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ABSTRACT

Context. We study the non-linear evolution of magnetic fields in neutron star crusts with special attention to the influence of the Hall
drift.
Aims. Our goal is to understand the conditions for fast dissipation due to the Hall term in the induction equation. We study the
interplay of Ohmic dissipation and Hall drift in order to find a timescale for the overall crustal field decay.
Methods. We solve the Hall induction equation numerically by means of a hybrid method (spectral in angles but finite differences
in the radial coordinate). The microphysical input consists of the most modern available crustal equation of state, composition, and
electrical conductivities.
Results. We present the first long-term simulations of the non-linear magnetic field evolution in realistic neutron star crusts with
a stratified electron number density and temperature dependent conductivity. We show that Ohmic dissipation influenced by Hall drift
takes place in neutron star crusts on a timescale of 106 years. When the initial magnetic field has magnetar strength, the fast Hall drift
results in an initial rapid dissipation stage that lasts ∼104 years. The interplay of the Hall drift with the temporal variation and spatial
gradient of conductivity tends to favor the displacement of toroidal fields toward the inner crust, where stable configurations can last
for ∼106 years. We show that the thermally emitting, isolated neutron stars, such as the Magnificent Seven, are very likely descendants
of neutron stars born as magnetars.
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1. Introduction

Since the early days of neutron star (NS) research, when a first
estimate of the characteristic decay time of its magnetic field
was performed (Baym et al. 1969), our models of magnetic field
evolution in isolated NSs has become more and more complex.
However, a complete theoretical model that explains all obser-
vational facts satisfactorily does not exist yet. There is very gen-
eral agreement that the magnetic field in ultra-magnetized NSs
(magnetars) decays on timescales of 103–105 years (Woods &
Thompson 2006; Harding & Lai 2006). Very recently, it has been
argued (Pons et al. 2007) that field decay may also be an effective
heating mechanism in isolated NSs, which are somewhat less
magnetized than standard magnetars (AXPs and SGRs). The
observed correlation between surface temperatures and mag-
netic field strengths is evidence of efficient dissipation, hence
Joule heating, near the surface layers of NSs. In addition, evi-
dence of braking indexes significantly larger than 3, which are
inferred for an ensemble of a dozen of pulsars in an active age
of a few 105 years, indicate that epochs of rapid decay in rela-
tively young NSs occur (Johnston & Galloway 1999; Geppert &
Rheinhardt 2002).

Another proof of rapid magnetic field evolution in the sub-
surface crustal layers would be the observation of small struc-
tures (significantly smaller than the dipolar mode) close to the
surface. These small-scale structures could not be survivors from
the magnetic field structure acquired by the NS at birth; their
small scales, in combination with the low electric conductiv-
ity in the outer crust, would have erased such field structures
on timescales shorter than 1 Myr. In addition, the growing

understanding of the physics of the drifting sub-pulses supports
the idea that small-scale crustal field structures must be present
(Gil et al. 2003, 2006). The existence of strong crustal fields in
NSs as old as about 1 Myr is also necessary to create the non-
uniform surface temperature distribution observed e.g. in the
“Magnificent Seven” (see Pons et al. 2002; Schwope et al. 2005;
Haberl et al. 2006 for the observational evidence and Geppert
et al. 2004, 2006; Pérez-Azorín et al. 2006a,b for the theoreti-
cal interpretation). All this phenomena can only be understood
if there is a crustal magnetic field with a strong toroidal compo-
nent and with more structure than the simple dipolar model.

On the other hand, population synthesis studies suggest
that old pulsars show no significant magnetic field decay over
their life time, i.e. the decay time must be longer than 10 Myr
(Hartman et al. 1997; Regimbau & de Freitas Pacheco 2001), al-
though the opposite conclusion has also been claimed (Gonthier
et al. 2004). These, at first glance, contradictory facts can be
satisfactorily resolved by the (quite natural) assumption that the
NS magnetic field is maintained by two current systems. Long
living currents in the superconducting core support the large-
scale dipolar field and are responsible for the spin down of old
pulsars. Currents in the crust support the short-lived part of the
field. It decays on a timescale of 105–107 years, depending on the
conductivity, thickness of the crust, and the strength and struc-
ture of the initial field. Estimates of how fast a core-anchored
field could be expelled and subsequently dissipated in the crust
result in characteristic timescales exceeding 100 Myr (Konenkov
& Geppert 2001). The dipolar component of the crust is super-
imposed, outside the NS, to the core component. Depending on
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their relative strengths, a rapid decay of the crustal dipolar field
may or may not have observable influence on the pulsar spin
down behavior.

Besides the Ohmic diffusion, which will proceed fast in
the outermost low-density crustal regions and during the early
hot phase of a NS’s life, another process that can change the
crustal field structure, both quantitatively and qualitatively, is
the Hall drift. During the last two decades, many authors have
studied the effects of Hall drift onto the evolution of mag-
netic fields in isolated NSs (Haensel et al. 1990; Goldreich
& Reisenegger 1992; Muslimov 1994; Naito & Kojima 1994;
Urpin & Shalybkov 1995; Shalybkov & Urpin 1997; Vainshtein
et al. 2000; Rheinhardt & Geppert 2002; Geppert & Rheinhardt
2002; Hollerbach & Ruediger 2002; Geppert et al. 2003;
Rheinhardt et al. 2004; Cumming et al. 2004). By use of the anal-
ogy of the Hall induction equation with the vorticity equation
of an incompressible liquid, Goldreich & Reisenegger (1992)
developed the idea of the Hall cascade. It transfers magnetic
energy from the largest to smaller scales until a critical scale-
length is reached below which Ohmic decay becomes dominant.
Vainshtein et al. (2000) considered the Hall drift for the first time
in a stratified NS crust. In the presence of a density profile, Hall
currents are able to create current sheets, which are places where
very efficient dissipation occurs. This effect is dramatic if current
sheets are located just below the surface, where the conductiv-
ity is lower, but even if the drift is directed towards the highly
conductive inner crust, the small scale of the locally intense field
causes a significantly faster dissipation of magnetic energy than
the purely Ohmic diffusion estimate. In summary, this MHD-like
process (considering the crust as a one-component plasma) is
by itself energy conserving. However, it affects the magnetic
field by two inherent tendencies: the creation of small-scale field
structures by transferring magnetic energy from the initial large-
scale field, and the drift of growing structures towards a region
where current sheets are created.

Another interesting effect of the Hall drift has been proposed
by Rheinhardt & Geppert (2002). They show, by means of a sta-
bility analysis of the linearized Hall induction equation, that the
transfer of energy from the large-scale (background) field to the
small-scale modes may proceed in a non-local way in the mo-
mentum space, resulting in a Hall instability. Cumming et al.
(2004) show that the growth rate of this instability depends on
the shear in the velocity of the electrons whose current supports
the background field. As they point out, it is unclear whether
the Hall instability is relevant for the field evolution in the crust,
since the Hall cascade may proceed sufficiently fast to fill in the
intermediate scales between the large-scale initial field and the
unstable growing small-scale ones.

In the present study we intend to consider the field evolu-
tion as realistic as possible. Thus, we will solve the non-linear
Hall induction equation numerically in the crustal region, using
a crustal density and conductivity profile according to the state-
of-the-art microphysical input. We start with initial field configu-
rations, which consist both of poloidal and toroidal field compo-
nents that fulfill boundary conditions at the superconducting core
and at the surface. We follow the cooling history of a NS, start-
ing with an initially hot NS where the magnetization parameter
is relatively small and the field evolution in the crust is almost
completely determined by Ohmic diffusion. As the NS cools
down, the magnetization parameter increases, thereby gradually
enhancing the relative importance of the Hall drift. Our aim is
to reach a better understanding of the effects that Hall drift may
have on the crustal field evolution and its consequences for the
rotational and thermal evolution of isolated NSs.

The paper is organized as follows. In Sect. 2 we present the
Hall induction equation, where the magnetic field is represented
in terms of its poloidal and toroidal components that are ex-
panded in a series of spherical harmonics. Section 3 is devoted
to purely toroidal fields. For this case we show that the induction
equation can be written in a form similar to the Burgers equation.
This allows us to discuss the importance of the field-dependent
drift in a clear way. In Sect. 4 we explain the input microphysics,
the NS model, and the initial conditions. In Sect. 5 we present the
results for different initial field configurations. Finally, in Sect. 6,
we discuss our main conclusions and give an outlook for future
improvements.

2. Basic equations and formalism

In the crystallized crust of NSs, where convective motions of the
conductive material play no role, the evolution of the magnetic
field is governed by the Hall-induction equation

∂B

∂t
= −

c2

4π
∇×

(

1

σ
{∇ × B + ωBτ[(∇ × B) × b]}

)

, (1)

where b is the unit vector in the direction of the magnetic field
b = B/B, B the magnetic field strength, τ the relaxation time
of the electrons, and ωB = eB/m∗ec the electron cyclotron fre-
quency. Here, σ = e2neτ/m

∗
e is the electrical conductivity par-

allel to the magnetic field, and ne the electron number density.
The Hall drift term (the term proportional to ωBτ) at the r.h.s.
of Eq. (1) is a consequence of the Lorentz force acting on the
electrons. The tensor components of the electric conductivity
are derived in the relaxation time approximation (Yakovlev &
Shalybkov 1991). If the magnetization parameter ωBτ signif-
icantly exceeds unity, the Hall drift dominates, which results
in a very different field evolution from the purely Ohmic case.
A large magnetization parameter, typically ≈1000 during some
stages (Geppert & Rheinhardt 2002; Pérez-Azorín et al. 2006),
strongly suppresses the electric conductivity perpendicular to the
magnetic field.

The limited success solving Eq. (1) up to now has been
restricted to a magnetization parameter not exceeding 200
(Hollerbach & Rüdiger 2002)1. These numerical limitations led
us to use an alternative approach, since fully spectral codes sys-
tematically have unsurmountable problems dealing with struc-
tures where discontinuities or very large gradients of the vari-
ables appear. This will happen, for example, if current sheets
develop as a consequence of the Hall drift. The next section will
describe in detail why spectral methods may not be well-suited
to dealing with this problem. We have decided to employ a semi-
spectral method that describes the angular part of the field by
spherical harmonics but uses a spatial difference scheme in ra-
dial direction.

The formalism that uses the representation of fields by their
poloidal and toroidal parts and their expansion in a series of
spherical harmonics was developed by Rädler (1973). This for-
malism allows transformation of the (vector) induction equation
into two scalar equations. The magnetic field is decomposed into
poloidal and toroidal components:

B = Bpol + Btor. (2)

Hereafter, we follow the notation of Geppert & Wiebicke (1991).
The two components are described by two functions,Φ(r, θ, ϕ, t)

1 Their parameter RB is equivalent to our ωBτ calculated for a fixed,
initial magnetic field strength B0.
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and Ψ(r, θ, ϕ, t), where r, θ, and ϕ are the usual spherical coordi-
nates. Explicitly, the components of the field are given by

Bpol = ∇ × A, A = −r × ∇Φ,

Bpol = −r ∇2Φ + ∇

(

∂(rΦ)

∂r

)

,

Btor = −r × ∇Ψ. (3)

This formulation has the advantage of automatically fulfilling
the divergence condition (∇·B = 0). Inserting the expressions of
Eq. (3) into Eq. (1), we arrive at two partial differential equations
describing the evolution of the poloidal and of the toroidal part
of the magnetic field:

∂Φ

∂t
=

1

σ̂
∇2Φ + D,

∂Ψ

∂t
=

1

σ̂

(

∇2Ψ −
1

r

∂ log σ̂

∂r

∂(rΨ)

∂r

)

+ C. (4)

Here, σ̂ = 4πσ/c2 and D and C stand for the nonlinear terms de-
scribing the Hall drift and coupling both components (poloidal
and toroidal) of the magnetic field. We have assumed that the
conductivity only depends on the radial coordinate and is inde-
pendent of the magnetic field strength.

After expanding the functions Φ and Ψ in a series of spheri-
cal harmonics

Φ =
1

r

∑

n,m

Φnm(r, t)Ynm(θ, φ),

Ψ =
1

r

∑

n,m

Ψnm(r, t)Ynm(θ, φ), (5)

where n = 1, . . . , nmax and m = −n, . . . ,+n. The vector potential,
as well as the poloidal and toroidal parts of the magnetic field,
can be written as

A = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

r

∑

n,m

Φnm

dYnm

dθ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

eφ,

Bpol =
1

r2

∑

n,m

n(n + 1)ΦnmYnm er +
1

r

∑

n,m

∂Φnm

∂r

dYnm

dθ
eθ,

Btor = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

r

∑

n,m

Ψnm

dYnm

dθ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

eφ, (6)

while the corresponding components of the current density,
given by J = c

4π
∇ × B, is

4π

c
J =

1

r2

∑

n,m

n(n + 1)ΨnmYnm er +
1

r

∑

n,m

∂Ψnm

∂r

dYnm

dθ
eθ

+
1

r

∑

n,m

[

∂2Φnm

∂r2
−

n(n + 1)

r2
Φnm

]

dYnm

dθ
eφ. (7)

Finally, by inserting the expansions of Eq. (6) into Eq. (1), we
arrive at an infinite set of partial differential equations:

∂Φnm

∂t
=

1

σ̂

(

∂2Φnm

∂r2
−

n(n + 1)

r2
Φnm

)

+ Dnm,

∂Ψnm

∂t
=

1

σ̂

(

∂2Ψnm

∂r2
−

n(n + 1)

r2
Ψnm −

1

σ̂

∂σ̂

∂r

∂Ψnm

∂r

)

+ Cnm. (8)

In this paper we restrict ourselves to axially symmetric field con-
figurations, i.e., the index m = 0, and we drop it henceforth.

Following the derivation of Geppert & Wiebicke (1991), the
nonlinear coupling terms are

Dn =
τ̂

σ̂r2

∑

k,k′

I(2)

(

∂

∂r
ΦkΨk′ −

∂

∂r
ΨkΦk′

)

, (9)

Cn =
∑

k,k′

I(2) ∂

∂r

(

τ̂

σ̂r2

[

ΨkΨk′ + Φ
(1)

k
Φk′

]

)

+
τ̂

σ̂r2

∑

k,k′

I(3)

[

Ψk

∂

∂r
Ψk′ +

∂

∂r
ΦkΦ

(1)

k′

]

, (10)

where

Φ
(1)

k
=

(

∂2

∂r2
−

k(k + 1)

r2

)

Φk. (11)

Above, τ̂ = ωBτ/B, and I(2), I(3) are expressions that contain the
Clebsch–Gordan coefficients that reflect the coupling properties
of the field modes with different multipolarity (see Eq. (60) in
Geppert & Wiebicke 1991).

Using the orthonormality properties of the spherical harmon-
ics, the volume-integrated magnetic energy can be calculated as

1

8π

∫

dVB2 =

1

8π

∫

dr
∑

n

n(n + 1)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

n(n + 1)

(

Φn

r

)2

+

(

dΦn

dr

)2

+ Ψn
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

As a criterion for the magnetic energy conservation we check
that the equality

1

8π

d

dt

∫

B2 dV = −

∫

J2

σ
dV (13)

is satisfied during the evolution within a certain tolerance (typi-
cally less than 10−3). The integral on the l.h.s. is evaluated over
the volume occupied by the magnetic field (including the vac-
uum exterior region), while the integral on the r.h.s. is calculated
over the region where currents exist (the crust).

2.1. Outer boundary conditions

Since we consider realistic crusts with finite electric conductivity
in this study, surface currents are excluded. This means that we
require all components of the magnetic field to be continuous
across the NS surface, i.e. that the scalar fields Φn and Ψn, and
the derivative ∂Φn

∂r
, are continuous through the outer boundary

(see also Rädler 1973).
The external vacuum solution of a NS magnetic field is de-

termined by ∇ × B = 0, ∇ · B = 0, and the boundary conditions.
From Eq. (7), the vanishing curl condition leads to

1

r

∑

n

[

∂2Φn

∂r2
−

n(n + 1)

r2
Φn

]

dYn

dθ
eφ = 0 at r ≥ R, (14)

which can be expressed as ∆Φ = 0, where ∆ is the Laplacian.
The index m = 0 in Ynm has been omitted for simplicity. The
only physical solution of this equation is Φn = anr−n. Therefore,
the requirement of continuity across the surface results in

∂Φn

∂r
= −

n

R
Φn at r = R. (15)
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Because the poloidal current must also vanish in vacuum, we can
derive another general boundary condition:

∑

n

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ψn

r sin θ

∂(sin θ ∂Yn

∂θ
)

∂θ
er +

1

r

∂(rΨn
∂Yn

∂θ
)

∂r
eθ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 0 for r ≥ R. (16)

The existence of surface currents may affect the condition on the
θ-component of the poloidal current density, but radial currents
penetrating into the vacuum cannot exist. Thus the outer bound-
ary condition for the toroidal field is simply

Ψn = 0 at r = R. (17)

In general, the poloidal tangential θ-component of the current
density has to vanish at the surface only if the electric conductiv-
ity vanishes there. Then, according to Ohm’s law, any finite tan-
gential current density would cause an infinite tangential electri-
cal field that contradicts the energy conservation guaranteed by
Maxwell’s equations. Therefore, in the case of σ = 0 at r = R,
any solution of the induction equation that fulfills the boundary
condition Ψn = 0 at r = R will be characterized by vanishing

tangential surface currents, i.e. Ψn =
∂Ψn

∂r
= 0 at r = R.

2.1.1. Force-free boundary conditions

The vacuum boundary condition is an idealization. In general,
one can also consider the NS surrounded by a magnetosphere in
which the internal currents continue. However, its low particle
density requires the establishment of a force-free magnetic field
configuration above the surface; i.e.

∇ × B = µ(r)B, (18)

where µ can be interpreted as a wavenumber representing the
spatial scale of the field in force free conditions, a sort of mea-
sure of the thickness of the magnetosphere. The vacuum solution
can be recovered by taking the limit µ→ 0. The divergence-free
condition implies ∇µ · B = 0. Assuming that µ is a constant, and
inserting Eqs. (6) and (7) into Eq. (18), it becomes clear that the
boundary condition requires

Ψn = µΦn,

∂2Φn

∂r2
−

n(n + 1)

r2
Φn + µ

2Φn = 0. (19)

A variety of possible force-free boundary conditions can be built
by varying µ to test the effect of the size of the magnetosphere
on the crustal field evolution. This would give some insight into
how the presence of a magnetosphere affects the dissipation ef-
ficiency. Naively, one can guess that the dissipation is somewhat
less than in the case where vacuum boundary conditions are ap-
plied, but still greater than in the purely Ohmic case. The reason
is that a force-free boundary condition drives the field to estab-
lish itself in a configuration close to force-free at low density,
and the effect of the Hall term in the outer crust is reduced.

The main problem with implementing force-free boundary
conditions is that the solution will depend on the choice of the
function µ, which can be kept fixed to the constant value of an
initial configuration or vary with time. The differences due to the
variation in the parameter are of the order of the relative differ-
ence between vacuum and force-free (vacuum is just the particu-
lar case µ = 0). Since the choice of this function is arbitrary, we
restrict ourselves to the external vacuum solution in this paper.

2.2. Inner boundary conditions

The inner boundary conditions are determined by the transi-
tion from normal to superconducting matter at the crust-core in-
terface r = Ri. The Meissner–Ochsenfeld effect demands that
the normal component of the magnetic field has to vanish at
r = Ri. The continuity of the tangential component of the electric
field, together with Ohm’s law, forces the component to vanish
at r = Ri, because otherwise the infinite electric conductivity
would cause infinite tangential current densities, thereby finally
destroying the superconducting state.

For a spherically symmetric NS, the normal component of
the magnetic field is its r-component as given by Eq. (6). Thus,
the inner boundary condition for the poloidal field is

Φn = 0 at r = Ri. (20)

The tangential component of the electric field consists of θ-
and ϕ-components. For the ϕ-component we find, after some
algebra:

Eϕ =
∑

n,n′

[

n(n+1)

r3
Ψn

∂Φn′

∂r
Yn

∂Yn′

∂θ
−

n′(n′+1)

r3

∂Ψn

∂r
Φn′
∂Yn

∂θ
Yn′

]

+
1

rωBτ

∑

n

(

∂2Φn

∂r2
−

n(n + 1)

r2
Φn

)

∂Yn

∂θ
· (21)

This electric field component has to vanish at the surface of the
superconducting core. Since Φn = 0 at r = Ri, this condition
reads

∑

n,n′

[

n(n + 1)Ψn

∂Φn′

∂r
Yn

∂Yn′

∂θ

]

+
r2

ωBτ

∑

n

(

∂2Φn

∂r2

∂Yn

∂θ

)

= 0. (22)

This condition is obviously not suited to finding an inner bound-
ary condition for the toroidal field. Therefore, we have to con-
sider the θ-component of the electric field, which consists of
three contributions:

Eθ=

[

(∇×Btor)×Btor+(∇×Bpol)×Bpol+
1

ωBτ
(∇×Btor)

]

θ

. (23)

Again using the expressions of Eq. (6) and taking into account

that Φn(r = Ri) = 0, the term
(

∇ × Bpol

)

× Bpol vanishes, and it

remains from the condition Eθ = 0 at the inner boundary that

1

ωBτ

∑

n

∂Ψn

∂r

∂Yn

∂θ
+

1

r2

∑

n,n′

n(n + 1)ΨnΨn′Yn′
∂Yn

∂θ
= 0. (24)

Multiplying both sides with
∂Y∗

l

∂θ
and integrating over the solid

angle, the orthonormality of the spherical harmonics gives

1

ωBτ

∂Ψn

∂r
= −

1

r2

∑

k,k′

I(2)ΨkΨk′ . (25)

Hollerbach & Rüdiger (2002) applied the above boundary con-
dition in the limit of ωBτ→ ∞, thereby avoiding the difficulties
the non-linearity will cause. We use the general form of Eq. (25),
since during the cooling process of the NS, there certainly will
be some periods during which it is not justified to neglect the
dissipative term.
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3. Comments on the evolution of purely toroidal

fields

From Eqs. (4), (9), and (10), it is readily seen that an initial
purely toroidal field (Φ = 0 at t = 0) will not develop a poloidal
part and does remain purely toroidal. For clarity, we will use the
ϕ-component of the magnetic field (Bϕ) as a variable in this sec-
tion. In axial symmetry, it is related to Ψ through

Btor ≡ Bϕeϕ = −
∂Ψ

∂θ
eϕ. (26)

In order to make the effect of the Hall drift evident we use cylin-
drical coordinates (R, ϕ, z). In Appendix A we write the general
form of the induction equation in cylindrical coordinates, with
a decomposition of the magnetic field as used by Hollerbach &
Rüdiger (2002). When considering the case of purely toroidal
fields, neglecting the dissipative term (limit of strong magnetiza-
tion) for simplicity, and assuming constant electron density ne,
the induction equation is reduced to a single evolution equation
for the variable Bϕ:

∂Bϕ

∂t
= −
τ̂

σ̂
eϕ · ∇ × [(∇ × Btor) × Btor] =

c

4πene

2Bϕ

R

∂Bϕ

∂z
, (27)

where we have used τ̂/σ̂ = c/4πene.

In this form, the Hall-dominated induction equation has the
form of the inviscid Burgers equation with a wave velocity that
depends on the variable Bϕ and on the coordinate R. This has
been pointed out by Reisennegger et al. (2005), who also con-
clude that it leads to the formation of current sheets. In this
way, the formulation illustrates very clearly that the originally
(in the limit of weak field) purely parabolic diffusion equation
changes its character to hyperbolic when the Hall term dom-
inates. The analogy between the induction equation and the
Burgers equation has been discussed before by Vainshtein et al.
(2000), but there are a few more qualitative differences that we
should notice. Vainshtein et al. (2000) derived the analogy with
the Burgers equation in Cartesian coordinates, assuming no de-
pendence of the field on the z-coordinate. In this particular case,
it is necessary to consider a stratified medium in order to have
the Hall drift lead to the formation of current sheets. Our result
is more general: even in the uniform density case, the geometry
of a NS crust (axially symmetric toroidal field in a conducting
spherical shell) leads to a Burgers-like equation that does not
admit stationary solutions. Depending on the sign of the gradi-
ent, the field will drift vertically in one or the other direction,
leading to the formation of current sheets either at the surface or
at the crust-core interface. The purely vertical drift acting within
a spherical shell (the crust) will inevitably result in fast dissi-
pation locally, wherever current sheets are formed. Moreover,
when we consider NS models with a stratified electron number
density, the gradient in ne through the NS crust may addition-
ally support the creation of current sheets (mainly close to the
crust-core interface).

But there is yet another important problem related to the
change from the parabolic to hyperbolic character of the induc-
tion equation for purely toroidal fields. It is well known that
the solutions of the inviscid Burgers equation develop discon-
tinuities or, if a small viscous term is present, steep gradients.
This is probably the reason spectral methods have always failed
when trying to numerically solve the induction equation for
large magnetization parameters. The system evolves naturally to
form a discontinuity or sharp gradient in Bϕ on a characteristic

timescale that can be shown to be ≈τHall (the Hall timescale is
defined below in Eq. (32))

τshock =

(

c

2πeneR

∂Bϕ

∂z

)−1

=
Rσ̂

2τ̂

(

∂Bϕ

∂z

)−1

, (28)

which is on the order of ≈106−107 yr for B = 1013 G and a typ-
ical lengthscale of 1 km. However, it can be much shorter for
stronger fields and small-scale structures generated by the Hall
cascade. A similar timescale characterizes the typical travel time
of a magnetic perturbation to reach either the surface or the core-
crust boundary,

τtravel =

(

c

2πeneR

Bϕ

d

)−1

, (29)

where d denotes the distance between the initial position of the
perturbation in the crust and the surface or the crust-core inter-
face. The formation of a shock by the compression of the field
against the inner or outer boundaries will cause unavoidable
numerical instabilities and/or the Gibb’s phenomenon, if one
tries to solve the problem by means of spectral methods. Note
that, locally and temporarily, the three characteristic timescales
(τHall, τshock, and τtravel) may coincide or differ by orders of mag-
nitude, because they are proportional to the second, first, and ze-
roth derivative of the field strength, respectively. These charac-
teristic timescales become different once small-scale structure or
current sheets appear. This makes any reasoning based on those
timescales questionable; only a serious numerical study of the
Hall drift can yield an idea as to its effects on the crustal mag-
netic field evolution.

For the simple case of a Burgers-like equation with con-
stant ne, (see Eq. (27)), we have checked that upwind methods,
specifically designed to deal with hyperbolic equations, work
very well in regimesωBτ→ ∞, in which a spectral method fails.
Thus, the numerical problems observed with spectral codes for
ωBτ >∼ 100 are most likely caused by an intrinsic limitation of
the numerical approach. In the general case, having both poloidal
and toroidal field components in a stratified spherical shell, the
field evolution is not so simple. Then, the equations are strongly
coupled, they have both a parabolic and a hyperbolic part, and
it is difficult to guess what the best strategy is for solving them.
It is not the scope of this paper to give the final answer about
the best numerical technique. We intend to point out in this sec-
tion that there are deep unavoidable reasons that lead to unsur-
mountable problems in many cases. For the rest of the paper,
we focus on simulations with realistic NS models that can be
handled by our hybrid method. We take advantage of a rare oc-
casion: the more realistic model causes less numerical problems
than the constant density model. The reason is that current sheets
are smoothed out more quickly in the shell layers just below the
surface, because their electric conductivity is orders of magni-
tudes lower than in the inner crust. In addition, in the long run,
the toroidal field seems to find a quasi-equilibrium configuration
in which the effect of the gradient of conductivity counterbal-
ances the Hall drift. Such an equilibrium can not be established
for non-stratified crustal models.

4. The NS model and the initial conditions.

Our aim is to study the global evolution of the magnetic field in
isolated NSs. The Hall drift occurs both in the fluid core and in
the solidified crust. While the effect of the Hall drift in the core
is less obvious and may proceed on a timescale on the order of
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the Hubble time (insert L5 = 10 and ρ ≈ 10ρnuc into Eq. (61) of
Goldreich & Reisenegger 1992), its effect can be crucial in the
crustal field.

To build the background NS model we have used a modern
Skyrme-type equation of state (EOS) at zero temperature, de-
scribing both the NS crust and the liquid core, based on the ef-
fective nuclear interaction SLy (Douchin & Haensel 1991). The
low-density EOS (below the neutron drip point) employed is that
of Baym et al. (1971). With this EOS, we built a NS model with
a radius of about 11.7 km and a mass of 1.28 M⊙. The central
density is 8.83 × 1014 g/cm3, and its crust (from ρ ≈ 1010 g/cm3

to ≈1014 g/cm3) extends from 10.7 to 11.6 km. In Fig. 1 we
show radial profiles of the electric conductivity σ and ωBτ/B13,
where B13 is B in units of 1013 G for three different tempera-
tures. We assumed a constant impurity concentration parame-
ter Q = nimp(Zimp − Z)2/ni of Q = 10−2. Here, nimp and ni are
the impurity and ion particle densities, respectively, and Zimp is
the charge number of the impurities. We compared simulations
with Q = 10−2 and Q = 10−4 without finding significant dif-
ferences. A high impurity content could lead to even faster dis-
sipation (Jones 2004). The figure demonstrates how the electric
conductivity varies by 3−4 orders of magnitude within the crust
and depends strongly on the temperature. The magnetization pa-
rameter scales linearly with B. For the fiducial field of 1013 G,
it is of the order of unity for a temperature of 109 K but can be-
come as large as 1000 as the star cools down. For magnetar field
strength which both at the surface (radial poloidal component)
and within the crust (meridional poloidal and toroidal compo-
nents) may well exceed B13 = 10, the magnetization parameter
can locally reach values in excess of 104.

From Fig. 1 one can also read the relevant timescales of the
problem. The Ohmic timescale is

τOhm =
4πσλ2

c2
= σ̂λ2 (30)

where λ is the typical magnetic field length-scale. Inserting some
typical numbers, we get

τOhm = 4.4

(

σ

1024 s−1

) (

λ

km

)2

106 years. (31)

On the other hand, the Hall timescale is

τHall =
4πeneλ

2

cB
· (32)

The ratio of the Ohmic to Hall timescale is simply given by ωBτ.
From Fig. 1 we can infer that, if the temperature of a NS’s crust
varies between 109 and 108 K during the first million years of
its life, the average Ohmic timescale in the crust is ≈1 Myr.
For magnetized NSs, the ratio of the Ohmic to Hall timescale
is approximately

τOhm

τHall

= (1 − 10) × B13. (33)

Note, however, that such averaged timescales are of very re-
stricted use in characterizing the field evolution in NS crusts,
since both the density and the magnetic field vary over many or-
ders of magnitude there. There is no doubt, then, that in any cir-
cumstances there is magnetic field decay in the crust of young
NSs. A different issue is whether or not this effect is observ-
able when studying populations of older NSs. Because of the
strong temperature dependence of the electrical conductivity,
when a NS’s crust cools below 107 K, typically one million years

Fig. 1. Radial profiles of electrical conductivity σ (solid lines), and
the magnetization parameter normalized to a fiducial magnetic field of
B13 = 1013 G (dashed lines), for three different temperatures. The crust
is assumed to be isothermal.

after birth, the Ohmic dissipation time increases significantly,
and no rapid field decay can be expected after that age.

For this reason, we want to focus in this paper on the initial
evolution of magnetic fields in relatively young NS. In order to
mimic the cooling process of a NS, we started with a crust at T =
109 K, a typical value after formation of the crust, at most within
hours after birth, and we force the temperature of the isothermal
crust to vary according to

T (t) = 109(1 + 106t6)−1/6 (34)

where t6 is the NS age in 106 years. This approximation is valid
during the neutrino-cooling era if only modified URCA pro-
cesses are operating (Page et al. 2006). It is not the purpose of
this paper to discuss how the thermal and magnetic field evo-
lutions are coupled in detail, but this simple approximation is
sufficient for capturing the main effect: as the NS’s crust cools
(from 109 to 108 K in about 1 Myr), via the increase in the elec-
tron relaxation time (τ), the Hall term becomes more and more
important. When a significant part of the crustal field is dissi-
pated and/or it has approached a force-free configuration, its de-
cay continues on a much longer Ohmic timescale. We have not
included effects of temperature anisotropies within the crust, al-
though they may be important, but it will be addressed in detail
in future works.

The other microphysical input needed for performing the
simulations is the electrical conductivity and the magnetization
parameter. Since the magnetization parameter and the electrical
conductivities vary as the temperature drops and the magnetic
field evolves, we recompute the value of the relaxation time and
the electrical conductivities at each time step by using the pub-
lic code developed by A. Potekhin (1999)2. Despite its causing
some numerical efforts, we have chosen to be as realistic as pos-
sible and use this state-of-the-art microphysical ingredients to
account for the effect of composition stratifications.

4.1. Initial magnetic field configuration

Little is known with certainty about the initial magnetic field
strength and structure. Recently, Braithwaite (2006) and Geppert
& Rheinhardt (2006) have shown that sufficiently rapid rota-
tion can stabilize dipolar toroidal and poloidal fields of mag-
netar strength against MHD instabilities occurring immediately

2 www.ioffe.rssi.ru/astro/conduct/condmag.html
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Table 1. Description of initial models, differing in the initial field
strength and relative sign of the poloidal and toroidal components. All
initial poloidal fields are purely dipolar (n = 1).

Model Bpol Btor Multipole

(1013 G) (1013 G) (toroidal)

A 10 –100 n = 2
B 10 100 n = 2
C 10 –100 n = 1
D 1 –10 n = 2
E 20 –200 n = 2
F 50 –50 n = 1
G 100 –100 n = 2
H 10 –100 n = 1 (FF)

after completion of the proto-NS phase. Only preliminary re-
sults are available on the stability of magnetic field structures
consisting of a poloidal-toroidal mixture. Our conclusion about
the origin of strong toroidal crustal fields that probably ex-
ist in magnetars and quite certainly exist in thermally emitting
NSs with a highly non-uniform surface temperature distribution
(Geppert et al. 2004, 2006; Pérez-Azorín et al. 2006a,b) is, there-
fore, that they have probably been generated at birth. Later, they
were stabilized against Tayler instabilities and have been frozen
into the solid crust when it forms. Alternatively, the presence of
sufficiently strong temperature gradients both close to the crust-
core interface and in the degenerate surface layers (Wiebicke &
Geppert 1995) are able to convert thermal into magnetic energy
very effectively via a thermoelectric instability. In this case, the
magnetic energy will be stored predominantly in toroidal field
structures.

We have considered quite different initial structures: purely
poloidal and purely toroidal ones, with initial dipolar and
quadrupolar modes, and several mixed initial fields where the ra-
tio between the energies stored in the toroidal and poloidal field
parts is varied. For the poloidal field, our initial configurations
are chosen to be free Ohmic decaying modes (strictly speaking,
pure decay modes for constant conductivity profiles) satisfying
the boundary conditions. For a given angular multipole (n), the
radial eigenfunctions can be written as linear combination of
spherical Bessel functions of the first (jn) and second (nn) kind

Φn(r) = a r jn(µr) + b r nn(µr) (35)

where µ is the radial wavenumber. The boundary conditions fix
the wavenumber µ and the ratio b/a.

For our crust model, we have µ = 1.8353 km−1, a = 1, and
b = tan(µR). For the models presented in this paper, the overall
normalization factor has been chosen to fix the radial component
at the pole of the dipolar (n = 1) component to the values of Bpol

listed in Table 1.
In Table 1 we summarize the models employed in this work,

differing in the initial values and relative sign of the poloidal and
toroidal components. For the Models A to G, the initial toroidal
field is given by

Ψn(r) = c[(r − Ri)(r − R)]2 (36)

where c is a constant determined by the maximum value of Bϕ.
These configurations are initially non-force-free, and thus ex-
ert Lorentz forces on the crust. They were chosen after explor-
ing different initial configurations, because they were found to
evolve more smoothly, minimizing the effects of the initial im-
balance. For comparison, we also include model H, which is
a force-free configuration satisfying

Ψ = µΦ(r). (37)

In a constant conductivity plasma, and neglecting the effects of
Hall drift (a force-free field is not subject to it), this is an eigen-
function of the induction equation. However, due to the gradient
of conductivity, the force balance is immediately broken at the
beginning of the evolution, and the Hall term is activated.

5. Results and discussion

We present the results now of our numerical simulations of the
field evolution in the crust and its dependence on the initial mag-
netic field structure and strength. We restrict this presentation to
the selection of initial models described in Table 1, although we
have performed a number of different simulations with a variety
of initial configurations. In particular, we reproduced some of the
toy models (constant σ̂ and τ̂) found in the literature (Hollerbach
& Rüdiger 2002) to test our code. We saw a good qualitative
agreement with only minor quantitative differences. We also per-
formed simulations of the evolution of purely toroidal fields,
which remain toroidal forever, for testing purposes. In particu-
lar, we checked that the evolution of a purely toroidal field, in
the limit of very low resistivity and with constant ne evolves ac-
cording to Eq. (27), i.e., it is only subject to a vertical drift with
a velocity that depends on the distance to the axis and the field
intensity. We also tested the diffusive part of the code (by setting
τ̂ = 0 and σ̂ = constant) against the analytical solutions in terms
of spherical Bessel functions. We found that the analytical and
numerical solutions differ in less than 0.2 % for a typical resolu-
tion of 100 radial shells. For conciseness, in this section we only
discuss realistic models of magnetized NSs.

In Figs. 2–4 we present the evolution of models A, B
and C. For three representative ages, we show both the poloidal
magnetic field lines (top panels) and the contours of constant
toroidal field strength (bottom panels). The crustal shell has been
stretched by a factor of 4 for clarity. Models A and B differ only
in the relative sign of its toroidal component, which for both
models is initially quadrupolar (n = 2), while model C has an
initially dipolar (n = 1) toroidal field with the same radial pro-
file as model A. In all cases the models have the same maximum
toroidal field strength. The different sign of the toroidal field
affects the direction of the Hall drift (toward north or south).
The other important effect is due to the gradient of the electric
conductivity, which always causes the tendency to displace field
lines towards the inner crust.

For model A, we see in the central panel how the Hall drift
compresses magnetic field lines near the equator, while the re-
sults for model B show the opposite tendency. Due to its domi-
nant initial dipolar structure, model C shows a global displace-
ment of the magnetic field towards the south pole, which results
in a fast dissipation in the high resistivity surface region near
the south pole. During that phase, the interplay of the poloidal
and toroidal field modes is very intense. The magnetic field is
dragged and twisted, thereby creating current sheets. At these
sites of very efficient dissipation, the toroidal field weakens
rapidly and, after becoming almost as strong as the poloidal
field, the latter tends to return to its original position. This se-
quence of twisting and stretching and subsequent release of
the twisted field characterizes this epoch by its oscillatory be-
havior. However, looking at the right panels, we see that, after
about half a million years, all poloidal fields have a very similar
appearance. The strongly dissipated, and now weaker, toroidal
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Fig. 2. Top: poloidal magnetic field lines for three different evolutionary stages of the magnetic field configuration initially described by model A.
(t = 10, 50, and 500 kyr). Bottom: contours of constant toroidal field strength (Bϕ). The crustal shell has been stretched a factor of 4 for clarity.

components, become more regular than in the Hall phase, and
they are dominated by the n = 2 or n = 3 modes3.

The main conclusion from these results is that the initial
magnetic field configuration largely determines the early evo-
lution (<105 yr). In the long run, however, there seems to exist
a clear tendency to establish a more stable configuration, consist-
ing of a dipolar poloidal component in combination with higher-
order toroidal field modes. This fact can be better understood
when looking at the evolution of the radial profiles of the dom-
inant modes, as shown in Fig. 5. At early times, say t = 20 kyr,
the interplay between the toroidal and poloidal components re-
sults in a different evolution of Φ1, although the shape is qual-
itatively similar. After half a million years, the poloidal field is
clearly dominant and very similar for all models. The toroidal
field is weaker (in real units, about a factor of 2–3 smaller than
the poloidal field) and concentrated towards the inner crust. It
is interesting to notice that Ψ2 is also rapidly driven towards
a similar shape in all cases, indicating that after the fast initial
transient the gradient of the conductivity determines a sort of
quasi-equilibrium field.

It is also interesting to look at the evolution of the total mag-
netic energy (Fig. 6) to understand the different evolutionary
stages that the NS passes through. First, it is remarkable how
all models have a very similar evolution and how they converge
at late times towards a similar exponential decay. For all mod-
els, the magnetic energy has been dissipated by a factor 10 to 20

3 The black/white figures presented here are snapshots and yield
only a vague impression of the evolution of the magnetic field with
Hall drift and Ohmic diffusion, everything coupled with the cooling
of the crust. We advise the reader to look at the movies, available at
http://www.dfa.ua.es/UNS06/movies.html, where the evolution
is visualized in much more detail.

after 0.5 Myr. Second, we can clearly differentiate between the
initial fast decay, in which the field can dissipate one half of its
energy in only ∼104 yr. This is caused by the much lower initial
conductivity at higher temperatures combined with the effects of
the Hall drift. During the subsequent stage, the Ohmic dissipa-
tion timescale (about half a million years) is almost identical for
all models. Obviously, the first stage is very important for mod-
els with initially stronger fields, i.e. it will play an important role
for NSs born as magnetars. This seems to be the only period,
before the photon cooling era, when the Hall drift will qualita-
tively affect the field evolution. In general, the models in which
the initial ratio of toroidal to poloidal field is small (models F, G)
decay slower than those with large ratios (models A, B, C, E).
Among the latter, the stronger the initial field, the more efficient
is the dissipation during the Hall phase.

The comparison of models C and H is also interesting. The
have a similar amount of magnetic energy, the only difference
being that model H is initially force-free but model C is not.
This makes it clear that the early part of the evolution due to the
initial imbalance is very short (a few kyrs). The gradient of con-
ductivity is what determines the long-term quasi-stationary con-
figurations (as shown in Fig. 5). Our conclusion after exploring
many more models not shown in this paper is that the initial field
structure is rapidly reorganized and that the conductive proper-
ties of the crust determine the field configuration in NSs with
ages >104 kyr.

The Ohmic dissipation rate appears to be faster than what
has been usually discussed in the literature. The reason is that
we are simulating the evolution of NS models for the first time
with a realistic profile of electron density, composition, conduc-
tivity, etc., including the coupling between different field modes
through the non-linear Hall term. The effect of the Hall drift is
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Fig. 3. Same as Fig. 2 but for model B.

twofold: it causes the transfer of magnetic energy to small-scale
modes that decay faster and, in some cases, the displacement
of the magnetic field to regions of higher resistivity where it is
rapidly dissipated.

In Fig. 7 we compare the evolution of the total magnetic
energy in models A and G with the hypothetical evolution of
the same initial configuration without the Hall drift (by setting
τ̂ = 0). After the initial phase (about 50 kyr), during which
the models that include the Hall drift dissipate energy about
10−20% faster, the rate of energy dissipation becomes approxi-
mately the same. This shows that the initial departure of the ex-
ponential decay is partially caused by Hall drift, but also by the
relatively rapid cooling of the crust that results in a significant
time-dependence of the conductivity and of the magnetization
parameter. Other cooling models, for example fast cooling due
to the activation of direct URCA processes, may result in an ini-
tially different evolution. However, we think that, on a secular
timescale of about 0.1 Myr, the system readjusts itself and the
dissipation of magnetic field is mostly controlled by the Ohmic
decay. In a future work we plan to couple a multidimensional
cooling code with the magnetic field evolution to study different
cooling scenarios.

To finish the discussion in this section, we present in Fig. 8
the power spectra for models A, B, and C at three different mo-
ments of the evolution. In the left panel, which corresponds to
t = 1 kyr, we see how the Hall cascade is filling the shorter wave-
length modes very quickly (initially only n = 1 and n = 2 modes
existed). At t = 10 kyr, which corresponds roughly to the Hall
timescale, the Hall cascade and perhaps the Hall instability have
filled out all large wavenumber modes and approximately satu-
rates following a n−2 power law. This situation is kept for about
50 kyr (not shown in the figure), until the field has been dissi-
pated by a significant amount, and the Hall term has begun to

lose its importance with respect to the regular Ohmic dissipation
term. After half a million years, the power spectrum is much
steeper (∝n−6), an indication that the Hall drift has lost its influ-
ence on the crustal field evolution.

5.1. Spin-down evolution

Since the evolving crustal field may also have effects on the
rotational evolution of the NS, we study the differences in the
spin-down behavior between different models. In Fig. 9 we show
the evolution of the period (top), period derivative (middle), and
spin-down age (tsd = P/(2Ṗ)) (bottom) in four selected models
with different initial dipolar field strengths. The line-styles corre-
spond to models A, D, E, and G. A typical NS born as a magne-
tar would correspond to model G or, perhaps, E, while a typical
pulsar such as Geminga would show the behavior of model D.

Notice that a minimum initial poloidal field of about 2 ×
1014 G is required to explain the large rotation periods (5−10 s)
of thermally emitting, isolated NSs such as the Magnificent
Seven. This may be another indication of a common evolution-
ary path in which some INSs were born as magnetars and their
magnetic field has decreased one order of magnitude during their
lifetimes. The evidence of crustal field decay presented here also
has implications for estimates of the ages of old NSs. Pulsar spin
down is thought to generally follow the prediction of the vacuum
dipole model, which gives ν̇ ∝ B2ν3, where ν is the spin rate. If
the birth spin rate far exceeds the present spin rate and B is con-
stant, the age in this model is given by tsd. This expression is
used as the standard estimate of a pulsar’s age. If the field is de-
caying according to our simulations, however, the relationship
between the true age and tsd given by the dipole model is shown
in the bottom panel of Fig. 9. It shows that tsd seriously overes-
timates the age for NS older than 105 years. This effect helps to
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Fig. 4. Same as Fig. 2 but for model C.

reconcile the observed discrepancy between the spin-down ages
and independent measures of the ages of some isolated NSs.

Another interesting feature is the rapid variation in the dipo-
lar poloidal component during the Hall epoch. Of course, the
total magnetic energy always decreases, but the n = 1 poloidal
component may exhibit an oscillatory behavior. This is a result
of the efficient energy transfer between the large-scale toroidal
and the dipolar poloidal field modes, i.e. a genuine effect of the
Hall drift. Assuming that only the n = 1 component contributes
to spin the star down, the oscillations of the dipolar poloidal
surface field affect the braking index n = νν̈/ν̇2, as shown in
Fig. 10. During the first ∼105 years of their lives, sufficiently
magnetized NSs will show a very erratic variation of the braking
index, which may reach any value from 1.5 to 4. The oscilla-
tions of the braking index continue even until ∼5 × 105 years,
when the initial toroidal field is stronger, as seen for model E
that has an initial maximum toroidal field of 2 × 1015 G. At late
times, once Ohmic dissipation is controlling the evolution and
the dipolar magnetic field decreases steadily, the braking index
gradually increases and might reach very high values. This pro-
cess will be inverted after the crustal field is dissipated almost
completely and the rotational evolution of the NS is determined
by the much longer timescale of the core field expulsion. In that
period, the braking index will approach its canonical (dipolar)
value of 3 again. Our results for the braking index evolution co-
incide very well with the observed indices for middle-aged pul-
sars (see Geppert & Rheinhardt 2002). It can be shown that the
braking index satisfies the relation

n = 3 − 2
ḂP

BṖ
≈ 3 + 4

tsd

τB

, (38)

where we have introduced a typical magnetic field decay time
τB = B/Ḃ to derive the latter equality. The thin solid line in

Fig. 10 corresponds to this approximation with τB = 0.8 Myr.
Notice that Fig. 7 shows the evolution of the total magnetic en-
ergy (∝B2), so that the decay time for the magnetic field is twice
the value quoted in Fig. 7.

It should be noted that neutrino emission no longer controls
the thermal evolution of NSs after ≈1 Myr, so our results do
not apply. Moreover, the low temperatures reached at that time
would increase the conductivity significantly (see Fig. 1). Then,
the purely Ohmic decay will proceed more slowly, but also the
magnetization parameter will increase, which may result in an-
other Hall stage during the photon cooling era. In future work,
we plan to extend our study to longer times with consistent tem-
perature evolution. In addition, one always must keep in mind
that the magnetic field component supported by currents in the
superconducting NS core would be dominant after the crustal
field has been dissipated. This, however, is a completely differ-
ent scenario that cannot be analyzed with our presently available
tools.

5.2. The Hall instability?

We have seen in our numerical studies some hints of the oc-
currence of the Hall instability, i.e., of the rapid, non-local in
the momentum space, energy transfer from the initial large scale
field modes into much smaller ones. Related spectral features
can be seen e.g. in Fig. 8, where local maxima appear. However,
at the present level of energy conservation (99.9%) and of our
limiting angular resolution (nmax = 120, although most of our
runs were performed with nmax = 50), we cannot distinguish
the truncation effects from the onset of the Hall instability.
Therefore, we decided to postpone the study of the Hall insta-
bility in the NS crust to future work.
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Fig. 5. Radial profiles of Φ1 and rΨ2 (in arbitrary units). These quanti-
ties are proportional to the poloidal (dipolar) and toroidal (quadrupolar)
components, respectively (see Eq. (6)). The upper panel shows the ini-
tial model, while the central and bottom panels correspond to t = 20 kyr
and t = 500 kyr, respectively. The different line styles stand for mod-
els A (solid line), B (dotted line), and E (dashed line). Notice the differ-
ent normalization of rΨ2 in the upper and middle panels (a factor of 10
and 5, respectively).

6. Conclusions

The results presented above show that magnetic fields main-
tained by currents circulating in the crust of NSs are strongly re-
arranged and do decay significantly during the first million years
of a NS’s life. In addition to purely Ohmic decay, which is faster
in the first thousands of years when the electrical conductivity is
relatively low due to the high crustal temperature, we find that
the Hall drift may contribute noticeably to accelerating the dis-
sipation of magnetic fields. For typical field strengths of 1014 G,
we observe a stage dominated by Hall drift followed by purely
Ohmic decay proceeding on a timescale on the order of 1 Myr.
Depending on the strength and structure of the initial magnetic
field, this Hall phase lasts a few 103–104 years and is charac-
terized by an intense exchange of magnetic energy between the
poloidal and toroidal components of the field and by the redistri-
bution of magnetic field energy between different scales. It can
be expected that such rearrangements and the relatively rapid

Fig. 6. Evolution of the total energy stored in the magnetic field, normal-
ized to the initial value, for models A (thick solid), B (dotted), C (short
dashes), E (dot-dash), F (triple dot-dash), G (long dashes), and H (thin
solid). The straight line shows, for comparison, an exponential decay
with a timescale of ≈0.4 Myr.

Fig. 7. Evolution of the total energy stored in the magnetic field for
models A (solid) and G (dashed) compared with the same initial con-
figurations evolving only by Ohmic decay (thin lines). The difference
between thick and thin lines is due to the nonlinear Hall terms that
result in a faster initial dissipation.

field decay have observational consequences, as can be observed
in magnetars. Of course, whether this first phase plays a large
role, and how distinctive it is depends on the initial field strength
and structure and how fast the NS cools. If a NS begins its life
as a magnetar, its external dipolar field is >1014 G. Within the
crust, however, the internal magnetic field may locally exceed
that value by about one order of magnitude. Thus, even the ex-
pected initial high crustal temperatures of >∼109 K, which cause
a relatively small electron relaxation time (τ), cannot avoid that
ωBτ≫ 1 in a large fraction of the crust volume.

The toroidal part of the field is specially affected by the Hall
drift. There are two main effects acting upon the toroidal fields: it
is globally displaced toward the inner crust because of the neg-
ative conductivity gradient and, depending on the relative sign
with respect to the poloidal component, it tends to move verti-
cally toward one or the other magnetic pole. After the Hall stage,
during which the toroidal field is strongly rearranged and dissi-
pated, the long-term evolution seems to select, generally, a pre-
dominantly quadrupolar/octupolar structure concentrated in the
inner crust and with tendency to be stronger close to the poles.
This multipolar structure will determine the surface temperature
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Fig. 8. Power spectrum for models A (solid lines), B (dots), and C (dashes) at three different epochs. For comparison, we also show three different
power laws (thin lines).

Fig. 9. Evolution of the period (top), period derivative (middle), and
spin-down age (bottom) in four selected models with different initial
dipolar field strengths. The line-styles correspond to models A (solid
lines), D (dash-dotted line), E (dots), and G (dashes).

distribution of middle-aged NSs, which could be more complex
than previously thought. Such complex field structures and the

Fig. 10. Evolution of the braking index n = νν̈/ν̇2 for the same models
as in Fig. 9.

local deposition of energy by Joule heating favor surface tem-
perature distributions characterized not only by two hot polar
caps, but for example by a hot equatorial belt, as has probably
been seen in RX J0720.4-3125 (Haberl et al. 2006; Pérez-Azorín
et al. 2006b) or can be inferred from the light curve of RBS 1223
(Schwope et al. 2005).

Though the toroidal part of the crustal field undergoes a
spectacular dissipation and rearrangement, the coupling between
both parts also affects the evolution of the poloidal field, which
is responsible for the spin down of NSs. Thus, the complex in-
teraction of Hall drift and Ohmic dissipation is also reflected
in the temporal behavior of the braking index and, in principle,
accessible for observations. Our models show that the braking
index of young (<∼105 years), magnetized NSs exhibits a very
wild variation and can reach any value from 1.5 to 4. After the
Hall stage, when Ohmic dissipation controls the evolution and
the dipolar magnetic field decreases steadily, the braking index
gradually increases and might reach very high values. This pro-
cess will cease after the crustal field is dissipated almost com-
pletely, or when the conductivity increases as the NS cools down.
During the photon cooling era, the braking index will approach
its canonical (dipolar) value of 3 again.

If the initial magnetic field is too weak (<∼1012 G) for the
Hall stage to be relevant, the evolution will proceed according to
purely Ohmic field decay. The very existence of magnetars and
of their presumable descendants, thermally emitting NSs with
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B ≈ 1013 G, suggests that the fraction of NSs born with large
magnetic fields may be greater than expected.
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Appendix A: Induction equation in cylindrical

coordinates

In this appendix we use a different set of variables to derive the
induction equation in cylindrical coordinates (R ≡ r sin θ, ϕ, z ≡
r cos θ) and use the notation of Hollerbach & Rüdiger (2002).
Alternatively to our decomposition in Eq. (3), one can in axial
symmetry simply work with the ϕ-components of the vector po-
tential and of the magnetic field,

B = Bpol + Btor = ∇ × (Aϕeϕ) + Bϕeϕ. (A.1)

In cylindrical coordinates, we can write explicitly the different
components of the magnetic field and the current density:

B = −
∂Aϕ

∂z
eR +

1

R

∂(RAϕ)

∂R
ez + Bϕeϕ, (A.2)

4π

c
J = ∇ × B = −

∂Bϕ

∂z
eR +

1

R

∂(RBϕ)

∂R
ez + Ĵϕeϕ, (A.3)

where we have introduced the notation

Ĵϕ ≡ −∇
2Aϕ +

Aϕ

R2
· (A.4)

The induction equation in terms of this variables reads:

∂Aϕ

∂t
= −
τ̂

σ̂
eϕ · [(∇ × Btor) × Bpol] −

Ĵϕ

σ̂

∂Bϕ

∂t
= eϕ · ∇ ×

(

τ̂

σ̂
[(∇ × Bpol) × Bpol + (∇ × Btor) × Btor]

)

+∇ ×

[

1

σ̂
∇ × Bϕ

]

. (A.5)

The term appearing in the r.h.s. of the first equation can be writ-
ten as follows:

eϕ · [(∇ × Btor) × Bpol] =
1

R2

[

∇(RAϕ) × ∇(RBϕ)
]

ϕ
. (A.6)

The two terms inside the curl of the second equation are

(∇ × Btor) × Btor = −
Bϕ

R
∇(RBϕ)

(∇ × Bpol) × Bpol =
Jϕ

R
∇(RAϕ). (A.7)

Then, taking the curl and after some algebra, the two terms ap-
pearing in the equation for Bϕ can be written as follows:

eϕ · ∇ × [(∇ × Btor) × Btor] =
[

∇(RBϕ) × ∇(Bϕ/R)
]

φ

= −
2Bϕ

R

∂Bϕ

∂z

eϕ · ∇ × [(∇ × Bpol) × Bpol] = −
[

∇(RAϕ) × ∇(Ĵϕ/R)
]

φ
, (A.8)

where the first one is used in the derivation of Eq. (27).
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