WZ% LYalatnar —ak Ldkl‘¢a>
1

- = 42> Yas 123 s
2V<W>{ (W + 2l o (s — T )

(24 a [24 , 1 (44
-+ le [rm 3 (l 14,3 F1234 _]"42?3) - F[l%],s <r[1i'],3 - *2—r[1%],3>J

- 212345 [F Eﬁ],ii(r Eﬁﬁ‘i 35 — I [114] [53]) —2I 1‘?5 (F 1?%1],[35] -1 [‘fi’%zos) ] + } .
(33)

Combining this with 7. (0) —7g,(0) which is obtained from Eq. (33) by the
symmetry relation and by the same procedure from Eg. (27) to Eq. (28), we
obtain the expression for the spin polarization density at the impurity site as

% [ (0) — 724, (0) +724,(0) —724,(0) ]

1
—_ = F,BZ 1]*1042
35 2o | (D = (2T

+ -;—212 (Il =T [X + % Xi+ % X+ ]

J [ 1 1
+ = ey ~—— ([Y*) =~ ]} 34
N2123 (7% Gt+e—ea—E+4 &) ate—e—E—4 (34)

where the last term is calculated in logarithmic accuracy as
1 —~E+4
e —0* r“l[le 2+ (e~ E+ d)log ]
D s l>u1+82 Ny =021 (1) og (&1 ) D

NZD{) log 221 (]_'1“)2 }__, (r1a)2>_-‘_,23—'v~— . (35)

3

Equation (35) is of higher order in J than (X471, etc. in Eq. (34) as is easily
shown from Egs. (23a,b) and (30), so that only the part proportional to D is
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retained. The remaining most divergent terms in Eq. (34) cancel with each
other in the same way as the charge density does. As a result, the spin polari-
zation density at the impurity site is obtained as

%@ <o>>=§m (0) =720, (0) + 75 (0) — 12, (0) ]

J a\?2 2 1
ToVN <¢|¢>L L= (0 ]Z““’e,c—ek»
J
VN <¢1</>[<¢a|¢a> <¢ﬁ|¢)ﬁ>JZkkgk e
= () Do T o

— ek,

where use has been made of Eqs. (23a, b) and (24) Equation (36) is just the
same expression as obtained in the RKY theory,"” and the effect of the bound
state is included only in the expression of {S,).

Similarly the z-component of the spin correlation density at the impurity is
calculated as

1
2V <¢l¢>
1

= T [72a4(0) — 724, (0) — 724, (0) + 75,(0) ]

—2 el Pl (atram — adan) Si| ¢y

1
I — 1]—'1“2 _‘1]_'1'82
4V<¢l¢>{ (U — (L)

+212 <Flar2a+rlﬁrzﬁ) [ Xlz 4 lez‘f‘ 1 Xu :l

ST [ZXM +oX 3 Xi+ ]

J 1 a2 2
+ 57 DT )

. 1 1 i____ a\? 2
~ ol 4[12Jf1)+(zﬂf?)]

+ %212 (11 + TP T, [— 14 X+ % (1—- X)]
+ g—zmrﬂm [~ 14 Xt (1— Xm>--2]}

= = 37
4VNZM—W G0
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Magnetic-Field Dependence of the Local Electronic Structure 589

Integrals in Eq. (37) are calculated in a way similar to Eq. (30),

212r1ar2aX12:ZmrlﬁrzﬂXm: ’ler1arzﬁX12—92§—2 <_2—\L> >
45\ pJ
ZHFI“TZ“ (1 _X12>_2:212F1I8F23 (1 '—‘Xm)mzz —mel“l“f (1 ~Xm)*2
2 N>2 [16 64( oJ _Ev0>—1/zj!
=0 (=5) | T (1=l ) | 38
p<pJ 3 2ztv N ¢ D) J (38)

where field-dependent terms are also of the next divergent terms and are thus
neglected for the same reason as before. Inserting Egs. (30) and (38) into
Eq. (87), we finally obtain

1
ﬁ Wzkk <§/)‘ (a¥ gy — a'la’la'kl> Sl
1 N\'p Eoz 1
== < pJ V (Eo + 42)1/2 4 VN ka e . (39)

In Eq. (39), we obtain the z-component of the spin correlation density at the
impurity site and from this we can prove that other components of this quantity
are also equal to Eq. (39) as follows; assuming that all three components are
equal to Eq. (39) and by the use of the Feynman relation, we can obtain the
correct result Eq. (13) for the total energy. Thus the spin correlation density
at the impurity site is obtained in the form

/N E 1
——<s(0) Sy=— ) Ty TR VNZM D

where the first term expresses the contribution from the formation of the bound
state and the second term is that of the normal part. The kinetic energy, the
potential energy and the Zeeman energy are obtained separately by the use of
Egs. (13) and (40) as

A?
Ezeeman - Sz Hz =TT TR . Tonae
g15S:) (Ery
N Ey 3 /[oJ\? 1
ECXC = mN_ﬁ“O——— I <_—> < >
" oJ (EF+4)" 40°\N e € Ex

N Ey 3 (oJ\? 1
E-in =FE-—- Ezeeman - Eexc = (1 ~+ _“_> —fV““O—'* +— <_"‘“> ek’ .
* * ol ) Err 7 BN F

(41)

The electron densities at the impurity site for the up- and down-spins in ¢, and
¢ are obtained by combining Egs. (31), (32), (36) and (39) as

B _ 0 N \? Ez
) = =@ = ()
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J < y >ﬁ
SN SR [ R b ,
AVN (B + A7) = e s,

Ck

1 (0) =~ () = 0 (MY B

3 [/ pzj (;Eoz ‘*” W
J < 4 > . 1
SR S R N W S 42
4VN (E02 + 42)1/2 Zkk Ex — Ex- ( )

Anomalous parts of these are shown in Fig. 1 as the values at the origin. Total
amounts of electron and hole trapped around the impurity in ¢o and ¢g are in-
vestigated in the next section.

§4. Total localized elecirons with up- and down-spins
in each of two components ¢, and ¢,

We calculate in this section the total localized electrons with up- and down-
spins in each of two components ¢, and ¢z For this purpose we calculate first,

Moy 70y = g 7}111}6 {pal@ibnam £ aioaw [P /PP . (43)

As mentioned in the previous section, these consist of three parts corresponding
to the cases that states %2 and %’ are both electron states, both hole states and
one of them is an electron state and the other a hole state. Among them, the
electron-electron and hole-hole parts are continuous as £’ tends to % and there-
fore a contribution to Eq. (43) from these parts is equal to the total (not to
restrict total local) amount of them in ¢,. The structure of the wave function,
Eq. (3), shows that net one electron with down-spin state is added in ¢$o. From
this consideration or by the same calculation as that made in deriving Eqgs. (33)
and (34) from Egs. (31) and (32) in II, we obtain

(ﬂfﬁﬂzﬂal)eeﬁl‘ (naT:tnaL)h/L: igébfﬂﬁ . (44)
ar
The contribution from electron-hole part distinguishes the total localized
quantities from the trivial total quantities, Eq. (44), and makes a crucial effect
as described in II. We calculate this part as follows,

(na? + naL)eh = 22/6 liln (na’f =+ nal)é:llbk > v (45)
i
where
(ﬂdT + nal)é;/;lc<(/) l ¢)> = <¢a | a‘zz’Tak? + az\"iakil,(/)a>eh . (46)

The main point of this calculation as remarked in II is that though the contri-
bution to Eq. (45) only comes from the Fermi surface, the integrand (7a; &= 7240)é"
has a singularity of (g —¢,)™' at that surface, so that a finite value can be ob.

tained. By the use of Eq. (3), Eq. (46) is expressed in the coefficients I as
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(na‘r:t”m)fz:k<¢|¢)> erl (rlk == []k’],lc

+ 2_123[1]—'[12] 3(irﬁ?ﬁﬂ,[mj'“F[m]lu/,s/c) +r] (:l:r[lc 7112, k3 rlﬁtzj,[lcsﬂ)] + e
47)

The right-hand side of this expression is calculated by the use of the Schrédin-
ger equations (6) ~ (11) in order to draw the factor (s —er)™". For example,
for I'*I'% ., we subtract Eq. (6) multiplied by I, . from Eq. (8) multiplied
by 7% and then obtain I't°I'f x (s —&x). In this procedure, 4 which appears in
the left-hand side of Egs. (6) ~(11) drops off. For the first term of Eq. (47),

we derive

(”a?i ”al)em 3><</1W> (ee —&r) = 2l I w ﬂ:r[uc e (G — €r)

:Ziﬁ (LT (T8 —2IE) (48-1)

J ]ﬁ a2
_41\721( P (£1-1) (48-2)
+—2:j]\7(21f1 YIS (ETE e+ T ) ~—~—-(21T15)21(T1k/ gt LGk (48-3)

J al
4]1?"4103 (r[n] 3+ ]_'19 3 21 'z) (F‘u\, L [1/.:’], i ’ (48 : 4)
—— *Zwrl [ 12 g+ T ,2 — 21" A0k (r[u] b ]-v[%/]’Q._}_Z 21, lr)] (48-5)

Jr'4(]]'\7217 T o+ T+ 2T 0 F (Tt i+ T30 300+ 20 k) 1

(48-6)

Equation (48) corresponds to Egs. (40) and (47) of II, in which the condition

for the singlet state makes expressions passably simple.
Next step of calculation is to express the higher order coefficients /s, T123 5

in Eq. (48) with 7'\ and I.? by using Eqgs. (18) ~(22) and also corresponding
equations with index (3, and to calculate them retaining the most divergent con-

tributions. The first term can be calculated as

(DI (R TE=2TD)

1 pJ< oJ -E’0>-1/4 —E+A] p
=| =+ (1—"=log—— log —= +I'g—2I%).

[3 6NV N ¢D og Ty | (RTE2D
In this expression, the second term in the square brackets is a field-dependent
one, however, as often mentioned it is very small in comparison with the field
dependence of (1% —2I'%) or of {pl¢> in Eq. (48) and hearafter it is to be
neglected, Thus we obtain for the first term

220z 1snbny |z uo1sanb Aq Gz61261/8.8/€/Sr/elonie/did/woo dnoolwspede)/:sdyy woly papeojumoq



592 H. Ishii

Zﬁ(zlfla)(ifk —2]})———(:&]",6 —2I'y). (49)
The second term is the term appearing in the normalization integral Eq. (23)
and thus of the next order as compared with Eq. (49). Contributions of other

terms of Eq. (48) to the most divergent terms are calculated, in terms of X and
X, defined by

£ Jog — 2 and Xr——-pilog &1~ £y

N D N D

as follows:

(48.-3) :ﬁ[im(&n“) —IE QL] [7} +13 X g }

+ [+ TE ST ~TE (2111“)][ x+2 X+%5.6X+]

= fﬁ[ﬁ:rﬁ (SLI —TE (D) 1 X (1~ X))

J e @ — - 1/4 l — —3/4
L [T ()~ TA(ST, >][ 1+ Q=X+ L X-30 /].

(50)
(48-4) = :tfl\—,r,:ﬁzl (I + 4TF)
1 1 5 2 2
><(—~X1+~X1X—- X1+——X1X+~—X1X )
32 16 128 128
+ Z’Fr,ﬁizl (I 4+ AT/#)
3
(- xp+txx—3 xo+ 3 xexy Sxxry ) 51
(16181321321321 5D

(48-5) = ¢_~rk ST (% o+ XI—:—ﬁXI, )

128
—--._rk ST (X1+ 1 xe 1 . 7 X0+ ). (52)
3 17 45 39
486 ?——F, I (——X2—-—XX+ XP— = XX - 22X X )
( ) k Zl i 8 1 1 32 1 128 1 128 1
‘(Z—FJ; 2_,1F1 < X1X+'1‘X13+§-X1X2+ "‘)- (53)
4N 16 16

Adding up Eqgs. (61), (562) and (53), we obtain
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(51) + (62) + (53)

J 1 1 5
—+7re ra[(-_X+-—X2+—X3+---)
vt Pl g By e &
—X(—l—X1+—3~X3+--~>~X2(~3-—X1—l---->_u
2 78 8 |
S resre <1 14 5 xo )
i&ﬁrklefa [ —é“Xl +32X1 +

-X (l_ X1+_§X12_g_ ) *Xz(g X+ )1
4 32 32 -

J 7 27
+_rﬁ/ Z—va[(_X_____‘Y2____Xa+.__>
4N o2l bog T 3

WX<% X1+3—35X12+ ) ——X2<?% X+ )}

+Z(Z]folzlr1ﬁ[<i- X12+%X13+ >

~X(_§—Xl+—:-xlz+---)—Xﬂ(-z—Xl+---)]. (54)

In order to find out functions of X and X; whose expansion forms coincide re-
spectively with those in Eq. (54) up to the third order in pJ/N, we can rear-

range Eq. (64) as
(60 =% L re (L e 1) (G X+ X4

4 LS4 TE (T~ 21 ~TE (T =219))

/
(A[(2 x4 By e )
15L\V4 32 128
__}_X (in_g_ij‘EXI?_;_ > _iXﬁ(i X+ ) + ] :
4 4 32 32 4

+ i‘fﬁ (T8 —TE) ST+ TP

xg{(iXmL@XHZ?—
3L\4 32 Tigg

1

X3+ ) + (__ Xl—}——%Xf-l-lf X2+ )
4 32

128

21
32

1./3 5/(1 o 3.
+2x (2 x4 Xrdo )+ 2x (L 2
47\ ' 47\ 7 T3 )

+2x0(2xr )+ 2
32

> x(2 Xﬂ(l;m-.-)}, (55)

4
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and it would be allowable to identify (55) with

J

54) = 1.2
GH =75

resy (% et m) [(1-X)"'—1]

- zfz(r [+ =2 ~ri e —2r”)]

X %(1 XM (1= XD —1]

+éJW(:J:T;§—Ff,) SUEH TP {A—X) " (1— X))~ —1]

—A-X)"[A-X)" -1} (56)

For the second term of Eq. (47), the same procedure of calculations has
been taken, where all the most divergent terms cancel with each other. Details
are omitted in order to avoid lengthy description. Finally, Eq. (47) consists of
Egs. (49), (50) and (66). Adding up these contributions and performing the
summations involved in them in the same way as II, we obtain for the most
divergent contributions of Eq. (47)

lm (72 £ 72,00 Plg> (e — &) = % (LT =T 1—-X)

Efpr—0,
ep—0-

2 ( 1 1 > 1

=—=|t—s—t—— 1-X)77, 57
9 —E+4 —E—4 ( ) . G7)

where Iy is defined by 7= ({%)e;,—0. Therefore, using Eqgs. (23a,b) for <{¢|¢>,

we obtain
Hm (naT:t nai)f,;k (ak"“t—k) — _i i<¢a‘¢a>+<¢ﬂw)/€> . (58)
o 20 {plgy

Two equations involved in Eq. (58) correspond to Egs. (46) and (57) of II,

respectively. Factor of 1/2 in (58) is attributed to the difference of taking the
normalization; for the singlet state it is possible to consider it in one component

of the wave function, but it is not the case in the magnetic field. By inserting
Eq. (58) into Eq. (45), summation on the Fermi surface can be carried out as
is done in Eq. (36) of II and the following results are obtained,

Mo+ Moo= — % (59)

and

_1_ <‘/Ja]¢)q> - <¢BN}B> . (60)
2 {plg>

Equation (60) which vanishes completely for 4=0 has now a finite value, whereas
Eq. (59) does not change. Combining these results with Eq. (44), we obtain,

(77'0:‘]‘ - 7zz1|,)eh. =
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with the use of Eq. (15),
:§,¢a‘¢a>"<¢ﬁl‘ﬂ_ﬁ_>: —4 :<Sz> (61)

R+ My 2%

24019y 2 (B + )7

and
(62)

— 1
naT“naL_' T 9

from which, (ng+ng) can be obtained in terms of the symmetry relation, and

thus we have the following relations,

1 Y| > 1 1
= — _— ""1'7—‘7\7‘-' =\ = Sz 4
ras a1 4 < (E02+A2)1/2 92 < 2 +< >>
(63)
1

om0 )1 +45)
For the singlet case (4=0), Eq. (63) dif-
fers from the corresponding equations (59)
and (60) of II by the factor 1/2. This
difference is trivial, because here we nor-
malize ¢, whereas in II one component of

¢ is normalized. The results of Eq. (63)

are shown together with the result (42)

schematically in Fig. 1. Here it is to be | j,/" ‘\ﬂ:O |

noted that with increasing field the mag- AN

nitude of electron- and hole-clouds with H

up-spin increases, though it becomes thin \
and tends to twice as large as those for
the zero-field case, while clouds for down-
spin diminish. The combinations of Eq. Fig L Local distributions of electrons with
(63) give the most divergent contributions :pl_,da?d down'Spmi mth‘l)a an'd ({ﬁ The
. . . olid-line represents those in the pre-
for the following physical quantities, sence of the magnetic-field and the dot-
ted-line in the singlet ground state.

(i) total localized charge

Rapt+ 7oyt g+ ng=0, (64-1)
(ii) total localized spin polarization

5 (Nar— oyt np—ng) =0, (64-2)
(iii) z-component of the total localized spin correlation

(g —na—ngp+ng) = —i. (64-3)

Since contribution of the RKY term to the spin polarization is of the next order
of divergence, it drops in (ii). We will reexamine Egs. (64-1) and (64-2)
rigorously in § 6 without restriction to the most divergent terms,
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For the spin correlation, Eq. (64-3) proves that the z-component does not
change and other components are calculated in a same way as is done for the
z-component and the result is .

1
<plgy

v wL";’z (E2+Az)1/2+d
=> WP = S | — . 65
2l T 44 (Bir 78 (BT £y — 4 65

5 s M lim (plabaanS- + abianS, 145/<014>

Equation (65) is due to the contributions from electron-electron and hole-hole
parts and electron-hole part has no effect on Eq. (65), because a procedure
similar to deriving Eq. (48) in which appears a singularity of (g —¢&x)™" now
gives rise to the factor of (g —&;+24)"! which is finite when % tends to k, as
is easily seen from the Schrédinger equations for I"®s and I™s. Equation (65)
is a monotonic function and tends to zero for large 4. Thus the total localized
spin correlation behaves Ising-like for large 4.

§ 5. Magnetoresistance at 0°K

In this section, we give a consideration for the magnetoresistance, using the
result of the previous section. The phase shifts for the conduction electrons
are related with Eq. (63) by the Friedel sum rule. However, the phase shift
obtained in this way is given separately for the components ¢, and ¢,z and it
is the essential point how to relate these with the calculation of the magneto-
resistance. We proceed as follows: Since 7oy 1s normalized in ¢, the total
amounts of up-spin-electron trapped around the impurity in ¢, is 2y lO1 P> /b alP o),
which equals —1/2 for the singlet state (4=0). Thus the phase shift Ner for
the up-spin-state amounts to 77.<{¢|¢>/{P.|¢oy by the Friedel sum rule, and the
other phase shifts 74, 76 and 74 are considered similarly. When the expres-
sion for the magnetoresistance is derived from these phase shifts, we believe by
the physical insight that it is relevant to consider the difference of the proba-
bilities for ¢, and ¢, in weighting them to the phase shifts in themselves, not
in weighting them to the components of resistance corresponding to each phase
shift. Therefore the magnetoresistance may be written for the present system
where only the s-wave scattering is taken into account in the form

where R, denotes one s-wave unitarity limit for resistivity. In this expression
factor 2 is brought into the arguments of sine in order that Eq. (66) coincides
with the correct result of II for the singlet state (4=0) where /2 or —1x/2
enters the arguments of sine, as discussed below Eq. (63). Inserting Eq. (63)
into Eq. (66), we obtain the magnetoresistance in the form
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L2 T 4
:R0[1—£~£2—+~-] for A~0
4 E

and with the use of Eq. (24) it is written as
R(4) =R, cos’ndS,>. ¥ (68)

Here an important thing is that this expression has no logarithmic field depen-
dence. Equation (67) is shown in Fig. 2(a) in a usual scale and also in Fig. 2(b)

10 10
R ol
06 06}
04t 04+
02+ ot

, P L ! L t ! O s ot f ,Ii/}f\.l\

0 02 04 06 08 10 12 14 16 001 002 004 00601 02 0405 10 20

4/IE /1
(a) )

Fig. 2. Magnetoresistance (a) in a usual scale, (b) in a log-scale.

in a log-scale. It is noted in this figure that the log H-like dependence of the
magnetoresistance is seen in the neighborhood of Hy, where Hy is defined as
|Ey| /g at which the usual perturbation calculation diverges.'”

On the other hand, a feature similar to Fig. 2 is seen in the experimental
result by Daybell and Steyert™
alloy of Cr in Cu down to 40m°K and up to the magnetic field of several times
of T In contrast to the susceptibility, the magnetoresistance becomes flat at
low temperatures and it is easy to extrapolate it to the zero-temperature. Moreover,

who measured the magnetoresistance in a dilute

the temperature-dependence of resistivity’® is also quite similar to Fig. 2a or
Fig. 2b, and if we take account of the similarity between temperature and field
effects in the present system, the expression similar to Eq. (67) seems to hold
plausibly also for temperature-dependence. Magnetoresistance has also been calcu-
lated by More and Suhl™ on the basis of the S-matrix theory, but their result
at low temperature shows a complex behaviour and differs completely from ours.

§ 6. General relations

In this section, we show rigorously that the total localized spin polarization

is given by (pJ/2N){S,> by the method developed in II

*) The same expression as Eq. (68) can also be derived on the basis of the Takano-Ogawa
theory.!» However, the expression for <S,> is completely different from ours and it shows a dis-
continuity in its field derivative at H=Hg, while there is no such discontinuity in our case.
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Applying the relation {¢|[H, afsan;]-|¢p>=0 which holds for the eigenstate
¢ of the Hamiltonian H to the present system, and assuming that ¢ 1is non-

degenerate, we obtain the following expression which corresponds to Eq. (63)
of II,

CPlataan — atan| 9>/ Plpy = — L Tv=Le 69)
where L is defined by
L =3 gl (atran+atran) .= atianS. +abanS19)/<P10> . (70)

Explicit effect of the magnetic field drops out from Eq. (70) because afsau
commutes with the Zeeman Hamiltonian. For ¢, ¢ >0 and &, <0, the right-
hand side of Eq. (69) tends to — (J/2N) (dL;/de;) as k' tends to k, and for
e >0, &<C0, it is proportional to the discontinuity of L, at the Fermi surface.
Circumstances are the same as those in which Eqgs. (65) and (66) are derived
from Eq. (64) in II and thus the spin polarization is expressed with I, as

naT~nal—l-nm—nm=~§2‘\]f[L(D)—L(-D)]. (71)
Ly is expressed with coefficients /s from Eq. (70) as
k:<¢1]¢>[(rka+rkﬁ>;(rla—rtﬂ) 4] for >0,
:‘<ﬁ¢>[<¢al¢’a>*<‘/’ﬁf¢ﬂ> + % 2 (Sl + I+ 215 + ]
for &,<0. (72)
Noticing that I't%, I'§l,, etc., are of order 1/D at band edge, we obtain
L(D)=0
and
L(=D) = balbe) = <bslde> =S, 13

<pley

where use has been made of Eq. (24). Inserting Eq. (73) into Eq. (71), we
finally obtain the total localized spin polarization {0,

oy= %(”ar — oyt = g) = 2021]]<SZ> . (74)

Equation (74) corrects the result of the previous section, Eq. (64-2). Equation
(74) is the relation first found in the RKY theory'® and also confirmed by the
usual perturbation theory,"” so that this is considered as a general relation hold-
ing between the spin polarization and a magnitude of the localized spin. Heeger,
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Welsh, Jensen and Gladstone' have calculated the magnetic susceptibility for
the analysis of their experimental result. Their result shows that <{¢) is equal
to ¢S,> when the g-value of the conduction electron is the same as that of the
localized spin. This contradicts the general relation proved above.

If we take another combination of ajsaxs instead of Eq. (69), it can also
be shown that the localized charge generally vanishes for the present Hamiltonian

as has been proved in IL

§7. Conclusion and discussion

We have investigated the magnetic-field dependence of the local electronic
structure of the ground state in a weak coupling limit. Here we summarize the
results obtained in each section. In the absence of the field, it is the conclusion
of II that ¢, (¢s) has half of a down-spin-electron (hole) and half of an up-spin-
hole (electron) localized around the impurity in total, and in the present case
it is shown that with increasing field the magnitude of trapped up-spin-hole
(electron) in ¢.(ps) increases and tends to the twice of that in zero-field case
and that of down-spin-electron (hole) decreases and tends to zero. Accordingly,
it can be said that in the limit of increasing field ¢.(¢s) has almost one up-
spin-hole (electron) and no down-spin-electron (hole) localized around the im-
purity. (On the basis of this interpretation, we have derived the magnetoresist-
ance.) On the other hand, densities of these at the impurity site diminish
with the field. Accordingly, there remains in ¢.(¢s) a cloud of up-spin-hole
(electron) clinging to the localized spin even in a high field. This feature is
characteristic of the bound state. On the basis of this result, we have obtained
a reasonable expression for the magnetoresistance at 0°K, which has no log H-
dependence though it has a part linear in log H in the vicinity of Hx. Further
we have shown the following: The total localized spin correlation varies from
—3/4 to the limit of —1/4 with increasing field. The total spin polarization is
related with the induced localized spin as (o> = (pJ/2N){S,y. This has its
origin in the RKY spin polarization and is the relation which generally holds
between them. Since the spin polarization density at the impurity site also con-
sists of that of the RKY theory, we may expect that all the feature of the spin
polarization is given by the RKY theory. The charge does not accumulate in the
ground state of the present system. The exchange energy and the kinetic energy
are expressed as functions of the field. Finally, guided by the methods of 1 and
I, we have studied all the results obtained in them in the presence of the mag-
netic field.

Measurements of the magnetic susceptibility’® have been done mainly in the
system such as Cu-Fe, Cu-Mn and Au.V. However, the conclusions drawn from
various experimental results do not always agree as to whether the susceptibility
tends to the constant value or diverges as 77" at T—0°K. Recently Pratt,
Schermer and Steyert’® have found the temperature independent susceptibility
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in the range 4m°K<7T<{10m°K by measurements of the anisotropy of y-ray emis-
sion from Mn™ doped in Cu which was first done at 10m°K and 25m°K by

Campbell et al.’® This suggests the constant susceptibility at 0°K in agreement
with our conclusion.
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Note added in preef: By investigating the total localized spin polarization and the spin density at
the impurity site, we have concluded that all the feature of the spin polarization is given by the
RKY form with {S,> induced by the field. It is possible to prove that this is also true for the spin
density at any point r by examining the expression for o(r) obtained by operating (1/N)Sl-
exp[—i(k’—~E)r] to Eq. (69). Details will be published elsewhere.
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