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ABSTRACT
Recent observational evidence for magnetic field direction effects on helioseismic signals in

sunspot penumbrae is suggestive of magnetohydrodynamic (MHD) mode conversion occurring

at lower levels. This possibility is explored using wave mechanical and ray theory in a model

of the Sun’s surface layers permeated by uniform inclined magnetic field. It is found that fast-

to-slow conversion near the equipartition depth at which the sound and Alfvén speeds coincide

can indeed greatly enhance the atmospheric acoustic signal at heights observed by Solar and

Heliospheric Observatory/Michelson Doppler Imager and other helioseismic instruments, but

that this effect depends crucially on the wave attack angle, i.e. the angle between the wavevector

and the magnetic field at the conversion/transmission depth. A major consequence of this insight

is that the magnetic field acts as a filter, preferentially allowing through acoustic signal from

a narrow range of incident directions. This is potentially testable by observation.
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1 I N T RO D U C T I O N

The solar interior is awash with acoustic waves, propagating through

every region, both deep and shallow. Refraction due to the increasing

sound speed with depth inevitably sees them emerge at the surface,

where they may be observed and interrogated by helioseismologists.

Global helioseismology, where spherical or at least axial symmetry

is normally assumed, is traditionally carried out in the context of

a spherical harmonic modal expansion, with the fundamental con-

stituents of the wave field taken to be the f and p modes familiar from

a normal mode analysis of the linearized stellar pulsation equations

(Unno et al. 1989), and consistently observed on the Sun for several

decades now.

Not content with probing the Sun’s global structure, helioseismol-

ogists in more recent times have focused attention on local features,

most prominently active regions, including sunspots. Some of the

first such studies (e.g. Braun et al. 1987; Bogdan et al 1993; Braun

1995) retained the modal perspective, and decomposed the observed

surface oscillations in annuli around sunspots into incoming and out-

going f and p modes (the Hankel analysis), to reveal that the spots

partially absorb wave energy and shift their phase. Developing an

original idea of Spruit (1991), that near-surface conversion to slow

magnetoacoustic waves is responsible for the absorption, a long line

of theoretical development (Spruit & Bogdan 1992; Cally & Bogdan

1993; Cally, Bogdan & Zweibel 1994; Bogdan & Cally 1997;

Rosenthal & Julian 2000; Crouch 2003; Crouch & Cally 2003, 2005;

�E-mail: hannah.schunker@sci.monash.edu.au (HS); paul.cally@sci.

monash.edu.au (PSC)

etc.), culminating in some impressive comparisons with the observa-

tional absorption and phase shift data (Cally, Crouch & Braun 2003;

Crouch et al. 2005), has demonstrated the feasibility of the mech-

anism. Most significantly, for our purposes here, we conclude that,

in the near-surface layers where the Alfvén speed can become com-

parable to or exceed the sound speed, active region magnetic field

substantially alters the behaviour of helioseismic signals emerging

from below.

However, more modern local helioseismic techniques, such

as time–distance analysis (D’Silva 1996; Kosovichev, Duvall &

Scherrer 2000) and acoustic holography (Braun & Lindsey 2000),

eschew normal mode decomposition in favour of ray or local wave

field descriptions. To understand how Spruit’s mechanism operates

in this context, Cally (2005) used a perturbation approach to ex-

amine mode coupling and conversion of a simple acoustic (fast)

wave approaching a ‘sunspot’ from below in an idealized vertical

field polytropic model. The perturbation variable was effectively

the angle of propagation of the wave away from vertical. It was

found that fast and slow magnetoacoustic waves couple to greater

or lesser extent in the neighbourhood of the equipartition level zeq

where the sound and Alfvén speeds coincide, c = a, and that the

fast-to-slow transmission coefficient T depends sensitively on this

approach angle, with greater transmission when it is fine.

Subsequently, Cally (2006) greatly extended the applicability of

such analyses by adopting a generalized ray theoretic description in

place of the perturbation method, utilizing the mathematical mode

conversion formalism of Tracy, Kaufman & Brizard (2003).1 In

1 There is a very extensive literature on mode conversion in the plasma

physics literature; see e.g. the monograph by Swanson (1998) and the series
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the restricted case of the vertical field polytrope, the two methods

agree. However, arbitrary thermal and magnetic models become

tractable with the new method. One purpose of this paper is to further

develop the coupled ray approach and apply it to more realistic

models to fully explore the conditions under which mode conversion

will occur in the real Sun and predict how this will manifest itself

at observational heights. The other is to begin an interpretation of

recent observational evidence for near-surface influence of sunspot

magnetic field direction on helioseismic signals (Schunker et al.

2005).

Hankel and some other local helioseismic probings of sunspots

utilize only data taken from regions surrounding the spot, and not

from within it. This is to be recommended to some extent, as it

avoids several observational difficulties and theoretical uncertain-

ties. Nevertheless, eventually one must try to compare expectations

with what is actually observed within sunspots. At this stage, such

studies have mainly been restricted to penumbrae because of signal-

to-noise ratio issues in umbrae, but it is to be hoped that these can

be overcome shortly.

Using up to 10 consecutive days’ line-of-sight Doppler velocity

data from the Michelson Doppler Imager (MDI) aboard the Solar

and Heliospheric Observatory (SOHO) spacecraft, and vector mag-

netograms from the Imaging Vector Magnetograph (IVM; Mickey

et al. 1996), Schunker et al. (2005, 2006) were able to analyse the

significance of magnetic field direction in sunspot penumbrae to

helioseismic signals by utilizing the passage of the spots across

the solar disc to effectively achieve a multitude of viewing angles.

Their prime tool was the local control correlation of the acoustic

ingression H− and the observed line-of-sight Doppler velocity ψ ,

C(ν) = 〈Ĥ−(r , ν)ψ̂∗(r , ν)〉�ν, (1)

where r is the position, ν is the frequency, the asterisk denotes

complex conjugation and the average is over a frequency range �ν

(typically 1 mHz centred at either 3, 4 or 5 mHz). The hats indicate

temporal Fourier transforms. Broadly, the idea is that surface os-

cillations are primarily due to driving by incoming acoustic waves

which can be seen in an annular pupil about the point of interest

at an earlier time, and that the acoustic ingression represents this

driving term. With this assumed, C should be closer to unity in the

quiet Sun than in active regions, though the intrinsic limitations of

holography leave a significant residual 1 − C even in the most ideal

quiet regions. Magnetic effects on helioseismic signals are therefore

quantified by the increasing departure of C from 1 as magnetic field

strength increases, and with variation of magnetic field inclination.

Both |C| and δφ = arg C yield useful insights, with the latter in

particular being sensitive to traveltime variations.

In viewing the penumbra from various angles, binned according

to field inclination to the vertical (which is anticorrelated with field

strength), it is found that there is a substantial average (negative)

δφ. As expected, |δφ| decreases with increasing field inclination

(decreasing field strength). In part, this could reflect the decreasing

thermal effect of the spot, or the decreasing depth of the Wilson de-

pression, which affect sound speed and path length,2 respectively.

However, there is also a statistically significant dependence on the

of papers by Cairns & Lashmore-Davies (1983, 1986) and Cairns & Fuchs

(1989). The various mathematical approaches found therein are all of course

related. However, for our purposes, the formalism of Tracy et al. (2003) is

most convenient because of its generality and elegant structure.
2 Though see the model of Appendix A where the Wilson depression does

not alter the depth of acoustic reflection produced by the acoustic cut-off

frequency.

projected line-of-sight angle θp (the inclination of the line-of-sight

projected on to the vertical plane containing the magnetic field),

which argues for a description beyond the purely acoustic. Con-

version is extremely sensitive to the magnetic field direction at the

zeq layer. Slow wave propagation relies heavily on guidance by the

magnetic field, and the results of Schunker et al. (2005) lead us to

conclude that this is implicated in observed penumbral oscillations.

Unravelling the mysteries of near-surface magnetic influence on

helioseismic waves involves first and foremost determining the rel-

ativities of several heights: the equipartition level zeq where a =
c and near where mode conversion typically occurs; the height of

formation z676.8 of the 676.8-nm Ni I spectral line used by MDI and

also by GONG (Global Oscillations Network Group); and the cut-

off level zc(ν) at which an upcoming acoustic wave of frequency ν

reflects back downward (if at all) off the increasing acoustic cut-

off frequency. We hold as self-evident that white light penumbrae

are magnetically dominated, else they would not exhibit such pro-

nounced fibril structure. Since z676.8 is about 200 km above optical

depth unity (τ 0.5 = 1), we will assume that this region therefore

also has a > c. Furthermore, the inversions of Mathew et al. (2004)

based on two infrared Fe I lines formed 20–30 km deeper than τ 0.5

= 1 find that even there, most of the penumbra has a plasma beta

[β = pgas/pmag = (2/γ ) c2/a2] less than 1, and parts of the outer

regions only reaching about 1.5–1.8 (see their fig. 8d). Taking all

these pieces of evidence into account, we may safely assume that

zeq < z676.8 in sunspots.

However, what of zc? If zc < zeq the upcoming fast (acoustic)

wave would reflect before undergoing any mode conversion, or tak-

ing on any substantial magnetic characteristics. However, the suc-

cess of mode conversion theory in modelling the Hankel absorption

and phase shift data in inclined magnetic field (Cally et al. 2003;

Crouch et al. 2005) suggests that at least in some substantial portion

of a sunspot, containing significantly inclined field (θ � 20◦), the

waves must be reaching the conversion (equipartition) depth. The

additional fact that magnetic directional influences are apparent in

the observed correlation phase (Schunker et al. 2005) further sug-

gests that a � c at the height of formation of the MDI 676.8-nm

Ni I line, and that the wave has not reflected off the acoustic cut-off

before reaching zeq, at least at 3 mHz and above. Further evidence

for mode conversion is found in coronal loops, where 6-mHz slow

magnetoacoustic waves originating from below have been identified

(Brynildsen et al. 2002; De Moortel, Ireland & Walsh 2002).

The structure of this paper is as follows. Section 2 introduces the

model atmosphere we will use throughout, and discusses a subtle but

important point regarding the acoustic cut-off frequency. Section 3

presents a simple numerical experiment which clearly shows the

importance of magnetic field inclination in determining the helio-

seismic signal penetrating to the overlying atmosphere of a sunspot.

A magnetic modification of the well-known GONG Model S of

Christensen-Dalsgaard et al. (1996) is used throughout to represent

the surface layers of the Sun. Section 4 sets up a new implementa-

tion of magnetohydrodynamic (MHD) ray coupling theory based on

the variational formulation of linear MHD wave theory. Section 5

applies ray coupling theory to explain and illuminate the numerical

wave mechanical results of Section 3. Section 6 presents our final

conclusions.

2 AT M O S P H E R E A N D C O N V E N T I O NA L WAV E
E QUAT I O N

A commonly used representation of the wave equations in a non-

magnetic plane-stratified atmosphere (Deubner & Gough 1984;
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Balmforth & Gough 1990) is

d2�

dz2
+

(
ω2 − ω2

c

c2
+ N 2

ω2
k2

x − k2
x

)
� = 0, (2)

where � = ρ1/2 c2 ∇ · ξ represents the acoustic field, ξ = (ξ , 0,

ζ ) is the displacement vector, ω is the wave frequency, kx is the

horizontal wavenumber and ωc and N are the acoustic cut-off and

Brunt–Väisälä frequencies, respectively, defined by

ω2
c = c2

4H 2

(
1 − 2H ′) (3)

and

N 2 = g

H
− g2

c2
. (4)

Here, H(z) = −ρ(z)/ρ ′(z) is the density scaleheight. Equation (2) is

formally in very convenient form for deciding where the solution is

oscillatory, and for application of the standard Wentzel–Kramers–

Brillouin (WKB) theory (Bender & Orszag 1978).

A convenient and widely utilized model of the solar interior is

Model S of Christensen-Dalsgaard et al. (1996). This is modified

as described in Appendix A to account for an imposed magnetic

field. We term this the magnetically modified Model S (MMMS).

The acoustic cut-off and Brunt–Väisälä frequencies are graphed as

functions of height z in Fig. 1 for the non-magnetic case. They dif-

fer only slightly in the MMMS models. Schmitz & Fleck (1998,

2003) point out that the wave equation (2) is problematic for prac-

tical applications involving empirical atmospheric models, because

of the sharp variation in ωc near the surface. In particular, the WKB

theory, where the coefficients are assumed to vary slowly compared

with the dependent variable �, is clearly inappropriate. Naive ap-

plication of ray theory for example, which is based on a low-order

(geometrical optics) application of the WKB theory, would predict

that a 6-mHz ray (say) incident on the spike should totally reflect.

However, simple wave mechanical modelling shows that the acous-

tic cut-off spike actually has a very minor effect on wave solutions

at 6 mHz (Fig. 2), as they easily tunnel through it. There is certainly

very little reflection from it.

Cally (2006) generalized equation (2) to include uniform inclined

magnetic field, and developed a ray theoretic description of mode

conversion based on it. This was appropriate for the simple poly-

tropic atmospheres he treated, but clearly is not appropriate for real-

istic atmospheres such as Model S which exhibit the acoustic cut-off

Figure 1. The acoustic cut-off (full curve) and Brunt–Väisälä (long dashed)

frequencies (mHz) from the Model S of Christensen-Dalsgaard et al. (1996).

Note that both ω2
c and N2 are negative at some depths, and so ωc and N are

imaginary there, as indicated in the labelling of the right-hand axis. The

dotted curve represents the ‘isothermal’ acoustic cut-off ωci = c/2H, which

is used extensively in Sections 4 and 5.

Figure 2. Numerical solution of equation (2) for a 6-mHz wave driven at

z = −4 Mm in Model S, and with a radiation boundary condition at the

top (real and imaginary parts as full and dashed curves, respectively). kx is

chosen so that the natural depth of the acoustic cavity for this mode is 5 Mm

(i.e. the driver is inside the cavity). The effect of the acoustic cut-off spike

at about −100 km is barely evident.

spike. Although Cally’s equations may still be used (with care) for

wave mechanical calculations, they are not advised for use with a ray

description. As we present both wave mechanical and ray theoretic

calculations here, we therefore choose not to use wave equations

based on �.

3 WAV E M E C H A N I C A L E X P E R I M E N T

The question addressed here concerns the effect of magnetic field

inclination on the two-dimensional propagation of waves in a plane-

stratified (one-dimensional) atmosphere. In sunspots with diameters

of several tens of megametres, but magnetic ‘depths’ of only a few

hundred kilometres (depths over which the magnetic field is dynam-

ically significant), magnetic field gradients may be expected to be

of secondary importance (though see Khomenko & Collados 2006,

for modelling of waves in a small sunspot where radial Alfvén speed

gradients can produce significant refraction of the fast wave in the

atmosphere). We therefore assume that the fields are (locally) uni-

form but inclined to the vertical. Typically, the inclination angle will

be small in umbrae and large in penumbrae.

We examine the two-dimensional (x–z plane) propagation of mag-

netoacoustic waves in MMMS models with uniform inclined mag-

netic field. The governing linearized wave equations may be written

in terms of the x and z displacements ξ and ζ :

a2 cos2 θ

(
d2

dz2
− k2

x

)
ξ + (

ω2 − c2k2
x

)
ξ

= a2 cos θ sin θ

(
d2

dz2
− k2

x

)
ζ − ikx

(
c2 d

dz
− g

)
ζ (5)

and

a2 cos θ sin θ

(
d2

dz2
− k2

x

)
ξ − ikx

(
c2 d

dz
+ dc2

dz
− c2

H
+ g

)
ξ

=
[

c2 d2

dz2
+

(
dc2

dz
− c2

H

)
d

dz
+ ω2

]
ζ

+ a2 sin2 θ

(
d2

dz2
− k2

x

)
ζ. (6)

Here, a is the Alfvén speed.

These wave equations are solved numerically in zb � z � zt subject

to two boundary conditions at each endpoint. The base zb is chosen

to be quite deep, but still within the acoustic cavity (i.e. the term

in bracket on the left-hand side of equation 2 is positive). At the
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Figure 3. Acoustic energy density |p1|2/2ρc2 for 2-kG magnetic field in-

clined at 0◦ (top panel), ±30◦ and ±70◦ (bottom panel). In each case, the full

curve corresponds to positive inclination θ , and the dotted curve to negative

tilt. For all panels, the driving frequency is 5 mHz, the base of the acoustic

cavity is at z1 = −5 Mm, and the driver is at zb = −4 Mm. The top is at

zt = 1 Mm.

top, radiation or exponential decay (as appropriate) conditions are

applied by matching on to exact solutions in the overlying isothermal

atmosphere.3 Finally, a slow wave radiation condition and a simple

acoustic driver are applied at zb. The solutions are normalized to

have unit acoustic energy in zb < z < 0. It is desired to determine

the degree to which the acoustic field penetrates the ‘photosphere’.

Fig. 3 depicts the acoustic energy density Eac = |p1|2/2ρ0c2,

where p1 is the Eulerian pressure perturbation, throughout the com-

putational domain for 5-mHz oscillations in a model with 2-kG

magnetic field inclined at angles θ = 0◦, ±30◦ and ±70◦ to the

vertical. In the vertical field case, the energy in the overlying atmo-

sphere z > 0 drops off exponentially with height, due to acoustic

cut-off frequency in the atmosphere (5.2 mHz) exceeding the wave

frequency. In inclined field though, the ramp effect (see Section 4)

3 Exact solutions of the wave equations in terms of Meijer G-functions were

derived by Zhugzhda & Dzhalilov (1982) for vertical field and Zhugzhda

& Dzhalilov (1984) for inclined field. Simpler solutions in terms of 2F3

hypergeometric functions were subsequently found by Cally (2001) and

Crouch (private communication), respectively.

Figure 4. Top panel: acoustic wave energy vertical flux Fac = p1 w at z =
1 Mm as a function of magnetic field inclination θ for the case of Fig. 3.

Middle panel: same, but for a shallower driver at z = −2.5 Mm in an acoustic

cavity with base at z1 = −3 Mm. Bottom panel: same, but for a driver at z =
−4 Mm in an acoustic cavity with base at z1 = −10 Mm. To emphasize the

asymmetry between θ < 0 and θ > 0, the figures have been ‘folded over’

by plotting Fac against |θ |, with the full curve corresponding to positive θ

and the dashed curve to negative θ . The vertical line indicates the angle at

which the maximum flux occurs.

reduces the effective cut-off frequency by a factor cos θ and the

waves may propagate upward throughout, resulting in an asymp-

totically uniform acoustic energy density. A very great discrepancy

is apparent though between the θ = 30◦ and −30◦ cases, with the

former exhibiting far greater power than the latter in z > 0. In each

of the cases θ = ±30◦ and ±70◦, the subsurface solution is little

altered by a change of sign in field inclination, demonstrating that

the large difference in the overlying atmosphere is a local effect.

However, one clear distinction is the much greater amplitude in the

small-scale (slow mode) oscillations in the θ = −30◦ case at z �
− 3 Mm compared to either θ = 30◦ or ±70◦. This is due to greatly

enhanced mode conversion to downgoing slow modes near the sur-

face (see Figs 12 and 13, below).

Fig. 4 plots the acoustic wave energy flux Fac = p1w, where w =
∂ζ/∂t is the vertical component of velocity, reaching the top of the

computational domain at z = 1 Mm. This is effectively asymptotic

if the frequency exceeds the ramp acoustic cut-off frequency, and

almost zero otherwise. The figure clearly illustrates this, displaying
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Figure 5. Acoustic energy density at z = 200 km for various angles of

magnetic field inclination θ for three models. Full curve: 5-mHz oscillations

in 2-kG magnetic field (the case of Figs 3 and 6); long dashed curve: 4 mHz

and 2 kG; short dashed curve: 5 mHz and 1-kG field. In each case, all other

parameters are as for Fig. 3.

Figure 6. Acoustic energy density at z = 0, 100, 200, . . . , 600 km (top

to bottom) for various angles of magnetic field inclination θ for the case of

5-mHz oscillations in 2-kG magnetic field (cf. Fig. 3).

a rapid rise in flux beyond θ ≈ 10◦, as the acoustic waves undergo

transition from evanescent to travelling. In the top panel (acoustic

cavity depth of 5 Mm), a maximum flux is reached at around 26◦,

beyond which it declines, partly for geometrical reasons, but mostly

because of diminishing fast-to-slow transmission near the a = c
equipartition point, as will become clear in Sections 4 and 5. A

shallower acoustic cavity (middle panel) yields a slightly higher

angle at which Fac peaks (≈ 29.5◦), whilst a deeper cavity (bottom

panel) produces a slightly lower angle at the peak. This will also be

explained later using insights from the ray theory.

Fig. 5 plots the acoustic wave energy density at z = 200 km,

corresponding roughly to the height observed by SOHO/MDI, as

a function of θ for this and two other models. The central ‘bulge’

at small |θ | in each panel represents the regime where the acous-

tic waves in z > 0 are evanescent. This is naturally wider at lower

frequency, as greater inclination is needed for the ramp effect to

overcome the acoustic cut-off. Once the ramp effect kicks in, we

again see that positive θ is favoured. At large inclinations, the en-

hancement effect is lost.

Fig. 6 plots the acoustic wave energy density against magnetic

field inclination θ at various heights for the case of Fig. 3. We see

that this falls with height for |θ | > arccos(ω/ωci) ≈ 10.7◦, but espe-

cially for positive θ , approaches an asymptotic state corresponding

to unhindered slow mode propagation up the field lines.

In seeking to interpret observed oscillations at or near the solar

surface, particularly in magnetic regions, polarization of the plasma

motions is an important discriminant of wave type. For example,

the basic magnetoacoustic wave theory indicates that the slow wave

polarization is strongly field aligned when a 
 c, whereas the fast

Figure 7. Velocity ellipse eccentricity at three heights for the model of Fig. 3

and various field inclinations θ . Full curve: z = 200 km; long dash: z = 0;

short dash: z = 1 Mm.

Figure 8. Semimajor axis length for momentum ellipses (i.e. velocity el-

lipses scaled by density) at three heights for the model of Fig. 3 and various

field inclinations θ . Full curve: z = 200 km; long dash: z = 0; short dash:

z = 1 Mm.

wave is not. However, velocity is not generally linearly polarized. In

fact, at any particular height, an element of plasma undergoes ellip-

tical motion about its equilibrium position, with the eccentricity and

inclination of the ellipse dependent on the complex ratio b = ζ/ξ .

If ψ is the inclination of a principal axis of this ellipse, it is a simple

matter to show that tan 2ψ = 2 Re{b}/(1 − |b|2). The semimajor

and semiminor axes, and hence the eccentricity, are also easily cal-

culated. For comparison with observations, most notably Schunker

et al. (2005, 2006), it is of interest to examine these quantities here

for the models discussed above.

Figs 7–9 summarize the results for the model of Fig. 3. First, at

the SOHO/MDI height of 200 km, the eccentricity (Fig. 7) is close to

unity for all magnetic field inclinations, indicating almost rectilin-

ear motion. As we might expect from the earlier results on acoustic

energy density, it is apparent from Fig. 8 that θ > 0 is favoured as re-

gards velocity (or displacement or momentum) amplitude. Neither

of these results applies at z = 0. The angle δ between the semimajor

axis of the velocity ellipse and the magnetic field is effectively zero

high enough in the atmosphere (Fig. 9), where only the (acoustic)

slow wave remains, and is rigidly channelled by the magnetic field.

However, it is found that δ deviates considerably from zero at the

nominal SOHO/MDI observation height of around 200 km, suggest-

ing a combination of loose acoustic channelling and remnant fast

wave contribution. This result is expected to be extremely sensitive

to the ratio of the Alfvén and sound speeds at each height (Fig. 10),4

4 This fast growth of a2/c2 with height is predominantly due to the rapidly

decreasing density, but is also partially a result of the incorrect assumption

in the model that magnetic field strength is constant.
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556 H. Schunker and P. S. Cally

Figure 9. Top panel: the angle δ that the semimajor axis makes to the

magnetic field at z = 200 km (full curve), z = 0 (long dashed curve), and

z = 1 Mm (short dashed curve) for the model of Figs 3 and 8. Bottom panel:

same, but for 4 rather than 5 mHz.

Figure 10. The ratio a2/c2 in the MMMS models with field strength 1 kG

(bottom curve), 2 kG (middle) and 3 kG (top).

with more field alignment as the ratio increases. At z = 200 km in

the 2-kG model, we have a2/c2 = 14.2 only, and so might not expect

very strong channelling. By z = 1 Mm, it is 2.6 × 104, which clearly

enforces very rigid acoustic channelling. Despite the moderate val-

ues of a2/c2 at 200 km and below, evanescent oscillations are found

to be quite closely field aligned there (Fig. 9, lower panel; −20◦ �
θ � 35◦).

In summary, Figs 7–9 emphasize that the fast mode diminishes in

relative importance with height in the atmosphere, leaving the slow

mode to dominate the oscillations, and to become progressively

more tightly aligned with the magnetic field as a/c increases. How-

ever, this process is not complete at heights typically sampled by

helioseismic instruments, leaving a fairly complex velocity polar-

ization structure which may, on further study, provide useful insights

when comparing theory with observation.5

The most significant result, though, is that somehow, magnetic

field inclination of a certain sense opens a window into the over-

lying atmosphere for acoustic oscillations. This is potentially im-

portant for understanding the helioseismology of sunspots since

observations (e.g. by MDI) are made in precisely these regions. To

understand the cause of this effect, we turn to ray theory.

4 R AY C O N V E R S I O N T H E O RY

Although fully wave mechanical numerical solutions, such as those

of the previous section, are easy to calculate, understanding of

physics involved is advanced using a ray theoretic description. This

is particularly true of the process of mode conversion between acous-

tic and magnetic waves.

Standard ray theory fails in three circumstances:

(i) in the neighbourhood of caustics (turning points), and in the

evanescent regions beyond;

(ii) where the background coefficients vary rapidly; and

(iii) where mode conversion occurs.

Circumstance (i) may in theory be overcome using classical WKB

matching procedures (Bender & Orszag 1978), or recently devel-

oped complex ray theory (Chapman et al. 1999), but neither is very

practical for our purposes. The recent introduction of Fresnel-zone

kernels into time–distance helioseismology ameliorates this diffi-

culty somewhat by widening the zone of applicability, though does

not remove it (Couvidat et al. 2004).

Circumstance (ii) is of concern near the surface, particularly due

to the sharp spike in the acoustic cut-off frequency seen in Fig. 1.

However, as noted by Schmitz & Fleck (1998, 2003), the form of the

acoustic cut-off frequency is dependent on the choice of dependent

and independent variables in the governing differential equations.

The sharp spike displayed in the figure is due to the presence of

the H′ term in equation (3). Schmitz & Fleck (2003) argue strongly

that the use of equations which include this term in ωc is to be

avoided for realistic, and in particular empirical solar models such as

Model S.

Circumstance (iii) results from the failure of the WKB ansatz

to account for the exchange of energy between supposedly distinct

modes in the neighbourhood of avoided crossings of the dispersion

curves, or more accurately its assumption that the modes are indeed

distinct there. This has been addressed at some length recently by

Cally (2005, 2006), in the latter case using the general theory set out

in Tracy et al. (2003). However, Cally (2006) is based upon wave

equations in a form generalized from equation (2), which was suit-

able for the simple polytropic models discussed there, but suffers

from the acoustic cut-off spike problem for the more realistic atmo-

spheres which concern us here. To overcome this, we now present an

alternative formulation, more in keeping with the variational foun-

dations of the Tracy et al. (2003) method, and the matrix description

of standard MHD ray theory of Weinberg (1962).

We begin with the self-adjoint formulation of linear MHD (Goed-

bloed & Poedts 2004), which has the advantage that it automatically

yields a Hermitian dispersion matrix, and therefore a real dispersion

5 It should be noted though that our MMMS models feature an infinitely

extended temperature minimum region at the top, and that the addition of a

more realistic chromosphere will certainly change some results at larger z.
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relation. This is appropriate for a dissipationless system, and con-

venient for use in ray theory. It is to be contrasted with the complex

dispersion relation for gravitationally stratified MHD derived pre-

viously by McLellan & Winterberg (1968) (see also Thomas 1983).

Using the equilibrium equation −∇ p + ρg + j×B = 0, where

j is the current density, the potential energy may be written as

W = −1

2

∫
ξ∗· F(ξ) dV

= 1

2

∫
ρc2 |∇· ξ|2 + |b|2 + 1

2
ρg · (ξ∇· ξ∗ + ξ∗∇· ξ)

+1

2
g · (ξ∇· ρξ∗ + ξ∗∇· ρξ)

+ 1

2
j · (ξ×b∗ + ξ∗×b

)
+1

2
j×B· (ξ∇· ξ∗ + ξ∗∇· ξ) dV ,

(7)

where F is the force per unit volume, b = ∇× (ξ×B) is the mag-

netic field perturbation and B is the background field. Specializing

now to the uniform field case, where j = 0, defining X = ρ1/2 ξ
and Y = ξ cos θ − ζ sin θ , and performing some algebraic manip-

ulations, the associated Lagrangian density is found to be

L = 1

2
|Ẋ|2 − 1

2
c2

∣∣∣∣∇· X + Xz

2H

∣∣∣∣2

− 1

2
ρa2|∇× (Y êy)|2

−1

2
g · (X∇· X∗ + X∗∇· X).

(8)

The wave equations may be recovered from the variation of the

action
∫
L dV dt with respect to ξ (Friedland & Kaufman 1987).

Retaining the density derivative in the acoustic term so as to

recover the Brunt–Väisälä and acoustic cut-off effects, we now make

the formal identification ∇ ≡ ik and ∂/∂t ≡ − i ω (see Tracy &

Kaufman 1993, for a rigorous discussion of the application of a

‘local Fourier transform’ in the context of mode conversion theory).

Then, setting χ = ∇· X = ikxρ
1/2ξ + ikzρ

1/2ζ , and solving for ξ

and ζ in terms of χ and Y ,L becomes a Hermitian quadratic form

in these two variables, L = QHD̃Q, where Q = (χ, Y )T, K = |k|
the superscript ‘H’ denotes the Hermitian transpose, and

D̃ =
(

D̃a η̃

η̃∗ D̃b

)
(9)

is the dispersion matrix, where

D̃a = ω2 − c2k2
‖ − ω2

ci cos2 θ, D̃b = ω2 − a2k2
‖ − ω2

ci

k2
x

K 2
(10)

and

η̃ = −ik⊥ω2 + ikxω
2
ci cos θ − gkx k‖ + 1

2
kx k‖c2 H−1

K
. (11)

Here, k‖ = kx sin θ + kz cos θ and k⊥ = kx cos θ − kz sin θ are

the components of the wavevector parallel and perpendicular to the

magnetic field.

Standard ray theory is built on the dispersion functionD = det D,

or in this case

D = ω4 − (a2 + c2)K 2ω2 + a2c2 K 2k2
‖

+ c2 N 2k2
x − (ω2 − a2 K 2 cos2 θ )ω2

ci. (12)

The dispersion relation D = 0 limits solutions to hypersurfaces

in frequency–wavevector phase space. In the unstratified limit,

D reduces to the usual magnetoacoustic dispersion function ω4

− (a2 + c2)K2ω2 + a2 c2 K2k2
‖, and in the non-magnetic case we

have the (almost) expected acoustic dispersion relation ω2 − ω2
ci −

c2K2 + c2N2k2
x /ω

2 = 0.

Why ‘almost’? Comparing the acoustic dispersion relation with

equation (2), we see that ωc has been replaced with ωci. Which

is correct? Clearly equation (2) has exact sinusoidal solutions in

an isothermal atmosphere, since c, ωc and N are uniform there.

However, also in that case, ωc = ωci, and so this test cannot distin-

guish between these two possibilities. Indeed, with Thomas (1983)

and Schmitz & Fleck (1998, 2003), we accept that dispersion rela-

tions in inhomogeneous media are not unique. Different choices of

variables produce dispersion functions which often differ by terms

assumed small in the local Fourier transform applied in their deriva-

tion. In principle, these differences can be reconciled at higher order

in a WKB hierarchy, but that is irrelevant to ray theory, as only the

lowest order (geometrical optics), or second lowest order (physical

optics) (Weinberg 1962; Bender & Orszag 1978), approximations

of WKB are applied there. Terms such as H′ and kzH are therefore

of doubtful validity where they are associated with rapidly varying

coefficients. Nevertheless, guided by the above-mentioned exact si-

nusoidal solution in an isothermal non-magnetic atmosphere, by

the clear inconsistency of a form of ωc containing a spike such as

is displayed in Fig. 1, and by the desire for a model of the greatest

simplicity, the dispersion relation (12) will be adopted here as our

‘model’.

D as defined above has other desirable features. These are brought

out by extracting the dispersion relations of the magnetic and the

acoustic waves in the asymptotic regimes a 
 c (high in the atmo-

sphere) and c 
 a (deep in the interior). A little algebra and the

binomial expansion reveal the following.

(i) a 
 c magnetic. This is a fast wave in the overlying atmo-

sphere:

ω2 − a2 K 2 − c2k2
⊥ − ω2

ci sin2 θ + c2 N 2k2
x

ω2
= 0. (13)

(ii) a 
 c acoustic. The atmospheric slow wave:

ω2 − c2k2
‖ − ω2

ci cos2 θ = 0. (14)

(iii) c 
 a magnetic. The deep interior slow wave:

ω2 − a2 K 2
c2k2

‖ + ω2
ci cos2 θ

c2 K 2 + ω2
ci − c2 N 2k2

c /ω
2

= 0. (15)

(iv) c 
 a acoustic. The deep interior fast wave:

ω2 − c2 K 2 − ω2
ci + c2 N 2k2

x

ω2

− a2 K 2
c2k2

⊥ + ω2
ci sin2 θ − c2 N 2k2

c /ω
2

c2 K 2 + ω2
ci − c2 N 2k2

c /ω
2

= 0. (16)

The expected behaviours are evident; in particular the ‘ramp’ effect

clearly displayed in equation (14), which allows acoustic waves to

propagate into the solar atmosphere along inclined magnetic field

lines, even at frequencies below the acoustic cut-off but for which

ω > ωci cos θ (De Pontieu, Erdélyi & James 2004). The deep

slow wave (equation 15) is also field aligned as expected if the

ωci and N terms can be neglected. The slight anisotropies of the fast

waves (faster propagation across than along field lines) are also well

brought out in these formulae.

With the dispersion function D specified, the ray paths follow

from the usual Hamiltonian equations

dx
dτ

= ∂D
∂k

,
dk
dτ

= −∂D
∂x

,
dt

dτ
= −∂D

∂ω
,

dω

dτ
= ∂D

∂t
(17)

(Weinberg 1962; Barnes & Cally 2001), where τ is a time-like vari-

able which parametrizes the progress of a disturbance along the ray
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path. If D is independent of x and t, kx and ω remain constant along

a ray. However, the vertical wavenumber kz evolves due to the z
dependence of the underlying atmosphere. Note that these ray paths

depend only on D, but where and how they split (mode convert)

depends on the dispersion matrix, and not just its determinant.

Unfortunately, WKB, and by extension ray theory, fails spectac-

ularly in mode conversion regions. This is because it implies a rigid

connectivity of the branches of the dispersion curves D = 0. The

classical WKB view is that there is a fast mode and a slow mode. The

fast wave is dominated by magnetic characteristics where a 
 c and

by acoustic behaviour where c 
 a, and the opposite for the slow

wave. As discussed extensively in Cally (2005, 2006) though, these

two curves typically approach closely near the equipartition depth

at which a = c. In this neighbourhood, the ‘other connectivity’, i.e.

acoustic-fast with acoustic-slow and magnetic-fast with magnetic-

slow, is a priori just as plausible. In fact, both occur in general, with

some energy taking each route, depending on just how close the

dispersion curve avoided crossing is. The general mode conversion

theory of Tracy et al. (2003), which we apply to MHD wave theory

here, quantifies this dual connectivity.

The basis of the theory is the dispersion matrix

D =
(

Da η

η∗ Db

)
. (18)

Here, it is assumed that the ‘coupling term’ η is small compared to Da

and Db in general, but becomes comparable in conversion regions of

phase space. Since D = det D = Da Db −|η|2 ≈ Da Db, away from

conversion regions, the dispersion relation D = 0 approximately

decouples to the two ‘independent’ modes Da = 0 and Db = 0. In the

MHD context, we would like Da to represent the ‘acoustic wave’ and

Db the ‘magnetic wave’, with η quantifying the mode transmission

(fast-to-slow or vice versa), which occurs in the neighbourhood of

the ‘star points’ Da = Db = 0. Then, the transmission coefficient T
associated with each star point is found to be

T = exp(−2π|η|2/|B|)�, (19)

where

B = {Da, Db} = ∂Da

∂kz

∂Db

∂z
− ∂Db

∂kz

∂Da

∂z
(20)

is the Poisson bracket of the uncoupled dispersion functions, and

the subscripted star indicates that T must be evaluated where

Da = Db = 0. These formulae are presented in Tracy et al. (2003;

equations 22 and 23), and derive from a complex mathematical

process involving linear canonical transformations in phase space

(Tracy & Kaufman 1993) and subsequent matching of asymptotic

WKB solutions across the mode conversion region. We emphasize

that T = 0 (i.e. η → ∞) corresponds to no transmission (tunnelling)

through the star point from fast to slow, or vice versa, and T = 1

(η = 0) to total transmission. T = 0 is (fallaciously) implicit in the

standard WKB theory, where fast and slow modes maintain their

identities throughout.

Unfortunately, D̃ as defined in equations (9)–(11) is not suitable

for our purposes, as D̃a and D̃b do not represent the two independent

modes asymptotically. This is easily rectified though with a change

of variable Q = AR, with R being the new 2-vector dependent

variable and A is a 2 × 2 non-singular matrix. Then L = RHDR,

where D = AHD̃A. Rather than specify A directly, we define it by

specifying Da and Db, together with the requirement that det D =
det D̃ = D, i.e. the dispersion function is unchanged. We choose

Da and Db based on a smooth matching of the a � c and a 
 c
acoustic and magnetic branches as set out in equations (13)–(16),

respectively:

Da = ω2 − c2 K 2 + 1 + U

2

(
c2k2

⊥ − ω2
ci cos2 θ

)
−1 − U

2

(
ω2

ci − c2 N 2k2
x

ω2

+ a2 K 2
c2k2

⊥ + ω2
ci sin2 θ − c2 N 2k2

c /ω
2

c2 K 2 + ω2
ci − c2 N 2k2

c /ω
2

)
(21)

and

Db = ω2 − a2 K 2 − 1 + U

2

(
ω2

ci sin2 θ + c2k2
⊥ − c2 N 2k2

x

ω2

)
+1 − U

2
a2 K 2 c2k2

⊥ + ω2
ci sin2 θ − c2 N 2k2

c /ω
2

c2 K 2 + ω2
ci − c2 N 2k2

c /ω
2

, (22)

where U rises smoothly and monotonically from −1 at a = 0 to 1

at c = 0. We find that a good choice is U = (a4 − c4)/(a4 + c4).

The procedure set out above for choosing the forms of Da and Db

is not entirely unique, but none the less is severely constrained by the

requirement that these two ‘reduced’ dispersion functions closely

model the magnetic and acoustic branches away from the conversion

region. The numerical results of Section 5 illustrate just how well

this choice of Da and Db performs in this regard. Different choices

of the ramp function U alter the results only slightly, and make no

practical difference.

That such a transformation is possible is guaranteed by Sylvester’s

law of inertia (Horn & Johnson 1985), at least in the region between

the two dispersion curves, which is the only place we need it (see

Fig. 11). Sylvester’s law states that any two Hermitian matrices are

*congruent (i.e. may be connected by a transformation of the form

D = AHD̃A) provided they have the same inertia. The inertia of

a Hermitian matrix is the ordered triple consisting, respectively, of

the number of positive, negative, and zero eigenvalues (recall that

all eigenvalues of a Hermitian matrix are real). Now since the deter-

minant D of D and D̃ is equal to the product of their eigenvalues,

λ1λ2 = D = λ̃1λ̃2, and since D < 0 between the dispersion curves

(and hence in the neighbourhood of the star points), it follows that

the inertia is (1, 1, 0) in both cases. D and D̃ are therefore *congru-

ent.

It then remains to determine η, or rather |η|2, which is

all that matters in calculating transmission coefficients (equa-

tion 19). The phase of the ‘converted’ (i.e. acoustic-to-magnetic or

Figure 11. Schematic diagram of the typical interaction region in z–kz phase

space surrounding a star point.
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magnetic-to-acoustic) ray does depend on arg η (Tracy et al. 2003;

equation 22 ), but is not of concern here. Clearly, |η|2 follows using

the equality of determinants

|η|2 = Da Db − D. (23)

Figure 12. The z–kz dispersion diagrams D = 0 (full curves) for the three

cases of Fig. 3, i.e. θ = 0◦, 30◦ and 70◦. In each case, the full fast mode lobe

is shown, extending down to the natural cavity depth at z = −5 Mm. The

slow mode branch is represented by the other full curve. The dashed curves

correspond to Da = 0 and Db = 0, and the ‘star points’ at which they cross

may be thought of as the ‘transmission points’ through which fast–slow and

slow–fast tunnelling occurs. The transmission coefficients for each star point

are superimposed on the figures. The vertical grey line indicates the position

of the a = c equipartition level.

At star points Da = Db = 0, which are the only positions in phase

space where we need η, it follows of course that

|η|2� = −D. (24)

It is instructive to explore the case where the cut-off and buoyancy

effects may be neglected, ωci = N = 0. Then the star points occur

exactly at a = c, K2 = ω2/c2 in phase space, and so

|η|2� = c4 K 2k2
⊥. (25)

Figure 13. Ray path diagrams in physical x–z space for 5-mHz acoustic rays

launched horizontally from x = 0, z = −5 Mm in the presence of a 2-kG

magnetic field which is vertical (top panel), inclined at 30◦ (middle panel)

and at −30◦ (bottom panel). The grey-scale legend associates black to full

energy, and light grey to no energy. Of these three cases, most conversion

to a slow acoustic mode travelling into the atmosphere occurs when θ =
30◦. The horizontal line at z ≈ −0.3 Mm indicates the equipartition level at

which the Alfvén and sound speed coincide, which is close to the level of

mode transmission between fast and slow waves. The dots on the ray paths

represent 1-min time intervals, making it easy to distinguish fast from slow

branches. The background straight grey lines represent the magnetic field.
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The associated transmission coefficient may then be shown to be

T = exp

[
− πhK 2k2

⊥
|kz | (K 2 + k2

⊥)

]
a=c

≈ exp

(
−πhk2

⊥
|kz |

)
a=c

for|k⊥| � K

= exp
[−πK hs sin2 α

]
a=c

,

(26)

where α = arcsin(k⊥/K ) is the attack angle. Here, h = [d (a2/c2)

/d z]−1
a=c is the equipartition layer scaleheight, i.e. a measure of the

thickness of the layer over which a ≈ c, and hs = [d (a2/c2)/d s]−1
a=c

is the layer thickness as measured along the oblique path with di-

rection k̂, i.e. the direction of the phase velocity. Thus, fast-to-slow

or slow-to-fast transmission is enhanced by any or all of: (i) fine

attack angle; (ii) small wavenumber (low frequency); and (iii) thin

equipartition layer. In the WKB limit Khs 
 1, we recover T → 0

except effectively at exactly α = 0. This is in accord with the usual

WKB understanding that the fast and slow modes are decoupled save

for parallel propagation at a = c. For finite Khs though, significant

energy transmission occurs for attack angles | sin α| � 1/
√

πK hs.

The significance of attack angle has been noticed in numerical sim-

ulations previously (Bogdan et al 2003).

Reintroduction of ωci and N complicates and modifies these con-

clusions, in particular moving the star point slightly away from

a = c, and preventing T from reaching 1 even at α = 0, but does not

fundamentally change them.

The role of the attack angle is crucial in understanding Figs 3–5.

5 P H Y S I C A L I N S I G H T S F RO M R AY
C O N V E R S I O N T H E O RY

The most striking result from the wave mechanical experiment of

Section 3 is that the acoustic energy and acoustic flux in the low solar

atmosphere of active regions should be very dependent on magnetic

field inclination. On the other hand, to be more precise, the surface

magnetic field acts as a filter on the ensemble of helioseismic waves

below the surface, preferentially allowing through certain waves.

How are we to understand this? Clearly, the concept of attack angle
is relevant, and in this section we try to qualitatively explain the

wave mechanical results using insights from ray theory.

Dispersion diagrams for the three scenarios represented in Fig. 3

are shown in Fig. 12, and the corresponding physical space ray paths

for the θ = 0◦ and ±30◦ cases in Fig. 13. Again, the frequency is

5 mHz and the horizontal wavenumber kx is chosen so that the ray

has lower turning point at z = −5 Mm. The dispersion diagrams

display the loci of the dispersion relation D = 0 (see equation 12

in z–kz space. The closed lobe represents the fast wave, with upper

and lower turning points at z ≈ 0 and z = −5 Mm, respectively (see

Fig. 14). The other branch is the slow mode. The top panel shows

dispersion curves for a vertical magnetic field, the middle panel is

for a magnetic field inclined at θ = 30◦ and the bottom panel is

for a magnetic field inclined at θ = 70◦, all with B = 2 kG. The

star points at which mode transmission between the two branches

occur are indicated by a small star, and their associated transmission

coefficients 0 � T � 1 displayed beside them. We initially launch

a fast ray horizontally from the lower turning point, and trace the

path in a clockwise direction. If, instead of following a ray moving

clockwise about the fast lobe, we proceed anticlockwise, this is

equivalent to a ray moving in the opposite horizontal direction, and

hence to the case with the sign of θ reversed.

When the field is vertical, the diagram, and hence T, is symmetric

on the upward and downward legs. At this frequency (5 mHz), the

Figure 14. The upper turning depth of fast rays with various frequencies

(as labelled), as functions of magnetic field inclination θ . Top panel: B =
2-kG magnetic field; bottom panel: B = 1 kG. The dotted horizontal lines

represent the non-magnetic case for 3, 4 and 5 mHz (there is no upper turning

point at 6 mHz). The thick horizontal grey line indicates the equipartition

depth at which a = c.

slow mode locus is closed at the top, since it is less than the atmo-

spheric acoustic cut-off frequency of about 5.09 mHz in the 2-kG

MMMS model. Hence, the slow acoustic wave produced by mode

transmission at the first star point is reflected back down undergoing

further partial transmission on the next close encounter with a star

point (Fig. 13, top panel).

However, for a moderately inclined field (θ = 30◦), T is signif-

icantly enhanced at the first star point due to the fine attack angle,

allowing the majority (77 per cent) of energy to transmit, or mode

convert, from a fast acoustic to a slow acoustic wave. In addition,

at this inclination, the ramp effect has come into play and the slow

acoustic locus is now open at the top, meaning that slow rays are

free to propagate up into the atmosphere. Of the energy remaining

in the fast mode beyond the first star point (23 per cent), a further

23 per cent (total 5 per cent) then transmits to the slow branch on

the downward leg. When very high inclinations are reached (θ =
70◦), there is very little conversion at either star point because of

the large attack angle. The amount of fast-to-slow transmission is

dependent on the magnetic field angle (see Fig. 15), and particularly

on the sign of θ .

From this discussion, we have learned that the crucial issue deter-

mining how much acoustic (slow) energy progresses into the overly-

ing atmosphere is the strength of the first star point. For this reason,

we call this star point the gatekeeper. Energy staying on the fast

branch refracts back downward and can only influence the atmo-

sphere above through its evanescent tail (not accounted for by ray

theory). On the other hand, the slow ray, provided the slow branch is

open due to ω > ωci cos θ , propagates upward into the atmosphere

along field lines, and does not refract.

The top panel of Fig. 13 corresponds to the top panel of Fig. 12.

The vertical field shows conversion occurring at three locations: (i)

the first encounter (gatekeeper) with the equipartition depth where

most energy transmits into the slow ray, (ii) the reflected slow
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Figure 15. Top panel: transmission coefficient of the gatekeeper star point

at various inclinations of 2-kG magnetic field for fast rays with lower turn-

ing point at z1 = −5 Mm. Lower panel: same, but for shallower rays

with z1 = −3 Mm. The thick curves represent 5-mHz wave frequency, and

the thin lines 4 mHz. Solid curves: θ > 0; dashed curves: θ < 0.

acoustic ray converting most of its energy into a fast acoustic ray

and (iii) the continued fast ray converting strongly to slow on the

downward leg. At θ = 30◦ (the middle panel), we see most energy

is converted to a slow acoustic mode travelling up into the atmo-

sphere, due to the ramp effect, guided by the magnetic field lines.

The second star point corresponds to where the ray splits for the

second time, and the fast magnetic mode only weakly undergoes

transmission to a slow magnetic mode, which is again guided by the

field but this time into the deep interior. The contrasting case is de-

picted in the bottom panel of Fig. 13 where θ = −30◦ corresponds

to the middle panel of Fig. 12 but with the fast lobe traversed in

an anticlockwise sense. Now, we see very little transmission at the

gatekeeper (lower star point in this case). Most of the ray energy

continues as a fast magnetic wave until it undergoes strong trans-

mission again on the downward leg where the slow magnetic wave

(of significant energy) is field guided down into the interior. With

a fine attack angle, there is a significant amount of transmission,

and with a large attack angle there is little transmission. When the

attack angle is large, the second encounter with the equipartition

depth induces greater transmission to a slow acoustic ray, but this

time it is channelled out of the acoustic wave field and down into the

interior along the magnetic field lines. Overall, it is very clear again

that the upgoing atmospheric slow wave is most pronounced for θ =
30◦ of the cases displayed, emphasizing the importance of a strong

gatekeeper, i.e. fine attack angle, if substantial acoustic energy is

to propagate into the atmosphere. (In the middle panel, it is seen

that the ray at the first conversion point is indeed nearly parallel to

the magnetic field. Although attack angle is defined in terms of the

direction of the phase velocity rather than the group velocity, or ray

direction, this is still indicative of a small α and hence large T.)

Transmission may not always occur. When the magnetic field is

weak, the geometrical height of the equipartition depth is raised

and the ray may not encounter the equipartition layer before reflect-

ing off the acoustic cut-off (see Fig. A2 in Appendix A). Fig. 14

displays the fast wave upper turning depth in 1- and 2-kG magnetic

fields for different frequencies, and compares it to the non-magnetic

case. It also shows the depth of the equipartition layer (thick line).

Clearly, at 2 kG, the fast ray at all relevant frequencies passes through

a = c and is subject to fast-to-slow mode conversion. However, at

1 kG, this is so only above about 4 mHz. In all cases, the effect of θ

on turning depth is minor, especially at the lower frequencies. (The

frequency dependence of turning depth results primarily from the

ω2
ci sin2θ term in equation 13.)

When mode conversion does occur though, we find a strong de-

pendency on the inclination of the magnetic field because of attack

angle. Fig. 15 plots T against |θ | for 4- and 5-mHz rays in a 2-kG

magnetic field. The transmission for positive θ peaks at around 20◦–

22◦ in these cases for rays with lower turning point at z1 = −5 Mm.

Although we are not exactly comparing like with like,6 reference

to the acoustic flux curves in Fig. 4 shows that this is very much in

accord with the wave mechanical calculations. For shallower waves

(z1 = −3 Mm), the peaks occur at slightly higher θ , consistent with

the lower panel of Fig. 4, and with the idea that attack angle is cru-

cial: shallower skimming rays naturally meet the equipartition level

at greater angle to the vertical, and are therefore more susceptible

to mode transmission in more highly inclined field.

Ray considerations also broadly explain the results of Figs 5 and

6, which show peak acoustic energy density in the atmosphere for

moderate positive magnetic field inclinations when ω > ωci cos θ ,

i.e. when the slow mode is propagating rather than evanescent there.

6 D I S C U S S I O N

Mode conversion is the most likely candidate for describing acous-

tic energy ‘absorption’ in sunspots (Cally et al. 2003; Crouch et al.

2005). Most previous modelling of this effect has focused on con-

version to downgoing slow modes, whereby energy is lost from

the acoustic field to essentially Alfvénic oscillations in the interior

(though see Cally et al. 1994, for a discussion of upward losses in

vertical magnetic field). However, at least above the (ramp reduced)

acoustic cut-off frequency, energy may also propagate upwards into

the overlying atmosphere (e.g. Brynildsen et al. 2002; De Moortel

et al. 2002), with observationally testable consequences.

We are now entering a phase where we can begin to compare the-

ory with observations of the low atmosphere made with instruments

such as SOHO/MDI, and in the near future the Solar Dynamics

Observatory/Helioseismic and Magnetic Imager (SDO/HMI). The

latter will prove particularly valuable because of its ability to gen-

erate vector magnetograms as well as Doppler data. Specifically, an

explanation of the observational results of Schunker et al. (2005) in

sunspot penumbrae, where magnetic field direction is found to have

a significant influence on the correlation between acoustic ingres-

sion (the incoming driver) and MDI-observed atmospheric vector

velocities, is seemingly within reach.

Based on the wave mechanical results of Section 3, and the

insights from ray conversion theory in Sections 4 and 5, we

6 The vertical component of acoustic flux in the atmosphere obviously de-

pends crucially on the strength of fast-to-slow mode conversion, but also on

the geometric cos θ effect resulting from the flux being field aligned. This is

partly responsible for the drop-off in vertical flux as θ increases beyond the

peak in Fig. 4, though the major effect is the variation of T with θ . Further-

more, at small inclinations where the ramp effect has not yet opened up the

slow branch, there is zero flux reaching high into the atmosphere, despite T
being non-zero.
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would expect to see evidence of mode conversion in MDI surface

velocity alignment with magnetic field direction. It is clear that

MDI is observing at a height well above the equipartition level,

and that upcoming helioseismic waves penetrate to the conversion

level near a = c for larger field strengths (≈ 2 kG) at all relevant

frequencies, and for moderate field strengths (≈ 1 kG) at higher

frequencies (� 4 mHz). Furthermore, waves converted from fast

to slow by this process should then propagate upward to and be-

yond the height of MDI observation provided the frequency exceeds

the ramp-reduced acoustic cut-off. 5-mHz observations are particu-

larly relevant here. Below the acoustic cut-off, at low frequency or

small θ , the slow wave is evanescent (the fast wave always is) and

so decays with height. Nevertheless, even when the slow mode is

evanescent [see −20◦ � θ � 35◦ in the lower panel in Fig. 9 and

note that arccos(ω/ωci) = 38◦ in this 4-mHz case] quite close field

alignment is expected at low heights. Preliminary observational de-

termination of velocity ellipse characteristics has only been carried

out at 5 mHz so far (Schunker et al. 2006), with the results indicat-

ing generally high eccentricity, but substantial deviation from field

alignment. This is compatible with theory provided a2/c2 is not too

large at the observation height. (The putative height of formation of

the MDI Ni I is around 200 km in quiet Sun, but may be of the order

of 100 km lower in sunspot penumbrae due to the Wilson depression,

though we are unaware of any detailed modelling to confirm this.)

In reality, we are observing a three-dimensional magnetic field

with a combination of travelling and evanescent waves from all di-

rections impinging upon the magnetic field. Figs 12 and 13 show that

the energy which reaches heights similar to MDI observation (al-

though a direct geometric connection between model and sunspot is

highly dubious) is dominated by field-guided velocity. Observations

will thus depend upon transmission occurring and the ray propagat-

ing to observational heights. In situations where the attack angle

is fine and there is significant transmission to a slow acoustic ray

travelling into the atmosphere, we would expect to observe field-

guided velocities, for instance Fig. 13 (middle panel). At this stage,

our theoretical results are limited to the 2D plane in which the mag-

netic field lies. Nevertheless, interpretation in terms of attack angle

allows us to surmise that rays approaching from out of this plane

will be less strongly transmitted as slow waves into the atmosphere.

Overall, we expect that strong surface field acts as a filter on this

subsurface wave ensemble, preferentially selecting for transmission

rays with phase velocity in a cone closely aligned to the magnetic

field direction.

The maximal transmission occurring at θ ≈ 22◦ is in accordance

with the wave mechanical description of Crouch & Cally (2003) who

find the minimal extinction length (maximal absorption) exists close

to the θ = 25◦ mark. A fine attack angle (positive θ ) is responsible for

large transmission coefficients, allowing a significant proportion of

the ray energy to convert to a slow acoustic wave. Then, if the ramp

effect is operative, this energy is field guided up into the atmosphere.

The situations primarily responsible for extracting energy from the

near surface by field guiding the slow ray down into the deep interior

are when there exists a large attack angle (negative θ ) and when the

slow ray has been reflected off the acoustic cut-off as in Fig. 13

bottom and top panels, respectively.

A concern with using ray theory near the solar surface, be it in

quiet Sun or active region, is the non-uniqueness of the acoustic

cut-off frequency. This suggests that direct comparison between ray

and wave mechanical calculations is unlikely to yield much better

than qualitative correspondence there. The fact that time–distance

helioseismology typically uses Model S or similar together with the

Deubner & Gough form of the acoustic cut-off frequency, equa-

tion (3), is concerning, because there is considerable uncertainty

about the exact reflection height (so far as that concept is meaning-

ful in a non-WKB medium), and consequently uncertainty in ray

traveltimes.

Furthermore, judging by a comparison of Figs 4 and 15, ray con-

version theory overestimates the degree of fast-to-slow transmission

at high θ . This is not surprising. The derivation of equation (19) is

based on a local analysis of the neighbourhood of a star point in z–kz

space. As the gap between the fast and slow branches widens, this

becomes progressively less appropriate. Small values of T therefore

should be regarded as indicative only.

Schunker et al. (2005) observe that the effect of the magnetic field

on acoustic rays (deviation of the phase of the correlation between

ingression and observed penumbral velocity, δφ) is largest at fre-

quencies of 5 mHz rather than 3 mHz, and for stronger magnetic

field strength in accord with the outcomes of the mode conversion

theory presented here. These results also suggest that the observed

velocity must have some kind of dependence upon the magnetic

field direction, since the result changes with the angle between the

line of sight and the magnetic field. This is also consistent with

our theoretical findings (Fig. 9). Observationally, within a sunspot,

magnetic field strength and inclination are inseparable. The most

pronounced effect is for a strong magnetic field with inclination

less than 42◦, which is consistent with expectations, but it is not

clear whether this is due to the stronger magnetic or the moderate

inclination. Conversely, little deviation δφ is seen in observations

where the field is weak and highly inclined (θ > 66◦), but again, we

cannot resolve which of the two characteristics is responsible since

both have this effect in theory.

Although ray theory is a useful interpretative tool in the current

context, for these and other reasons (e.g. fast mode caustics and

evanescence), it is not a viable technique for quantitative recon-

struction of the entire wave field in the surface layers. Even in the

much simpler interior of an adiabatic polytrope, the correspondence

between the wave field and ray bundles is complicated and imper-

fect (Bogdan 1997). Furthermore, complete treatment of mode con-

version, including the incorporation of interference effects, would

require a much more complicated analysis,7 which is contrary to the

original point of using a ray description rather than direct solution

of the wave equations. For all these reasons, it is not appropriate

to attempt a quantitative comparison of ray and wave mechanical

solutions for the problems addressed here. Nevertheless, qualitative

correspondences are stark, compelling and enlightening.

It would be useful to devise some way to do similar calculations

to Schunker et al. (2005) isolating waves impinging on a sunspot

from one direction. This has not yet been done. It would also be

appropriate to increase the reality of the model. Now that ray theory

has provided us with insights into the significance of the attack angle,

it may be more useful to extend the wave mechanical formalism to

three dimensions in a realistic atmosphere and glean results for

comparison with observation.
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De Pontieu B., Erdélyi R., James S. P., 2004, Nat, 430, 536

Deubner F.-L., Gough D. O., 1984, ARA&A, 22, 593

D’Silva S., 1996, ApJ, 469, 964

Friedland L., Kaufman A. N., 1987, Phys. Fluids, 30, 3060

Goedbloed H., Poedts S., 2004, Principles of Magnetohydrodynamics.

Cambridge Univ. Press, Cambridge

Horn R. A., Johnson C. R., 1985, Matrix Analysis. Cambridge Univ. Press,

Cambridge

Khomenko E., Collados M. 2006, ApJ, in press

Kosovichev A. G., Duvall T. L. Jr, Scherrer P. H., 2000, Sol. Phys., 192, 159

Maltby P., Avrett E. H., Carlsson M., Kjeldseth-Moe O., Kurucz R. L., Loeser

R., 1986, ApJ, 306, 284

Mathew S. K., Solanki S. K., Lagg A., Collados M., Borrero J. M.,

Berdyuginau S., 2004, A&A, 422, 693

McLellan A., Winterberg F., 1968, Sol. Phys., 4, 401

Mickey D. L., Canfield R. C., Labonte B. J., Leka K. D., Waterson M. F.,

Weber H. M., 1996, Sol. Phys., 168, 229

Rosenthal C. S., Julian K. A., 2000, ApJ, 532, 1230

Schmitz F., Fleck B., 1998, A&A, 337, 487

Schmitz F., Fleck B., 2003, A&A, 399, 723

Schunker H., Braun D. C., Cally P. S., Lindsey C., 2005, ApJ, 621, L149

Schunker H., Braun D. C., Cally P. S., Lindsey C., 2006, in Leibacher J.,

Uitenbroek H., Stein R., eds, ASP Conf. Ser., Vol. 23, Solar MHD: The-

ory and Observations – a High Spatial Resolution Perspective. Astron.

Soc. Pac., San Francisco (in press)

Spruit H. C., 1991, in Toomre J., Gough D. O., eds, Lecture Notes in Physics,

Vol. 388, Challenges to Theories of the Structure of Moderate Mass Stars.

Springer-Verlag, Berlin, p. 121

Spruit H. C., Bogdan T. J., 1992, ApJ, 391, L109

Swanson D. G., 1998, Theory of Mode Conversion and Tunneling in Inho-

mogeneous Plasmas. Wiley, New York

Thomas J. H., 1983, Ann. Rev. Fluid Mech., 15, 321

Tracy E. R., Kaufman A. N., 1993, Phys. Rev. E, 48, 2196

Tracy E. R., Kaufman A. N., Brizard A. J., 2003, Phys. Plasmas, 10, 2147

Unno W., Osaki Y., Ando H., Saio H., Shibahashi H., 1989, Nonradial Os-

cillations of Stars, 2nd edn. Univ. Tokyo Press, Tokyo

Weinberg S., 1962, Phys. Rev., 126, 1899

Zhugzhda Y. D., Dzhalilov N. S., 1982, A&A, 112, 16

Zhugzhda Y. D., Dzhalilov N. S., 1984, A&A, 132, 45

A P P E N D I X A : M AG N E T I C A L LY M O D I F I E D
M O D E L S

Model S of Christensen-Dalsgaard et al. (1996) provides a conve-

nient description of the surface layers of the quiet Sun. Unfortu-

nately, no similar model is available for sunspot penumbrae. How-

ever, we may crudely construct one from Model S by taking into

account the effects of magnetic field. Following the lead of Mathew

et al. (2004) in ignoring tension effects and setting pg = p0 − pm,

where p0(z) is the pressure in Model S and pg and pm are the gas

and magnetic pressures in the new model, and ignoring variations

in pm with height in comparison with those in pg, a new sound speed

profile is given by

c2 = c2
0 − �1

2
a2, (A1)

where a2 = B2/μρ. Here, hydrostatic equilibrium has been applied

to show that the density profile ρ(z) is not altered by the introduction

of a uniform (or indeed any force free) magnetic field. Furthermore,

variations in the adiabatic index �1 due to ionization differences

between the models have been ignored (see Crouch et al. 2005,

where this is taken into account).

Clearly though, equation (A1) is only plausible where there is

a lateral force balance between ‘inside’ and ‘outside’. It is not

Figure A1. The sound speed c against z for the MMMS with field strengths

0, 0.5, 1, 1.5, 2, 2.5 and 3 kG (right to left).

Figure A2. The equipartition level zeq (Mm) as a function of magnetic field

strength B (kG) in the MMMS.
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appropriate above the surface where magnetic canopy expands to

fill the available space. We therefore modify equation (A1) by tak-

ing into account both the reduced temperature in a spot, and the

Wilson depression of around 400 km in umbrae and 100–120 km in

penumbrae (Mathew et al. 2004). Judging by the umbral models of

Maltby et al. (1986), the minimum umbral temperature is cooler than

in the quiet Sun reference model by typically around 10 per cent.

Assuming that this effect and the depth of the Wilson depres-

sion scale linearly with magnetic energy density, the following ad

hoc model represents a reasonable representation of the expected

structure:

c2 = max

[
c2

0 − �1

2
a2,

(
1 − B2

10B2
0

)
c2

0

(
z + 0.4B2/B2

0

)]
, (A2)

where B0 = 3 kG is a reference field strength characteristic of um-

brae. We do not model the chromospheric increase in temperature

at higher levels. This sound speed is plotted in Fig. A1 for various

magnetic field strengths.

With the MMMS in place then, it is possible to determine the

equipartition height zeq as a function of field strength. Fig. A2 shows

that at penumbral strengths, 1–2 kG, we might expect −0.3 � zeq �
0.05 Mm. This strongly favours substantial near-surface magnetic

effects on helioseismic waves in penumbrae. In umbrae, zeq could

be as deep as −0.6 Mm according to this model.
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