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ABSTRACT

The role of the Hall current in plasma physics is studied in a model of neutron star
magnetic fields. We calculate the evolution of the neutron star magnetic field with and
without the Hall current effect. In our model, it is assumed that the magnetic field is
confined to the crust and that the field dissipates through ohmic decay. The decay
rates are expected to increase with the multipole moments if there is no Hall current
and the dipole field is likely to survive. The presence of the Hall current causes
coupling among the different modes, and the energy is transferred among them. We
find that the dipole magnetic field does not always survive, and the decay features
depend on the configuration of the fields. We speculate that some old neutron stars
such as gamma-ray bursters may have strong, disordered-surface magnetic fields, but a
weak dipole field.
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1 INTRODUCTION

A variety of magnetic fields have been observed in different types of neutron star. The field strength at the surface is B, <10° G
in X-ray bursters, B,~10%-10'° G in millisecond pulsars and B,~10'?2 G in radio pulsars, X-ray pulsars and gamma-ray
bursters. Because the ages of these types of object are different, it has been proposed that the magnetic fields evolve with time.
Some observations support this theory, while others do not. This study has been performed to clarify the mechanism, if any, of
the evolution of magnetic fields.

The evolutionary model was first suggested as a result of statistical analyses of radio pulsars. If the radio pulsars spin down as
a result of magnetic dipole radiation, their magnetic strengths and their ages can be estimated from the observed pulse period
and spin-down rate. Their field strengths are typically B, ~ 10'2 G and their ages peak at a few million years (e.g. see review by
Manchester & Taylor 1977). Ostriker & Gunn (1969) suggested that the magnetic field of pulsars must decay exponentially on a
time-scale 7~ 107 yr to fit the observational data. More recent detailed statistical analyses indicate that the fields decay on a
time-scale of (5-9)x 10° yr (Lyne, Manchester & Taylor 1985) or (8-18)x 10° yr (Narayan & Ostriker 1990). A different
interpretation is possible, however, even using the same data. Lamb (1992) concluded that the evidence supporting magnetic
field evolution is not conclusive because of the large error bars.

Recently, a mechanism for magnetic field evolution was proposed that may relate to binary systems. X-ray pulsars are young
(~107 yr) and have strong magnetic fields ( ~ 10'2 G), while X-ray bursters are old ( ~ 10'° yr) and have weak fields ( <10° G).
The recently discovered millisecond pulsars are recycled neutron stars (~ 10'° yr) and have relatively small magnetic fields
(10%-10'° G). However, it is difficult to reconcile this class of neutron stars with such a simple magnetic field decay model. Taam
& van den Heuvel (1986) speculated that the magnetic field decays until B,~ 3 X 10° G with a time constant ~ 107 yr, but the
field decay rates become slower at B,<3x10° G in a binary system. Another mechanism was suggested by Shibazaki et al.
(1989). They proposed that mass accretion causes neutron star magnetic field decay. The neutron stars in binary systems suffer
mass accretion from their companion stars, and their magnetic fields may evolve with time. On the other hand, gamma-ray
bursts, which may be old isolated neutron stars, have still strong magnetic fields ( ~ 10'? G), as inferred from cyclotron lines in
their spectra (Murakami et al. 1988). Nevertheless, there are counter-examples to such a viewpoint. Detailed studies of the
evolutionary scenarios for the binary X-ray pulsars Her X-1 and 4U1626 — 67 have suggested that these neutron stars are =108
yr old and have undergone large mass accretion, but still retain strong magnetic fields ( ~ 10'> G) (Verbunt, Wijers & Burm
1990). These stars may show no magnetic field decay.
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On the other hand, the theoretical evolutionary models depend on factors such as the magnetic field configuration and
dissipation mechanisms. Ostriker & Gunn (1969) also suggested a theoretical model that explains the observed exponential
decay. If a star has a radius R and uniform electrical conductivity o, its dipole magnetic field decays by ohmic dissipation with a
time-scale 7, =4R?g/nc? (Lamb 1883). They roughly estimated the conductivity as o~ 0.4 X 1022 s~! and concluded that the
characteristic time-scale is 7, ~ 4 X 109 yr. Baym, Pethick & Pines (1969b) determined the conductivity in the neutron star core,
obtaining a value of 0~ 0.4 X 10 s~ !, and therefore a time-scale 7, ~ 10'? yr. This time-scale greatly exceeds the Hubble time -
in other words, there is no significant magnetic field decay. If the magnetic field penetrates to the central core, ohmic diffusion
becomes ineffective. Some authors (Jones 1987, 1988; Harrison 1991) therefore sought some process to expel the magnetic field
from the central core, such as buoyancy force, Magnus force or viscous force, but none of them changes effectively the magnetic
field in a Hubble time.

If the field is localized in the crust, ohmic dissipation may cause a change in the magnetic field. Sang & Chanmugam (1987)
calculated evolutionary models of the magnetic field using a position-dependent conductivity. Their results show that the
magnetic fields decay non-exponentially. Urpin & Muslimov (1992) considered the effect of the thermal history of the neutron
star. They showed that the field decreases rapidly during the first 10°~107 yr, but the field decay stops after the star cools down
and the conductivity increases.

In this paper, we examine the effect of the Hall current in Ohm’s law, which was ignored in the previous evolutionary calcula-
tions but cannot be neglected under some conditions. The Hall current does not result in dissipation, but rather in advection of
the magnetic field. It is the non-linear term of the magnetic field. When we perform multipole expansion of the field, the Hall
current couples the dipole field to higher modes. Without this coupling, the time evolution of the field can be separated into
individual multipole modes. The higher modes decay faster than the lower modes (Wendell, Van Horn & Sargent 1987;
Sang & Chanmugam 1987, 1990; see also Section 3), and the dipole component survives long after the other components
have disappeared. If there are couplings among the multipole moments, the energy of the dipole field is converted to that of
higher modes. Magnetic field decay of the dipole moment may be enhanced through the decay of the higher modes. If this
mechanism does in fact take place in a neutron star, the star will have small dipole magnetic fields and strong chaotic magnetic
fields. Krolik (1991) pointed out the possibility that the magnetic fields of millisecond pulsars may be given by B, ~ 10'? G if the
multipole moments with /= 3 dominate, and he further speculated that the gamma-ray bursters may have a similar magnetic field
configuration. Moreover, the observation that gamma-ray bursts show no pulse feature may support such a magnetic field
configuration.

In Section 2 we briefly review the plasma physics in a neutron star, especially in its crust, and derive the generalized ohmic law
from magnetohydrodynamics (MHD). Section 3 presents a new model of magnetic field evolution. In order to examine the effect
of the Hall current, we adopt rather simplified models. The magnetic fields are assumed to be axially symmetric and confined
outside the core, and the electrical conductivity is constant in space and time. We use the multipole expansion to solve the
evolution of the magnetic fields. The numerical methods for some cases, and their results, are given in Section 4. Section 5 is
devoted to a discussion.

2 PLASMA PHYSICS IN A NEUTRON STAR
2.1 Superconducting core

As aresult of the effective interaction between isolated protons, protons in the central core of a neutron star are in an 'S, pairing
state (Chao, Clark & Yang 1972). Since the London penetration depth of the proton pair, 4, ~ 10~!! cm, exceeds the coherence
length of £~107'2 cm, the proton liquid is a type II superconductor (Pines & Alpar 1985; Harrison 1991). The critical
magnetic fields in the central core, H,, and H_,, have the values

)
Hc,~;£—/l%~3><1014G, (1)
L
)
ch~n—§°2~3x1016 G, (2)

where @,=hc/2e=2x10"7 G cm? is a fluxoid (a quantized flux tube). When B < H,,, the expulsion of the field occurs as a
result of the Meissner effect, whereby the magnetic field lines are pushed out of the superconducting core. When H,; < B< H,,,
the field can penetrate the superconductor as a fluxoid with characteristic radius £&. When B> H,, the superconducting state is
destroyed so that protons return to their normal degenerate state (Harrison 1991).

We should consider two possible magnetic field configurations: penetrating or not penetrating to the core of astar. Since a
high conductivity of the electron gas causes a great delay of the expulsion (Baym, Pethick & Pines 1969a), the magnetic field can
exist in a type II superconductor as vortex lines (Alpar et al. 1984a; Alpar, Langer & Sauls 1984b). If the magnetic field is
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created in the central core before the star has cooled below the transition temperature to the superconducting state, the field
continues to penetrate to the core. In this case, ohmic dissipation is too small to influence the magnetic field because of the high
conductivity. Several processes for the expulsion of the magnetic field from the central core, such as buoyancy force, Magnus
force and viscous force, have been discussed in various papers (Jones 1987, 1988; Harrison 1991), but none of them effectively
changes the magnetic field in a Hubble time. On the other hand, if the magnetic field is created in the crust as a result of thermo-
dynamic effects (Blandford, Applegate & Hernquist 1983; Urpin, Levshakov & Yakovlev 1986) after the transition and
B,y <H,,, the field cannot enter the core as a result of the Meissner effect. In this case, ohmic dissipation may cause a change in
the magnetic field, with a time-scale characterized by the electrical conductivity (Sang & Chanmugam 1987, 1990; Urpin &
Muslimov 1992).

2.2 Magnetohydrodynamics in the crust

In this section, we investigate plasma physics in a neutron star crust which consists of free electrons, free neutrons and neutron-
rich nuclei. The electrons comprise a highly degenerate relativistic gas. The free neutrons are in a superfluid state. Most of the
heavy nuclei form a lattice, while some exist freely. We consider only two equations of motion for electrons and nuclei, because
the electrons interact only with normal particles, i.e. nuclei, in the sea of superfluid neutrons. The effect of collisions between
normal particles and superfluid neutrons is negligible compared to the Coulomb interaction. The electrons and the nuclei are
subject to the Lorentz, pressure gradient, gravitational and collisional forces. In a strong magnetic field, we can neglect the
nucleus—nucleus and electron-electron collisions because of cyclotron motion (Chen 1986). We also ignore the shear stress
tensor here. Thus the equations of motion for nuclei and electrons can be written as

F) X B
Mnn .—alitﬂ=Zen" (E+vn—).—VR‘+Mnng+Hne’ (3)
C
XB
mn, %= —en, (E+v_—) —VE+mng+, @
C

where M and m are the masses of the nucleus and the electron respectively, and n, (n,), v,(v,) and P,(P,) are the number
density, velocity and pressure of the nucleus (electron). The collision terms, I, and II,, represent the momentum gain of the
nuclei per unit time and per unit volume caused by collisions with electrons, and vice versa.

We assume the existence of a single species of nucleus with charge number Z. The charge neutrality is given by

Zn,=n,=n. (5)
Since the collision terms are proportional to the charge of the particles, their number density and their relative velocity, we can

write

1
| | O =; Ze*n,n (v,—v,),
n

1
IIen=—— Zeznenn(vn_ve)' <6)
Oe

This is the definition of electrical conductivity. The conductivities of the nucleus and the electron are related by
1
- 0,=0,=0. 7
7 0 =0 (7)
Therefore, using o and n, we have
1
l-Ie:n= _Znne=_ezn2(vn_ve)' (8)
o
From the definition of the collision term, we obtain
1

1
— e?n?(v,—v,)=pgn, —, (9)
o Ty
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where pr is the Fermi momentum of the electrons, 7,, is the transition time of electron—nucleus collisions and o is the electrical
conductivity. We assume that o is constant in the crust and takes a value of o~ 4.7 X 10?° s~! (Baym et al. 1969b; Ewart, Guyer
& Greenstein 1975; Flowers & Itoh 1976; see also Section 4.2).

It is more convenient to deal with a linear combination of each velocity than with v, and v,, because v, — v, is related to the
electric current and Mn, v, + mn,v, is related to motion of the centre of mass. The linear combination describes the plasma as a
single fluid. This method is called the MHD single-fluid approximation. We define the mass density o, velocity of centre of mass
v and current density j as follows:

M
p=nnM+nem=n(E+m), (10)
M
—v,+mv,
1 Z
v=—(Mnv,+mnuv)=—, (11)
0
~+m
Jj=Zen,v,— en,v,=en(v, —v,). (12)

From the addition of equations (3) and (4), we have

dv _jxB
P$=L’C——VP+P& (13)

where P=P, + P,. This is the single-fluid equation of motion. From the subtraction of equations (3) and (4), we obtain

vXB 1

1 jxB 1
j+—12=_~vp,, (14)
C g en C en

E+

where m << M. This is the generalized version of Ohm’s law. We note the Hall current term j X B, which both equations (13) and
(14) involve. When the neutron star system lies in an equilibrium state dv /3¢ = 0, the equation of motion (13) becomes

jX B
‘IT—VP+pg=O. (15)

In the radial component of this equation, the pressure gradient force and the gravitational force dominate, so that we neglect the
first term, and

~V,P+pg,=0. (16)

Since the electron pressure and the gravitational force are highly isotropic, the toroidal component of j X B balances the fluctua-
tions in the nuclear pressure gradient (Jones 1988):

—UXCB)—cS(VP)=O. (17)

Since the magnitude of these fluctuations cannot be estimated easily, we do not substitute the relation (17) into equation (14). In
the next section we will treat the Hall current term directly in Ohm’s law.

3 MODEL OF MAGNETIC FIELD EVOLUTION
3.1 Time evolution equation

For convenience, we move in the frame corotating with the neutron star, so that the velocity v vanishes. Thus the generalized
version of Ohm’s law is written as

j X
gl LixB_1

J VP.. (18)
(4 en ¢ en
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Faraday’s induction equation and Ampere’s equation are

oB
VXE=—— 19
¢ o (19)
and
cV X B=4gmj. (20)

In equation (20), the displacement current (0E/d¢=0) is neglected. Substituting equations (18) and (20) into equation (19), we
can obtain the equation governing the time evolution of the magnetic field,

oB ¢’ c
—=-VX|—VXB|-VX|——(VXB)XB |. 21
ot (43‘:0 ) [4nne ( ) } 1)
If the second term of the right-hand side can be neglected, this equation is reduced to the form already used by many authors
(Sang & Chanmugam 1987; Jones 1988; Urpin & Muslimov 1992).

Next we consider the conditions under which the Hall current becomes important. Comparing the magnitudes of the first and
second terms on the right-hand side of equation (21), we cannot neglect the second term if

B="5 10105 G, (22)
o

where 0, =10% s~!. However, the Hall drift does not work under a specific field configuration. For example, if the toroidal
field never appears, the evolution of the poloidal field can be described only by the first term (ohmic dissipation).

3.2 Expansion by Legendre polynomials

We assume an axially symmetric configuration of the magnetic field: B= B (¢, r, 0) using spherical coordinates. We expand the
vector potential A by the set of Legendre polynomials P(cos 0), as

Al r,0)=— 5 8itr)

2041 P/(cos 6),
1 2 h(t r) dP(cos )
A S AR T
L e e TR T R
r) OP(cos 8)
o)- -1 23
A, . ,Z. ” TR (23)

where the summations run from /= 1, not from /= 0, because of the absence of a monopole magnetic field. The functions g, r),
h,(t, r)and bt r) are expansion coefficients which depend on time and radius.
From B=V X A, the poloidal magnetic field is

B(tr,6)=73 3 bfs7) Pfcos )
=1
1< 1 0bftr)dP(cos8)
B =— 24
O(t, " 0> r ]gl l(l+1) ar 60 ’ ( )

where we have used a differential relation for the Legendre polynomial (see Appendix). On the other hand, the toroidal magnetic
field is described by

1 |0kt r) OP(cos @) 1 ¢ dP(cos 6)
Byl 6)=— 2 7% )[ or &b '>] 36 rg 1+1) &r=—%e > (25)
where we have defined the function f,(, r) as
oh(t r
=20 gy ) (26)
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Substituting equations (24) and (25) into (21) and using the orthogonality condition, we can obtain the time-evolution
functions:

ob, o 1 B b, af,
—_ _— +_ —_— 2 —Jv

o1 a(arz rz) b, 2 I,ZIz Slllzl fl, or bl, or |’ (27)
of, ¢ 2 dadf, 1 0B 28
=a|5-S|fi-— =+ —-== +

ot a(aﬁ rz)l or or * ,%2 Sur or r (it bya,)

, . 0b da , .0 0
+ﬁ[(51,121+ S0 a—rll a,+S8;,,1b;, a_rlz"'(sl,lzl"' Shin1) %flf"sl,lzlfh ?j}“ ) (28)
where
- p=—= A=I1+1),  A=I(+1) (29)
o’ 4xne’ ’ coEE b
and
’bt,r) A

altr)=a=—3===b(sr) (30)

S and §' indicate the integrals for the Legendre polynomials, which can be expressed by the Clebsch-Gordan coefficient,
C(1,1,1;; my m,m,) (see Appendix):

20+1 1 | oP, 0P, )
R — d —h "L = - . .
St 5 ,MZL (cos 6) YT P, P C(1,L,1;011) C(1,1,1;000),
;o 20+1 1 | oP,_dP, 2I+1 1
S = J d(cos 0) P, —2 —= —— C(IL1,;011) C(1l,1,; 000). (31)
2 A 960 06 2L +1 ul/lz

3.3 Effect of Hall current term

Equations (27) and (28) are time-developing functions of the poloidal and toroidal components, respectively. If the Hall current
always vanishes, equation (27) becomes linear in terms of the magnetic field strength, so that different modes with spherical
harmonic index / decay independently. For example, in the sphere with constant electrical conductivity, the field decays as’

- t
bl(t7 r)= Z bln(r)exp(_—)9 (32)
n=0 Tin
where the characteristic time-scale 7/, is expressed by the zeros of the spherical Bessel function j,(x,,) = 0:
4nR’0
Tin="2_2 ’ (33)
C Xi-ipn

and where nis the number of nodes of the radial function. For the dipole case (/= 1), we have

4R%*¢
=" 34
Fin nci(n+1)? (34)
In general,
Tin” Tisin” Tinst- (35)

The higher modes therefore decay faster (see also Wendell et al. 1987; Sang & Chanmugam 1987, 1990).
On the other hand, the Hall current term plays the role of a bridge between various modes (/s) of the magnetic field. We expect
the Hall current term to transform the energy of the dipole field into that of the higher modes such as the quadra-component, etc.
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The time-scale of this transition is estimated as

4mneR’® B \7!
Ty~ B ~108 (10“(}) VI. (36)

3.4 Boundary conditions

From V- B =0, the normal component of the magnetic field, i.e. B,, must be continuous. For the inner boundary there are two
physically different conditions of B: penetrating and not penetrating to the core, as seen in Section 2.1. The former condition
indicates that B,(t, r=R;,)=constant, where R, is the radius of the central core. In the latter condition, the magnetic field is
initially confined to the entire crust, without penetration into the central core. Hence B,(t, R;,)= 0. The tangential components,
B, and B, may be discontinuous due to the surface current. In this way, for the innermost boundary condition we only fix
B,(t, R;,) to be a certain value, and do not specify B, and B, Mathematically, this corresponds to the Dirichlet boundary
condition for b, because B, is given by b, and B, by 0b,/0r(see equation 24).

The boundary condition at the surface depends on the environment outside the star. We will examine two cases. One [case (i)]
involves the condition where the star is isolated in a vacuum. The exterior magnetic field is described only by the poloidal field,
ie. B,=0. In this case there is no surface current: j, = 0. The normal components of the field, B,, should be continuous and the
tangential components are also continuous at the surface. Thus the poloidal components, B, and B, should be matched to the
multipole moments in a vacuum and the toroidal component, B, goes to zero at the surface. In the other case considered [case
(ii)), the star retains contact with the constant exterior magnetic fields, B, # 0, which are non-zero due to the accretion of matter
in the binary system. In this case, B, and B, connect smoothly to the values of the multipole moment, and B, goes to a fixed
value.

Next, we consider the differences in energy between these two cases. The time variation of magnetic energy is given by

W 1
ot g

where W is the magnetic energy,
1
W=—1| B-BdV. 38
8m J',, (38)

The description (37) can be obtained irrespective of the Hall current in Ohm’s law. The first term of the right-hand side exhibits
energy dissipation as Joule heat. The second term expresses energy diffusion through the Poynting flux. If the radial component
of E X B does not vanish at the stellar surface, the magnetic energy leaks out from the star. From Ohm’s law (equation 18), we
can see immediately that (E X B),=0 means that (jx B),=0. The conditions j,=0 and B,=0 at the surface ensure that
(jx B),=0. Case (i) above corresponds to j,= B, =0, which means there is no Poynting flux, and hence the magnetic energy
results only in a Joule heating. However, case (ii) means that the magnetic energy in the star can leak out to the outside plasma
because B, # 0 at the surface.

4 NUMERICAL RESULTS
4.1 Method

In this subsection we briefly explain our numerical method. We use the finite difference method to solve equations (27) and (28).
If there is no Hall current term, the basic equations become diffusion-type. We therefore apply the Crank-Nicolson scheme to
the time evolution and the ohmic diffusion terms. That is, we replace the time and space differentiations for an arbitrary function
u(t, r) at ty, r;as follows:

k+1 k-1
ou u; -—u
——

ot 2At

k+1 k+1 k-1 k-1
au_’l (uj+1 Uiy Fuy _uj—l)
b

o 2 2Ar

4AF*

2 k+1 k+1 k+1 k-1 k-1 k=1
O u_1(ujy —2u; +ujsy+uj —2u; tu
ar’ 2 ’
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where u}f/ =u(t, £ At, r; £ Ar). As shown in previous sections, the Hall current terms are non-linear in b(t, r) and f,(1, r), so that

we simply adopt explicit differencing for such terms. We replace them by the values at ¢, which are calculated by the staggered
leapfrog method. Thus we have a numerical scheme with second-order accuracy in space and time. The stability of this scheme is
guaranteed, if the non-linear terms are small; however, the scheme may become unstable if they are large. Therefore we limit our
calculations to the case where ohmic dissipation dominates. The solutions under this restriction, however, wiil none the less
represent certain properties of the Hall current.

4.2 Results

We take the standard values for a neutron star: that is, radius R, =10 km and mass M =1.4 M. The boundary between the crust
and the central core is typically r =R, =0.9R,, i.e. the thickness is 1 km. Such a neutron star has a central density o, =10!* g
cm ™3, a crust density o = 10!4-10'% g cm ™2 (Shapiro & Teukolsky 1983), and a temperature 7= 108-10° K (Nomoto & Tsuruta
1987) at equilibrium. When the number density of electrons is a small percentage of that for neutrons, the electrical conductivity
of the crust is 0=4.7 x 10% s~ 1. These values correspond to the time-scale of ohmic diffusion, 7, ~ 108 yr.

We perform the expansion by Legendre polynomials in equations (24) and (25) up to /=35, but we find that the results for
small / described below are almost unchanged even if we use a larger / ,,, €.g. /., =10. Since we do not know the actual
magnetic field configurations, it is assumed that the initial field configurations of B, and B, b,(t=0, r) and f,(¢=0, r), are
expressed by trigonometric functions for 1</<3 and are zero for / = 4, for simplicity. We choose an initial scale of the magnetic
field, By, to be B,=0.9 X 10!! G, to satisfy the condition in which ohmic dissipation dominates.

In our numerical calculation, we adopt a rather artificial form of B,, as shown in Fig. 1. The inner boundary value of B, is
always zero [B,(t, R,,) < B,]. We also calculate the field evolution with the inner boundary condition, B,(t, R;,) ~ B,. In this case,
we find that the Hall current terms soon dominate near the inner boundary sphere, and our numerical scheme breaks down. In
our numerical method, we assume that the dissipative terms are always larger than the Hall drift terms (Section 4.1). In the
opposite case, the basic equations have different characteristics and hence a different numerical scheme is necessary. Since we
have limited the boundary condition to B,(t, R;,)<< B,, our model describes the physical situation that the magnetic field is
confined only to the crust, as some authors previously considered (Sang & Chanmugam 1987, 1990; Urpin & Muslimov 1992).
Even with the restricted boundary condition, our model can partially clarify the effect of the Hall drift on the field evolution.

We also calculate the evolution without the Hall current, that is, with no toroidal magnetic field, and the results are shown in
Fig. 2. In this case, the equations are linear so that we can arbitrarily scale the field strength. Fig. 2 shows the evolution of the
polar surface fields as a function of time. The uppermost line indicates the evolution of the dipole field (/= 1). The second line
represents /=2 and the third line /= 3. They decay exponentially, with an e-folding time of ~ 108 yr, and fields with a larger /
dissipate more rapidly. This result is consistent with the discussion in Section 3. For comparison, these results are shown by
dotted lines in Figs 3 and 4, in which results with the Hall current included are given.

1.20

1.00000
1.007] -~
lvd
I 0.10000%
0.80" ;
— o
- 3}
G 0607 f— 0.010007
a ° I =1
0.407 I /=2
+~  0.00100% I'=3
0.207 a
0.00 T T T T 0.00010 T T T T
0.9 0.92 0.94 0.96 0.98 1 0 1 2 3 4 5
8
/R t (10%yr)
Figure 1. The initial poloidal magnetic field b,(¢=0, r). The stellar Figure 2. Magnetic field decay without the Hall current term. The
surface and inner boundary of the crust correspond to r=R and ratio of the field strength to the initial value in the poloidal field at
r=0.9 R, respectively. the surface is shown as a function of time in units of 100 Myr.
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Figure 3. As Fig. 2, but with the Hall current term under the Figure 4. As Fig. 3, but under the boundary condition (ii).
boundary condition (i) at the stellar surface. The solid lines show
results with the Hall current, and the dotted lines show those
without it.
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Figure 5. As Fig. 1, but for model (b). In this model, there is one Figure 6. As Fig. 2, but for model (b).

loop of the field in the radial direction for each multipole field.

4.2.1 Model (a)

We adopt two boundary conditions at the stellar surface, as discussed in Section 3.4. The results for the condition (i) are given in
Fig. 3, and those for (ii) are given in Fig. 4. The initial configurations of B, are assumed to be single-peaked sinusoidal fields,
except that /=1 for the condition (ii). Since the boundary condition (ii) means that B, # 0, we use the same form as Fig. 1 for B,,
of /=1. As shown in Figs 3 and 4, the magnetic fields decay slightly faster than those without a Hall current. The reduction rate
from the case without a Hall current is only a few per cent for a dipole field, and 20-30 per cent for /= 3. Here, we have assumed
that the fields for />4 are initially zero. The higher modes are greatly affected by the Hall current term, if they exist, but they
diminish the dipole field very little through mode coupling. For this initial magnetic field, therefore, the Hall current term does
not effectively change the magnetic evolution, which is not different from the evolution with ohmic diffusion only.

42.2 Model (b)

We investigate another initial condition, shown in Fig. 5 for B,. This field configuration means that the magnetic field has closed
loops in the star. As for B, we use the same initial form as in model (a). The results without a Hall current are shown in Fig. 6.
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Figure 7. As Fig. 3, but for model (b). Figure 8. As Fig. 4, but for model (b).

The magnetic fields decay exponentially at first, but decay steeply beyond 30 Myr. In addition, the fields decrease 10 times faster
than those in model (a). The initial fields have a node in the radial direction, and result from the combination of the positive and
negative fields. With time, the negative component survives and emerges near the surface. Thus the magnetic fields at the surface
decrease steeply. Fig. 6 also shows that the field with larger / dissipates more rapidly and that the dipole magnetic field survives.

The numerical solutions incorporating the Hall current effect under the boundary conditions (i) and (ii) are shown in Figs 7
and 8, respectively. In both cases, the /=2 and /=3 components show substantial changes compared with the case without Hall
current (dotted line), but the dipole component does not. After 50 Myr, the /= 3 field exceeds the dipole field by two orders of
magnitude; the /=2 field exceeds the dipole field only slightly under boundary condition (i), but by one order of magnitude
under condition (ii).

5 DISCUSSION

Magnetic field decay with the Hall current is examined for a specific magnetic configuration which is confined in the crust. Since
the actual field configuration is not available, it is the purpose of this paper to demonstrate the effect of the Hall current, which
seems to play a role in the evolution of the neutron star magnetic field. From the results in Section 4, the magnetic field decay
depends on the configuration, but the node of the field in the radial direction (closed-loop field), as considered in model (b),
seems to be important. Magnetic fields with such an initial configuration are rapidly damped and the energy of the globally
aligned magnetic field is temporarily transferred to the locally disordered modes through the Hall current. In this case, we expect
the magnetic field to become chaotic at its surface, where higher multipole modes dominate. Such a configuration of the neutron
star may resemble that of a gamma-ray burster (Krolik 1991). In addition, we also consider the effect of the boundary conditions
at the stellar surface. The difference is a factor of a few at most. If the field evolution in isolated neutron stars and that in binary -
systems are different, another mechanism is necessary - for example, accretion keeps the neutron star hot and decreases the
conductivity.

In the numerical calculations, we assume that the dissipation term dominates during evolutlon that is, 7 < 74. The evolution
equation is therefore of diffusive type, but the equation becomes non-linear (of advective type) for 7, = 7. Since the stability of
our numerical scheme is violated under such a condition, 7, = 7. It is necessary to develop a numerical code to simulate such a
case, in which the mode couplings occur quickly and the energy gradually leaks out. This occurs when strong magnetic fields
(B, 2 10'2 G) exist near the inner boundary or throughout the crust. We expect the Hall drift to affect the evolution in a similar
way, but more strongly than considered here. Further study is necessary to reach a definite conclusion.

Finally, when this paper was essentially complete, we found the paper by Goldreich & Reisenegger (1992), who discussed the
importance of the Hall current as well as of ambipolar diffusion, but the latter effect is not included here. Goldreich &
Reisenegger (1992) only speculated that the Hall current causes magnetic field cascades and enhances ohmic dissipation when
the Hall current term dominates during evolution. In this paper, we have regarded the term as a small correction and explicitly
calculated the evolutionary scenario to examine the effect, and have reached a similar conclusion to that of Goldreich &
Reisenegger.
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We summarize here the characteristics of Legendre polynomials, and derive the integrals (31) using Legendre associated

functions and spherical harmonics.
The definition of a Legendre polynomial is

1 d

P —_
12 =3 4

and it satisfies the differential equation

1 9 . ﬁ)(’)P,(cose)
sin 6 06 a0

]= —I(I+1)P/cos 6).

(A2)

We apply this differential equation repeatedly to the magnetic field and time evolution functions, and obtain the relations (24),

(25),(27) and (28).

In order to calculate (31), we introduce Legendre associated functions and spherical harmonics. Legendre associated

functions are expressed by Legendre polynomials as

|m|

d
Pii(z)=(1 =22 i Pifz).
Further, the definition of spherical harmonics is

20+1 (1-|m|)!

Y76, ) =(= 1 i )

Plml(cos 6) e,

(A3)

(A4)
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i One can write the definition of the Glebsch-Gordon coefficient as

2L+ 1)(2L+1)

420+ 1) C(ly L 133 mymymy) C(1, 1,153 000), (AS)

J YR Y yndQ=

where dQ =sin #d6 d¢ and C(/,1,15; m, m, m;) s the Clebsch-Gordan coefficient. Using the relations (A3) and (A4) we obtain

J(211+1)(212+1)(213+1) (12_1)!(13"1)![,( )(1- 2) aPI:(Z)aPG(Z)
(4n)” (L+ 1)L+ 1) T2 T Ty

Y'(6,4)Y1(6,8)Y(6,¢)= (A6)

where z = cos 6. The integral over dQ yields

+1)(2L+ + ! P 0
J iyt 1oL+ 1)L+ )2 +1) 2 J P, (cos ) 2PLlOS O)OP,(e0s 0) 4
L+ DG+ 07 ) o0 96
(2, +1)(2,,+1)
= [—————— C(,1,1;;001) C(I,1,15; 000). A7
4JT(2I3+1) (] 283 ) (ll 283 ) ( )
Thus we have obtained the integral S in equation (24) as follows:
! oP, 0P, 2
ZThxl - = + . . .
J—] P, 30 20 d(cos 6) 21 VL(L+1)I(1+1) C(1,1,1;001) C(1, L, 1; 000) ) (A8)

In a similar way, we obtain the expression for S’ by substituting /; and /.
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