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Abstract
We analyse the effects of an external magnetic field on the ro-vibrational, rotational and
radiofrequency transitions of the HD+ molecular ion—an important systematic effect in
precision spectroscopy of HD+, which is of interest for metrology of the fundamental
constants. The effects of an external magnetic field on the ro-vibrational, rotational and
radiofrequency (hyperfine) transitions of the HD+ molecular ion are considered, for
one-photon and, where relevant, two-photon transitions. The hyperfine structure of the
spectrum lines is taken into account. Particular attention has been devoted to those transitions
which are most insensitive to the magnetic field and its orientation with respect to the
polarization of the radiation field. We identify experimentally accessible two-photon
transitions that exhibit no Zeeman shift, one-photon and two-photon transitions that provide
symmetrically split doublets, and one-photon transitions that show only a very weak quadratic
Zeeman shift. The importance of the spin-stretched states is emphasized. The results can be
used to determine the most suitable transitions given the experimental conditions.

1. Introduction

High-precision laser spectroscopy of ultracold hydrogen
molecular ions is being considered as a novel approach to
(1) measuring and improving the precision of the experimental
value of electron-to-proton and proton-to-deuteron mass ratios
and (2) strengthening the limits on the time variability of
the fundamental constants [1–4]. In order to contribute to
improved values and limits, the relative uncertainty of the
transition frequency measurements in cases (1) and (2) must
be brought down to the 10−10 and 10−16 levels, respectively.
This requires the careful consideration of many systematic
effects. One of them is the Zeeman shift due to background or
applied magnetic fields.

A small quantization field is typically applied, for
example, in order to split the Zeeman components.
Undesirable time-dependent magnetic fields may also be
present, caused by alternating currents flowing in the ion trap.

Earlier estimates of [5–7] show that the Zeeman shift may
significantly exceed the above limits.

The current work presents a complete study of the
Zeeman effect in radiofrequency, rotational, and ro-vibrational
transitions in HD+. As will be shown, both one- and two-
photon transitions are of significant potential for precision
spectroscopy of HD+. Previously, Karr et al [8] have
evaluated the two-photon transition strengths for HD+, but
without consideration of hyperfine and Zeeman interactions.
Calculations of the Zeeman effect and of the two-photon
intensities for the H+

2 molecular ion, with account of the
hyperfine structure of the states, have been performed in
[9, 10]. An analysis of the Zeeman effect on a particular
ro-vibrational transition in HD+ which was experimentally
studied at moderate spectral resolution has been reported in
[3].

Having in mind the typical magnetic field strengths in
ion traps, we focus our attention on the field range up to
1 G, for which the hyperfine interactions dominate over
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the interaction with the external field. The calculations of
the spectrum of the lower ro-vibrational states of HD+ with
total orbital momentum L � 4 and vibrational quantum
number v � 4 are an extension of the approach developed
in previous papers [11–13] for the study of the hyperfine
(spin) structure of the transitions. They are needed for the
precise comparison with experimental transition frequencies,
for selection of appropriate transitions with low sensitivity
to external magnetic fields to investigate experimentally, and
for evaluation of the experimental uncertainty related to the
Zeeman shift in the other cases.

Section 2 describes the evaluation of the energy levels
of HD+ in constant external magnetic field. We use a Breit-
type Hamiltonian to describe the spin interactions in the HD+

ion and high-accuracy variational nonrelativistic Coulomb
wavefunctions as initial approximation. The relativistic O(α2)

corrections for the magnetic field interaction are neglected
since, according to [7], their contribution is small for the
magnetic field intensities below 10 G considered here. In
sections 3, 4 and 5 we consider the Zeeman effect for
the one- and two-photon hyperfine ro-vibrational transition
lines, respectively. The main findings are discussed in
section 6.

2. Interaction Hamiltonian and hyperfine structure
of the energy levels

The spectrum of the HD+ ion in an external magnetic field
has been calculated using a Hamiltonian that accounts for
the electromagnetic interactions of its constituents with each
other and with the external magnetic field and has the form
H = H NR + V sh + V spin + V mag, where HNR is the non-
relativistic 3-body Hamiltonian and the correction terms
collect the spin-independent interactions, the spin interactions
(cf [12, 13]) and the external magnetic field interaction terms,
respectively. The contribution of the spin-independent part of
H has been calculated in [14, 15] along with the relativistic
and radiative corrections up to order mα6 and including some
most important terms of order mα7, and a relative accuracy of
3 × 10−10 has been achieved. It has been shown in [12] that
the frequencies of the dominant ‘favoured’ components in the
hyperfine multiplet of laser-induced transitions in the absence
of external fields can be calculated with a relative accuracy
∼5 × 10−10 in first order of perturbation theory with a Breit-
type spin interaction operator Vspin, accurate up to relative
order O(α2). While the work on the derivation of the higher
corrections to Vspin is currently in progress [16], in the present
paper, similar to [12], we restrict ourselves to the leading
contributions only; we take the spin interaction Hamiltonian
of HD+ in an external magnetic field B to be V = V hfs + V mag

with Vmag in the form

V mag = −m · B, m =
∑

i

eZi

2Mic

(
Li +

μi

si

Si

)
, (1)

where the summation is over the three constituents of HD+

(i = p, d, e), Zi is the electric charge of particle ‘i’ in
units e, Mi is its mass, μi is the magnetic moment in units
eh̄/2Mic, and si is the spin (1/2 for i = p, e and 1 for i = d).

Table 1. Numerical values of the coefficient E10 in the effective spin
Hamiltonian of the lower ro-vibrational states of HD+, in kHz G−1.
E10 is zero for L = 0.

L \ v 0 1 2 3 4

1 −0.558 26 −0.553 71 −0.548 86 −0.543 66 −0.538 11
2 −0.558 13 −0.553 56 −0.548 69 −0.543 49 −0.537 92
3 −0.557 92 −0.553 34 −0.548 45 −0.543 22 −0.537 63
4 −0.557 64 −0.553 04 −0.548 13 −0.542 87 −0.537 25

The operators Pi , Ri and Li = Ri × Pi are respectively the
momenta, position vectors and orbital momenta of the particles
in the centre-of-mass frame, Si are the spin operators, and B
is the external magnetic field. We neglect the effects of the
non-separability of the centre-of-mass motion that is justified
for magnetic field intensities of a few Gauss [17].

Compared to the Hamiltonian of [7], Vmag contains only
the leading-order terms; the relativistic corrections to Vmag of
relative order O(α2) have been omitted. This is a reasonable
approximation for magnetic fields B for which the contribution
of Vmag does not exceed the contribution of Vspin. For this case
the contribution of the relativistic corrections to Vmag is smaller
than the uncertainty of the theoretical results on the hyperfine
energy levels of [12].

We calculate the spin structure of a ro-vibrational state
(v, L) in first order of perturbation using the state-dependent
‘effective spin Hamiltonian’ H tot

eff obtained by averaging V spin+
V mag over the spatial degrees of freedom:

H tot
eff = H hfs

eff + E10(L · B) + E11(Sp · B)

+ E12(Sd · B) + E13(Se · B), (2)

where H hfs
eff is the effective Hamiltonian of HD+ in the absence

of magnetic field given in (3) of [12]. The coefficients E11,
E12, and E13 in the adopted approximation are obtained directly
from (1) and are expressed in terms of masses and magnetic
moments of particles,

E11 = − eμp

Mpc
= −4.2577 kHz G−1,

E12 = − eμd

2Mdc
= −0.6536 kHz G−1,

E13 = eμe

Mec
= 2.8025 MHz G−1.

The value of E10 is calculated using the variational
nonrelativistic wavefunctions of HD+ of [14]:

E10 = −μB

∑
i

ZiMe

Mi

〈vL||Li ||vL〉√
L(L + 1)(2L + 1)

.

The results are given in table 1. Hegstrom [7] calculated
E10 obtaining a value −0.528 kHz G−1 with estimated ro-
vibrational level-dependent corrections on the order of a few
per cent for the low-lying levels, which is consistent with the
values in table 1.

The spin splitting of the energy levels of HD+ is evaluated
by diagonalizing the matrix of H tot

eff . The coupling scheme is
the same as in [12]:

F = Sp + Se, S = F + Sd , J = S + L. (3)

An appropriate basis set F are the vectors with definite
values of the squared angular momenta F2, S2, J2 and z-axis
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Figure 1. Energies �EvL(FSJ )Jz of the hyperfine levels of the
ground ro-vibrational state (v = 0, L = 0) of HD+ versus the
magnetic field B at low (B < 60 G, left) and high (B > 60 G, right)
magnetic field strength. The two stretched states are the top and
bottom sub-levels of the level at ∼300 MHz.

projection Jz of J. |LFSJJz〉. Of these, Jz is the only exact
quantum number for the nonzero field B with the exception of
the ‘stretched’ states with F = Sp + Se = 1, S = F + Sd = 2,
J = S + L = L + 2 and Jz = ±J , for which F, S, and J
are also exact quantum numbers. Labelling the eigenstates of
H tot

eff therefore requires an additional index n. The eigenvalues
of H tot

eff , �EvLnJz , represent the energy levels of HD+, defined
relative to the ‘spinless’ energies EvL (i.e. the eigenvalues of
HNR, corrected with the contribution of Vdiag). �EvLnJz and
the coefficients β

vLnJz

FSJ of the corresponding state vectors in the
basis F ,

|vLnJz〉 =
∑
FSJ

β
vLnJz

FSJ |LFSJJz〉,

are calculated from the system of equations∑
F ′S ′J ′

〈LFSJJz|H tot
eff |LF ′S ′J ′Jz〉βvLnJz

F ′S ′J ′

= �EvLnJzβ
vLnJz

FSJ . (4)

We take for n the set of quantum numbers n = (F, S, J )

used to label the hyperfine states in the absence of magnetic
fields; F, S and J are ascribed the values of the corresponding
quantum numbers of the basis vector |LFSJJz〉 for which
|βvLnJz

FSJ | is maximal. This is applicable for the magnetic fields
B that are sufficiently low so that no avoided crossings of
levels with the same Jz take place. As an example, figure 1
shows the hyperfine energies �EvLnJz (B) of the ground state
(v, L) = (0, 0) of HD+ as a function of the magnetic field
B; no avoided crossings occur in this particular case. The
level diagrams of the lower rotationally excited states look
similar, except for the much larger number of sub-levels; the
first avoided crossings typically take place at B∼20–40 G,
but may occur even at B = 2 G, as is the case with the
(v = 2, L = 4) state.

In the presence of a magnetic field, the hyperfine states of
HD+ labelled with F, S and J (cf [12]) are split into sub-levels

distinguished by means of the quantum number Jz. At low
magnetic fields the dependence of �EvLnJz (B) on B may be
approximated with the quadratic form

(�EvLnJz (B) − �EvLnJz (0))/h

≈ tvLn · Jz · B +
(
qvLn + rvLn · J 2

z

) · B2, (5)

which reproduces the exact values with a relative error below
10−6 for B < 1 G except for the Zeeman components of
the L = 1 states with F = 1, S = 2, J = 2, 3 and very
close hyperfine energies, for which the contribution of third
order in B cannot be neglected and relative accuracy better that
10−5 cannot be achieved without a higher order polynomial
fit. Relation (5) will be used to evaluate the shift of laser
or radiofrequency-driven transition frequencies to external
magnetic fields and choose the less sensitive ones as candidates
for precision spectroscopy. The values of tvLn, qvLn and rvLn

for the lower ro-vibrational states with v � 4 and L � 4 are
given in table 2. The term quadratic in B is of interest mainly
for the states with Jz = 0, and gives an observable contribution
for the remaining states at B > 0.1 G. The rearrangement of
the spectrum starts above 50 G; at high B the spectrum acquires
doublet form due to the domination of the term E13(Se · B)

in H tot
eff , while the small splitting of each branch is due to the

E11(Sp · B) term whose contribution is next in size.

2.1. Stretched states

The energies of the two stretched states in an external magnetic
field can be given in a simple analytical form:

�EvL(1,2,L+2)±(L+2)(B)/h

= ±(2 E10L + E11 + 2 E12 + E13)B/2 + E4/4 + E5/2

+ (E1 + E2 + 2E3 + E6 + 2E7 + 2E8 + E9)L/2

− (2E6 + 4E7 + 4E8 + 2E9)L
2/2. (6)

Thus, the magnetic shift is strictly linear in B (qvLn + rvLn(L +
2)2 = 0), with

tvLn = (LE10 + E12 + (E11 + E13)/2)/(L + 2).

The numerical values of tvLn for the stretched states can be
found in the column labelled J = L + 2 of table 2. While
the numerical values of qvLn and rvLn therein do not exactly
satisfy the above relation, the contribution of the quadratic term
on B does not exceed the relative error limit of 10−6 except
for the stretched states with L = 1, as already discussed.
The selection rules for electric dipole (E1) transitions read
L′ − L = ±1, |J ′

z − Jz| � 1 for one-photon transitions and
L′ − L = 0,±2, J ′

z − Jz = 0,±2 for two-photon transitions
(see below for restrictions); therefore, transitions between
stretched states are possible and deserve special attention. We
immediately recognize that the transitions between a lower
stretched state vL(1, 2, L + 2)Jz and an upper stretched state
v′L′(1, 2, L′ + 2)J ′

z with either Jz = L + 2 → J ′
z = L′ + 2

or Jz = −(L + 2) → J ′
z = −(L′ + 2) form a doublet except

for the special case L = L′ = 0. Due to the independence of
E11, E12, E13 on the ro-vibrational state, the respective shifts,
±(E10(v

′, L′)L′ −E10(v, L)L), have the same magnitude and
opposite signs. We can distinguish the cases.
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Table 2. Numerical values of the coefficients tvLn (upper line, in kHz G−1), qvLn and rvln (middle and lower lines, in kHz G−2), in the
weighed least-squares approximation 5 of the dependence of the Zeeman corrections to the hyperfine energy levels on the magnetic field B
for the ro-vibrational states of the HD+ ion with L � 4 and v � 4. The relative inaccuracy of the approximation does not exceed 1 × 10−6

for B < 1 G, except for some components with close hyperfine energies with F = 1, S = 2 of the L = 1 states where accuracy better than
10−5 can only be achieved with higher degree polynomial approximation.

(F, S) = (0, 1) (1, 0) (1, 1) (1, 2)

vL J = L + 1 L L − 1 L L + 1 L L − 1 L + 2 L + 1 L L − 1 L − 2

00 −218.819 0.000 917.401 699.232
−2.074 −17.657 14.784 4.947

0.052 0.000 −16.472 −1.237
10 −218.834 0.000 917.416 699.232

−2.122 −18.071 15.130 5.063
0.053 0.000 −16.858 −1.266

20 −218.850 0.000 917.433 699.232
−2.170 −18.475 15.468 5.176

0.054 0.000 −17.235 −1.294
30 −218.870 0.000 917.452 699.232

−2.217 −18.869 15.798 5.287
0.056 0.000 −17.602 −1.322

40 −218.892 0.000 917.475 699.232
−2.262 −19.251 16.119 5.394

0.057 0.000 −17.959 −1.349
01 −129.369 −148.692 0.000 −473.042 466.623 821.893 0.000 467.100 590.899 1197.195

−4.988 −2.940 1.743 −12.606 8.612 −95.776 92.665 −97.199 107.206 2.167
0.753 3.072 0.000 −0.570 −2.544 98.141 0.000 10.722 −11.921 −2.549

11 −128.785 −147.451 0.000 −459.618 466.321 809.348 0.000 467.294 590.084 1195.088
−5.222 −3.121 2.015 −13.127 9.134 −99.725 96.462 −105.903 116.064 2.019

0.800 3.343 0.000 −0.689 −2.685 102.272 0.000 11.669 −12.776 −2.582
21 −128.185 −146.186 0.000 −445.464 466.017 796.272 0.000 467.520 589.164 1192.760

−5.470 −3.317 2.318 −13.657 9.695 −103.890 100.450 −115.434 125.696 1.843
0.850 3.642 0.000 −0.809 −2.835 106.602 0.000 12.703 −13.677 −2.606

31 −127.571 −144.894 0.000 −430.562 465.712 782.662 0.000 467.786 588.120 1190.193
−5.734 −3.529 2.658 −14.193 10.302 −108.308 104.657 −125.880 136.172 1.635

0.905 3.972 0.000 −0.930 −2.996 111.160 0.000 13.832 −14.623 −2.620
41 −126.937 −143.569 0.000 −414.885 465.408 768.521 0.000 468.100 586.935 1187.360

−6.017 −3.762 3.042 −14.736 10.962 −113.021 109.119 −137.313 147.550 1.391
0.964 4.339 0.000 −1.047 −3.171 115.980 0.000 15.064 −15.607 −2.622

02 −100.291 −80.705 24.295 −364.492 307.219 442.458 −649.875 349.338 374.516 466.909 624.603 0.000
−4.198 −2.933 0.904 −11.457 7.212 32.606 −35.737 37.116 −17.484 7.059 25.264 −38.314

0.252 0.522 −0.727 0.583 −0.959 −7.712 8.767 −2.319 0.509 −2.856 −34.431 0.000
12 −99.488 −79.356 26.966 −357.480 307.080 436.933 −645.099 349.340 373.860 464.070 617.276 0.000

−4.387 −3.058 1.076 −11.972 7.650 35.164 −38.324 38.920 −18.327 7.349 26.707 −40.748
0.267 0.561 −0.782 0.572 −1.013 −8.293 9.384 −2.432 0.525 −3.021 −36.588 0.000

22 −98.665 −77.974 29.695 −349.938 306.944 430.958 −640.017 349.343 373.180 461.116 609.601 0.000
−4.587 −3.191 1.268 −12.503 8.122 37.945 −41.147 40.844 −19.231 7.655 28.256 −43.371

0.284 0.603 −0.842 0.557 −1.070 −8.927 10.055 −2.552 0.541 −3.199 −38.911 0.000
32 −97.818 −76.557 32.491 −341.814 306.814 424.489 −634.608 349.345 372.474 458.039 601.558 0.000

−4.799 −3.330 1.484 −13.047 8.634 40.983 −44.244 42.907 −20.207 7.977 29.928 −46.210
0.303 0.650 −0.907 0.538 −1.131 −9.623 10.788 −2.681 0.559 −3.392 −41.425 0.000

42 −96.941 −75.094 35.373 −333.044 306.696 417.485 −628.839 349.353 371.744 454.828 593.128 0.000
−5.026 −3.479 1.727 −13.606 9.191 44.318 −47.658 45.132 −21.267 8.321 31.739 −49.298

0.323 0.701 −0.979 0.514 −1.197 −10.390 11.594 −2.820 0.577 −3.601 −44.159 0.000
03 −85.694 −63.508 2.618 −296.772 225.817 311.445 −423.467 279.349 278.061 279.838 186.021 −700.146

−3.705 −2.584 0.060 −9.894 5.759 15.857 −18.898 20.503 0.672 6.205 8.324 −22.289
0.113 0.144 −0.233 0.424 −0.438 −1.701 2.026 −0.820 −0.307 −1.061 −3.723 5.565

13 −84.789 −62.136 4.823 −292.811 225.791 308.786 −420.669 279.351 277.193 277.178 181.046 −700.111
−3.865 −2.675 0.167 −10.377 6.115 17.064 −20.107 21.587 0.635 6.430 8.669 −23.633

0.120 0.154 −0.250 0.430 −0.463 −1.814 2.152 −0.863 −0.324 −1.120 −3.935 5.899
23 −83.859 −60.731 7.079 −288.478 225.773 305.820 −417.708 279.353 276.292 274.420 175.861 −700.072

−4.033 −2.770 0.289 −10.879 6.500 18.367 −21.415 22.746 0.589 6.664 9.034 −25.078
0.128 0.165 −0.269 0.434 −0.490 −1.936 2.289 −0.910 −0.341 −1.183 −4.163 6.259

33 −82.902 −59.287 9.392 −283.724 225.767 302.506 −414.570 279.356 275.357 271.555 170.449 −700.025
−4.210 −2.868 0.427 −11.402 6.918 19.776 −22.837 23.992 0.531 6.908 9.422 −26.640

0.136 0.177 −0.290 0.437 −0.518 −2.066 2.438 −0.960 −0.360 −1.251 −4.410 6.647
43 −81.910 −57.794 11.777 −278.486 225.778 298.801 −411.233 279.363 274.387 268.577 164.799 −699.957

−4.399 −2.970 0.586 −11.947 7.375 21.306 −24.390 25.338 0.459 7.163 9.835 −28.336
0.145 0.190 −0.313 0.437 −0.550 −2.207 2.601 −1.013 −0.380 −1.324 −4.677 7.068

04 −76.723 −56.328 −8.950 −248.198 176.958 237.586 −317.578 232.700 224.643 204.656 91.642 −467.027
−3.387 −2.407 −0.434 −8.642 4.784 10.242 −13.380 14.907 5.129 5.664 3.633 −16.107

0.061 0.056 −0.101 0.274 −0.233 −0.657 0.795 −0.414 −0.272 −0.459 −0.841 1.789
14 −75.765 −54.958 −6.950 −245.763 176.972 236.379 −315.631 232.702 223.683 202.076 87.717 −467.011

−3.527 −2.483 −0.363 −9.083 5.079 11.064 −14.192 15.714 5.315 5.843 3.696 −17.060
0.065 0.060 −0.109 0.282 −0.247 −0.701 0.842 −0.436 −0.285 −0.483 −0.884 1.894

24 −74.782 −53.553 −4.903 −243.075 177.000 234.977 −313.562 232.705 222.684 199.402 83.624 −466.994
−3.674 −2.560 −0.280 −9.546 5.399 11.951 −15.067 16.577 5.506 6.025 3.757 −18.084

0.069 0.064 −0.117 0.290 −0.261 −0.747 0.892 −0.460 −0.300 −0.509 −0.930 2.008
34 −73.768 −52.108 −2.803 −240.093 177.044 233.349 −311.360 232.709 221.642 196.628 79.351 −466.974

−3.828 −2.639 −0.184 −10.032 5.748 12.910 −16.015 17.506 5.703 6.212 3.815 −19.191
0.073 0.068 −0.126 0.296 −0.277 −0.796 0.947 −0.486 −0.315 −0.537 −0.980 2.131

44 −72.718 −50.615 −0.640 −236.768 177.108 231.460 −309.007 232.716 220.558 193.745 74.884 −466.942
−3.993 −2.720 −0.072 −10.545 6.130 13.952 −17.047 18.511 5.907 6.404 3.871 −20.392

0.078 0.073 −0.136 0.302 −0.294 −0.849 1.006 −0.514 −0.332 −0.567 −1.034 2.264
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(i) One-photon transitions: the splitting is of order
±0.5 kHz G−1.

(ii) Two-photon transitions with L′ − L = ±2: the splitting
is of order ±1 kHz G−1.

(iii) Two-photon transitions with L′ = L 	= 0: the splitting is
of order ±10 Hz G−1, since E10 varies weakly with the
vibrational quantum number.

(iv) Two-photon transitions with L′ = L = 0: no splitting.

In all cases, the mean frequency of the doublet is
independent of the magnetic field.

3. Zeeman structure of the one-photon E1
transition spectrum

The probability per unit time P
(1)
f i (ν) for electric dipole

transition between an initial (lower) |i〉 ≡ |vLnJz〉 and
final (upper) 〈f | ≡ 〈v′L′n′J ′

z| state, stimulated by an
oscillating linearly polarized electric field E(t) = E cos 2πνt

of frequency ν, is

P
(1)
f i (ν) = (1/4h̄2)δ(ν − νf i)|〈f |W |i〉|2, (7)

where

νf i = ν0 + (�Ev′L′n′J ′
z − �EvLnJz )/h,

and ν0 = (
Ev′L′ − EvL

)
/h is referred to as ‘central

frequency’, W = −E · d is the interaction with the electric
field, and d = ∑

i ZiRi is the electric dipole moment operator.
Linear polarization will be assumed in what follows as well.
We have

〈f |W |i〉 =
∑

q=0,±1

EqAf i
q (8)

with

Af i
q = 〈v′L′n′J ′

z|dq |vLnJz〉

= df i

∑
J ′JFS

√
2J + 1 C

J ′J ′
z

JJz,1q

{
J ′ 1 J

L S L′

}

× (−)J
′+L′+S β

v′L′n′J ′
z

FSJ ′ β
vLnJz

FSJ , (9)

where df i are the reduced matrix elements of d which, in
the non-relativistic approximation, do not depend on the spin
quantum numbers: df i ≡ dv′L′,vL. C

cγ

aα,bβ are Clebsch–Gordan
coefficients, and Eq denote the cyclic components of E that
are expressed in terms of the amplitude |E| of the oscillating
electric field and the angle θ between E and the external
magnetic field B: E±1 = ∓|E| sin θ/

√
2, E0 = |E| cos θ .

The numerical values of dv′L′,vL for the transitions of interest,
calculated with the variational Coulomb wavefunctions of
[14], are given in table 3 and agree with the results of [18]
at the 10−3 level.

The observable E1 transition spectrum

I (ν) =
∑
f,i

wiP
(1)
f i (ν) (10)

can then be put in the form

I (ν) = ∣∣E∣∣2 ∑
f,i

wi

4h̄2 δ(ν − νf i)T
(1)
f i (θ), (11)

Figure 2. Left: strength T
(1)

f i of the hyperfine components of the
(v, L) = (0, 2) → (4, 3) one-photon E1 transition line at B = 0 (no
θ -dependence). While the entire spectrum spreads over a GHz
range, the dominating favoured components lie in a bandwidth of
∼100 MHz around the central frequency ν0.

with

T
(1)
f i (θ) = cos2 θ

(
A

f i

0

)2
+

sin2 θ

2

[(
A

f i

−1

)2
+

(
A

f i

1

)2]
.

The sum is over all pairs of states (i, f ) belonging to the
hyperfine structure of the initial and final ro-vibrational states
that are coupled by W , and wi is the population of the initial
state. The number of sub-lines (summands in (11)) may exceed
103, but most of them are weak as shown in figure 2. For
magnetic fields B below 50 G the spectrum I (ν) is dominated
by the ‘favoured’ transitions between states with homologous
spin structure that, in addition to the general selection rule
|�J | � 1, also satisfy �S = �F = 0; the frequencies
of the favoured transitions lie in a bandwidth of ∼100 MHz
around ν0. The other hyperfine lines have intensities smaller
by orders of magnitude and would be difficult to observe in an
experiment.

Recently, a measurement of the spectrum of the (0, 2) →
(4, 3) transition with 2-ppb accuracy has been performed in
magnetic fields B not exceeding 1 G [3]. The spectroscopic
resolution of ∼50 MHz did not allow for distinguishing the
individual hyperfine lines or their Zeeman subcomponents.
When the spectroscopic resolution is this low, one can consider
the weighted mean of the Zeeman shifts over all lines as an
estimate of the systematic contribution due to the Zeeman
effect. Considering the lines in the range from −75 to
75 MHz of the mentioned ro-vibrational transition yields less
than 1 kHz shift at B = 1 G, a very small value compared to
the assumed spectroscopic resolution.

The next level of experimental resolution is when the
individual hyperfine lines can be resolved, but not the Zeeman
subcomponents. Compared with the situation in the absence
of external fields, the observable transition lines are broadened
and shifted. To estimate the shift, we consider the weighted

5
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Table 3. Reduced matrix elements dv′L′,vL = 〈v′L′||d||vL〉 of the electric dipole moment of HD+, in Debye. The notation a(b) stands for
a × 10b.

v′ v dv′1,v0 dv′2,v1 dv′3,v2 dv′4,v3 dv′5,v4

0 0 0.87140(+0) 0.12341(+1) −0.15151(+1) −0.17553(+1) −0.19709(+1)
0 1 −0.94562(−1) −0.13970(+0) −0.17847(+0) 0.21466(+0) 0.24966(+0)
0 2 −0.11336(−1) −0.16164(−1) 0.19925(−1) −0.23119(−1) 0.25934(−1)
0 3 −0.24679(−2) 0.34659(−2) 0.42077(−2) 0.48085(−2) −0.53128(−2)
0 4 −0.72966(−3) 0.10156(−2) 0.12216(−2) 0.13834(−2) 0.15147(−2)
1 0 −0.86264(−1) 0.11624(+0) 0.13543(+0) 0.14850(+0) −0.15738(+0)
1 1 0.92088(+0) −0.13041(+1) 0.16008(+1) −0.18542(+1) 0.20814(+1)
1 2 −0.13526(+0) 0.20006(+0) 0.25586(+0) −0.30807(+0) −0.35865(+0)
1 3 −0.19660(−1) −0.28068(−1) 0.34641(−1) 0.40242(−1) 0.45196(−1)
1 4 −0.48795(−2) −0.68626(−2) 0.83441(−2) 0.95494(−2) −0.10565(−1)
2 0 −0.11091(−1) −0.15469(−1) −0.18647(−1) 0.21151(−1) 0.23183(−1)
2 1 −0.12307(+0) −0.16560(+0) 0.19264(+0) 0.21089(+0) 0.22311(+0)
2 2 0.97207(+0) 0.13765(+1) 0.16894(+1) 0.19565(+1) −0.21957(+1)
2 3 −0.16764(+0) 0.24824(+0) −0.31785(+0) 0.38311(+0) −0.44645(+0)
2 4 −0.27889(−1) 0.39866(−1) −0.49262(−1) 0.57300(−1) 0.64435(−1)
3 0 0.24882(−2) −0.35228(−2) 0.43101(−2) −0.49613(−2) 0.55177(−2)
3 1 0.19185(−1) −0.26723(−1) −0.32172(−1) −0.36445(−1) 0.39893(−1)
3 2 0.15213(+0) −0.20440(+0) 0.23740(+0) 0.25946(+0) 0.27400(+0)
3 3 −0.10252(+1) −0.14516(+1) −0.17814(+1) 0.20627(+1) 0.23143(+1)
3 4 0.19599(+0) 0.29059(+0) 0.37249(+0) −0.44946(+0) 0.52430(+0)
4 0 0.74954(−3) −0.10707(−2) 0.13218(−2) 0.15349(−2) 0.17217(−2)
4 1 0.49098(−2) −0.69438(−2) −0.84853(−2) 0.97555(−2) 0.10837(−1)
4 2 0.27142(−1) −0.37759(−1) 0.45401(−1) −0.51361(−1) 0.56142(−1)
4 3 0.17737(+0) 0.23796(+0) 0.27593(+0) 0.30104(+0) −0.31731(+0)
4 4 −0.10805(+1) −0.15298(+1) −0.18772(+1) −0.21733(+1) −0.24380(+1)

Table 4. Offset of the hyperfine transition frequencies ν̄ ≡ ν̄v′L′n′J ′
z,vLnJz

(0) in the absence of magnetic field with respect to the central
frequency ν0 (in MHz), and shift δν̄ ≡ δν̄v′L′n′,vLn(B) = ν̄v′L′n′,vLn(B) − ν̄v′L′n′,vLn(0) of the weighted mean frequencies of the multiplets of
magnetic components of six favoured hyperfine lines (FSJ ) → (FSJ ′), J ′ = J + 1, in the E1 transition (vL) = (0, 2) → (4, 3), calculated
for the external magnetic field B=0.5 G and 1 G, parallel (θ = 0) or orthogonal (θ = π/2) to the oscillating electric field (in kHz).

(F, S, J ) (1, 2, 3) (1, 2, 1) (1, 1, 2) (0, 1, 3) (0, 1, 2) (0, 1, 1)
ν̄ − ν0, MHz −23.481 −14.257 −6.902 58.251 58.861 59.426

θ = 0 π/2 0 π/2 0 π/2 0 π/2 0 π/2 0 π/2

δν̄(0.5 G), kHz 5.1 5.1 −1.5 −3.0 −1.4 −2.7 −0.1 0.1 −0.2 −0.1 0.0 −0.1
δν̄(1.0 G), kHz 16.9 17.0 −5.1 −9.8 −4.8 −8.7 −0.3 0.4 −0.5 −0.1 0.0 −0.5

mean frequency ν̄v′L′n′,vLn(B) of the multiplet of magnetic
components of the hyperfine transition (vLn) → (v′L′n′):

ν̄v′L′n′,vLn(B) =
∑

J ′
z,Jz

νf i |〈f |W |i〉|2∑
J ′

z,Jz
|〈f |W |i〉|2 , (12)

where the summation is restricted to the Zeeman
subcomponents of the multiplet and uniform population of
the Jz Zeeman sub-levels is assumed. The shift of ν̄v′L′n′,vLn

depends nonlinearly on B and at B ∼ 0.5 G may already
exceed the near-future target uncertainty for QED tests and
measurement of particle masses. Table 4 gives the values
of the weighted mean frequencies ν̄v′L′n′,vLn(B) at B = 0
and their Zeeman shifts, δν̄v′L′n′,vLn(B) = ν̄v′L′n′,vLn(B) −
ν̄v′L′n′,vLn(0), for six favoured hyperfine lines in the spectral
range investigated in [3], for magnetic fields B = 0.5 and 1 G,
either parallel or orthogonal to the electric field polarization.
The first three lines in the list are rather well separated, by a few
MHz, from adjacent favoured ones (not listed). ν̄v′L′n′,vLn(B)

cannot be correctly calculated for the pairs of lines whose
hyperfine multiplets overlap. The shift of ν̄v′L′n′,vLn for some

lines may reach many kHz for B of the order of 1 G, while
other lines have substantially less magnetic field sensitivity.

Future spectroscopic measurements of HD+ are expected
to reach a resolution that will make it possible to separate the
individual Zeeman components. At low B the magnetic shift
of the resonance frequency of a single Zeeman component
may be estimated using the approximation of (5):

δνf i(B) = νv′L′n′J ′
z,vLnJz

(B) − νv′L′n′J ′
z,vLnJz

(0)

≈ (t ′ J ′
z − t Jz)B + (q ′ − q)B2, (13)

where t ′, q ′ and t, q refer to the final and initial states,
respectively. The systematic uncertainty related to the external
magnetic field will be minimized by selecting transitions with
minimal δνf i(B); the latter can be achieved for transitions with
J ′

z = Jz = 0 (thus eliminating the large linear dependence on
B), with close numerical values of q ′ and q that cancel each
other. A few examples of such transitions with very low
magnetic field sensitivity and sufficient strength are listed in
table 5. For the pure rotational transition (first line) the shift
relative to the transition frequency is 3 × 10−12, while for the
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Figure 3. Left: strength T
(1)

f i of ten favoured hyperfine components M0, . . . , M10 of the (v, L) = (0, 1) → (4, 2) one-photon E1 transition
line at B = 0 (no θ -dependence), labelled with the quantum numbers (FSJ ) of the initial and final states. Right: frequencies of the �Jz = 0
components of M1, . . . , M10 as a function of the magnetic field B for θ = 0. The Jz = 0 → J ′

z = 0 components of M8 and M10 (short dotted
lines) undergo a very small quadratic shift. The frequencies of the transitions between stretched states in the transversal field (dotted lines)
have a very small linear shift; their mean is independent of B.

Table 5. Examples of favoured one-photon E1 transitions (vL(FSJ )Jz = 0) → (v′L′(F ′S ′J ′)J ′
z = 0) with zero linear magnetic shift and

low quadratic magnetic field sensitivity q ′ − q = δνf i(B)/B2.

v L F S J Jz → v′ L′ F ′ S ′ J ′ J ′
z q ′ − q, Hz G−2

0 1 0 1 1 0 0 2 0 1 2 0 8
0 1 1 1 2 0 3 2 1 1 3 0 22
0 1 0 1 0 0 4 2 0 1 1 0 −16
0 1 0 1 2 0 4 2 0 1 3 0 −38
0 2 0 1 2 0 4 3 0 1 3 0 −37

vibrational transitions the lowest relative shift is −7 × 10−14

(third line).
There also exist transitions between the states of nonzero

magnetic quantum number Jz and J ′
z with suppressed magnetic

field sensitivity, e.g. |vL(FSJ )Jz〉 = |02(011)-1〉 →
|43(012)-2〉 for which |δνf i(B)| < 81 Hz for B � 0.5 G.

Of particular interest are the transitions between stretched
states: the strictly linear magnetic shift of the transition
frequencies is ±(L′ E′

10 − LE10)B with L,E10 (L′, E′
10)

referring to the initial (final) state. In the case of a one-photon
transition, the selection rule is L − L′ = ±1, and the shift
amounts to about ±0.5 kHz for B = 1 G. The mean frequency
of the pair of transitions is independent of B.

One candidate for one-photon spectroscopy of HD+ is
the λ ≈ 1.4 μm transition (v, L) = (0, 1) → (4, 2). The
hyperfine spectrum includes 18 favoured lines, of which 10
(M1, . . . ,M10) are shown in figure 3, left. While most of
them are quite sensitive to the external magnetic field strength
(figure 3, right), the frequencies of the J ′

z = Jz = 0
components of M8 and M10 transitions for longitudinal
magnetic field (θ = 0) have a very weak quadratic Zeeman
shift. The third transition in table 4 (approx. 59.2 MHz)
belongs to M10, while the fourth transition in table 4 (approx.
57.6 MHz) belongs to the M8 line. Line M4 (approx.

−16.8 MHz) contains the stretched state transitions, but these
are not shown in figure 3 (right), since they only occur for
perpendicular polarization, θ = π/2.

4. One-photon magnetic M1 transitions

In addition to the one-photon E1-transitions discussed above,
of interest are the M1-transitions between states of the
hyperfine structure of a single (vL) state, stimulated by an
oscillating magnetic field B′(t) = B′ cos 2πνt of frequency
ν in the microwave region. Similar to (11), the observable
microwave spectrum I ′(ν) is

I ′(ν) = |B′|2
∑
f,i

wi

4h̄2 δ(ν − νf i)T
′(1)
f i (θ),

T
′(1)
f i (θ) = cos2 θ ′(A′ f i

0

)2
+

sin2 θ ′

2

[(
A

′ f i

−1

)2
+

(
A

′ f i

1

)2] (14)

where A
′ f i
q = 〈vLn′J ′J ′

z|mq |vLnJJz〉, m is the magnetic
dipole moment of HD+ defined in (1), and θ ′ is the angle
between the oscillating (B′) and the external magnetic field
(B). The explicit expression of the matrix elements of m
between states with the same values of v and L reads

A′ f i
q = E11A

(p)f i
q + E12A

(d)f i
q + E13A

(e)f i
q + E10A

(L)f i
q ,

7
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Figure 4. Strength T
′(1)

f i (θ ′) of the M1-transitions between the hyperfine states of the ground state (0, 0) of HD+ in the absence of external
magnetic field (B = 0, no θ ′-dependence), and transition frequencies νf i(B) for B < 10 G stimulated by an oscillating magnetic field B′

parallel to the external field B.

A(d)f i
q = (−1)J+L−F−1δF ′F

√
6 �JF ′F

×
{
S 1 S ′

J ′ L J

} {
1 1 1
S ′ F S

}
C

J ′J1z

JJz,1q,

A(p)f i
q = (−1)J+L+F ′+F+S ′+S−1

√
3

2
�JS ′SF ′S

×
{
S 1 S ′

J ′ L J

} {
F 1 F ′

S ′ 1 S

}{
1/2 1 1/2
F ′ 1/2 F

}
C

J ′J1z

JJz,1q,

A(e)f i
q = (−1)F

′+F A(p)f i
q ,

A(L)f i
q = δF ′F δS ′S(−1)J+L+S−1�J

×
{
L 1 L

J ′ S J

} √
L(L + 1)(2L + 1)C

J ′J1z

JJz,1q, (15)

where the notation �ab... = √
(2a + 1)(2b + 1) · · · is used.

Equation (15) shows that radiofrequency transitions are mainly
due to the (B′ · Se) term in Vmag. The frequencies νf i of
the transitions with �F = ±1 are typically in the range
700 < νf i < 1100 MHz, while, for �F = 0, νf i < 200 MHz.
Figure 4 presents the microwave spectrum of the ground state
(0, 0) of HD+ for external magnetic fields below 10 G.

5. Hyperfine structure of the laser-excited
two-photon transition spectrum

Two-photon spectroscopy [19, 22] of ultra-cold HD+ ions is of
interest since it can be implemented with counter-propagating
beams and is therefore free of first-order Doppler broadening.
Accounting for the effects of external magnetic field becomes
particularly important in this case.

Using the notations of section 3, we put the probability
per unit time P

(2)
f i (ν) for a two-photon transition of HD+ in the

form

P
(2)
f i (ν) = 1

32
δ
(
ν − νf i

2

) ∣∣∣∣∣∣
∑
q ′,q

Eq ′
EqA

(2)f i

q ′q

∣∣∣∣∣∣
2

= 1

32
δ
(
ν − νf i

2

)
|E|4 T

(2)
f i (θ); (16)

T
(2)
f i (θ) = 1

4
sin4 θ

[(
A

(2)f i

−1−1

)2
+

(
A

(2)f i

11

)2]

+
1

2
sin2 θ cos2 θ

[(
A

(2)f i

−10 + A
(2)f i

0−1

)2
+

(
A

(2)f i

01 + A
(2)f i

10

)2]

+
1

4

[
sin2 θ

(
A

(2)f i

−11 + A
(2)f i

1−1

) − 2 cos2 θA
(2)f i

00

]2
(17)

where A
(2)f i

q ′q = ∑
k A

f k

q ′ (ν − νki)
−1Aki

q and k stands for
the quantum numbers (vk, Lk, nk = (Fk, Sk, Jk), Jkz) of the
intermediate states of HD+. The sum over k is restricted to
states for which Lk = L ± 1, L′ = Lk ± 1, Jkz = Jz + q and
J ′

z = Jkz + q ′.
Some general transition rules should be noted [19]:

(i) for transitions with �L = 2, J = 0 → J ′ = 0 is
forbidden, J = 0 → J ′ = 1 is forbidden, and for
J, Jz → J ′ = J + 1, J ′

z the case Jz = J ′
z is forbidden;

(ii) for transitions with �L = 0, and L = 0 → L′ = 0, only
J, Jz → J ′ = J, J ′

z = Jz are allowed;
(iii) for transitions with �L = 0, and L 	= 0 → L′ = L, the

case J = 0, Jz → J ′ = 1, J ′
z = Jz is forbidden;

(iv) for transitions with �L = 0, and Jz 	= J ′
z, the cases

J = 0 → J ′ = 0 and J = 0 → J ′ = 1 are forbidden.

General features of two-photon transition spectra of HD+

are illustrated in the example of the (0, 2) → (4, 2) transition.
Favoured hyperfine components in the absence of magnetic

8
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(a)

(b)

(c)

Figure 5. Strength T
(2)

f i (θ = π/2) of favoured hyperfine
components of the (v, L) = (0, 2) → (4, 2) two-photon transition
line, at B = 0, 0.1 and 0.5 G. The weighted mean frequencies for
the Zeeman multiplets of the favoured hyperfine lines M21–M24 are
shifted at B = 0.5 G by up to 3 kHz.

field are shown in figure 5(a). In a transverse magnetic field
(θ = π/2) each of them splits into three components with
�Jz = J ′

z−Jz = −2, 0, 2 with a typical separation of the order
of ∼102 kHz at B = 0.5 G; each of these components acquires
an additional super-fine structure with separations in the ∼
101 kHz range (figures 5(b) and (c)). In a longitudinal
magnetic field �Jz = 0, and the lines undergo ‘super-fine’
splitting only. The weighted mean frequencies ν̄v′L′n′,vLn(B)

(see (12)) of the magnetic multiplets originating from the
dominating hyperfine lines M21-M24 in figure 5(a) are shifted
by up to 3 kHz at B = 0.5 G, less than in one-photon
transitions (cf table 4). Such a shift is tolerable for purposes
of QED test/measurement of particle masses, but not for the
purpose of searching for time dependence of fundamental
constants.

The magnetic multiplets of closely lying pairs of hyperfine
lines, such as M25–M ′

25 on figure 5, may merge and need to be
considered with account of the details of the line profile.

The optimal choice of the pair of the initial and final
states for two-photon spectroscopy depends on several factors.
In [8, 13] the importance of the presence of intermediate
states with excitation energy close enough to νf i/2 to enhance
the transition rate has been discussed. A second factor is
the population of the initial state, which may be enhanced
by optical pumping [20]. Third, the strength of individual
hyperfine lines is relevant; here transitions with a small number
of components are favourable. Finally, the existence of
magnetic components that are weakly sensitive to B guarantees
that the systematic uncertainty is minimized.

Privileged candidates are the purely vibrational two-
photon excitations of the ground state (see section 2.1), in
particular the transition (0, 0) → (2, 0) whose hyperfine
structure in zero field, in contrast to the general case discussed
above, consists of only four distinct favoured lines (see
figure 6) because the L = 0 states have only four levels (see
figure 1) and the selection rules (ii) above imply no change of
the quantum numbers for the favoured transitions.

Figure 6. Left: strength T
(2)

f i of the favoured components of the
(v, L) = (0, 0) → (2, 0) two-photon transition line at B = 0,
labelled with the quantum numbers (FSJ ) = (F ′S ′J ′). Right:
Zeeman shift of the �Jz = 0 components in the external magnetic
field B. The spectrum is independent of θ . The transition
frequencies between stretched states (Jz = ±2 components of M17,
dotted line) are independent of B.

The transition frequencies between levels with L = 0 in
zero field can be given in simple analytical form. The only
nonzero coefficients of the effective Hamiltonian H hfs

eff are E4

and E5. In zero magnetic field, the four hyperfine levels have
the following energy shifts, in order of increasing shift:

�Ev0(011)Jz = h

4

(−E4 − E5 −
√

4 E4
2 − 4 E4 E5 + 9 E2

5

)

�Ev0(100)Jz = h

4
(E4 − 4 E5)

�Ev0(111)Jz = h

4

(−E4 − E5 +
√

4 E4
2 − 4 E4 E5 + 9 E2

5

)

�Ev0(122)Jz = h

4
(E4 + 2 E5). (18)

The last of these is the state that also contains the stretched
states with Jz = ±2.

At B > 0 each hyperfine level splits into 2J + 1
magnetic subcomponents, leading to a total of 12 (favoured)
subcomponents, which all have the same strength. The
spectrum is identical for parallel and orthogonal polarization.
This also means that the stretched-state transitions, which have
zero shift and are degenerate, can be observed with arbitrary
orientation of the magnetic field.

The Zeeman shift of the magnetic subcomponents is very
weak: for 10 out of the 12 subcomponents the relative shift of
the transition line is less than 2 × 10−12 at 1 G, and less than
2 × 10−13 at 0.3 G.

6. Discussion

A magnetic field splits the hyperfine components of the
transition lines into sets of Zeeman subcomponents. The
separation between the Zeeman subcomponents increases with
B and reaches the order of magnitude of the hyperfine splitting

9
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as B approaches the (state-dependent) threshold Bthr ∼ 5–
50 G. Above the threshold the transition spectra are rearranged.

The observable perturbing effects of a magnetic field
depend on the spectroscopic resolution.

(1) Low resolution (hyperfine structure unresolved) The
Zeeman shift of the weighted mean frequency defined by (12)
for each favoured hyperfine components of a transition line is
rather small (see table 4), e.g. less than 5 × 10−11 at 1 G for
an overtone transition. If several such components combine
into an unresolved line, the total shift is typically reduced even
more.

(2) Resolved hyperfine structure, unresolved Zeeman sub-
levels The level of spectroscopic resolution needed for
improved measurements of mass ratios is about 10 kHz and
therefore requires experimental resolution of the hyperfine
structure, but not necessarily the ability to resolve the Zeeman
sub-levels.

As we are interested in hyperfine lines that show
weak magnetic shifts, resolving their individual Zeeman
components at small bias fields B < 1 G may indeed be
difficult. An example is the L = 0 → L′ = 0 two-photon
transitions. The weighted mean of the Zeeman shifts of a
multiplet should then be considered.

There exist two-photon transitions for which the
systematic shift of the then unresolved multiplet will be small,
e.g. −95 Hz at 1 G (−8 × 10−13) for the |vLFSJJz〉 =
|00(011)Jz〉 → |20(011)J ′

z〉 multiplet (the M20 line at 31.3
MHz in figure 6).

In the case of a one-photon transition, we mention the
triplet of magnetic subcomponents |01(010)Jz = 0〉 →
|42(011)J ′

z〉 transition (see figure 3). The Jz = 0 → J ′
z =

0 subcomponent (parallel polarization) has the very small
quadratic Zeeman coefficient of −7 × 10−14 G−2 (shown in
table 5), while the Jz = 0 → J ′

z = ±1 subcomponents
(observable only in perpendicular polarization) have linear
Zeeman shifts of 34.3 and −36.3 kHz at 1 G, respectively,
with an averaged shift of only 290 Hz at 1 G (1.3 × 10−12).

These shifts, where the worst case of non-optimal light
polarization was assumed, are well below the current and near-
future uncertainties of the theoretical transition energies and
thus will not be a limitation in near-future comparisons of
theoretical and experimental results.

(3) Complete resolution In this case many candidate transitions
exist, both one-photon and two-photon transitions. Zero
magnetic shifts are possible in the adopted approximation on
L = 0 → L′ = 0 two-photon transitions involving stretched
states. In the case of use of the symmetrically split one-photon
or two-photon transitions between stretched states, it should
be possible to measure each subcomponent independently and
then compute the average which is free of shift. Such a
procedure is standard in atomic optical clocks.

One technique applicable for cases 2 and 3 is quantum
logic spectroscopy on a single HD+ ion [21, 22], where the
Lamb–Dicke confinement regime is attained and spectroscopic
resolution at the level of the natural line width is possible. A
second approach is conventional (absorption) spectroscopy of
an ensemble of cooled, but not strongly confined molecular

ions of the two-photon or rotational spectroscopy type, which
can also strongly suppress the Doppler broadening.

When spectroscopy of HD+ is pursued with the goal of
comparison with QED calculations and for a determination
of the Me/Mp, or Me/Md mass ratios, it may be important
to determine the central frequency ν0 of the vibrational
transition. The theoretical value for ν0 is now obtained
with QED corrections up to the order mα6 and partially
mα7 [15]. We propose to combine the results of two-
photon spectroscopy between levels with L = L′ = 0 with
radiofrequency spectroscopy within the hyperfine structure of
these levels to extract ν0. The coefficients of the effective spin
Hamiltonian E1, . . . , E9 and, through (4), the spin-dependent
corrections to EvL can in principle be expressed in terms of the
radiofrequencies of transitions within the hyperfine multiplet
of the (vL) state (and similarly for the (v′L′) state). Since
the number Nh of linearly independent hyperfine transition
frequencies (3 for L = 0, 9 for L = 1 and 11 for L � 2)
exceeds the number Ne of non-vanishing coefficients Ei , the
above relations can be resolved for Ei either by obtaining the
least-squares solution or by introducing Nh − Ne additional
compatibility relations the hyperfine frequencies that may
serve to estimate the experimental accuracy. The value of
ν0 is therefore expressed uniquely in terms of spectroscopic
data and may be used to test the predictions of few-body bound
state QED in next-to-leading orders in α.

All these expressions become particularly simple for the
rotationless L = 0 states, as was shown in section 5 (see (18)).
Denoting the frequencies of the Jz = 0 → J ′

z = 0 components
at B = 0 of three radiofrequency transitions in the (v, L = 0)

state by ν1 = νv0(111)0,v0(100)0, ν2 = νv0(122)0,v0(111)0, ν3 =
νv0(100)0,v0(011)0, and similarly, by ν ′

1 . . . , ν ′
3, the corresponding

frequencies in the (v′, 0) state, we have

E4 = ν2 + ν3, E5 = 2(ν1 + ν2)/3,

with compatibility relation

ν2(ν1 + ν2 + ν3) = 2ν1ν3,

and similar for the v′ state. The hyperfine energy of the L = 0
stretched states in zero field may be expressed as

�Ev0(122)±2/h = E4/4 + E5/2 = ν1/3 + 7ν2/12 + ν3/4 .

The transition frequency between stretched states is
νv0(122)2,v′0(122)2 = ν0 + �ν, �ν = 1/3 (ν ′

1 − ν1) + 7/12 (ν ′
2 −

ν2)+(ν ′
3 −ν3)/4. Thus, ν0 could be obtained by measuring one

vibrational transition, and six radiofrequency transitions. The
sensitivity to magnetic field comes only from �ν, since the
Zeeman shift of νv0(122)2,v′0(122)2 is strictly zero in the adopted
approximation. For example, �ν is shifted by only 55 Hz
(5 × 10−13) in the case v = 0, v′ = 2 at B = 1 G. This
shift value could be taken as a conservative estimate of the
Zeeman uncertainty for ν0, but it could be further reduced
by determining the magnetic field in the trap (essentially in
real time) from a measurement of the Zeeman splitting of an
appropriate microwave, one- or two-photon line and using the
theoretical magnetic field sensitivities.
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7. Conclusion

In conclusion, we have shown that both transitions weakly
sensitive and insensitive to the magnetic field as well as
symmetrically split dublets exist in the HD+ optical and THz
(pure rotational) spectrum. In the spectroscopy of these
transitions the Zeeman effect will not be a limiting factor
for the experimental accuracy. This is of particular relevance
to the possible use of HD+ transitions for setting limits to a
hypothetical time dependence of particle mass ratios, where a
relative inaccuracy at the level of 10−16 is desired.

We have also proposed how to experimentally obtain the
central transition frequencies ν0 between rotationless states
of HD+ from a combination of frequency measurements
of different radiofrequency transitions. By eliminating the
contribution of the spin interactions, this approach allows us
to suppress the contribution from particle magnetic moments
and nuclear electromagnetic structure and to reduce theoretical
and experimental uncertainties significantly. The QED
energies and particle mass ratio determined by the comparison
of experimental and theoretical results will therefore have
a negligible contribution from magnetic field and nuclear
structure effects.

The existence of transition pairs whose average frequency
is independent of magnetic field is not affected by the higher
order relativistic mass and anisotropy corrections to the
electron-spin coupling term E13(Se·B) since the latter only
alter the Zeeman shift of the transition frequencies at the
O(α2) ∼ 5.10−5 level [7]. Thus, transitions with suppressed
dependence on the magnetic field can be used as probes for
high-order corrections to the magnetic Hamiltonian that would
be enhanced by up to two orders of magnitude as compared to
transitions with typical linear Zeeman shift.
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