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Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum
Diamond Microscope
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Current density distributions in active integrated circuits result in patterns of magnetic fields that contain
structural and functional information about the integrated circuit. Magnetic fields pass through standard
materials used by the semiconductor industry and provide a powerful means to fingerprint integrated-
circuit activity for security and failure analysis applications. Here, we demonstrate high spatial resolution,
wide field-of-view, vector magnetic field imaging of static magnetic field emanations from an integrated
circuit in different active states using a quantum diamond microscope (QDM). The QDM employs a dense
layer of fluorescent nitrogen-vacancy (N-V) quantum defects near the surface of a transparent diamond
substrate placed on the integrated circuit to image magnetic fields. We show that QDM imaging achieves
a resolution of approximately 10 µm simultaneously for all three vector magnetic field components over
the 3.7 × 3.7 mm2 field of view of the diamond. We study activity arising from spatially dependent cur-
rent flow in both intact and decapsulated field-programmable gate arrays, and find that QDM images
can determine preprogrammed integrated-circuit active states with high fidelity using machine learning
classification methods.

DOI: 10.1103/PhysRevApplied.14.014097

I. INTRODUCTION

Securing integrated circuits against manufacturing
flaws, hardware attacks, and software attacks is of vital
importance to the semiconductor industry [1]. Hardware
attacks often modify the physical layout of an integrated
circuit, thereby changing its function. This type of attack
can occur at any stage of the globalized semiconductor
supply chain, and can range from insertion of malicious
Trojan circuitry during the design and fabrication stages
[2], to modification or counterfeiting during the packaging
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and distribution stages [3]. Horizontal integration of the
industry has led to contracting of integrated-circuit fabrica-
tion, packaging, and testing to offshore facilities, resulting
in a reduction of secure oversight and quality control
[4]. Additional growth of the secondhand electronics mar-
ket has led to a drastic increase in counterfeit integrated
circuits [5]. Detection of integrated-circuit tampering or
counterfeiting has consequently become essential to ensure
hardware can be trusted. Similar issues affect quality con-
trol of unintended manufacturing flaws.

Magnetic field emanations from integrated circuits
afford a powerful means for nondestructive physical test-
ing. Magnetic fields are generated by current densities in
integrated circuits resulting from power and clock distri-
bution networks, input and output lines, word and bit lines,
and switching transistors. These currents are present in
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all operating logic and memory chips and can be lever-
aged for studying the operational behavior of an integrated
circuit during task execution. In general, the resulting
integrated-circuit magnetic fields pass through many stan-
dard integrated circuit materials, and will vary spatially
and temporally in ways that correlate with both integrated-
circuit architecture and operational state. Thus, combined
high-resolution and wide-field-of-view mapping of mag-
netic fields may yield simultaneous structural and func-
tional information, and may be suitable for identification
of malicious circuitry or Trojans [6,7], counterfeit detec-
tion [8], fault detection [9–11], and manufacturing flaws
[12]. However, leveraging magnetic field emanations is
challenging due to the tremendous complexity of circuits
integrating billions of transistors of minimum feature sizes
down to tens of nanometers, with interconnects distributed
across multiple levels of metallization [13]. Multilayered
metal interconnects and three-dimensional stacking give
rise to complex magnetic field patterns that are difficult
to invert, and large standoff distances of magnetometers
reduce amplitudes of magnetic fields and spatial resolu-
tion [14].

In this paper, we demonstrate how these challenges
can be approached using a quantum diamond microscope
(QDM) [15–17] augmented with machine learning classifi-
cation techniques. With the QDM, we perform simultane-
ous wide field-of-view, high spatial resolution, vector mag-
netic field imaging of an operational field-programmable
gate array (FPGA). FPGAs are configurable integrated cir-
cuits that are commonly used for diverse electronics appli-
cations. Systematic and controlled variation of the circuit
activity in the FPGA generates complex magnetic field pat-
terns, which we image with the QDM. The QDM employs
a dense surface layer of fluorescent nitrogen-vacancy
(N-V) quantum defects in a macroscopic diamond substrate
placed on the integrated circuit under ambient conditions.
The electronic spins associated with N-V defects have
well-established sensitivity to magnetic fields [18–20].

We use the QDM to image magnetic fields from both
decapsulated (decapped) and through-package (intact)
FPGAs under operational conditions using continuous-
wave (CW) optically detected magnetic resonance
(ODMR) N-V spectroscopy. For the decapped FPGA, our
measurements yield magnetic field maps that are distin-
guishable between operational states over approximately a
4 × 4 mm2 field of view with a 20 nT noise floor, and a
magnetic field spatial resolution of approximately 10 µm,
limited by the thickness of the N-V surface layer in the
diamond and the distance to the nearest metal layer. For
the intact FPGA, the QDM measurements provide mag-
netic field maps with a similar field of view, 2 nT noise
floor, and a magnetic field spatial resolution of approxi-
mately 500 µm, limited by the standoff distance between
the N-V layer and the FPGA current sources. In partic-
ular, we find that operational states of the intact FPGA

are distinguishable in the QDM images, even with the
diminished magnetic field amplitude and spatial resolution
that arise from the large standoff between the diamond and
the integrated circuit die. We use machine learning meth-
ods to demonstrate FPGA operational state classification
via magnetic field pattern correlation for both decapped
and intact FPGA QDM images. This result provides an
initial demonstration of functional integrated-circuit char-
acterization via magnetic field fingerprinting. Future work
is required to determine whether and how this approach
will be useful in areas such as integrated-circuit security
and failure analysis.

To date, the QDM’s unique combination of magnetic
field sensitivity, spatial resolution, field of view, and ease
of use has allowed it to be used to measure micro-
scopic current and magnetization distributions from a
wide variety of sources in both the physical and life sci-
ences [21–28]. Complementary to scanning techniques
for characterizing integrated-circuit magnetic field emana-
tions, which include wire loops [29], probe antennas [30],
magnetic force microscopy [11], superconducting quan-
tum interference device magnetometers [7], and vapor cell
magnetometers [31], the QDM employs a nonscanning
imaging modality [15] that provides simultaneous high-
resolution (micron-scale) and wide-field (millimeter-scale)
vector magnetic imaging, while operating under ambient
conditions. This capability allows for monitoring of tran-
sient behavior over sequential measurements of a magnetic
field, providing a means to study correlations in signal pat-
terns that can evolve more quickly than a single-sensor
scan time. In addition, the QDM’s simultaneous magnetic
imaging modality is not subject to the reconstruction errors
and drift that can arise from a scanned probe. With these
distinctive advantages, the QDM technique is a promising
approach for nondestructive physical testing of integrated
circuits.

II. EXPERIMENTAL DESIGN

A. QDM experimental setup

A schematic of the QDM is shown in Fig. 1(a). The
magnetic field sensor consists of a 4 × 4 × 0.5 mm3 dia-
mond substrate with a 13 µm surface layer of N-V centers.
The diamond is placed directly on the integrated circuit
with the N-V layer in contact with the integrated-circuit
surface. The diamond is grown by Element Six Lim-
ited to have an isotopically pure N-V layer consisting of
[12C] ∼ 99.999%, [14N] ∼ 27 ppm, and [N-V−] ∼ 2 ppm.
Light from a 532 nm, CW laser (Lighthouse Photonics
Sprout-H-10W) optically addresses the N-V layer with a
beam power of about 500 mW uniformly distributed over
the 4 × 4 mm2 N-V layer. A flat-top beam shaping element
(Eksma Optics GTH-5-250-4-VIS) and a cylindrical lens
(Thorlabs LJ1558RM-A) create a rectangular beam pro-
file (6 × 6 mm2) incident on the top face of the diamond
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(a) (b) (c)

(d)

Microwave

FIG. 1. (a) Schematic of the QDM experimental setup with insets showing the diamond in contact with intact and decapsulated
FPGAs. The diamond is positioned such that the N-V layer is in direct contact with the FPGA, as indicated by the red layer in the
insets. (b) Diamond crystal lattice with the nitrogen (red) vacancy (grey) defect. Lab frame coordinates (X , Y, Z) and N-V frame
coordinates for a single defect (x, y, z) are shown. (c) The ground state energy level diagram for a N-V with fine structure and Zeeman
splitting. (d) Example ODMR spectral data for an applied bias field of (BX , BY, BZ) = (2.0 1.6 0.7) mT, showing the measured N-V
fluorescence contrast, i.e., photoluminescence (PL) contrast, and resonant microwave frequencies of f±,i with i = 1, 2, 3, 4 indicating
each of the four N-V axes. Hyperfine interactions between the N-V− electrons and the spin-1 14N nucleus result in the splitting of each
N-V resonance into three lines.

at a sufficiently shallow angle of incidence (4◦) relative
to the top diamond surface to illuminate the entire N-V
layer. N-V fluorescence is collected with a low magnifi-
cation objective (Olympus UPlanFL N 4x 0.13 NA) to
interrogate a large field of view of about 3.7 × 3.7 mm2.
The fluorescence is filtered with a 633 nm longpass fil-
ter (Semrock LP02-633RU-25) and imaged onto a CMOS
camera (Basler acA1920-155um). Resulting CW ODMR
data is transferred to a computer where it is processed and
analyzed with custom software utilizing LabVIEW and
MATLAB®.

A pair of 5 cm diameter SmCo permanent magnets
(Super Magnet Man) is placed on opposing sides of the
diamond to apply a uniform bias magnetic field (bias field)
of B0 = (BX , BY, BZ) = (2.0, 1.6, 0.7) mT to separate the
resonances of the different N-V axes [see Fig. 1(d)]. The
laboratory frame Cartesian coordinates are X , Y, Z with
the X -Y plane defined as the surface of the diamond in
Fig. 1(b). The bias field B0 induces a ±geµBB0 · n Zee-
man splitting of the spin triplet N-V m = 1 and m = −1
ground states along each of four tetrahedrally defined N-V
symmetry axes, n, with Landé g-factor ge, and Bohr mag-
neton µB. The hyperfine interaction between the N-V and
the 14N isotope nuclear spin (I = 1) results in an additional
triplet level splitting. The four symmetry axes of the N-V,
shown in Fig. 1(b), are leveraged for vector magnetic field
imaging using B0 projection onto all four N-V axes [32].
The ground state energy level diagram of a single N-V axis
is depicted in Fig. 1(c), neglecting the hyperfine structure.

A 6 mm diameter copper wire loop made from 320 µm
diameter magnet wire delivers 1 W of gigahertz-frequency

microwave fields (TPI-1001-B and amplified with a
Mini-Circuits ZHL-16W-43S+ amplifier) to drive the N-V
electronic spin transitions, ms = 0 ↔ −1 or ms = 0 ↔
+1, denoted by f−,i and f+,i, respectively; see Figs. 1(a)
and 1(c). The microwave power chosen is sufficiently
low to not effect the observed normal function of the
integrated circuit. The microwave field is modulated on
and off through the use of a solid-state switch (ZASWA-
2-50DRA+) controlled by a DAQ (NI-USB 6259) and
synchronized with the frame acquisition of the camera to
correct for laser intensity fluctuations and drift.

The intensity of optically induced N-V fluorescence
decreases for microwave fields on resonance with one of
the spin transition energies. This decrease results from
the m = ±1 spin selectivity of the nonoptical, intersys-
tem crossing (ISC) mediated decay pathway for optically
excited N-Vs [33]. The resonance frequencies between N-
V ground-state sublevels are determined from the ground-
state Hamiltonian

H/h = [D(T) + Mz]S
2
z + γ (BxSx + BySy + BzSz)

+ Mx(S
2
y − S2

x ) + My(SxSy + SySx) (1)

for the projection of B0 along a single N-V axis, where
h is Planck’s constant, D(T) ≈ 2870 MHz is the tem-
perature dependent zero-field splitting, T is the tempera-
ture, the Sk are the dimensionless spin-1 Pauli operators,
γ = 2.803 × 104 MHz/T is the N-V gyromagnetic ratio,
the Bk are the components of B0 in the N-V frame, and
the Mk are crystal stress terms [34]. Electric field terms
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contribute minimally and are neglected [35–37]. Carte-
sian coordinates k = x, y, z are defined in the N-V frame
with z along the selected N-V axis; see Fig. 1(b). The
contribution of the hyperfine interaction between the N-
V and 14N nuclear spin is treated as a constant, 2.158
MHz energy level splitting and is not shown explicitly in
Eq. (1). Sweeping the frequency of the applied microwave
fields across the range of resonant frequencies and collect-
ing the N-V fluorescence results in an ODMR spectrum.
Figure 1(d) depicts the resulting ODMR measurements for
a bias field alignment where each N-V axis experiences a
different projection of the bias magnetic field.

Continuous-wave ODMR is used to image static FPGA
magnetic fields. CW ODMR leverages continuous appli-
cation of the laser and microwave field. This approach
yields wide field-of-view images with high spatial resolu-
tion and good magnetic field sensitivity, while minimally
perturbing the sample under study [15,16]. A diamond
with sufficiently low Mz inhomogeneity across the field of
view is used to minimize degradation of performance [34].
Further suppression of strain contributions is achieved with
application of the static bias field, B0. Thus, the Mx and My

terms in Eq. (1) are negligible [34,38]. The ground state
Hamiltonian along a single N-V axis reduces to

H/h ≈ [D(T) + Mz]S
2
z + γ BzSz + γ BxSx + γ BySy , (2)

and is used to determine the CW ODMR resonance fre-
quencies for each pixel in a QDM image, and thereby
to determine the magnetic field image from the sample
FPGA.

B. Integrated-circuit preparation, control, and layout

The Xilinx 7-series Artix FPGA (XC7A100T-1CSG3
24C) shown in Figs. 2(a) and 2(b) is selected for this study
owing to its versatility, general availability, and affordabil-
ity. This FPGA is a 15 × 15 mm2 wirebonded chip, fabri-
cated in the TSMC 28 nm technology node, which has an
approximately 6.5 × 10 mm2 silicon die with eight clock
regions. Digilent Nexys A7 development boards are used
to operate and configure the Artix-7 FPGA. Two chips are
used: one intact Artix 7 and decapsulated(decapped) Artix
7 that is prepared using a Nisene JetEtch Pro CuProtect
decapsulator.

The large current draw and controllable location and size
of ring oscillators make them ideal functional units for
this study [39,40]. Patterns of ring oscillators are imple-
mented using the Xilinx Vivado Design Suite® to create
distinguishable current distributions on the FPGAs for
measurement by the QDM. Clusters of three-inverter ring
oscillators are synthesized, placed, and routed to four dif-
ferent predefined clock regions on the FPGA, with clear
spatial separation and spanning a majority of the die sur-
face as shown in Fig. 2(c). A cross section of the die is
shown in Figs. 2(d) and 2(e). The clusters consist of vari-
able numbers of ring oscillators, allowing for incremental
increase or decrease of the current draw at the different
locations on the FPGA. The active states of the FPGA are
defined by ring oscillator clusters implemented in one of
the predefined regions, and the idle state is defined as the
FPGA powered on with no implemented ring oscillators.
These active and idle states of the FPGA are used to create

15 mm
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500 μm

Silicon die
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Interconnects

Solder

ball

5 μm Passivation layer

Gates

Top metal layer

R3

R1

R4

(a) (c) (d)

(e)

R2

(b)

Field of view

FIG. 2. (a) Intact Xilinx 7-series Artix FPGA with die location and dimensions indicated in red. (b) X-ray image of the FPGA
package determining the position and size of die outlined in red. (c) A high-resolution image of the decapsulated FPGA with the fixed
diamond measurement field of view indicated with a blue box, and the location of ring oscillator clusters indicated by red boxes labeled
R1–R4. (d) Scanning electron microscope (SEM) image of the FPGA cross section showing the 500 µm standoff distance between the
chip die and the top layer. (e) Close-up of the SEM focusing on the metal layers of die. The thickness of the passivation layer is 5 µm
and sets the minimum standoff distance for the decapsulated measurements.
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a lock-in type measurement of the chip activity. The order-
ing of states during a series of measurements is randomized
to reduce susceptibility to systematic noise sources.

C. Experimental protocol and data analysis

CW ODMR measurements are taken with the FPGA
in both active and idle states. The duration of each mea-
surement is approximately 5 min per N-V axis for each
state (see the Supplemental Material [35]). Such extended
measurements are insensitive to transient effects on time
scales shorter than the measurement, and sensitive to envi-
ronmental drifts on the time scale of the measurement.
Magnetic field contributions from the ring oscillators are
determined by subtracting the measured idle state ODMR
frequencies from the measured active state ODMR fre-
quencies, yielding the overall magnetic field due to the
ring oscillators alone. For such measurements, the N-V
ground-state Hamiltonian is given by

H/h ≈
(

D +
∂D

∂T
�T + Mz

)

S2
z + γ (Bz + �Bz)Sz

+ γ (Bx + �Bx)Sx + γ (By + �By)Sy . (3)

Here, terms with � originate from the FPGA active states
and ∂D/∂T ≈ −74 kHz/◦C [41]. Following these defini-
tions and treating the off-axis magnetic fields as perturba-
tive, the idle and active state resonant frequencies for the
upper (f+) and lower (f−) transitions of a single N-V axis
(i) are given by [38]

f±,i,idle ≈ (D + Mz) +
3γ 2

2D
(B2

x + B2
y) ± γ Bz (4)

and

f±,i,active ≈
(

D +
∂D

∂T
�T + Mz

)

+
3γ 2[(Bx + �Bx)

2 + (By + �By)
2]

2(D + ∂D
∂T

�T + Mz)

± γ (Bz + �Bz). (5)

The desired FPGA state-dependent magnetic field projec-
tion on each N-V axis, �Bz,i, and the change in local
temperature, �T, are given by

�Bz,i =
1

2γ
(�f+,i − �f−,i),

�T =
1

2 ∂D
∂T

(�f+,i + �f−,i),
(6)

where �f±,i = f±,i,active − f±,i,idle. The off-axis magnetic
fields of the sample are suppressed by the zero-field split-
ting; thus, terms dependent on �Bx and �By are suffi-
ciently small to be neglected in Eq. (6) (see the Supple-
mental Material [35]). Terms dependent on Bx, By , Bz,

D, and Mz are canceled by subtracting the idle resonance
frequencies from the active state resonance frequencies.
Determining the resonance frequencies from all four N-V
orientations for vector measurements, labeled i = 1, 2, 3, 4
in Fig. 1(d), enables solving for the vector magnetic field
in the lab frame:

�BX =
√

3

2
√

2
(�Bz,2 + �Bz,4), (7a)

�BY =
√

3

2
√

2
(�Bz,1 + �Bz,3), (7b)

�BZ =
√

3

4
[(�Bz,1 − �Bz,3) − (�Bz,4 − �Bz,2)]. (7c)

Recall that X , Y, and Z are the laboratory frame coordi-
nates; see Fig. 1(b).

The ODMR lineshape for N-V ensembles is well
described by a Lorentzian lineshape [38,42]. ODMR spec-
tra for vector measurements of a 14N diamond sample
contain 24 resonance features (three hyperfine features
times two electronic spin transitions times four N-V axes);
see Fig. 1(d). The resonance frequencies of Eq. (6) are
extracted from the data by fitting all the Lorentzian param-
eters for every pixel in the field of view [16]. Furthermore,
the contrast and linewidth [43] of the resonances are
determined, giving additional state-dependent information
(see the Supplemental Material [35]) that can additionally
be used for probing high-frequency magnetic fields [44].
GPU-based fitting algorithms [45] speed up this compu-
tationally intensive fitting and enable rapid analysis of a
large number of measurements.

III. RESULTS

A. Vector magnetic imaging

In Fig. 3(a) we show QDM vector magnetic field images
measured on the decapsulated FPGA for clusters of N =
200 ring oscillators in two of the predefined regions indi-
cated in the Vivado floor planner, labeled R1 and R2 in
Fig. 2(c). The vector magnetic field images are derived
from CW ODMR measurements using Eqs. (6) and (7).
Observed maximum magnetic fields are on the order of
approximately 15 µT with a noise floor of approximately
20 nT (see the Supplemental Material [35]). Spatial vari-
ation of the magnetic field is located on the right of the
field of view for R1 and on the left for R2. This local-
ization corresponds to the positions of R1 and R2 on the
Vivado floor planner, indicating that high current densi-
ties for power distribution are concentrated to the region
of activity on the die. The vector magnetic field measured
in the idle state with zero ring oscillators, shown in the bot-
tom row of Fig. 3(a), reveals the structure of the ball grid
array that connects the FPGA to the Digilent board. The
state-dependent magnetic fields owing to the ring oscillator
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current densities [see Eq. (7)] are thus measured in super-
position with the spatially inhomogeneous field resulting
from the ball grid array.

The presence of a nonzero BY component in R1 and R2,
as seen in Fig. 3(a), indicates contributions to the magnetic
field from current density sources that run underneath and
perpendicular to the visible traces of the top metal layer.
These sources are likely a combination of currents in the
lower layers of the metal stack and in the interconnects
between the wirebonds and ball grid array seen in the SEM
image in Fig. 2(d). Discontinuities present in the BX andBZ

fields indicate a change of the current direction guided by
through-silicon vias in the Z direction that connect the dif-
ferent, stacked metal layers. Regions R3 and R4, seen in
Fig. 2(c), are both outside the measurement field of view.
However, in both cases, state-dependent current is mea-
sured in locations corresponding to the direction of current
flow in the appropriate location on the die (see the Supple-
mental Material [35]). This demonstrates the possibility to
determine circuit activity outside of the diamond periphery
by observing correlated magnetic fields within the nominal
field of view.

An optical image of the die through the diamond is used
to spatially align the magnetic field measurement with the
high-resolution optical images taken of the decapsulated

chip. Spatial variation of the BX and BZ magnetic field
components corresponds well with the physical features of
the top metal layer. In Fig. 3(b) we show an enlarged over-
lay of the BZ field for 200 ring oscillators in R1 with the
optical image of the die, demonstrating feature alignment.
Distinct features are visible in the fields that correspond to
physical structures, including bends in the wires labeled
(i) and (ii) in the figure. Some features in the magnetic
field map do not correspond to any visible features on
the top metal layer, such as the magnetic trace indicated
by (iii) or the discontinuity in field direction indicated by
(iv). Visualization of the magnetic field data along a single
dimension across the field of view (see the Supplemental
Material [35]) further illustrates the detailed spatial fea-
tures present in the different magnetic field vector images.
These fields suggest the presence of additional current
routing by vias and other structures below the plane of the
top metal layer.

B. Single N-V axis magnetic imaging

Single N-V axis QDM measurements [16] are used to
collect a large data set of magnetic field images from ring
oscillator clusters for classification. These data are taken
by monitoring the outermost ODMR spectral features (f−,1

(b)(a)

FIG. 3. (a) QDM vector magnetic field maps of the decapped FPGA for different ring oscillator (RO) clusters activated in regions
R1 and R2. The location of the 3.7 × 3.7 mm2 diamond field of view is fixed on the FPGA for all magnetic field images [see Fig. 2(c)].
State-dependent magnetic field changes (�BX , �BY, �BZ) are calculated by subtracting background idle magnetic field images from
active magnetic field images. Wires on the top metal layer are generally oriented in the Y direction, yielding prominent �BX and �BZ

fields. �BY magnetic field maps show contributions from deeper sources. Background magnetic field maps of the idle FPGA with zero
ring oscillators show variations of the field from the mean. Several different background fields are evident: a gradient from the bias
magnet, distortion of the bias field from the ball grid array, and background current delivery. (b) The �BZ data for 200 ring oscillators
in R1 plotted in transparency over a high-resolution optical image of circuit die. Regions of interest discussed in the text are indicated
by (i), (ii), (iii), and (iv).
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and f+,1) with the same bias field in the lab frame, and
the laser polarization and microwaves optimized for the N-
V axis being monitored to improve measurement contrast
[16]. Projection imaging is useful for large data acquisi-
tion due to the speedup in measurement time; however, the
vector nature of the field is not captured. The laser polar-
ization and microwaves are optimized for the single N-V
axis being monitored. Measuring only a single pair of res-
onance features results in about a 4× speed up by reducing
the number of swept microwave frequencies by a factor of
four.

In Fig. 4(a) we show example projection magnetic field
images, averaged over ten measurements, for 5, 50, and
200 ring oscillators in regions 1 and 2 for the decapsulated
FPGA and the intact FPGA. Magnetic fields are gener-
ally reduced with diminishing numbers of ring oscillators,
owing to the smaller current densities required for power
distribution to smaller clusters. The maximum field ampli-
tude is found not to scale linearly with the number of
ring oscillators due to the currents being distributed over
a differing number of wires on the top metal layer. The
approximately 200 nT magnetic field arising from a sin-
gle ring oscillator is detectable for the decapsulated chip
[Fig. 4(b)] given the experimental noise floor of 20 nT

(see the Supplemental Material [35]). The overlay of the
measured magnetic field and the top metal layer illustrates
potential location of vias where current is routed to deeper
metal layers.

Magnetic fields measured for the intact chip are
decreased in magnitude and have lower intrinsic spatial
resolution due to the large standoff distance, compared
to the decapsulated chip. The suppression of higher spa-
tial frequency signals at large standoff distances allows
for more aggressive binning and spatial filtering of the
intact data, without sacrificing spatial resolution and field
information (see the Supplemental Material [35]). This
approach enables a lower noise floor of 2 nT for the intact
chip data, which partially overcomes the reduction of field
amplitude with distance. For some regions of the field
of view, the noise floor is limited by state-independent
variation in the magnetic field (see the Supplemental Mate-
rial [35]) likely due to long-time power instability of the
board. In order to enhance sensitivity and push the speed at
which measurements can be taken, diamonds with thicker
N-V layers can be utilized to increase total fluorescence
at the cost of spatial resolution (see the Supplemental
Material [35]). Such methodology may be especially ben-
eficial when performing intact measurements, where the

(a) (b)

FIG. 4. (a) QDM magnetic images indicate sensitivity to changing the number of ring oscillators in different regions for the decap-
sulated (decap) and intact chips when performing overlapped measurements. Different scale bars are used for feature clarity. (b)
Decapsulated QDM data of �Bz,1 for a single active ring oscillator in region 1, demonstrating measurement sensitivity to the magnetic
field from current supplying a single ring oscillator. Inset: Overlay of the magnified single ring oscillator magnetic field image with a
high-resolution optical image of the circuit die. Each image is the average of 10 QDM (nominally identical) measurements.
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spatial resolution is already limited by the package standoff
distance.

The dependence of current on the ring oscillator clus-
ter size leads to state-dependent temperature changes of
the FPGA, which are determined from N-V ODMR mea-
surements using Eq. (6). Because of the high thermal
conductivity of the diamond chip, there is no spatial struc-
ture in the resultant temperature maps. However, from
temperature measurements over the entire field of view, we
are able to determine a scaling of approximately 0.0075 ◦C
per active ring oscillator (see the Supplemental Material
[35]), with a temperature increase of approximately 1.5 ◦C
for the 200 ring oscillator state.

C. Magnetic field source interpretation

The QDM magnetic field images shown in Figs. 3
and 4 result from current density sources located at var-
ious depths in the decapped and intact FPGAs. Current
is distributed in the interconnect layers of the silicon die
and the package substrate. Each layer acts as a quasi
two-dimensional current source contributing to the overall
magnetic field detected by the N-Vs. The standoff distance
between the N-V sensing plane and the current sources
determines which metal layer dominates the field measure-
ment. Generally, small wire features close to the sensing
plane will dominate for small standoff distances and large
wire features far from the sensing plane will dominate for
large standoff distances.

For example, the 21 µm wide wires of the top metal
layer contribute to the measured �BX and �BZ fields in
the QDM images of the decapped FPGA, as seen by the
spatial features of the fields in Fig. 3. Topside decapsula-
tion removes the 500 µm of epoxy packaging above the die
shown in the SEM in Fig. 2(e). This results in a 5–10 µm
standoff distance between the top metal layer and the N-V
sensing plane that is sufficiently small to resolve the spa-
tial variation of fields resulting from currents in the top
metal layer. Fields from smaller wires in the metal stacks
below the top metal layer are too distant to contribute
significantly to the measured field.

The measured magnetic field distributions for both the
decapsulated and intact chips include contributions from
large current sources far from the N-V sensing plane. These
sources consist primarily of the metal layers of the 400 µm
thick package substrate. The 300 µm silicon die separates
the N-V layer from the top of the package substrate for
the decapsulated chip. An additional separation of approx-
imately 500 µm due to the epoxy gives a total standoff
distance of about 800 µm for the intact chip. These large
current sources result in the broad features of the mea-
sured �BY data for the decapsulated chip in Fig. 3(a),
and of the measured �Bz,1 for the intact chip in Fig. 4(a).
The dominant contribution of the substrate layers explains

differences in the measured fields of the intact chip com-
pared to those of the decapsulated chip, even when the
latter are low-pass filtered to account for the difference in
measurement standoff.

Comparison of the measured data with finite element
analysis simulations support the interpretation of the data
as resulting from contributions of current sources in dif-
ferent layers at different depths from the N-V plane. The
finite element analysis model, constructed in COMSOL

Multiphysics®, consists of 21.6 µm wires in the top metal
layer with inter-wire spacing of 12.7 µm, and 100 µm
thick metal wires in the package substrate layer with
interwire spacing of 100 µm. An interlayer separation of
300 µm represents the thickness of the silicon die. A cur-
rent of approximately 10 mA is applied to the wires in each
layer with alternating bias to approximate the current of
200 active ring oscillators. Plots of BZ for planes at 25 µm
and 500 µm above the top metal layer are given (see the
Supplemental Material [35]) for comparison with the N-V
measurements at the nominal standoff distances for decap-
sulated and intact chips, respectively. The spatial features
of the small wires are only evident in the BZ field of the
plane with small standoff, whereas the contribution of the
large wires dominates at large standoff distances.

The measurements presented in Figs. 3 and 4 are the
net static magnetic fields resulting from steady-state ring
oscillator operation in the FPGA. The static fields are
interpreted to result from a time-averaged superposition of
dynamic current draws from the top metal layer to the tran-
sistor level. The ring oscillators used for this experiment
each consist of three CMOS inverters that sequentially
switch state during ring oscillator operation. A small,
short-circuit current spike occurs in every inverter that
switches state (due to simultaneous conduction through
the two transistors of the inverter inducing a transient
current path from the supply voltage to the ground). How-
ever, the individual switching of the inverters in the ring
oscillators is not temporally synchronized, resulting in
a time-averaged, steady-state current draw from the top
metal layer, and a consequently measurable static magnetic
field (see the Supplemental Material [35]).

IV. ANALYSIS

Forward modeling of the current distributions and
resulting magnetic fields for the different ring oscillator
states programmed on the FPGA is an intractable prob-
lem without complete knowledge of the wire layout and
current paths. Interpretation of the QDM measurements by
comparison with forward-model simulations is therefore
limited to the arguments, such as those presented in the
previous section. However, automated machine learning
algorithms can be applied to the QDM data to discrimi-
nate between and ultimately classify the different operating
states. Ideally, a magnetic field image is used as input to
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a machine learning algorithm, and the functional state,
defined as the number of active ring oscillators in this
initial demonstration, is determined as the output. In prac-
tice, this problem is approached with a limited data set of
magnetic field images for each FPGA state, and a dimen-
sionality reduction algorithm is employed before applying
a classification technique using the PYTHON [46] package
scikit-learn [47].

A. Data preprocessing

QDM data undergoes a series of preprocessing steps
in preparation for dimensionality reduction and classifica-
tion. Only images with region 1 active are used so that the
number of ring oscillators is predicted by the classifica-
tion scheme. The number of ring oscillators activated for
any given image is one of 0, 1, 5, 10, 50, 100, or 200. The
data set consists of 40 QDM images per ring oscillator state
for the decapsulated chip and 32 images per ring oscillator
state for the intact chip. These M × N images are subse-
quently binned such that the decapsulated images contain
600 × 606 pixels and the intact images contain 300 × 303
pixels, while covering the same field of view. Measure-
ments of the idle state (zero ring oscillators) are randomly
taken during data collection to account for long-term drifts.
These idle state measurements are subtracted from active
state images nearest in time. The intact and decapsulated
data sets are split into training and test sets so that the
prediction accuracy of the trained model can be estimated
on data that the training procedure has not encountered.
The splits are 75%/25% for the decapsulated images and
64%/36% for the intact images.

B. QDM image dimensionality reduction

Each magnetic field image is composed of approxi-
mately 105 pixels and thus occupy a high-dimensional
space for classification. Principal component analysis [48,
49] (PCA) is therefore used to reduce the dimensionality
of the classification problem. PCA is a well-established
technique that determines the highest variability axes of a
high-dimensional data set. PCA amounts to an eigenanaly-
sis where the eigenvectors, called principal components,
correspond to the axes of interest, and the eigenvalues
relate to the amount of data variance along the respective
principal components.

PCA is applied separately to the data sets of the decap-
sulated chip and the intact chip with the scikit-learn
class decomposition.PCA() and yields principal
components such as those plotted in Fig. 5(a). Spatial pat-
terns evident in the principal components are also present
in the magnetic field images of Fig. 4(a), confirming that
these features are physically significant and important for
distinguishing between different samples. There exist as
many principal components as dimensions in the data set;

however, only the first several principal components cap-
ture non-noise-based information (see the Supplemental
Material [35]). We determine that greater than 99% of the
variance in the intact and decapsulated data sets is captured
by the first nine principal components, which are therefore
the only principal components used in this analysis.

The scores of these first nine principal components are
used to effectively reduce the dimensionality of the mag-
netic field images from approximately 105 pixels to nine
scores. The principal component scores, Si,j , are deter-
mined by taking the dot product of the ith principal compo-
nent, defined as Wi, with the j th image, Bj , and normalized
by the total number of pixels. This gives

Si,j =
1

MN

M
∑

m=1

N
∑

n=1

Wi
m,nBj

m,n (8)

for the first nine principal components. In Fig. 5(b) we
show examples of the PCA scores: the score for PC1 is
plotted against the score for PC2 for each magnetic field
image of both the decapsulated and intact data (additional
principal components and score plots are given in the Sup-
plemental Material [35]). The plot is color coded by the
number of active ring oscillators, showing that these two
scores are useful in distinguishing the number of active
ring oscillators on the FPGA for both decapsulated and
intact measurements. Classification of the active number
of ring oscillators is accomplished by using the first nine
PCA scores as input to a support vector machine (SVM)
classifier algorithm. The spread of data points along a
fixed slope for each state in Fig. 5(b) is consistent with
small offsets between different image acquisitions (see the
Supplemental Material [35]).

C. Integrated-circuit activity state classification

A support vector machine [50] (SVM) is the supervised
classification technique used to classify the magnetic field
images, leveraging their key features characterized by the
PCA scores. SVMs are a set of algorithms that seek to clas-
sify samples by creating a boundary between categories of
a training data set that maximizes the gap separating those
categories. Samples from a test set are then classified in
relation to this boundary.

The scikit-learn class svm.SVC() is used as a
multidimension, multicategory classifier. The categories
for classification are the chip states given by the number
of ring oscillators. The dimensionality is given by the nine
PCA scores recorded for each image. PCA scores are fit
to the known FPGA states with a linear SVM model and
a regularization parameter of C = 6 (see the Supplemental
material [35]).
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FIG. 5. Principal component analysis and support vector machine classification of QDM images. Region 1 is active with 0, 1, 5,
10, 50, 100, or 200 ring oscillators. (a) Example principal component basis vectors plotted as images for both decapsulated (labeled
“decap” in the figure) and intact data sets. PC1 and PC2 are shown to exemplify principal components that resemble magnetic field
images and thus will be useful in chip state classification. PC4 is shown as an example principal component that captures activity
state-independent variations and thus will not be useful in chip state classification. (b) The PCA score for PC1, S1,j , is plotted against
the score for PC2, S2,j , for each magnetic field image, Bj , as a demonstration of state distinguishability . This distinguishability is
evidenced by the separation of colors representing differing numbers of active ring oscillators. Insets magnify the scores for small
numbers of ring oscillators, and show greater fidelity of state separation in the decapsulated data set compared to the intact data set.
(c) Table of SVM predictions on the test set for the intact images. For each unique value of active ring oscillators, there are 12 images
in the test set. Rows indicate the fraction of images predicted for each of the possible chip states. All but one prediction [indicated
by the red boxes in (b) and (c)] lie on or near the main diagonal, demonstrating the high predictive power of the SVM classifier. The
corresponding table for the decapsulated data set is not shown, as the main diagonal would contain 1’s and the off diagonals would
contain 0’s owing to the perfect separability of each state (see Table I).

D. Classification results

The full machine learning model, including preprocess-
ing, PCA, and SVM, is fit using the training set and
subsequently evaluated on the test set for both decapped
and intact FPGA data. A prior step of cross validating
the model hyperparameters is taken for the intact FPGA
data set (see the Supplemental Material [35]). The machine
learning model efficacy, summarized in Table I, is deter-
mined by the accuracy of the test set evaluations. FPGA
activity states are well separated in PCA space for the
decapsulated data set. Predictions on the test set conse-
quently yield perfect accuracy, even for small numbers
of ring oscillators, consistent with expectations (see the
Supplemental Material [35]).

Results for an intact data set are similarly well sep-
arated for large numbers of ring oscillators, resulting in
perfect prediction accuracy for greater than or equal to
50 ring oscillators. However, FPGA activity states are not

fully separated for less than 50 ring oscillators, resulting
in imperfect predictions. Nonetheless, the trained machine
learning model achieves approximately 80% accuracy for
each of 0, 1, 5, and 10 ring oscillator active states. In
Fig. 5(c) we additionally show that incorrect predictions
are nearly always close to the correct state. For example,
the model predicts five ring oscillators correctly in 83% of
test cases, with misclassifications of zero or a single ring
oscillator otherwise. The red box in Fig. 5(c) indicates a
single case for which the classifier incorrectly predicts 50
ring oscillators for a zero ring oscillator state. An arrow
and analogous red box in Fig. 5(b) shows that the PCA
score for this state is an outlier in the data.

The positive classification results presented in Fig. 5
give an initial demonstration of the capability of com-
bined QDM and machine learning techniques to identify
integrated-circuit activity via noninvasive magnetic field
imaging. The present results using ring oscillators are
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TABLE I. Chip state prediction accuracy on the test dataset.

Number of ROs (region 1) Total

0 1 5 10 50 100 200

Decapsulated 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Intact 0.83 0.75 0.83 0.83 1.00 1.00 1.00 0.89

also potentially translatable to approaches that use the
power side channel for chip activity analysis [51–53]. An
extended dataset (see the Appendix) is taken to further
elucidate the benefit of a large number of measurements
per state on the prediction accuracy. Furthermore, in the
extended dataset, the definition of state for the purpose of
classification is expanded to include both the number of
ring oscillators and region activated (see the Appendix).
This dataset is also used to determine the impact of mea-
surement standoff distance on the ability to discriminate
between spatially separated activity on the integrated cir-
cuit. The extended dataset is analyzed with the state clas-
sification criteria defined to include the spatial location of
the active region in addition to the number of ring oscil-
lators per region. For a simulated measurement standoff
distance of �z = 500 µm, similar to that between the N-
V layer and FPGA current sources in the intact chip, a
classification accuracy of greater than 98% is achieved on
the extended dataset using 100 samples per state (see the
Appendix). This result indicates that a high degree of spa-
tial state classification is possible in addition to local power
classification using a large number of samples per state.
Large data sets, such as the one presented in the Appendix,
combined with more powerful machine learning methods
have promise to enable classification of a wide array of
chip activity in the context of hardware security and fault
detection.

V. OUTLOOK

We present a demonstration of N-V diamond imaging
of the static magnetic field emanations from a FPGA.
The ensemble N-V measurement technique of the QDM
yields simultaneous wide field of view (few millimeters)
with high resolution (approximately 10 µm) vector mag-
netic field images, which is not achievable using other
techniques. We further demonstrate that these images can
be used with machine learning techniques to quantifiably
determine the active state of the FPGA integrated circuit,
for both decapsulated and intact chips. The fidelity of clas-
sification is dependent on the activity level and the standoff
distance between the circuit currents and the measurement
plane. Our results show conclusively that it is possible to
use static magnetic field measurements to identify targeted,
active states on a FPGA without requiring time domain
data.

The long-term goal of the combined QDM imaging and
machine learning technique is to augment state-of-the-art
diagnostic techniques in areas such as fault detection,
Trojan detection, counterfeit detection, watermarking,
and electromagnetic side channel characterization. In
the present work, we show that patterns of magnetic
fields from the power distribution network of an inte-
grated circuit are a significant indicator of steady-state
chip activity. In future work, the simultaneous wide-
field and high-resolution magnetic imaging provided by
the QDM may enable detection of correlated spatial and
temporal (e.g., transient) events over sequential measure-
ments, which is not possible with scanning magnetometry
techniques.

Technical improvements enabling faster QDM measure-
ments [15,36,54–56] will also be implemented in future
work for extended data collection and further analy-
sis techniques. Examples of such improvements include
development and utilization of higher quality diamond
material [57] with thinner layers of N-Vs to enable better
spatial resolution, faster measurements through utilization
of fewer microwave frequencies in CW ODMR lock-in
measurements [23], pulsed dc magnetometry protocols
such as Ramsey magnetometry [38], and utilization of
cameras with deeper wells and faster data transfer times.
Larger data sets will allow for leveraging the full power
of convolutional neural networks for advanced state clas-
sification. Time-resolved measurements will also permit
discrimination of magnetic fields by temporal or frequency
profiles. It is possible such measurements could be used
to resolve the magnetic fields specific to adjacent cir-
cuitry, for example, from clock and power distribution
networks as well as gate level activity, providing further
indication of chip activity. The unique capabilities of N-V
diamond magnetic field imaging thus have great promise
for integrated-circuit applications.
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APPENDIX: EXTENDED DATASET

An extended dataset of magnetic field images is addi-
tionally collected. This extended dataset further elucidates
the impact of the number of measurements per state on
the prediction accuracy, as well as the impact of mea-
surement standoff distance on the ability to discriminate
between spatially separated activity on the integrated cir-
cuit. Two proximal regions, defined as region 5 (R5) and
region 6 (R6) are used to further test spatial discrimina-
tion capabilities of PCA and SVM. The data consist of 100
measurements taken per state on the decapsulated chip for
12 different states. The states are composed of clusters of
0, 2, 4, or 6 ring oscillators that are activated in R5, or R6,
or simultaneously in both R5 and R6.

The effect of measuring at different standoff distances is
simulated using upward continuation [14] to calculate the
expected magnetic field at a large standoff distance, �z. In
Fig. 6 we show the average of the 100 measurements for
3 of the 12 different states and projections at �z = 0 µm
(decapsulated dataset), 50 µm, 250 µm, 500 µm (analog
to an intact chip), and 1000 µm.

Distinct spatial patterns are evident for the activation of
two ring oscillators in R5 and R6. Specifically, a greater
number of oscillations in the magnetic field polarity are
present in R6 compared to R5. This difference is the result
of different routing of power distribution in the top metal
layer. Upward continuation of the data results in a decrease
in the magnetic field amplitude that occurs more rapidly in
R6 as a function of the standoff distance than in R5. This
difference is expected due to the cancelation of the large
number of oscillating fields from neighboring wires in R6.
Even at �z = 1000 µm, there is clear spatial distinguish-
ability between all of the states, which is further quantified
with PCA and SVM analysis.

FIG. 6. Subset of the extended QDM magnetic field dataset
with two ring oscillators active in region 5, region 6, or region
5 and region 6 simultaneously. The top row is high SNR data of
100 measurements taken from the decapsulated chip. Subsequent
rows show the calculated magnetic image at different standoff
distances of �z = 50 µm, 250 µm, 500 µm, and 1000 µm. The
�z = 500 µm row is the closest approximation of measurements
taken of an intact chip.

The PCA + SVM analysis presented in the main text is
performed on the extended dataset. However, in the case of
the extended dataset, state classification is determined by
the spatial location of the active region in addition to the
number of ROs per region. Thus, a correct classification
for the purposes of model accuracy consists of correctly
identifying both the active region(s) as well as the num-
ber of active ring oscillators per active state, i.e., a state
is defined as (active region, number of active ROs). Accu-
racy is defined as the fraction of states correctly classified.
The robustness of the dataset is tested by estimating the
model accuracy as a function of the dataset size, shown
in Fig. 7(a). The upward continued dataset with �z =
500 µm is used and the size of the dataset is varied from
10 samples per state to 100 samples per state. A train-test
split of 64%/36% is used to mimic the analysis of the intact
dataset in the main text. The training set has 100% accu-
racy when the number of samples per state is less than
60, but dips slightly below 100% for larger datasets. This
is expected since the algorithm complexity is fixed but
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FIG. 7. PCA + SVM model performance metrics of the
extended dataset. (a) Model accuracy is plotted as a function of
the size of the dataset for both the training and test sets. A stand-
off distance of 500 µm is chosen to most closely replicate the
intact dataset in the main text. (b) Model accuracy is plotted as
a function of the standoff distance. The full dataset is used (100
samples per state). (c) Matrix of state predictions versus active
state on chip at a standoff distance of 1000 µm. The matrix is
row normalized to 1 so that each element represents the fraction
of measurements of a given state that are predicted to be any
state. The red boxes enclose predictions for which the predicted
region and active region are the same.

the absolute deviations in the data increase with sample
size. Despite the increased error rate in the training set
for larger samples per state, the larger datasets allow the
model to learn the underlying structures of the dataset and
consequently generalize better to unseen data. Thus, the
accuracy increases from 75% at 10 samples per state to
97% with 100 samples per state. Beyond 30 to 40 samples
per state, the accuracy begins to level off, suggesting that
100 samples per state is enough data to get the maximum
benefit from the PCA + SVM model.

The analysis is performed at various standoff distances
to test the predictive power of the model at varying lev-
els of signal degradation. The difference between the intact

chip and the decapsulated chip is about 500 µm of package
material and thus �z = 500 µm is the best estimate for an
analogous dataset taken from an intact chip. In Fig. 7(b)
we show the model accuracy as a function of the standoff
distance when the entire dataset is used (100 samples per
state). As expected, perfect classification is achieved for
small standoff distances and monotonically decreases in
accuracy with increasing standoff distance. Importantly,
for �z = 500 µm, greater than 98% accuracy is achieved
on the test set, implying that an analogous intact dataset
would have a high degree of spatial state classification in
addition to local power classification.

Finally, to further elucidate the ability to perform spa-
tial classification, the state-by-state predication rates are
shown in Fig. 7(c). Results with 32 samples per state are
shown to mimic the dataset analyzed in the main text. A
standoff distance of �z = 1000 µm is chosen to show that
prediction errors occur in accordance with expectations. In
Fig. 7(c) we present the fraction of images with a given
state that are predicted to be each possible state. Most pre-
dictions lie on the main diagonal as the overall accuracy is
about 89%. The red boxes show states from one region that
are predicted to be in the same region. The majority of mis-
classifications are expected to lie in these red boxes. This
is clearly the case, especially for region 6. In this region,
two ring oscillators are misclassified as either zero ring
oscillators or four ring oscillators from the same region.
Four ring oscillators are misclassified as either two or six
ring oscillators, and six ring oscillators are misclassified as
four ring oscillators. The fact that this region has the high-
est error rate is consistent with expectation because the
features in this region become less distinguishable as the
standoff distance increases. Most of the remaining misclas-
sifications are between R5 and regions R5 + R6, which is
expected since these regions look visually similar, as seen
in Fig. 6.

[1] M. Rostami, F. Koushanfar, and R. Karri, A primer on hard-
ware security: Models, methods, and metrics, Proc. IEEE
102, 1283 (2014).

[2] M. Tehranipoor, H. Salmani, X. Zhang, M. Wang, R. Karri,
J. Rajendran, and K. Rosenfeld, Trustworthy hardware:
Trojan detection and design-for-trust challenges, Computer
44, 66 (2010).

[3] Semiconductor Industry Association, Winning the battle
against counterfeit semiconductor products, SIA Whitepa-
per, Washington DC (2013).

[4] P. Hoeper and J. Manferdelli, DSB task force on cyber sup-
ply chain, Defense Science Board Washington DC USA
(2017).

[5] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehra-
nipoor, and Y. Makris, Counterfeit integrated circuits: A
rising threat in the global semiconductor supply chain, Proc.
IEEE 102, 1207 (2014).

014097-13

https://doi.org/10.1109/JPROC.2014.2335155
https://doi.org/10.1109/MC.2010.369
https://doi.org/10.1109/JPROC.2014.2332291


MATTHEW J. TURNER et al. PHYS. REV. APPLIED 14, 014097 (2020)

[6] J. Balasch, B. Gierlichs, and I. Verbauwhede, in 2015 IEEE

International Symposium on Electromagnetic Compatibil-

ity (EMC) (IEEE, 2015), Vol. 246.
[7] J. Gaudestad and A. Orozco, Magnetic field imaging for

non destructive 3d IC testing, Microelectron. Reliab. 54,
2093 (2014).

[8] Y. Tagro, J. J. Yan, D. F. Kimball, H. Ghajari, and D.
F. Sievenpiper, in GOMACTech (MaXentric Technologies
LLC, San Diego, United States, 2017).

[9] A. Orozco, J. Gaudestad, N. Gagliolo, C. Rowlett, E. Wong,
A. Jeffers, B. Cheng, F. C. Wellstood, A. B. Cawthorne, and
F. Infante, 3d Magnetic Field Imaging for Non-Destructive
Fault Isolation (2013).

[10] A. Orozco, Magnetic Field Imaging for Electrical Fault
Isolation (2019).

[11] A. N. Campbell, E. Cole, B. A. Dodd, and R. E. Anderson,
in 31st Annual Proceedings Reliability Physics 1993 (IEEE,
1993), Vol. 168.

[12] H. H. Huston and C. P. Clarke, in Annual Proceedings

Reliability Physics 1992 (IEEE, 1992), Vol. 268.
[13] Semiconductor Industry Association, Semiconductor rese-

arch opportunities, (2017).
[14] B. J. Roth, N. G. Sepulveda, and J. P. Wikswo, Using a

magnetometer to image a two-dimensional current distri-
bution, J. Appl. Phys. 65, 361 (1989).

[15] E. V. Levine, M. J. Turner, P. Kehayias, C. A. Hart, N.
Langellier, R. Trubko, D. R. Glenn, R. R. Fu, and R.
L. Walsworth, Principles and techniques of the quantum
diamond microscope, Nanophotonics 8, 1945 (2019).

[16] D. R. Glenn, R. R. Fu, P. Kehayias, D. Le Sage, E. A.
Lima, B. P. Weiss, and R. L. Walsworth, Micrometer-scale
magnetic imaging of geological samples using a quan-
tum diamond microscope, Geochem. Geophys. Geosyst.
18, 3254 (2017).

[17] J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Bud-
ker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin,
High-sensitivity diamond magnetometer with nanoscale
resolution, Nat. Phys. 4, 810 (2008).

[18] A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J.
Wrachtrup, and C. V. Borczyskowski, Scanning confo-
cal optical microscopy and magnetic resonance on single
defect centers, Science 276, 2012 (1997).

[19] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M.
Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A.
S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin,
Nanoscale magnetic sensing with an individual electronic
spin in diamond, Nature 455, 644 (2008).

[20] G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-
Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R.
Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Brats-
chitsch, F. Jelezko, and J. Wrachtrup, Nanoscale imaging
magnetometry with diamond spins under ambient condi-
tions, Nature 455, 648 (2008).

[21] L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung,
D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer,
M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth,
Magnetic field imaging with nitrogen-vacancy ensembles,
New J. Phys. 13, 045021 (2011).

[22] M. J. H. Ku, T. X. Zhou, Q. Li, Y. J. Shin, J. K. Shi,
C. Burch, H. Zhang, F. Casola, T. Taniguchi, K. Watanabe,
P. Kim, A. Yacoby, and R. L. Walsworth, Imaging viscous

flow of the Dirac fluid in graphene using a quantum spin
magnetometer, arXiv:1905.10791 (2019).

[23] J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y.
Song, M. D. Lukin, H. Park, and R. L. Walsworth, Optical
magnetic detection of single-neuron action potentials using
quantum defects in diamond, Proc. Natl. Acad. Sci. 113,
14133 (2016).

[24] A. Nowodzinski, M. Chipaux, L. Toraille, V. Jacques,
J.-F. Roch, and T. Debuisschert, Nitrogen-vacancy centers
in diamond for current imaging at the redistributive layer
level of integrated circuits, Microelectron. Reliab. 55, 1549
(2015).

[25] D. A. Simpson, J.-P. Tetienne, J. McCoey, K. Ganesan,
L. T. Hall, S. Petrou, R. E. Scholten, and L. C. L. Hollen-
berg, Magneto-optical imaging of thin magnetic films using
spins in diamond, Sci. Rep. 6, 22797 (2016).

[26] D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M.
Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili,
and R. L. Walsworth, Optical magnetic imaging of living
cells, Nature 496, 486 (2013).

[27] R. R. Fu, B. P. Weiss, E. A. Lima, R. J. Harrison, X.-N.
Bai, S. J. Desch, D. S. Ebel, C. Suavet, H. Wang, D. Glenn,
D. Le Sage, T. Kasama, R. L. Walsworth, and A. T. Kuan,
Solar nebula magnetic fields recorded in the semarkona
meteorite, Science 346, 1089 (2014).

[28] I. Fescenko, A. Laraoui, J. Smits, N. Mosavian, P.
Kehayias, J. Seto, L. Bougas, A. Jarmola, and V. M. Acosta,
Diamond Magnetic Microscopy of Malarial Hemozoin
Nanocrystals, Phys. Rev. Appl. 11, 034029 (2019).

[29] E. De Mulder, Ph.D. thesis, Katholieke Universiteit Leu-
ven, 2010.

[30] L. Sauvage, S. Guilley, and Y. Mathieu, Electromagnetic
radiations of FPGAs: High spatial resolution cartogra-
phy and attack on a cryptographic module, ACM Trans.
Reconfigurable Technol. Syst. (TRETS) 2, 4 (2009).

[31] A. Horsley, G.-X. Du, and P. Treutlein, Widefield
microwave imaging in alkali vapor cells with sub-100 µm
resolution, New J. Phys. 17, 112002 (2015).

[32] J. M. Schloss, J. F. Barry, M. J. Turner, and R. L.
Walsworth, Simultaneous Broadband Vector Magnetome-
try Using Solid-State Spins, Phys. Rev. Appl. 10, 034044
(2018).

[33] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy
colour centre in diamond, Phys. Rep. 528, 1 (2013).

[34] P. Kehayias, M. J. Turner, R. Trubko, J. M. Schloss, C. A.
Hart, M. Wesson, D. R. Glenn, and R. L. Walsworth, Imag-
ing crystal stress in diamond using ensembles of nitrogen-
vacancy centers, Phys. Rev. B 100, 174103 (2019).

[35] See Supplemental Material at http://link.aps.org/supple
mental/10.1103/PhysRevApplied.14.014097 for additional
information on further measurements, integrated circuit
information, magnetometer performance, and machine
learning details.

[36] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A.
Hart, L. M. Pham, and R. L. Walsworth, Sensitivity opti-
mization for NV-diamond magnetometry, Rev. Mod. Phys.
92, 015004 (2020).

[37] F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F.
Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C.
L. Hollenberg, F. Jelezko, and J. Wrachtrup, Electric-field

014097-14

https://doi.org/10.1016/j.microrel.2014.07.080
https://doi.org/10.1063/1.342549
https://doi.org/10.1515/nanoph-2019-0209
https://doi.org/10.1002/2017GC006946
https://doi.org/10.1038/nphys1075
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1038/nature07279
https://doi.org/10.1038/nature07278
https://doi.org/10.1088/1367-2630/13/4/045021
https://doi.org/10.1073/pnas.1601513113
https://doi.org/10.1016/j.microrel.2015.06.069
https://doi.org/10.1038/srep22797
https://doi.org/10.1038/nature12072
https://doi.org/10.1126/science.1258022
https://doi.org/10.1103/PhysRevApplied.11.034029
https://doi.org/10.1145/1502781.1502785
https://doi.org/10.1088/1367-2630/17/11/112002
https://doi.org/10.1103/PhysRevApplied.10.034044
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1103/PhysRevB.100.174103
http://link.aps.org/supplemental/10.1103/PhysRevApplied.14.014097
https://doi.org/10.1103/RevModPhys.92.015004


MAGNETIC FIELD FINGERPRINTING OF INTEGRATED. . . PHYS. REV. APPLIED 14, 014097 (2020)

sensing using single diamond spins, Nat. Phys. 7, 459
(2011).

[38] E. Bauch, C. A. Hart, J. M. Schloss, M. J. Turner, J. F.
Barry, P. Kehayias, S. Singh, and R. L. Walsworth, Ultra-
long Dephasing Times in Solid-State Spin Ensembles via
Quantum Control, Phys. Rev. X 8, 031025 (2018).

[39] X. Zhang and M. Tehranipoor, in: 2011 Design, Automation

& Test in Europe (IEEE, 2011), Vol. 1.
[40] M. Mandal and B. C. Sarkar, Ring oscillators: Character-

istics and applications, Ind. J. Pure Appl. Phys. 48, 136
(2010).

[41] V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S.
Bouchard, and D. Budker, Temperature Dependence of the
Nitrogen-Vacancy Magnetic Resonance in Diamond, Phys.
Rev. Lett. 104, 070801 (2010).

[42] V. V. Dobrovitski, A. E. Feiguin, D. D. Awschalom, and
R. Hanson, Decoherence dynamics of a single spin versus
spin ensemble, Phys. Rev. B 77, 245212 (2008).

[43] A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet,
J.-F. Roch, and V. Jacques, Avoiding power broadening in
optically detected magnetic resonance of single NV defects
for enhanced dc magnetic field sensitivity, Phys. Rev. B 84,
195204 (2011).

[44] L. Shao, R. Liu, M. Zhang, A. V. Shneidman, X. Audier, M.
Markham, H. Dhillon, D. J. Twitchen, Y.-F. Xiao, and M.
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