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ABSTRACT

We consider a thin accretion disc of half-thickness H, vertically threaded by a
magnetic field. The field is due to contributions from both the disc current and an
external current (giving rise to a uniform external field). We derive an integro-
differential equation for the evolution of the magnetic field, subject to magnetic
diffusivity # and disc accretion with radial velocity v,. The evolution equation is
solved numerically, and a steady state is reached. The evolution equation depends
upon a single, dimensionless parameter & =27/(3H|v,|)=(R/H)(n/v), where the
latter equality holds for a viscous disc having viscosity v. At the disc surface, field
lines are bent by angle i from the vertical, such that tan i=1.522 ~!. For values of &
somewhat less than unity, the field is strongly concentrated towards the disc centre,
because the field lines are dragged substantially inwards.

Key words: accretion, accretion discs ~ magnetic fields ~ MHD - ISM: jets and out-

flows.

1 INTRODUCTION

We investigate the time evolution of an axisymmetric mnag-
netic field that threads an accretion disc. The field is
assumed to be weak in the sense that the rotation velocity in
the disc remains approximately Keplerian. It is also assumed
that the magnetic field does not contribute to angular
momentum transport in the disc, in the sense that the field
outside the disc remains force-free, and that each field line
intercepts the disc at only one radius.

Previous work in this area was carried out by van Balle-
gooijen (1989), who considered the time-evolution of an
axisymmetric magnetic field which was self-generated by azi-
muthal currents within an accretion disc in a close binary sys-
tem. In this case, of course, the fields decay, and van
Ballegooijen was able to estimate decay time-scales and
magnetic field structures of the various modes of decay. A
more interesting problem arises when the accretion disc is
initially threaded by an externally generated field. In this
case, for a steady disc, there can be a final, steady configura-
tion of magnetic field, in which the inward dragging of field
lines by the disc is balanced everywhere by the outward
movement of field lines due to magnetic diffusivity. This is of
particular relevance to models of magnetically generated
outflows or jets which presuppose the existence of a global
magnetic field threading an accretion disc (Blandford &
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Payne 1982; Pudritz & Norman 1986; Lovelace, Wang &
Sulkanen 1987; Konigl 1989; see also the review by Pringle
1993).

In his approach to the problem, van Ballegooijen used
BYR,t) as the dependent variable which describes the
vertical component of the magnetic field in the disc plane
(z=0), as a function of radius R and time ¢. For this approach
to succeed it is necessary, in the induction equation, to obtain
an estimate of the quantity 0B /dz at z=0, and this is simply
approximated as 0B /0z|,_,= B%/H, where B is the radial
field component on the upper disc surface, and H( << R) is
the disc semithickness. The problem now is to write B in
terms of BY. Van Ballegooijen’s solution to this (see also
Tagger et al. 1990) is to treat the solution for the field struc-
ture external to the disc as a potential problem. This turns
out to be an acceptable approximation locally within the disc.
However, in a global sense, a problem arises outside the disc
radial boundaries. In adopting the approach, we write
(outside the disc for z>0, say) B= —V®, with V2®=0. If
the disc fills the z=0 plane from z=0 to z= %, then the
problem can be simply solved in the upper half-plane, using
the ‘magnetic surface charge’ boundary condition that
B¢=—0®/0z is known on z=0%, and using appropriate
symmetry to obtain the relevant solution in z <0. However, a
problem arises if the disc does not completely fill the z=0
plane, as the solution now involves mixed boundary condi-
tions, and we must set, by symmetry, Bz=—0®/0R=0 on
z=0 in those regions where there is no disc. Moreover, if the
disc has a central hole (ie., if the disc extends only in the
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range R,,S RS R,,,, with R, > 0), the solution to the poten-
tial problem is no longer unique, as the solution space is now
multiply connected. Indeed, in this case, the uniqueness of
the solution now hinges on the knowledge of the net azi-
muthal current through the disc. Van Ballegooijen manages
to sidestep these problems, by assuming boundary condi-
tions on z=0 which, while not fully appropriate to the
problem he considered, do not substantially affect the esti-
mates of the decay time-scales he obtains.

In view of the difficulties inherent in previous methods for
dealing with this problem, we discuss here an alternative
approach which allows us to obtain a solution to the problem
in a more direct manner, without problems with the choice of
appropriate boundary conditions. Our method of solution is
described in Section 2, and the key to the method lies in the
choice of dependent variable (equation 5). In Section 3, we
describe how the method can be implemented to obtain
numerical solutions. In Section 4, we illustrate the method by
solving this problem of a steady accretion disc initially
threaded by a uniform vertical field. In Section 5, we discuss
the light these solutions shed on the various attempts at
modelling magnetically powered bipolar outflows.

2 THE BASIC EQUATIONS
We start with the usual MHD equations in the form

108

2 _VxE

c ot ’ (1)

vxB=-2, (2)
C

and
1

J=a(E+—va). (3)
C

The conductivity, o, is related to the magnetic diffusivity,
7, by the usual equation,

n=c*/azo, @

and is non-zero only within the disc. We take the disc to
extend between z= + H(R), using cylindrical polar co-
ordinates (R, ¢, z), and assume the thin-disc approximation,
i.e. that H<< R. At finite radii outside the disc, the current
density J is zero, producing a so-called potential field which
is force-free.

We assume the magnetic field to be purely poloidal (i.e.
By=0). Such a situation is, strictly speaking, impossible,
because the radial component of the field will be sheared into
an azimuthal component by the differential rotation of the
disc. However, the rate at which the process occurs depends
on the disc thickness and vanishes in the limit of a zero-thick-
ness disc. This effect adds considerable complexity to the
problem, and we ignore it here. Thus we may write the field
in terms of a stream function (R, z), which is identical to
the azimuthal component, Ay of the usual vector potential,
in the form

B=Vx[y(R,z)e,], (5)

where e is the unit vector in the azimuthal direction. In com-
ponent form we then have

oy

BR= _a—Z’ (6)
and
10
z—l—eﬁ(Rw)- | (7)

In the current context, we note that v is symmetric in z, and
that a useful physical interpretation of ¥ is to note that the
value of Ry at radius R on the disc mid-plane is directly pro-
portional to the magnetic flux passing through the disc in-
terior to R, i.e.

R

Ry(R, 0)=J B,(R,0)RdR. (8)

0

Using equations (1), (3), (4) and (5), we obtain
9 47y
a—t('l/)e¢)=vXB—TJ. (9)

The equation we require is the g-component of this equa-
tion, which can be written as

9 (Ry)= -, 2 (Ryp) =20
at(RW)_ URaR(R‘/’) c RJ,, (10)

where vy, is the radial velocity of the disc, and we have used
the thin-disc approximation to neglect v,. Formally, at this
stage, this requires |v,/vgz| < | B,/Bg|, but this condition can
be relaxed when we average vertically through the disc (see
below). Again, in a formal sense, we should mention the
poloidal components of equation (9), especially since the
dominant component of the v X B term is presumably due to
the azimuthal disc velocity v,. In the absence of a wind
emanating from the disc, we shall require the poloidal cur-
rent to be zero, and so require some effect to counterbalance
the induced emf (v X B). The assumption here is that,
although small currents are induced by this emf, the net
effect of these currents is to set up a charge distribution
within the disc which provides an electric field to balance
exactly the v X B term.

Within a thin disc, we expect the following approximations
to hold:

B.(R,z)=B,R,0), (11)
Br(R,z)=B%(R) X(z/H), (12)
and

Y(R, z)=y(R,0)[1+&(z*/L?)]. (13)

Here Bf is the radial field on the z=H disc surface, and
L>H is a length-scale defined approximately by L?~
HRB, /B%. Note that we assume here that dy/OR|,_,~
¥(R,0)/R. Given this, we may average equation (10)
vertically through the disc and obtain an approximate equa-
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tion for y,(R)= 9(R, 0) in the form

9 9 _4ni p Ty
at(RV’o) a =7 (Ry,) - R2H (14)

where the approximation requires B < B,(R/H). Here v
and 7 are appropriate vertical averages of these quantities,
and we henceforth drop the bar. J§(R) is now an azimuthal
surface current density defined by

H
J;(R)EJ'_ J4(R, z)dz. (15)
We note further that, by applying Stokes’s theorem to equa-
tion (5), we obtain

B;(R)——z—“JS(R) (16)

Finally, to obtain an equation for 9(R) in closed form, we
need to relate y,(R) and J4(R). Now y(R) is produced by
two contributions: first, ¥, R) due to currents in the disc,
J4R), and, secondly, Yo(R) due to an externally imposed
fleld which may be regarded as being due to currents at
infinity.

Thus we may write

Yo(R)=v4R)+ ¥(R), (17)

where, formally (see, for example, Jackson 1975 ),

I ! ! . 18
s (R*+R*-2RR cos¢)"” (18)

Rou J ®  JR')cos ¢ dg'R'dR’
As an example, we note that, if the disc is subjected to a
uniform imposed external field B=(0, 0, B,), then

ww(R)% B,R. (19)

In principle, equation (18) can be inverted to obtain J§(R) as
an integral involving 4(R). Substituting this equation for
J4(R) into equation (17), we then have a linear integro-dif-
ferential equation for yy(R).

3 NUMERICAL METHOD OF SOLUTION

We now consider the solution of the evolution equation
derived for y,(R) by numerical means. We shall assume that
the radial velocity vg(R, ) is a given function of radius and
time, but note that it is possible to solve for vg(R, t) self-con-
sistently by solving the disc-evolution equation (e.g. Pringle
1981) in parallel. We postpone consideration of this pos-
sibility.

The numerical method we use is simple first-order explicit
for the quantity Ry, with the advective term evaluated by
upstream differencing (the Lelevier method, see Potter 1973)
written in a way that conserves Ry. The main complica-
tion arises in evaluating the second term on the right-hand
side of equation (14), using the integral relation given by
equation (18).

We define grid points in the disc at radii R;, i=1,...N,
and evaluate the quantities (Ry) at the grid points. We repre-
sent the sheet current J(R) by a series of ring currents I;
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evaluated at the grid points where we write

JS¢(Ri)=Ii/dRi’ (20)
where

1
dRi=§(Ri+1_Ri—l)' (21)

We may now evaluate (Ry,); (equation 17) in terms of the
contribution from each ring current, i.e. formally (Jackson
1975),

N
(Ryyq);= Z Q;,Ip (22)
j=1
where
_4 RR;, |(2-Kk’)K(k)=2E(k)
Q cR,~+R,-[ K ’ (23)
k2=4R.R;/(R,+R)), (24)
and E(K), K(k) are the elliptic integrals
/2
E(k)=J' (1—-Kk?sin?a)/?da, (25)
0
and
/2
K(k)=J' (1—-Kk%sin’a)” 2 da. (26)
0

The matrix with elements Q; is real and symmetric, and
has positive eigenvalues. It is just a property of the grid, and
so need only be evaluated once during the calculation. For-
mally, the diagonal terms (i =j) as written above are singular,
and in fact, for i =j, we replace Q; =Q(R;, R;) by

1
Qu 2 [Q(R R +2 dRH- (1/2) )+ Q(Ri’ Ri +2 dRi—(l/Z))]’ (27)
where
dR,,=Ris —R. (28)

Because the singularity is only a logarithmic one, the precise
value of 4 in equation (27) is not too important, and we used
A=1/2.

Having obtained the matrix elements Q;, we then evaluate
the inverse matrix elements Q' by numerical means. The
method used was LU decomposition using routines  from
Press et al. (1989), which proved to be accurate to machine
accuracy. We note again that, although the inversion process
is lengthy for large grids, the inverse matrix is a property of
the grid alone, and so the inversion need only be carried out
once. We then evaluate the second term on the right-hand
side of equtaion (14) numerically at grid point i, by use of
equations (20), (22) and (17), to obtain

Jy(R;)=(dR;)" § (Ryy); —(Ry),)- (29)

For accuracy and for numerical stability, we need to take a
small enough time-step. For the advective term, the usual
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Courant-Friedrich condition is required. For the diffusivity
term, we need to consider equation (14) with the advective
term set to zero, namely

0 dny _ J;
5, (R R3E. (30)
In addition, we may take y.,(R) to be zero, since this acts like
a source term and does not affect diffusion time-scales. We
notice that y, cos ¢ is then analogous to a gravitational
potential due to a surface density —Jjcos ¢/cG, with G
being the usual gravitational constant.

If we consider localized perturbations for which
Yo=Yoi(t) exp(ikR) and J§=J%,(t) exp(ikR), with kR> 1,
we then have, using the standard WKB approximation in
density-wave theory (Lin & Shu 1964),

2nJ,
=27k 31
1/)01( Clkl ( )
Equation (30) then gives
o amisu_ Ik
at(VJOk) ¢ 2H Yo H 7. (32)

This shows that a mode with wavenumber k decays at a rate
Vx> given by

Ye=nlk|/H. (33)

In order to avoid numerical instability, if a first-order Euler
method is used to integrate forward in time (as is the case
here), we require that At<2/y,, with At being the time-step.
This gives n|k|At<2H. The most restrictive case arises
when | k| takes on the maximum possible value represented
on the grid. To within a factor of order unity, this is | k| =/
AR, AR being the smallest step-size on the grid. In this case,
we require for stability that

Ats2HAR/(ny). (34)

This condition serves as an effective Courant condition
involving the diffusion velocity my /(2H).

4 A PARTICULAR PROBLEM

As an example of the method given above, we apply the
approach to a particular problem. We start with a disc that
is threaded by a uniform vertical field strength B,,. We then
allow the disc to evolve with a flow field corresponding to a
steady disc with kinematic viscosity » and ask what is the
final form of the magnetic field. We take the disc to extend
from R;,=1 to R,,=100, in arbitrary units. For simplicity,
we assume the relative disc thickness, H/R, the kinematic
viscosity, v, and the magnetic diffusivity, 7, to be constant
with radius. We assume that the steady disc flow is set up by
adding matter at radius R,,,=75, and by removing it at
R = 1.5. Thus the velocity field of the disc can be written

0 1<R<15
vr(R)={—-3v/2R 1.5<R<75 (35)
0 75<R=<100.

We use a logarithmic grid with N= 100 grid points extend-
ing from R=1 to R=100. Sufficient accuracy and numerical
stability are obtained by adjusting the time-step to be at most
0.2 of the Courant-Friedrich limit and by allowing the dif-
fusivity term to change (Rv) at any grid point by at most 2
per cent in a time-step.

Starting with the initial conditions given above, we then
allow the computation to run until a steady state is achieved.
Physically, what is happening is that the vertical field com-
ponent is advected inwards on a time-scale

t,~ R%|v, (36)

and diffusivity allows this component to move outwards on
some time-scale ¢,. By examination of the terms on the right-
hand side of equation (14), and by noting equation (16), we
find that

R*HB
t,~———L (37)
n R By

Initially, when B, is small, this time-scale is large, but as B, is
advected inwards B% grows until a steady state is achieved

with ¢,~¢,. By combining equations (36) and (37), we find
that we may expect this to happen when

By H _ _,
4
B, R ’ (38)

where & = n /v is the magnetic Prandtl number.

It is further evident from equation (14), by noting that J 31s
related linearly to 4, by quantities independent of %, v or
H R (equation 18), that, if we scale the time in units of, say,
the viscous time-scale (or equivalently set v = 1), the equation
has only one free parameter, namely the quantity 2 where

Z=(R/H)Z. (39)

The results of the computations are as follows. First, we
confirm the estimate given above in equation (38) and find
that, if the field emerging from the disc makes an angle i with
the vertical, so that tan i = B} /B,, then

Field strength

L2} T T T

ok
€
T J
=t
g

o i t T

o 0.5 i 1.5 2

log(R)

Figure 1. Plot of log[B,(R)/B,] versus log R. Each curve cor-
responds to a constant value of Z. The highest curve for small R
corresponds to & = 0.2, the intermediate curve to 2 =2.0, and the
flattest curve to 2 = 20.
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Figure 2. Plot of field lines in the equilibrium disc for the three values of & in Fig. 1. In each plot, the horizontal line marks the horizontal

region occupied by the disc.

tan i=1.522 "L, (40)

In Fig. 1, we plot the equilibrium value of B, /B, against R for
various values of Z. This figure shows the expected result
that, as the diffusivity is decreased, the external field is more
easily swept inwards. We also note that for &2 1 the field is
barely swept inwards at all, whereas for 2 s 1 the field is

strongly carried inwards, and the value of the field at the
central grid point is a sensitive function of <. This is remini-
scent of the behaviour found by Clarke & Pringle (1988)
with respect to upstream diffusion of contaminant in an
accretion disc. In Fig. 2, we plot the equilibrium magnetic
field lines for three values of 2. The figure shows that, for
the relatively high magnetic diffusivity case of & =20.0, the
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field lines are straight and uniform, as the external field is
hardly affected. For smaller values of 2, the field becomes
more bent near the disc plane, and also becomes more com-
pressed towards the disc centre.

In this connection, we remark that the decay rate for a dis-
turbance with wavenumber k is given by equation (33) as
1= 1| k|/H, whereas the advection rate is | kvg|. The condi-
tion for advection to occur before decay is then just
|vgl2 5 /H, or @ <3/2.

5 DISCUSSION

We have put forward a method for calculating the time-
evolution of an axisymmetric magnetic field that threads an
accretion disc, under the assumptions that the field is suf-
ficiently weak and so structured that it does not affect the
flow, and that the only dissipative process for the field is
magnetic diffusivity, #, within the disc. We have demon-
strated the method by applying it to the evolution of an
initially uniform, and externally imposed, magnetic field
under the influence of a steady flow within an accretion disc.
The steady flow was represented by a radial flow velocity
(equation 35),

(41)

and it was shown that significant inward dragging of field
lines occurs only if

Z=(R/H)(n/v)s1. (42)

We note that, from equation (40), the condition for the viabi-
lity of a centrifugally driven magnetic wind (Blandford &
Payne 1982), namely that taniz 1 /ﬁ, reduces to a similar
condition, i.e. that 2 <0.88.

In an accretion disc in which both the effective viscosity
and effective magnetic diffusivity are due to (magneto-)
hydrodynamic turbulent processes, it seems likely that
neither of these conditions can be satisfied. In isotropic
turbulence in which the largest eddy sizes are ~ I, with turn-
over velocities ~v,, it is to be expected (see, for example, the
discussion in Parker 1979, chapter 17) that v~ ~ Iy,, and
that & ~ R/H>> 1. Moreover, in an accretion disc, where
the flow is strongly constrained by rotation, it may be that the
turbulence is anisotropic, with turbulent cells having a
shorter length-scale in the radial direction (I;) than in the
vertical direction (/,) by factors of the order of the inverse of
the Rossby number R, (Meyer & Meyer-Hofmeister 1983;
see also Riidiger 1989, Tuominen & Riidiger 1989). This
would imply that #Z~ R2>> 1, and so would have the effect
of increasing & still further.

However, the above estimates are valid only if the turbu-
lent viscosity is the main source of angular momentum loss
from the disc, and, for the case of magnetic winds, it has been
pointed out that the main angular momentum loss mech-
anism might be the wind itself. In this case, the definition of
2 must be modified to become

z=—21_
3H|vg|

(43)

and then the same conditions for flux dragging and field
angle still apply. Thus for any particular disc-wind model, the
condition on & is translated into a condition on 7, namely

3
1S3 Hlvgl, (44)

where vy, is the radial velocity predicted by the model. As a
specific example, we note that the detailed model by Wardle
and Konigl (1993; see also Konigl 1989, 1993) yields
|vgl~c,, where ¢, is the sound speed in the disc, and
n ~ Hcg, and so is self-consistent with regard to any flux-
dragging constraints.

We remark, finally, that given a particular model for the
wind [that is, a model which, for given B,(R) and disc para-
meters, yields a mass loss and angular momentum loss per
unit mass of the disc], we are now in a position to put
together a comprehensive model for the disc evolution, in
which wind losses play their part in driving disc evolution, and
disc evolution plays its part in driving magnetic field evolu-
tion, and hence evolution of the wind structure. Once this has
been accomplished, it will be possible to achieve a fully self-
consistent model of magnetic winds from accretion discs.
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