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Magnetic-field-induced changes of the isotropic-nematic phase transition in side-chain polymer
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The isotropic-nematic (/-N) phase transition of side-chain polymer liquid crystals is intrinsically a weak
first-order transition with a biphasic region spread over a wide temperature interval. In the presence of high
magnetic fields we find the /-N transition to become a strong first order. The /-N biphasic region shrinks its
temperature window as larger magnetic fields are applied, until it completely disappears and the transition
completes at a fixed temperature. We interpret this behavior as a consequence of the nonlinear coupling of the
magnetic field to the system free energy, via the suppression of the order fluctuations in the nematic mesophase

at the /-N transition crossing.
DOI: 10.1103/PhysRevE.67.050701

Side-chain polymer liquid crystals, SCPLCs, are made of
rigid mesogenic units attached laterally to a polymeric chain
via a flexible spacer, which gives the mesogenes enough
freedom to form Liquid Crystalline mesophases [1-3]. The
SCPLCs phase space is characterized by a glass phase at low
temperatures followed by (an) intermediate ordered me-
sophase(s) and an isotropic phase at high temperatures. The
SCPLCs phase transitions are very broad, taking place over a
wide temperature region, where a mesophase coexists with
either the isotropic melt or another mesophase—behavior
generally attributed to a certain degree of polydispersity [4].

Combining the properties of polymers with the self-
organization of liquid crystals, SCPLCs are of fundamental
research interest [2—4] as well of importance for many ap-
plications [5] such as optically nonlinear devices [6], dis-
plays [7,8], and optical data storage [9]. The isotropic-
nematic phase /-N transition is a key point in understanding
the properties of these hybrids and is as well a central feature
in any method that deals with SCPCLs processing [10—13].

Here we report a study of the /-N transition of SCPLCs in
high magnetic fields. We used two thermotropic nematic SC-
PLCs: a polynorbornene and a polyacrylate-derivative SC-
PLC, both with cyanobiphenyl groups as mesogenes and me-
thylene units as spacers, see inset Fig. 1(b). We studied the
polynorbornene SCPLCs in two distinct conformations, with
a spacer length of 5 methylene units and respective 3 meth-
ylene units: Poly((%)-exo0,endo-bis{5-((4'-cyanobiphenyl-4-
yl)oxy)pentylinorborn-5-ene-2,3-dicarboxylate) [14], re-
ferred as C5 and Poly((%)-exo,endo-bis{3-((4'-cyanobi-
phenyl-4-yl)oxy)propylinorborn-5-ene-2,3-dicarboxylate) re-
ferred as C3 [14]. The polyacrylate-derivative: Poly-
{4-((4'-cyanobiphenyl-4-yl)oxy)butyl}acrylate, referred to as
B4, has a more flexible backbone chain in comparison with
the polynorbornene one and its spacer is 4 methylene units
long. The samples have been studied for different polymer-
ization degrees, n. The samples were prepared as films on
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optical glass support by spin coating from solution and sub-
sequent solvent removal by annealing. For experimental in-
vestigation, the sample is placed in a temperature-controlled
chamber, within the bore of a 20 T resistive “Bitter’” magnet.
The magnetic-field-induced birefringence and the optical
transmission are simultaneously measured, using a
polarization-intensity double modulated laser [15]. The bire-
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FIG. 1. (a) Optical transmission evolution of a B4 sample, n
=30, 20 pum film, cooled in different magnetic fields. (b) Changes
of the optical transmission turning point, extracted from the upper
panel curves. Inset (a) chemical formulas for C3 (x=3), C5 (x
=5), and B4 (x=4).
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fringence signal is indicative of the macroscopic order of the
sample [16]. In the nematic phase the SCPLCs features a
microscopic texture of locally ordered domains, randomly
oriented to each other, which give rise to light scattering. At
the probing wavelength, He-Ne, 543.5 nm, the samples do
not absorb and the scattered light is the only contribution to
the optical transmission, allowing direct monitoring of the
sample domain morphology. All experiments were done at
10 °C/min cooling-warming rate, which was verified to be
sufficiently slow.

Figure 1(a) presents the optical transmission evolution of
a B4, n=30, sample, cooled in different magnetic fields. In
zero magnetic field, from high transmission in the isotropic
phase the sample starts to scatter light as it undergoes the
I-N transition; the transmission constantly decreases during
the biphasic region and the sample ends up completely
opaque deep in the nematic phase. For low applied magnetic
fields, the induced changes are small and the sample follows
almost the same path as the cooled one in a zero magnetic
field. In stronger magnetic fields, there is a point in the bi-
phasic region where the transmission completely changes its
trend, showing a sharp increase, followed by saturation at an
intermediate value in the nematic phase. Higher applied
magnetic fields move the transmission turning point toward
the beginning of the /-N transition, 7y, while the transmis-
sion saturates at higher values. For fields above 7 T the bi-
phasic region completely disappears and the transition takes
place in a very narrow interval of 0.5 °C. The transmission
turning point evolution, Fig. 1(b), shows a strong onset
around 2.5 T, followed by saturation for fields above 7 T. For
a B4 sample with a lower polymerization degree, n=20, a
similar effect is observed, in this case the biphasic region
disappears around 5.5 T. For a C5 sample with n=20, the
results are analog. Significant effects start being observable
at about 5 T and fields about 17 T are needed to completely
close the biphasic region. A C5 with n=30, shows a com-
parable behavior. A significant effect appears around 8 T but
the maximum available field 20 T only partially closes the
biphasic region. For a C5 sample with an even higher poly-
merization degree, n=40, an effect starts being visible
around 18 T, while until 20 T we observe only a modest
narrowing of the biphasic region. The C3 samples did not
show an effect in the maximum applied field of 20 T for any
of the investigated polymerization degrees: n=20, n=230,
n=40.

Figure 2 presents the birefringence signal and the optical
transmission of a C5 sample recorded upon cooling in 12 T.
The birefringence clearly shows the pretransitional ordering
followed by a sharp jump in a narrow interval of about
0.5 °C. The curve continues with a smooth increase through-
out the biphasic region, followed by saturation as it ap-
proaches the glass phase. In the pretransitional region the
transmission features a small decrease followed by an abrupt
decrease starting at 7;_, which extends for the next approxi-
mately 0.5°C. From here on, the transmission changes its
trend and continuously increases until the end of the biphasic
region. In the nematic phase the transmission signal remains
constant, indicating that the ordering, as revealed by the bi-
refringence, affects uniformly the sample without creating
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FIG. 2. Birefringence (full line) and optical transmission (dotted
line) of a C5 sample, n=20, 10 wm film, simultaneously recorded
during cooling in 12 T, versus (7" —T) temperature scale, with
T*~T, y+1 °C. Inset: magnetic-field-induced birefringence of the
same C5 sample, recorded upon cooling in different fields.

more scattering. The inset presents the birefringence of the
same sample as cooled in different fields. The onset of the
birefringence always starts at 7, and saturates toward the
nematic-glass transition, but the saturation values are higher
for larger applied fields.

For a better understanding of these observations, let us
first consider the /-N transition dynamics in the absence or
presence of an applied magnetic field. Intrinsically, the I-N
transition of SCPLCs is a two-step process. A volume frac-
tion of the sample undergoes a sharp first-order jump at a
fixed temperature, 7;_y, via nucleation of nematic islands at
equilibrium with the surrounding isotropic phase. The differ-
ent refractive indices between the nematic islands and the
adjacent isotropic component cause strong light scattering
(Fig. 1). The rest volume fraction of the sample changes
continuously from isotropic to nematic over a large tempera-
ture range, via a growth mechanism on the already existing
nematic nuclei, Fig. 3. This particular behavior originates in
the fact that the rotational orientation of the mesogenes is
hindered by the polymer backbones [17]. In the absence of
an applied external field, the directors of the nucleated nem-
atic islands are randomly oriented and the particular orienta-
tion of each individual nematic island is fixed by the
mesogene-backbone coupling. Therefore, as is pictorially
sketched in Fig. 3, any configuration of the isotropic compo-
nent to become nematic between two neighboring nematic
islands costs an extra elastic energy, see also Eq. (1). To
overcome this energetic barrier, a fraction of the sample un-
dergoes suppercooling, impending the transition to be con-
sumed at a fixed temperature. At the end of the biphasic
region the sample volume become mostly covered by nem-
atic islands with a different orientation relative to each other,
which evolves further into nematic domains separated by
sharp domain walls; Fig. 3, upper panel. This causes a fur-
ther increase in the scattered light, Fig. 1, while the birefrin-
gence of this multidomain morphology is very small due to
the absence of a common director orientation, Fig. 2 inset.

In the presence of an applied magnetic field, as 7,y is
reached, nematic islands nucleate and in the same time un-
dergo orientation along the magnetic-field lines. This order-
ing results in a strong suppression of the elastic energetic
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FIG. 3. Schematic representation of the biphasic region where
nematic nuclei coexist at equilibrium with the surrounding isotropic
component, in the absence (left and upper panel) [presence (right
and lower panel)] of an applied magnetic field. The central panels
illustrate the possible configuration of the isotropic component to
become nematic (dotted arrows) and its energetic costs.

costs and, as a consequence, a larger volume fraction of the
sample turns nematic at 7;_y, Fig. 3, with the biphasic region
shrinking accordingly. The magnetic field leaves unchanged
the local order, because the magnetic energy per molecule is
small compared to the thermal fluctuations, but changes the
orientation of the nematic islands as a whole, affecting only
the director order. At the end of the biphasic region the indi-
vidual directors are aligned along the magnetic field, causing
the system to evolve into a monodomain morphology, Fig. 3,
(lower panel), which correspond to a high transmission (Fig.
1) and large birefringence (Fig. 2 inset).

Following a Rayleigh-Debye approach [18], we have
studied theoretically the light scattering of the SCPLCs in the
absence and presence of a magnetic field [15]. We have
treated the nematic islands of domains as scattering centers,
with their orientations relative to the magnetic field de-
scribed by a statistical orientation function [16]. In our
model the scattering occurs due to differences in the refrac-
tive indices between the nematic islands and the surrounding
isotropic phase or due to different orientation of the optical
axis in neighboring nematic domains. We found two distinct
scattering regimes: the beginning of the transition, with iso-
tropic and nematic components with different refractive in-
dices, and the end of the transition, with only nematic do-
mains with the same refractive index but different
projections. In the absence of induced order, the /-N trans-
mission appears as a monotonic decrease of the optical trans-
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mission, with no discontinuities due to the crossover from
one regime to the other. This is consistent with the experi-
mental observations, see the 0 T curve in Fig. 1(a). In the
presence of an applied magnetic field we find that the
isotropic-nematic islands regime is dominated by the exis-
tence of two different refractive indices, whereas the field-
induced orientation of the nematic islands changes little the
overall scattering. However, in the all-nematic regime, the
scattering strongly depends by the magnetic-field-induced
orientation, with the limit of no scattering in the case of total
alignment. It is only at the crossover between the two re-
gimes that a turn in transmission can occur. Optical micros-
copy analysis consistently confirmed this theoretical obser-
vation.

Consequently it is correct to associate the experimentally
observed transmission turning point, Fig. 1 and Fig. 2, with a
point within the biphasic region, with its position scaling
relative to the temperature window of the biphasic region.

To analyze these observations we apply the Landau—de
Gennes (LDG) free energy expansion [19-21] to the specific
case of SCPLCs in magnetic field:

F=a(T-T*)Q*~ B0+ CQ*+AxB*Q
+L(dQ/dr)*+K,, ,0, (1)

where Q, T, and T* are the uniaxial nematic order parameter,
temperature, and the minimum supercooling temperature.
The expansion coefficients a, B,,, C, are constants related to
the SCPLCs properties. L is related to the elastic constants
[21], K,,.,, is the mesogene-backbone coupling energy, A y is
the anisotropy of the mesogene diamagnetic, susceptibility
and B is the magnetic-field induction.

The LDG framework [19-21] predicts that as the value of
the applied magnetic field increases, the transition tempera-
ture moves to higher values while the order of the transition
changes toward second order. Pretransitional magnetic-field
ordering weakens the order parameter jump at the transition
and there is a critical point where the transition becomes
second-order and for higher fields the transition completely
disappear. However, typical numbers show that the possibil-
ity of such an experimental observation is quite remote, since
it requires magnetic fields of the order 10°~10* T. Because
the typical fields used for our experiments are B<20 T, we
neglect the direct diamagnetic contribution term AyB?Q.
The mesogene-backbone coupling term K,, ,Q is compa-
rable with the magnetic one [17] and we neglect it as well.
However, both terms are indirectly present in the order
fluctuation term L(dQ/dr)*: one responsible for the its
nonvanishing character and one for its value. Making use of
the factorization: L(dQ/dr)*=LQ*(Ap/é)* and of &
=[L/a(T—T*)]"?, Ref. [21], one finds the free energy to
have the following expression:

F=a(T—-T*)Q*(1+A})—B,0°+CQ*, )

where A, is the amplitude of the director order fluctuations
and £ is the fluctuation correlation length. Approaching the
I-N transition from above, the A term makes the transition
to have a weak first-order character with a biphasic isotropic-
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FIG. 4. Optical transmission for a B4 sample with n=230,
20 um film recorded during heating up (solid line) in zero field
after cooling (dotted line) in a magnetic field of 2.3 T (a), 3.0 T (b),
and 3.5 T (c).

nematic region extended from T, to T*, where T,y is the
LDG result in the absence of fluctuations, Eq. (2). It is vis-
ible that via induced alignment the magnetic field reduces the
contribution of the fluctuation term from A%(B)~O.l, Ref.
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[22], in the absence of any induced order to A%(B) ~0 in the
case of complete order, narrowing the temperature range of
the biphasic region. In the case of high induced ordering the
fluctuation contribution tends to zero, the classic LDG result
is restored, and the transition is fully first order. When the
I-N transition is approached from below, the order fluctua-
tion term does not act anymore as an energetic barrier, with
the important consequence that the transition is sharp and
there is no biphasic region. Figure 4 presents the optical
transmission recorded as the B4 sample approaches the I-N
transition from below. In complete agreement with our pro-
posed model, the curves clearly show no biphasic region.
The presence of the mesogene-backbone coupling term
K,,_,O has the important consequence that once order has
been induced in the SCPLCs system, the sample alignment is
stable until warmed to the isotropic phase [17]. The different
magnetic-field strengths needed to obtain an effect for vari-
ous SCPCLs compounds can be understood via the fact that
structures with a stiffer backbone, shorter spacers or larger
polymerization degrees need higher magnetic fields to be
aligned at the I-N crossing [17].

We have shown experimentally that a strong magnetic
field changes the /-N transition of SCPLCs from a weak first
order to a sharp first order via the suppression of the order
fluctuations. We propose a qualitative interpretation of this
phenomenon within the framework of the LDG theory via
the nonlinear coupling of the magnetic field to the order
parameter fluctuation. The present results suggest that the
mesogene-backbone coupling is coresponsible for the exis-
tence of the isotropic-nematic biphasic region, complemen-
tary information to the current understanding of the field [4],
namely, that only a certain degree of polydispersity accounts
for the presence of a biphasic region.
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