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ABSTRACT

T he goal of nuclear fusion research  is to confine a  deuterium - 
tritium p la sm a  a t  a  sufficiently high te m p e ra tu re  (15keV ) a n d
d e n s i ty  (3 x 1 0 20r r r 3) for a  sufficient length of tim e (1 se c )  to
produce  net fusion power. O n e  m eans to attain the  required p lasm a
confinem ent is to em bed  the  p lasm a within a  m agnetic  field. The 
global s truc tu re  of this m agnetic  field de te rm ines  th e  variation of 
m ag n e tic  field s treng th  within th e  su r fa c e s  of c o n s ta n t  p la s m a  
p re ssu re .  This field strength  variation in turn d e te rm in es  m any of 
the  stability and  confinem ent properties of the p lasm a.

This d isse r ta t ion  g iv es  the  first de ta iled  exposition  of th e  
s p e c t r u m  of p o s s ib le  fo rm s  for m a g n e t ic  field  s t r e n g th  
co rrespond ing  to toroidal p la sm a  equilibria, both within any th ree -  
d im en sio n a l  volum e an d  within any tw o-d im ensional su r fa c e  of 
co n s tan t  p lasm a  p ressu re . Constraints d u e  to the  toroidicity of the  
configuration and  the  divergence-free  property of the  m agnetic  field
a re  found to limit the form of the field strength.

T h ree -d im en s io n a l  s te l la ra to r  equilibria c o rre sp o n d in g  to a  
p a r t icu la r  form of th e  m a g n e tic  field s tre n g th  a r e  e sp e c ia l ly  
in teresting . T h e s e  "quasi-helically symmetric" equilibria a re  non- 
ax isym m etric , toroidal configura tions in which th e  m agne tic  field 
s treng th  d e p e n d s  on only o n e  angular coordinate , in s tead  of two, 
within th e  co n s tan t  p lasm a p re s su re  su rfaces .  Unlike conventional 
s te l la ra to r  equilibria , t h e s e  quas i-he lica lly  sy m m etr ic  equ ilib ria  
exh ib it  th e  fa v o ra b le  c o n f in e m e n t  p ro p e r t ie s  of ax isy m m etr ic  
tokam ak  equilibria. W e sh o w  that s te llara to rs  with ex ac t  q u a s i ­
helical symmetry do  not to exist, but th a t  good approxim ations can  
be  found.
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CHAPTER I 

INTRODUCTION

The heating of a  g a s  to tem pera tu res  over 1 0 4 Kelvin permits 

m ost of the  e lec trons  to overcom e their a tom ic binding en erg ies . 

The global behaviour of such  an ionized g a s  is very different from 

that of a n  ordinary g a s  of particles. W e refer to this particular type 

of g a s  a s  a  "plasma." T he trajec tories of the  ions and  e lectrons 

within a  p la sm a  a re  significantly a ffec ted  by th e  m ag ne tic  and  

e lec tric  fields th a t  they  th e m se lv e s  c re a te .  T hus, a  com ple te  

d e scr ip tio n  of th e  m acro scop ic  p ro p e r t ie s  of a  p la s m a  is not 

conducive to simple analysis.

T h e  global properties of a  p lasm a  depend  upon m any factors, 

including the  tem p e ra tu re  a n d  density . The particu la r  c la s s  of 

p la sm a s  tha t will be  exam ined  within this d isserta tion  a re  relevant 

to the  design  of a  therm onuclear fusion reactor. In order that fusion 

reactions occur, th e  ions of the  p lasm a must h av e  sufficient energy 

to overcom e their repulsive Coulomb potentials. Such  a  condition is 

sa tisfied  within a  thermal p lasm a if th e  tem p era tu re  of th e  ions is 

sufficiently high. Fusion "breakeven" occurs  when the  energy re lease  

from fusion reactions is g rea te r  than th e  rate of energy  loss due  to 

b re m s tra h lu n g  rad ia tion . For deu te r ium -tr it iu m  p la s m a s ,  th is  

condition is e x p re s s e d  using  L aw son 's  criterion1 , which requ ires

2
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the p la s m a  num ber density n and the energy confinem ent time r E to 

sa tisfy  n r E>.f(T), with f(T) = 3 x  I 0 20m~3s  a t  a  tem pera tu re  of 

T s i  SkeV .

Law son 's criterion is modified for the  p lasm as  of the  sun  and  

o th e r  s ta r s ,  s in c e  their fusion  reac tio ns  primarily involve w e a k  

n u c lea r  reactions instead  of strong nuclear reactions. The particle 

density  and  energy  confinement time within the  hydrogen p la sm a s  of 

s ta rs  m ust be m any  orders of magnitude higher than  that within the  

deu te rium -tr it ium  p la s m a s  of the labora to ry . S ta r s  u s e  th e ir  

i m m e n s e  g ra v i ta t io n a l  f ie ld s  to g iv e  th e  r e q u i r e d  p la s m a  

confinem ent to yield net fusion energy. Obviously, so m e  other m ea n s  

m u s t  b e  a p p lied  for la b o ra to ry  p la s m a s ,  su c h  a s  m a g n e tic  

c o n fin em en t.

It is well known that charged  particles gyrate  a b o u t  m agnetic  

field lines, obeying the  Lorentz force equation, m {dv /d t}  = qvxB . 

T he  rad iu s  of gyration, which is called  the  cyclotron rad ius , is 

i n v e r s e l y  p r o p o r t io n a l2 to the  s treng th  of th e  m agne tic  field. 

H en ce , a  strong m agnetic  field can se rv e  to confine the  c h a rg ed  

pa rtic les  of a  p la s m a  in directions perpendicular to th e  field lines. 

S tro n g e r  field s tren g th  resu lts  in be tter  confinem ent pe rpend icu lar  

to th e  field lines, s ince  the  ra te  at which the  charg ed  particles drift 

a c r o s s  th e  field lines is inversely  proportional3 to th e  m agne tic  

field s treng th . However, c h a rg e d  particles with a  sufficiently high

1 Lawson, J. D. (1957). Proc. Phys. Soc. London, Sec. B 70, 6.
2Nishkawa, K„ and Wakatani, M. (1990). Plasma Physics: Basic Theory with Fusion 

Applications, Springer-Verlag, Berlin, Heidelberg, Germany, p. 15.
3lbid, p .  19.
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velocity parallel to th e  field lines are  not confined in this direction. 

This particular dilem ma can  be  alleviated by bending the  field lines 

into a  toroidal geom etry , so  that th e re  exist no o pen  e n d s  through 

which the  charged  particles c an  e scape .

T h e  d irec tion  of gyration  of th e  c h a rg e d  p a rt ic le s  a b o u t  

m agn e tic  field lines is a lw ays such  a s  to d e c r e a s e 4 the  s treng th  

of th e  m agnetic  field B. T he collective motion of th e s e  c h a rg ed  

partic les yields an electric current j within the p lasm a. T he  sum  of 

th e  Lorentz force, qvxB , ove r  all the particles gives a  force pe r  unit 

volum e jx B . In equilibrium, this force density exactly b a lan ces  that 

d u e  to the  p lasm a p ressu re  gradient V p. Thus, p la sm a  equilibrium is 

given by

jx B  = ( 1 / j i 0){VxB}xB = Vp, (1 .1 )

using Ampere*s law j = (1 / j i 0) V xB. Eq. (1.1) defines the  m agneto- 

h y d r o d y n a m i c 5 (MHD) descrip tion of p lasm a equilibria. Stability 

r e q u i r e m e n ts  usually  limit £ , which is the ratio of th e  p la sm a  

p re s su re  p to the  magnetic energy density B2/{ 2 <Pq}> t0 i®s s  ^ an  ten 

p e rc e n t .

A trivial c o n se q u e n c e  of the p lasm a  equilibrium equation , Eq. 

(1 .1 ) ,  is

4Nishkawa, K., and Wakatani, M. (1990). Plasma Physics: Basic Theory with Fusion 
Applications, Springer-Verlag, Berlin, Heidelberg, Germany, p. 15.

s Friedberg, J. P. (1987) Ideal Magne to-Hydro dynamics, Plenum Press, New York, 
p. 7.
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B*Vp = j - V p  = 0. (1.2)

H e n c e ,  bo th  th e  m a g n e tic  field l in e s  an d  e le c t r ic  c u r r e n t  

trajectories lie in su rfaces  of co n s tan t  p ressu re .  The "hair" theorem  

of topology s ta te s  th a t  the only surface in th e  three d im ensions th a t  

c an  h av e  a  finite vec to r  field which is tan g e n t  everyw here  is a  

topological torus. Thus, the cons tan t  p lasm a p ressu re  su rfaces m ust 

b e  n e s te d  toroidal su rfaces . The cen tra l curve, which genera lly  

c o r r r e s p o n d s  to th e  m axim um  p lasm a  p re s s u re ,  is called  th e  

m agnetic  axis. T he sh a p e  of this closed, smooth curve  de term ines 

m any of th e  m acroscop ic  p roperties  of a  p lasm a  equilibrium. An 

exam ple  of a  five-period, "helical-like” axis is shown in Fig. 1.

A s e t  of m agnetic  coordinates defined in term s of the p re ssu re

su rfa ce s  of a  p la sm a  equilibrium w as d eve loped  by Boozer6. The 

derivation an d  application of th e s e  particu lar co o rd in a te s  will b e  

p re se n te d  within C h ap te r  II. T h e  major ad van tag e  of implementing 

B oozer c o o rd in a te s  is that m any  transport and stability p roperties  

of toroidal MHO equiiibira  c a n  be  d e te rm in e d 7 using  only th e  

s t r e n g t h  of the m agnetic  field, | B(x) | , exp ressd  in te rm s of th e s e  

coo rd ina te s .  Information regarding  the ac tual direction of the  field 

is of little r e le v a n c e  to p la s m a  s tab ili ty  a n d  c o n f in e m e n t .  

Furtherm ore , widely differing p la sm a  configurations c a n  have  very  

s im ila r8 transport properties, if exp ress ions  for their m agnetic

6Boozer, A. H. (1981). Phys Fluids 24, 1999.
7Boozer, A. H. (1984). Phys. Fluids 27, 2441. 
s Boozer, A. H. (1983). Phys. Fluids 26, 496.



FIGURE 1

FIVE PERIOD "HELICAL-LIKE" MAGNETIC AXIS

"helical-like" ax is  given by Eq. (3 .9 )  with M = 1, N = 5, 
1 / 1 5 .
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field s treng th s  in term s of Boozer coord inates have  similar forms.

This d isse r ta t ion  g ives th e  first de ta iled  exposition  of the

sp e c t ru m  of p o ss ib le  form s for the  m ag n e tic  field s t r e n g t h

co rrespond ing  to toroidal p la sm a  equilibria, both within any  th ree- 

d im e n s io n a l  vo lum e an d  within an y  tw o -d im en s io n a l  p r e s s u r e

su rface . T he en tire  ana lysis  is perform ed in te rm s  of B oozer

c o o rd in a te s ,  d u e  to the ir  facility in de te rm in ing  t ra n sp o r t  a n d  

stability p ropert ies  of p la sm a  equilibria. The particu lar expansio n  

m ethod th a t  is applied is particularly conducive for such  an analysis  

of the  field strength  in term s of Boozer coordinates.

C o n f ig u ra t io n  p ro p e r t ie s  o th e r  th a n  th e  m a g n e t ic  field 

streng th , such  a s  the  local and  global s h e a r  of th e  m agnetic  field 

lines, a ls o  a ffec t th e  stability  an d  c o n f in e m e n t  p ro p e r t ie s  of 

g e n e r a l  to ro id a l  p l a s m a  eq u il ib r ia .  T h e re  e x is t  s u i t a b le

a p p ro x im a t io n s  to th e s e  p a ra m e te r s  for a n y  to ro ida l p la s m a

equilibrium. The m ethods developed  in this d issera ta tion  allow one 

to in v es tig a te  th e  p a ra m e te r  s p a c e  of optim al toroidal p la sm a

eq u il ib r ia ,  u s ing  a p p ro p r ia te  a p p ro x im a t io n s  fo r  th e  p la s m a  

p a ra m e te rs .  Thus, we can  clarify the  variety of three-d im ensional 

toroidal p la sm a  equilibria that a re  available to the  fusion program.

T h e  a c tu a l  m eth o d  u s e d  to in v es tig a te  toro idal p la s m a

equilibria involves a  Taylor expansion  in a  radial coord ina te  and  

Fourier e x p a n s io n s  in two an gu la r  coo rd ina te s .  W e  im plem ent a  

Taylor s e r i e s  e x p an s io n  b e c a u s e  p la s m a  stability  and  tran sp o r t  

p ro pert ies  d e p e n d  primarily on the  low o rder  te rm s  of the Taylor
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se ries .  In addition, sca la r-p ressu re  MHD equilibria m ust satisfy the 

force ba lance  equation, Eq. (1 .1), which is non-linear in the m agnetic 

field, making trac tab le  analysis  extrem ely difficult.

T he  e x p an s io n  ab o u t th e  axis  is actually  perform ed using 

B o o z e r  c o o r d in a te s 9, {v^,0,<p} (S ee  Fig. 2), due  to their facility in 

de te rm in ing  co n fin em en t p roperties . T he  toroidal m ag n e tic  flux 

su r fa c e s  $  define the radial coordinate from the  m agnetic  axis to a  

particular toroidal surface . The p lasm a p ressu re ,  p, is a  function of 

}fr alone, so  that Eq. (1 .2 ) implies B‘V ^ ,  giving field line trajectories 

within s u r fa c e s  of co n s tan t  ]ff. The poloidal ang le  0 de fines  the 

"short way" around the  toroidal ^ -su rfaces ,  and  the  toroidal ang le  0 

defines the  "long way" around the  toroidal vjr-surfaces.

T h e  d ire c t  m eth o d  for d e te rm in in g  c o o rd in a te  s u r f a c e s  

involves specifing the  co o rd ina te s  a s  a  function of position, i.e., 

{^f(x), 0(x), <p(x)}. In this d isserta tion , w e  apply the  in verse  

m e t h o d 10 in which the  spatial position is defined with re s p e c t  ot 

the  coord ina tes , i.e., x(^,0,<p) ( se e  Fig. 3). Our represen ta tion  of 

x(^,0.<p) utilizes th e  o rthonorm al F re n e t  v e c to r s 1 1 for s p a c e  

c u rv e s ,  (K0(£),ro(J!.) ,l3oU )} (se e  Fig- 4 ) t0 define  the  spatia l 

position in the  vicinity of the  m agnetic  axis. The length a long the 

axis, i ,  of the  Frenet vectors is a  function of only the  toroidal angle,

< P .

The spatial position, x(^.0.<P), is Taylor expanded  in term s of 

9Boozer, A. H. (1981). Phys Fluids 24, 1999.
10Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
11 Mathews, J., and Walker, R. L., (1970). Mathematical Methods of Physics, W. A. 

Benjamin, Inc., New York, 2nd ed., p. 408.
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FIGURE 2 

BOOZER COORDINATES

J B - d a p= -2TCX / B - d a t = 2 tqJi
/ ( V * B ) * d a p= 2TCG J (V x B )-d a t = 2TCI

The toroidal flux within a  m agnetic  su rface  is 2Ttvp = /B * d a t ;  th e
poloidal flux outside of a  m agnetic  surface, i.e., through the  hole in 
the  to ru s ,  is 2n% (\j> ) = - jB * d a p; th e  ro ta tiona l t ran sfo rm  is
i(V0sd% /dvp, i.e., th e  poloidal ad v an ce  p e r  toroidal transit  of a  
m agnetic  field line is 2TCi(yO; the  net poloidal "coir curren t outside  
of a  co n s tan t  vp su rface , which gives the  toroidal m agnetic  field, is 
2TCG(^)/ji0 = (1/Jio)/(V >«B)‘dap; the  net toroidal "plasma" current 
enclosed  by a  constan t vp surface, which g ives the  poloidal m agnetic  
field, is 2 T tI (^ ) /p o  = ( l / j io ) .f (V x B )* d a t;  the  poloidal and  toroidal 
angles a r e  given by 9 and  (p, respectively.
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FIGURE 3 

SPATIAL POSITION

A unique va lue  for the  spatial position, x(^,0,<P), with re s p e c t  to 
s o m e  c o o rd in a te  sy s te m  is o b ta in ed  by specify ing  th e  B o o z e r  
co o rd in a te s  0, <PK Coordinate su rfaces a re  found by holding the  
coordinate  in question fixed, an d  varying the  o ther two.
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FIGURE 4 

FRENET UNIT VECTORS

T he  orthonormal s e t  of F renet unit vectors {k 0(£>). 'CqCH.),lfo(A)} 
form a  local Cartesian-like coordinate  system  a b o u t  a  curve; I?o(iO 
is th e  local tan g e n t  to the  curve; k 0(&) is the local normal to the  
c u rv e ,  i.e., th e  ^unit v ec to r  lying in the  d irec tion  of th e  local 
c u rv a tu re ;  a n d  £ 0(4) is th e  local binormal to th e  curve  th a t  is 
mutually perpendicular to the  other two.
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the  sq u a re  root of the  toroidal flux, vp1/2, an d  Fourier e x p an d e d  in 

te rm s  of the  poloidal ang le , 0, and  th e  toroidal angle, (p. The 

torodial flux, vp, is approxim ately  v p s B g i t r 2, with r  the  a v e ra g e  

d is ta n c e  from the  m agnetic  axis to the  ou term ost p re s su re  surface . 

H ence , the  Taylor expansion  in the  sq u a re  root of the  toroidal flux, 

vp1/2, is equivalent to an expansion in the p lasm a minor radius, r .  In 

norm alized units, this p rocedure  is simply a  pow er se r ie s  expansion  

in term s of a  g e n e r a l i z e d  inverse a spec t  ratio e * r / R c , with Rc the 

s c a le  length of the  m agnetic  field. The va lue  of Rc is c h o sen  to 

co rre sp o n d  to the m i n i m u m  of the l o c a l  radius of curvature of the  

m agn e tic  axis, so  th a t  th e  expansion  p a ram ete r ,  e, is maximized. 

This maximization of e minimizes the m agnitude  of the  expansion  

coefficients, th us  insuring validity of the  ex p an sion  th roughou t the 

toroidal region.

The direct m ethod for expanding a b o u t  a  m agnetic  ax is  w as 

d e v e lo p e d  by M e rc ie r1 2 , Lortz a n d  N u rh e n b u rg 13 ' 1 4 ,1 5 , and  

S o lo v 'ev  a n d  S h a fra n o v 16, using the toroidal flux vp(r,0,£), Taylor 

ex p an d ed  in the  p lasm a radius r, and Fourier expand ed  in a  poloidal 

ang le  0 and the axis length JL Lortz and  Nurhenburg also u sed  the 

inv erse  m ethod to Taylor expand  the  spatia l position x(V\0,<p) in 

te rm s of the sq u a re  root of the  toroidal flux, vp1/2, an d  Fourier

12Mercier, C. (1964), Nucl. Fusion 4, 213.
13Lortz, D., and NQhrenberg, J. (1976). Z. Naturfarsch. 31a, 1277.
14Lortz, D., and NQhrenberg, J . (1977). Nucl. Fusion 17, 125.
1sLortz, D., and NQhrenberg, J. (1979). Z. Naturfarsch. 34a, 167.
16Solov'ev, L S., and Shafranov, V. D. (1970). Reviews of Plasma Physics 5 ,1 .
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expand  in term s of a  poloidal angle 9 and a  toroidal angle <p, in order 

to  e v a lu a t e  th e  M ercier s tab ility  c rite r ion . H ow ever, the ir  

c o o rd in a te s  did not c o rre sp o n d  to the  B oozer c o o rd in a te s  u sed  

within th is  a n a ly s is ,  so  th a t  the  stability and  tran sp o rt  of their 

equilibria a re  not a s  easily analyzed.

T h e  m ost va luab le  p roduct of th is  d isse r ta t ion  is n o t  the  

p a rt icu la r  e x p a n s io n  m ethod  u se d  to e x am in e  toroidal p la sm a  

equilibria. It is the  generic restrictions on the form of the m agnetic  

field s tre n g th  co rrespond ing  to toroidal p la sm a  equilibria. T h e se  

lim ita tions in th e  freedo m  of the  field s t r e n g th  co n fine  the  

sp e c tru m  of p o ss ib le  p la sm a  equilibria tha t a re  availb le  to the  

fusion program .

T he  expansion  of the m agnetic  field strength  corresponding  to 

generic  toroidal p la sm a  equilibria is found to have th e  form17

B(^,9,<J>) = B 0(<p){1 + K ( t p ) x ( y , e , < p )  + ^ F ( 9 , < p )  + ^ 3 / 2 C(0,<p) + — }.
(1 .3)

This express ion  is a  Taylor se r ie s  in the  sq u a re  root of the  toroidal 

flux, ^ 1/2, and  a  Fourier se r ies  in the poloidal and  toroidal ang les , 0 

an d  (p, respectively. The particular notation in Eq. (1 .3 )  w as c h o sen  

s in c e  th e  function F(0,<p) is free and  the  function C(0,(p) is 

cons tra ined , a s  expla ined  later within this introduction.

The field strength  of the magnetic axis axis, B0(tp) in Eq. (1 .3), 

is a s s u m e d  to b e  non -zero , s ince  th e  app lica tion  of B o o zer  

c o o r d in a te s  r e q u i r e s  th a t  th e  m a g n e tic  field s t re n g th  n e v e r

17Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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v a n i s h 18 within the  toroidal region. The function x(<p) is the  local 

c u rv a tu re  of th e  m agnetic  ax is , which is th e  rec ip roca l of th e  

m a g n i t u d e  of the  l o c a l  radius of curvature  of the  m agnetic  axis. 

The function x(^,0.(P), which h as  the form

x(^,e,<p) = ^ 1/2p 1( tp )cos (e -X 1((p)), (1.4)

is the  lowest order expression for X(^,0,tp) ( se e  Fig. 5), which is the 

d is ta n c e  from th e  axis to a  constant-v^ su rface  a l o n g  the  local 

cu rva tu re  vector, k 0U ) ,  of the axis.

T he  first o rder  variation of the m agnetic  field s treng th  of Eq.

(1 .3) is determ ined entirely by the  x(<p)x(^,0,tp) term. This term 

d e m o n s tra te s  the  dom inant role of the l o c a l  curvature  of the  axis, 

x(<p), in the first order variation of the field strength. T he  magnetic 

field strength  of Eq. (1 .3) show s that a  positive (negative) value for 

x ( ^ f0,<p) in Fig. 5 gives a  first order variation in the  field strength 

which is positive (negative). T hat is, the m agnetic  field strength  is 

s t ro nger  in the  direction in which the field lines a re  curving, and  it 

is w e a k e r  in the  opposite  direction, a s  o n e  would naively expect. 

This resu lt  is in d ep en d en t  of the  cu rren t and  p r e s s u re  profiles, 

which give a  higher order correction to the m agnetic  field strength.

T he  function p-j (<p) of Eq. (1 .4), which g ives the  m agnitude of 

x(^,0,cp), m ust always be  non-zero in o rder th a t  the  low est order 

flux su r fa c e s  not b e  completely flattened along the  local curvature  

vector, Kq(JL), which is apparen t from Fig. 5. In the limit in which

18Boozer, A. H. (1981). Phys Fluids 24, 1999.
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FIGURE 5 

Xty,e,4>) AND Y ( ^ .0 .^ )  FUNCTIONS

T h e  function X(^,9,<P) is the  d istance  from the  m agnetic  axis along 
th e  local cu rva tu re  vector, Kq(<P), to the  m agnetic  flux su rfa ce s .  
T h e  function Y(^,9,<p) is the  d istance from the  m agnetic  axis along 
th e  local binormal vector, £o($ ), to the  flux su rfaces .
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Pi C«P) d o e s  vanish, th e  d is tance  from th e  axis to the flux su rfaces  

along the  local binormal vector, which is given by Y(\p.e,tp) in Fig. 5, 

d iverges, provided tha t  the axis field strength is non-zero. Thus, the  

m agnetic  flux su rfaces  b eco m e  ribbons tha t  a re  both infinitely thin 

a n d  infinitely tall in this s ingular limit.

The curvature of the  axis, k (<P), m ust be  non-zero for a t  least  

s o m e  v a lu es  of th e  toroidal ang le , <p, in o rder to give a  toroidal 

configuration. T oge ther  with th e  n e c e s sa ry  non-vanishing  of th e  

Pi (<p) function of Eq. (1 .4), th e se  restrictions yield one limitation in 

th e  freedom  of the m agnetic  field strength . This constra in t simply 

s ta te s  tha t the product K((p)x(vp,9,<p) of the first order variation in 

the  field strength of Eq. (1 .3 ) canno t be m ade to vanish throughout an  

entire  surface  of cons tan t

The seco nd  order function F(8,<P) of the magnetic field strength 

in Eq. (1 .3) has  the general form

F(0 ,(P) = W0(<p) + F2(< P )c o s (2 e -S 2(tP)). (1 .5 )

If the tp-average of W0(<P) of Eq. (1 .5 )  is positive, then the  average  of 

th e  field strength of Eq. (1 .3) within a  f lux  su rface  in c re a s e s  with 

in c re a s in g  vp. A p la sm a  configuration having such  an  a v e ra g e  

m a g n e t i c  w e l l1 9 is s t a b le  a g a i n s t  c e r ta in  p r e s s u r e - d r iv e n  

instabilities. In a  strict s e n s e ,  it is th e  corresponding term within 

th e  reciprocal of the  sq u a re  of the  field strength , 1 /B 2(vp,9,(p),

19Friedbarg, J. P. (1987). Ideal Magneto-Hydrodynamlcs, Plenum Press, New York, 
p. 73.
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ra ther  th an  tha t within the  field strength  itself, BC^.e.fP), which is 

re lev an t to stability calcu la tions20.

O ur analysis  reveals  tha t the  m agnetic  field s treng th  through 

se co n d  o rder in y U 2 , which is determ ined by Eqs. (1 .3 ) - (1 .5 ) ,  is 

nearly  arb itrary . Sufficient freedom  exis ts  to perm it non-trivial, 

toroidal p lasm a  equilibria corresponding  to arbitrary cho ices  of the 

th ree  second-o rder, periodic tp-functions W0(<p), F2(<P), and  S2(<p) of 

Eq. (1 .5 ) ,  the  two first-order, periodic ^-functions pi(<p) and  Xj(fP) 

of Eq. (1 .4 ) ,  and  the  one zeroth-order, periodic tp-function B0(<P) of 

Eq. (1 .3 ) .  The only proviso is that the product k(<P)Pi(^P) of Eqs. (1 .3 )  

and  (1 .4 )  m ust be  non-zero for at least som e va lues  of the  toroidal 

ang le , <p, a ssum ing  that the  axis field s trength , Bo(tp), d o e s  not 

van ish .

T h e  form of the  third-order function C(0,<p) of th e  m agnetic  

field strength  of Eq. (1 .3 ) is

C(0,(p) = q C i p j c o s f e - * , ( $ ) )  + C3( (p ) c o s (3 0 -2 f 3(cp)). (1 .6 )

O ur analysis  reveals  that only o n e  of the  two poloidal harm onics of 

th e  field strength  a t  third order, i.e., e ither th e  M = 1 or the M = 3  

harm onic  of Eq. (1 .6 ) , can b e  chosen  freely for arbitrary cho ices of 

th e  field strength  through second  order. T hat is, equilibria e x i s t  

c o rre sp o n d in g  to arbitrary  cho ices  of the  z e ro th -o rd e r  function

20NOhrenberg, J„ and Zille, R. (1987). Theory of Fusion Plasmas, Proceedings of the 
workshop held at Villa Ctpressi-Varenna, Italy, Aug. 24-28, Societa Italians dl 
Fisica, Bologna, Italy, p. 3.
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Bo(<P) of Eq. (1 .3 ) , the first-order functions pi(<p) a n d  Xj(<p) of Eq.

(1 .4 ) , the  second-order functions W0(<p), F2(<p), and  82(<p) of Eq. (1 .5), 

an d  e i t h e r  the  third order M = 1 poloidal harm onic functions Cj(<p) 

and  ^ ( ( p j o r  the  third order M = 3 poloidal harm onic functions C3(<p) 

and  2f3(<P) of Eq. (1 .6). Again, the only provision is that the product 

x(fp) Pi(<p) of Eqs. (1 .3) and (1 .4 ) not vanish for all va lues of <p.

In the  previous paragraph , we p re sen te d  th e  f r e e d o m  in the 

m agnetic  field strength  that exists through third o rd e r  in >p1/2. We 

now  g ive  the  g e n e r ic  r e s t r i c t i o n s  in the  form 21 of the  field 

s t re n g th  th rough  third and  higher o rd e rs .  T h e  four functions 

determ ining th e  m agnetic  field strength a t  third order, i.e., C^tp), 

2Ti(<p), C3(<p), and 2f3(tp) of Eq. (1 .6), c a n n o t  all be  cho sen  freely, 

given arbitrary forms of the lower order (p-functions B0(<P), Pi(<P),

Xi (<p), Wo(fP). F2(<p), and 82(<p) of Eqs. (1 .3 ) - (1 .5 ) .  This result is a  

c o n s e q u e n c e  of enforc ing  equilibrium a n d  th e  d iv e rg e n c e -f re e  

p roperty  of all m agnetic  fields. Therefore, even  though one  may 

co n s tru c t  form s of the  m agnetic  field s treng th  th a t  give desirab le  

confinem ent properties, th e s e  field s treng ths may not co rrespond  to 

ac tual toroidal p la sm a  equilibria.

W e have  p resen ted  the constraint tha t the  field strength in the  

three-d im ensional volume around the magnetic axis canno t be  chosen  

freely through third o rder in \p1/2. However, th e  m agnetic  field 

s tren g th  on o n e  particu lar p la sm a  p re s s u re  s u r f a c e 22 is nearly 

arbitrary. This result merely follows from the  freedom  in the  sh a p e

21Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
22lbid.
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of the  two-dimensional bounding toroidal p ressu re  surface . The only 

constra in t on th e  field strength  within such a  flux su rface  is tha t a  

curvature  term of the form x(«p)x(^,0,<p), a s  in Eq. (1 .3), m ust be  

non-zero for a t  leas t  so m e  values of <p. Thus, a  particular p lasm a  

p re s su re  su rface  of a  toroidal p lasm a  equilibrium can  b e  optimized 

to h a v e  nearly any  stability and  confinem ent p roperties , a lthough 

th o se  of its interior a re  m ore restricted.

W e im plem ent t h e s e  resu lts  regard ing  th e  f re e d o m s  a n d  

restric tions of th e  m agnetic  field strength  to resolve th e  ex is tence  

of certa in  c la s s e s  of toroidal p lasm a equilibria. The m ost desirab le  

c la s s  of toroidal p la sm a  equilibria would b e  th o se  in which th e  

m agn e tic  field s treng th  is co n s tan t  within th e  p re s s u re  su rfa ce s ,  

i.e., B(vJ0, in te rm s of Boozer coordinates. The lowest o rd er  particle 

t r a j e c t o r i e s 23 of su ch  equilibria would a lw ays lie within th e  

p re s su re  su rfaces .  Thus, th e s e  toroidal equilibria would have little 

p la sm a  tran sp o rt  out of th e  confinem ent region. P a lum bo24 w a s  

the  first to s u g g e s t  th e se  "isodynamic," or "om nigenous," equilibria. 

H ow ever, B ernard in , M o se s ,  an d  T a ta ro n is25 have show n th a t  

t o r o i d a l ,  isodynam ic equilibria can exist only in limits in which the  

m a g n e tic  field s tren g th  of the m agn e tic  ax is  v a n is h e s  or th e  

m agnetic  flux su rfaces  b eco m e  open. Since the  sym m etry breaking 

of toro idal isodynam ic  equilibria o c cu rs  a t  first o rd e r  in ^ 1/2, 

rather than  so m e  higher order, th e s e  equilibria canno t e v e n  be well

23Palumbo, D. (1968). II Nuovo CimentoX53B, 507.
24lbid.
25Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,

2605.
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a p p ro x im a ted .

T he  next m ost desirab le  c la ss  of toroidal p lasm a  equilibria a re  

th o se  in which the  m agnetic  field strength  d e p e n d s  on only o n e  

a n g u la r  coord ina te , in s tea d  of two, within th e  p re s su re  su r fa c e s .  

The m agnetic  field strength  corresponding to such  equilibria h a s  the  

form in B oozer  c o o rd in a te s  B (^ ,o0 , with o f s B - N ^  a  helical 

c o o rd in a te  an d  N an  integer. This form of th e  m agne tic  field 

s tren g th  obviously e x is ts  for axisymm etric, i.e., ( P - in d e p e n d e n t ,  

to k a m a k  equilibria , which g ive  the  trivial N = 0 c a se .  N o n -  

a x i s y m m e t i c  toro idal equilibria  in which th e  m ag n e tic  field 

s treng th  d e p e n d s  on only o n e  angu la r  coo rd ina te  within th e  flux 

su r fa c e s  w ere  called "quasi-helically symmetric" by Niihrenberg an d  

Z ille2 6 . T hey  com putaionally  found th ree -d im ensional s te l la ra to r  

equilibria which c losely  approxim ate  quasi-helical symmetry.

T h e  p a r t ic le  t r a j e c to r i e s  of q u a s i -h e l ic a l ly  s y m m e t r ic  

equilibria would be  very  similar to th ose  of axisym m etric tokam ak  

e q u i l ib r ia 2 7 . Thus, th e s e  th ree-d im ensional s te lla ra to r  equilibria  

would exhibit the d es irab le  confinem ent p roperties  of axisym m etric  

tokam ak  equilibria. Indeed, a  stellarator which highly app rox im ates  

q u a s i-h e l ic a l  sym m etry  h a s  few  s u p e r -b a n a n a  o rb its28 th a t  give 

th e  e n h a n c e d  transp o rt  of traditional ste llara tors.

The freedom  of the  m agnetic  field s treng th  through s e c o n d  

o rder in \p1/2 perm its the  e x is te n ce  of quasi-helically  sym m etric

26Nuhrenberg, J., and Zille, R. (1988). Phys. Lett. A 129, 113.
27Boozer, A. H. (1983). Phys. Fluids 26, 496.
28Beidler, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear

Society 17, 148.
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equilibria through se c o n d  o rder29 . This result can  b e  obtained by 

setting the  functions B0(<p), p ^ tp ) ,  W0(tp), and F2(<p) of Eqs. (1 .3 ) -  

(1 .5 )  to constan ts  and  requiring the  functions X-|((p) and  S2(<p) of Eqs.

(1 .4 )  and  (1 .5) to have the form X1(9 ) = N«p + k 1 and 82(<p) = 2N<p + k2, 

with ki and  k2 constan ts . Although there  d o e s  n o t  exist sufficient 

f ree d o m  to perm it q u as i-h e lica l  sym m etry  th ro u g h o u t  a  th ree -  

d im ensional volume through third order in vp1/2, the  field strength  

c an  be  m ad e  exactly  quasi-he lica l sym m etric  on o n e  particu lar 

p re s s u re  su rface . T he  m ost im portant flux su r fa c e  for p la sm a  

transport is the  surface  on which th e  p lasm a p ressu re  gradient is a  

maximum. The enforcem ent of exac t quasi-helical symmetry on such 

a  flux su rface  c a u s e s  the  sym m etry breaking near  the  axis to scale  

a s  ^ 1/2. rather than \p3/2 .

W e c a n  d e d u c e  s e v e ra l  g e n e r ic  p ro p e r t ie s 30 of toroidal 

p la sm a  equilibria which nearly  approxim ate  quasi-helical symmetry. 

First, the curvature of the m agnetic  axis m u s t  never vanish. Second, 

th e  toroidal m agnetic  axis shou ld  have  a  helical-like s h a p e ,  a s  

o p p o se d  to a  circular sh a p e .  Third, the toroidal variation in the  

s h a p e  of the  m agnetic  flux su rfaces  should be  minimized. Finally, 

t h e  to ro ida l  p la s m a  co n fig u ra tio n  sh o u ld  b e  re la tiv e ly  thin, 

corresponding to a  rather large a sp e c t  ratio, 1 / e .

29Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
30lbid.



CHAPTER II 

BOOZER COORDINATES

In th is  c h a p te r ,  th e  b ackg ro und  m ateria l  re le v an t  to the  

coord ina te s  developed  by Boozer31 is p resen ted . T h ese  coordinates 

will b e  u s e d  to investiga te  toroidal p la sm a  equilibria th roughou t 

th is  d is se r ta t io n .  In th e  first sec t io n ,  th e  th eo ry  of g e n e ra l  

curvilinear coord ina tes  in th re e  d im ensions  is given. The se c o n d  

se c t io n  p r e s e n t s  a  d e r iv a tio n  o f th e  p a r t ic u la r  c u rv i l in e a r  

coordinate  system  developed by Boozer. The third section gives the  

primary application of B oozer coordinates, which is th e  d e p en d e n ce  

of c h a rg e d  particle  tra jec to ries32 a n d  a s so c ia te d  p lasm a  tran spo rt  

on only th e  s t r e n g t h  of th e  m agnetic  field e x p re sse d  in te rm s of 

th e s e  co o rd in a te s .  The final sec tion  show s the m an n e r  in which 

widely differing p la sm a  configura tions can  have  re la ted33 p la sm a  

t r a n s p o r t  p ro p e r t ie s ,  if e x p r e s s io n s  for the ir  m a g n e tic  field 

streng ths in term s of Boozer corrdinates have similar forms.

Il-A. G enera l C urv ilinear C o o rd in a tes

T he study of toroidal p lasm a equilibria su g g e s ts  the  u s e  of a  

coo rd ina te  system  in which one of the  coord ina tes  co rre spo nds  to

31 Boozer, A. H. (1981). Phys Fluids 24, 1999.
32Boozer, A. H. (1984). Phys. Fluids 27, 2441.
33Boozer, A. H. (1983). Phys. Fluids 26, 496.
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the  toro idal p la sm a  p re s su re  su r fa ce s .  S ince  a  given p re s s u re  

su r fa c e  is only c o n s tra in ed  to be a  topo log ica l to ru s ,  g e n e ra l  

cu rv i l in e a r  c o o rd in a te s  m ust b e  a p p lie d  for th e  fully th re e -  

d im ensional c a se .  For any  non-trivial curvilinear coord ina te  system , 

th e re  exist two fundam enta l se ts  of bas is  vectors. T h e se  two s e ts  

a re  given by the grad ien ts of the coordinates and the  c ro ss  products 

of th e  g rad ien ts  of the coordinates.

The g rad ien ts  of th e  coord ina tes  a r e  re la ted  to the  partial 

deriva tives  of the  spatia l position via th e  dual re la tions of partial 

differential theory. The dual relations in any n-dim ensional vec to r  

s p a c e  a p p e a r  in m any differential geom etry  texts. Only the  th ree -  

d im e n s io n a l  c a s e 34 , which is m o s t  re laven t to p la sm a  physics, is 

p re s e n te d  within this d isse r ta t io n . T h e  dual re la tions  for th re e  

curvilinear coordinates {£1, £ 2, £ 3} are given by

J V £ 2x V £ 3 = d X / d E , \  (2 .1 )

O x / e £ 2)x (a x /e £ 3) = J v s 1, (2.2)

provided th a t  the spatial Jacobian

j  s  ( a x / e £ i ) * { ( e x / e £ 2) x ( e x / e £ 3)} - i / i v s H v ^ x v ^ } }

(2 .3 )

is n o n -ze ro  and non-infinite within the region of in te res t. Cyclic 

permutation of the  indices {1, 2, 3} within Eqs. (2 .1 )  and  (2 .2 )  also

34White, R. B. (1989). Theory of Tokamak Plasmas, North Holland Physics, 
Amsterdam, p. 6.
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yields valid relations. T he dual relations of Eqs. (2.1 ) - (2 .3 )  will be 

u se d  to implement the  inverse method developed  within C hapter IV, 

which entails express ing  th e  g rad ien ts  of the  co o rd ina tes  in term s 

of the  partial derivatives of th e  spatial position with re sp ec t  to the 

coord inates .

To simply derive the  dual relations of Eqs. (2 .1 ) - (2 .3 ) ,  we 

begin with the fact tha t the spatial position X can  b e  specified by 

th re e  nontrivial coo rd ina tes  i £ 1, £ 2, £ 3}, i.e., xC^1,^ 2,^ 3). If X is 

written in term s of C artesian  coordinates,

x(x,y,z) = x x  + y y  + z z ,  (2 .4)

th en  {x, y, z} can  be considered  functions of { £ 1, £ 2, £ 3}, and vice 

v e rs a .  T he  derivative of o n e  of th e  co o rd ina tes  with re sp ec t  to 

position is

e £ i (x ,y ,z ) /8 x  s  V £K x,y,z) = (8 £ » /8 x )x  + ( 8 £ i /8 y ) y  + ( 8 £ i /8 z ) z ,

(2 .5)

a n d  the  derivative of th e  position with r e s p e c t  to on e  of the 

co o rd in a te s  is

8 x ( S U 2,£;3) /8 £ i  = ( 8 x /8 £ i ) x  ♦ ( 8 y /8 £ i ) y  ♦ ( 8 z / 8 £ j ) z .  (2 .6 )

T he fact that 8 £ i /8 £ i  equals  the  Kronecker delta, Sij, and  the chain 

rule imply
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s ' j  = a£, i / a y  = (d £ , i /d x ) (d x /d £ i)  + c a ^ i / a y ) ( d y / a ^ j )

+ ( 8 £ i / 8 z ) ( 8 z / 8 £ i ) .  (2 .7 )

T h ese  equations, Eq. (2 .7), a re  called the orthogonality relations and

can  be  written in the co ndensed  form

Sij = V £ i* ( 8 x /8 £ i ) .  (2 .8)

The two forms of a  three-dim ensional vector B in term s of any  

non-trivial curv ilinear c o o rd in a te  sy s te m  a re  th e  c o n tra v a r ia n t  

r e p re s e n ta t io n

Boon = Z B i O x / a t i ) ,  (2 .9 )

and  the  covarian t represen ta tion

Bcov = I B j V U  (2 .10 )

The orthogonality relations of Eq. (2 .8) imply th a t  the  coefficients 

within th e s e  two representations a re  given by

Bj = B*V£i and  Bj = B * (8 x /8 ^ i) .  (2 .11)

If the  c ross  product V £ 2 * V £ 3 is expanded a s  a  contravariant vector
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an d  ( 0 x /d £ 2) x ( d x / d £ 3) a s  a  covariant vector, then  evaluation of 

their com ponents leads to the dual relations of Eqs. (2 .1 ) - (2 .3 ) .

ll-B . D e r iv a t io n  o f  B o o z e r  C o o r d in a t e s

A s e t  of c o o rd in a te s  tha t  is particu larly  well su ited  for 

tran sp o rt  s tu d ie s  w a s  developed  by Boozer3 5 . T h e s e  coord ina tes  

perm it the m agnetic  field B c o n s is te n t  with any  toro idal p la s m a  

equilibirum, Eq. (1 .1), to be  e x p re ssed  s i m u l t a n e o u s l y  in two 

sim plified fo rm s,

T h e s e  equations for the  magnetic field co rrespon d  to reduced  forms 

of th e  contravariant a n d  covariant rep resen ta tions  of E qs. (2.9) and  

(2 .1 0 ) ,  respectively. The two simplified forms of the m agnetic  field 

of Eqs. (2 .1 2 )  and (2 .13 ) a l w a y s  ex is t provided th a t  both th e  

m ag n e tic  field s trength  and th e  g rad ien t  of th e  p la s m a  p re s su re  

n e v e r  vanish within the  toroidal region of in terest.

The c o o rd in a te s  u sed  within th e  two re p re se n ta t io n s  of the  

m agnetic  field in Eqs. (2 .12) and  (2 .13 ) are  given by 3,<p} ( s e e  

Fig. 2). T h e  constan t ^  surfaces, which give the  toroidal m agnetic 

flux through a  c ro ss  section of the torus, co rrespond  to  the  toroidal 

p la s m a  p re s su re  su rfaces .  T he  poloidal ang le  3 defines  the sho rt  

way around the  torus, and  the  toroidal ang le  defines th e  long way

35Boozer, A. H. (1981). Phys Fluids 24, 1999.

BCon = V ^ x V e  + l(V0V<p x V ^ ,

Bcov = Gty)V<p ♦ KvfOve ♦ £ * t y , e , ( p W .

(2 . 12)

(2 .1 3 )
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around  the torus (see  Fig. 2).

T he con travarian t rep resen ta tion  of th e  m agne tic  field, Eq.

(2 .1 2 ) ,  implies

B *V ^ = 0 and B-V{e-i(vJ0<p} = 0, (2 .1 4 )

so  tha t m agnetic  field line trajectories a re  de term ined  by

and e-i(V0<P = Qq, (2 .1 5 )

with and  6 0 c o n s tan ts  that de te rm ine  th e  particular field line. 

H ence , the  m agnetic  field lines lie in the toroidal flux, or p ressu re ,  

su r fa c e s ,  with the  field line twist about the  m agnetic  axis given by 

th e  rotational transform, i(\jO.

T he covarian t form of the  m agnetic  field of Eq. (2 .13 ), 

sa t is f ie s  {V * B }‘V ^  = 0, insuring th a t  the cu rren t trajectories a lso  

lie in the nested  flux surfaces. The function 2 TTG(vJO/j i0 of Eq. (2 .1 3 )

is th e  ne t  poloidal "coil" curren t through th e  "hole" defined by a

toroidal flux surface (see  Fig. 2). The function 2TC l(^)/ji0 is the net 

toroidal "plasma" current through a  c ro ss  section  of a  toroidal flux

su rfa c e .  T he function £*(^,0,«p) is proportional to th e  p la sm a

p re s su re  gradient, dp/dv/r, a s  will be  explained within C hapter IV.

T h e  deriva tion36 of the  two forms of th e  m agnetic  field given

in Eqs. (2 .1 2 )  and (2 .13 ) will now b e  p resen ted . W e first a s su m e

36Boozer, A. H. (1981). Phys Fluids 24, 1999.
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th a t  the  g ra d ie n t  of the  p la sm a  p re s su re  is finite an d  non-zero  

everyw here  in the  toroidal region excep t on the m agnetic  axis, which 

is th e  d e g e n e ra te  torodiai su rface . C hoose  a n y  poloidal e~ and  

to ro idal (p a n g le s  which m ake  the  reciprocal of th e  J a c o b ia n ,  

Vp*{V0"*V(p}, finite and  non-zero throughout th e  toroidal region. 

T hen any three-dim ensional vector can  be  ex p re ssed  in te rm s of the  

genera l contravariant representation of Eq. (2.9),

B = a(p,e^(P)VpxV 9" + b(p,ei<p)V<p*Vp + c(p,e^<p)Ve"*V<p. (2 .16 )

T he fact th a t  th e  m agnetic  field lines m ust lie within the  p re s su re  

s u r f a c e s ,  B*Vp = 0 of Eq. (1 .2), sh o w s  th a t  th e  coeff ic ien t 

c(p,eT«p) = 0. Zero divergence of the  magnetic field, V*B = 0, then 

im p lie s

using the fac t  tha t the  d ivergence of c ro ssed  grad ien ts is zero . T he 

c h o ic e

with <o a  function of all th ree  coord inates, { p ,e ,  <p}, sa tis f ies  Eq. 

(2 .1 7 ) .  Setting d\p = a0(p)dp, i ( V 0 #  = b0(p)dp, and  e  = e”+6> then

(da/6<P) + (db /dQ  ) = 0, (2 .17)

a(p,e,<p) = a0(p){1 + (ac o /d e  )}, 

b(p,e^tp) = b0(p) -  a 0(p)(aGi/aeT),

(2 .18)

(2 .19 )
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perm its  the  genera l con travarian t form of the  m agnetic  field of Eq. 

(2 .1 6 )  to be  expressed  in the  reduced form of Eq. (2 .12).

In o rder to derive  the  o ther  form of the  m agnetic  field, Eq.

(2 .1 3 ) ,  w e begin with th e  genera l  covarian t rep resen ta tion  of a  

vector field, Eq. (2 .10 ), or alternatively,

B = o<(p,e,(p)vcp ♦ aXp.e.tpjve + £(p,e,<p)Vp. (2.20)

T h e  fac t  th a t  th e  e lectric  cu rren t  tra je to ries  lie in the  c o n s ta n t  

p re s su re  surfaces, (V *B ) 'V p  = 0 of Eq. (1 .2), implies

(d o i /a e )  -  02T/d<p) = 0, (2 .2 1 )

T he  choice

o<(p,9,<p) = G(p) + (G(p) + i(p )I(p )} (eu /acp ) ,  (2 .2 2 )

tf(p,e,(p) = I(p) + {G<p) + i (p)i(p)Keu/ee) ,  (2.23)

is c o n s is ten t  with Eq. (2 .21 ). W e now c h o o se  new  poloidal a n d  

toroidal ang les  defined by 9 n s 9 + i(p )u(p ,9 ,(p) and (pn = (p + u(p,9,(p), 

respectively. The transform ation from the  old angles, {0,<p}, to the 

new  a n g le s ,  {9n,<pn}, perm its th e  general c o v a r i a n t  form of the  

m agnetic  field in Eq. (2 .2 0 )  to be  expressed  in the simplified form of 

Eq. (2 .1 3 ) .  Furtherm ore, this transform ation of the  poloidal and  

toroidal a n g le s  d o e s  not alter the  reduced  c o n t r a v a r i a n t  form of 

th e  m ag n e tic  field of Eq. (2 .12 ). H ence , the  m ag n e tic  field
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corresponding to toroidal p lasm a equilibria defined in Eq. (1 .1) can  

be  s i m u l t a n e o u s l y  ex p re ssed  in th e  two forms of Eqs. (2 .12 ) and

(2 .13 ) .

Application of the  inner p roduct of the  two rep resen ta tio ns  of 

the magnetic field of Eqs. (2 .1 2 )  and  (2 .13) y ie ld s37

{VvJrxV0}*V(p = B2(^ .0 ,<p)/{G ty) + l(\/Ol(VO}. (2 .2 4 )

The left hand s ide  of Eq. (2 .2 4 )  is simply the  reciprocal of the  

spatia l Jaco b ian , J ,  for Boozer coordinates, using Eq. (2 .3). This 

re su l t  obviously  implies th a t  th e  spatia l J a c o b ia n  is inversely

proportional to the  sq u a re  of the m agnetic field strength ,

JCV'.e.tp) = le w  ♦ iWity>)}/B2(\ft,e,9). (2.25)

T h e  Ja c o b ia n  m ust b e  n o n -ze ro  and  non-infinite in o rd e r  to

implement the  dual relations of E qs. (2.1) and (2 .2), an d  thus the  

dual represen ta tion  of the  m agnetic  field of Eqs. (2 .1 2 )  and (2 .13). 

T herefore , the  m agnetic  field s treng th  m ust be  non-zero  within the  

toroidal region in order to apply Boozer coordinates.

Il-C. P a r t i c l e  Drift T r a j e c t o r i e s

P la sm as  of primary in terest to fusion re sea rch  lie in the  low 

collisionality regime. This fact follows since the  m ean  free path  of

37Boozer, A. H. (1981). Phys Fluids 24, 1999.
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the  p lasm a particles is on the order of 10 4 m eters, w hereas  the s ize  

of m ost confinem ent d ev ices  is only a  few m eters . H ence, th e  

t ransport  of energy and particles within th e s e  p lasm as is dom inated  

by th e  t r a je c to r ie s  of c h a r g e d  p a r t ic le s  within th e  to ro ida l 

m agne tic  field. For sufficiently strong m agnetic  field s treng th , a  

ch a rg ed  particle gyrates  abou t a  m agnetic field line in a  small orbit 

com pared  to the  sca le  of the m agnetic  field. The motion parallel to 

the  m agnetic  field lines is relatively unconstrained , so  that m ost of 

th e  c h a rg e d  p a r t ic le s  c i rc u la te  within th e  toro idal m a g n e tic  

configuration along the  field lines th o u sa n d s  of tim es before  being 

affected  by collisions. A small p e rcen tag e  of the particles ex ecu te  

“t rap p e d ” orbits which do not transit  the  torus poloidally.

To a  lowest o rder approximation, the  charged  particles within

a  p la sm a  merely follow the  m agnetic  field lines them se lves .  T he

c e n te r  of a  particle’s  circular pa th  in the  p lane  perpendicular to th e  

field lines is called  its “gyro-cen ter.” To lowest order, a  ch arg ed  

partic le’s  gyro-cen ter  m erely c o rre sp o n d s  with the field line abou t 

which it is gyrating. To first o rder  in th e  particle gyro-radius to 

th e  sc a le  length of th e  m ag ne tic  field, th e re  exist small drifts of 

th e  particles in directions perpendicu lar to the  m agnetic  field lines. 

T h e s e  drifts largely de te rm ine  the  transport of energy and particles 

ou t  of the  confinem ent region of a  low collisionality p lasm a. T he  

ca lcu la tion  of th e s e  particle  drifts for a  fully th ree -d im ens io na l

configuration  is ex trem ely  a rd u o u s  using an  arbitrary co o rd in a te  

s y s te m .  Additionally, t r a n s p o r t  a c r o s s  th e  p la s m a  p r e s s u r e
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su rfa c e s  is dificult to a s s e s s  using non-flux coord ina tes .

T h e  im p lem en ta tion  of B oozer c o o rd in a te s 38 c irc u m v e n ts  

m any  of th e  im ped im ents  of calculating p la sm a  tran sp o rt .  T he  

prim ary application of using th e s e  co o rd in a te s  is th a t  th e  low est 

o rd e r  e x p re ss io n  for th e  particle drift t ra jec to r ie s39 d e p e n d s  on 

the  particu lar m agnetic  configuration only through th e  form of the  

m agn e tic  field s t r e n g t h  e x p re s se d  in te rm s  of th e s e  coord ina tes . 

T he m ethods of Hamiltonian m echanics a re  u sed  in th e  derivation of 

th e  ex p re ss io n  for th e  particle drift tra jec tories.

B o o z e r  d e r iv e s  th e  lo w est  o rd e r  H am ilton ian  g o v ern in g  

particle  drift tra jec to ries  within a  toroidal p la sm a  equilibrium,

H(0, p0. <p, p<p) = (1 /2 )m {v „}2 + jiB + e4>, (2 .26)

with m th e  particle m ass ,  e  its charge, v,, the  p a rt ic le  velocity 

parallel to the m agnetic  field, B(\^,9,cp) th e  m agnetic  field strength, 

and  $ (^ ,e ,(p )  the  electric potential. The param eter

Ji = {m {vx}2} /  {2  B} (2 .27 )

of Eq. (2 .2 6 )  is called the  particle's “m agnetic  m om ent.” This n am e 

follows using the  value for the  magnetic moment, = iT tr2, due  to a  

circular loop of radius r  and  electric cu rren t I. The t im e-averaged  

e le c tr ic  c u r re n t  c r e a te d  by th e  gyra ting  particle  is given by

38Boozer, A. H. (1981). Phys Fluids 24, 1999.
39Boozer, A. H. (1984). Phys. Fluids 27, 2441.
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I = eo)/{2Tt}, with go t h e  a n g u la r  f r e q u e n c y  of g y ra t io n .  

Approximating go and r  by the cycloton frequency co = e B / m  and the 

cyclotron rad iu s  r  = vx /co  for a  c h a rg ed  particle  within a  uniform 

m agnetic  field then  yields Eq. (2 .27).

K ru sk a l40 has show n that th e  m agnetic  m om ent is conserved  

extrem ely accura te ly , provided th a t  the  particle  gyroradius is sm all 

c o m p ared  to th e  scale  of the curvature  of th e  m agnetic  field lines. 

T h is  a d ia b a t ic  in v a rian ce  of ji  follows s in c e  it is m erely th e  

“a c t io n " 41 £ p  dq of Hamiltonian m ech an ics  co rre sp o n d in g  to th e  

particle gyration about a  field line. Here, the  coordinate  q gives the  

a n g le  of ro ta tion  a b o u t  the field line a n d  p is its c ano n ica l  

m om entum .

The B oozer coordinate  ang les  9 and cp a re  the two canonical 

va riab les  of th e  drift Hamiltonian of Eq. (2 .2 6 ) .  T he  m om enta  

canonically con jugate  to th e s e  two ang les  a re

with X W  the  poloidal m agnetic  flux through th e  central hole of a  

c o n s ta n t  p re s s u re  surface (see  Fig. 2). The poloidal flux is related 

to th e  rotational transform i(V0 by th e  relation i t y )  = d T h e  

g u id in g -c e n te r  drift t r a je c to r ie s  a r e  o b ta in e d  by in te g ra t in g

40Kruskal, M. (1957). Rendlconti del Terzo Congresso Internazionale sui Fenomeni 
Dlonizzazlone nel Gas tenuto a Venazia. Societa Italiana di Fisica, Milan, p. 56.

41 Goldstein, H. (1980). Classical Mechanics, Addison-Wesley Publishing Company, 
Inc., Philippines, 2nd ed., p. 366.

p9 = {m I(yr)/B(Vr.0,cp)} v lt + e\ j i ,

Ptp = { m G f V O / B C y . e . t p j j v , ,  -  e X W .

(2 .2 8 )

(2 .29 )
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Hamilton's equa tions

0  s ( 8 H / 8 p e ), 0  s (d H /d p ^ ) ,

p0 = -ceH/ee),  p9 = -(aH/etp), (2.30)

with the  overdo ts  deno ting  tim e derivatives. Differing tra jec to ries  

within { 0 ,p 0 , <P, p<p} s p a c e  are  obtained  by varying th e  value of th e  

m a g n e t ic  m om ent, ji, and  th e  initial v a lu e s  for th e  canon ica l  

c o o rd in a te s  and  m o m en ta . T h e  reduction of th is  H am iltonian 

m echan ics  problem from a  sy s tem  of six variables— 3, pe , «P, ptp, ji, 

a n d  the  g y ro p h a se — to a  sy tem  of four variables follows from the  

ad iabatic  invariance of ji  and  th e  corresponding irrelevance of the  

gyrophase.

A se t  of {9, p0, (p, p^p} at so m e  given time determ ine the spatial 

position of a  charged particle 's guiding cen te r  relative to the B oozer 

coo rd ina tes , { ^ .9 . $ } ,  of the particular magnetic configuration. T he  

position  of a  pa rtic le  re la tive  to the  radial c o o rd in a te  $  is 

d e te rm ined  by the  v a lu e s  of (9 ,  pe , <P, p^}. This resu lt  can b e  

obtained by solving for implicitly using Eqs. (2 .28) a n d  (2 .29). For 

a  vacuum  m agne tic  field, th e  toroidal e lectr ic  cu rren t ,  I(xp), 

van ishes , so  that Eq. (2 .2 8 )  trivially reduces to p0 = e\ f / .  Thus, th e  

canon ica l  m om entum , p0, gives the  location of the  gu id ing-cen ter 

relative to th e  toroidal flux su r fa ce s  for vacuum  fields.

For m o s t  p la sm as  of in te res t  to fusion re sea rch , the  e lectric  

potential, <t>(^,e,<p) in Eq. (2 .26), is approximately uniform within a
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c o n s t a n t - ^  or p re s s u re  surface, thus  giving $(vjr). This result 

follows from th e  high mobility of the  e le c tro n s  in th e  direction 

parallel to the  m agnetic field lines. Hence, the  poioidai an d  toroidal 

varia tion  of th e  m ag n e tic  field s treng th  e x p re s s e d  in te rm s  of 

B o o z e r  c o o r d in a te s  la rg e ly  d e te r m in e s  th e  p a r t i c l e  d rif t  

tra jec to ries  within a  g iven m agnetic  configuration via E qs. (2 .26 )  

and ( 2 .2 8 M 2 .3 0 ) .

T h e  form of th e  m ag n e tic  field s t re n g th ,  B(v/f,e,<p), 

corresponding  to toroidal p lasm a equilibria c an n o t  be  c h o se n  freely, 

a s  will be  shown in C hap ter V. T h ese  restrictions in th e  form of the  

m agnetic  field s trengh  a re  the  primary resu lts  of this d isse rta tion . 

T h e s e  field strength  limitations imply tha t th e  drift Hamiltonian of 

Eq. (2 .2 6 )  lacks the arbitrary freedom  that could be  trivially u sed  

g ive d e s irab le  drift tra jec tories . For this rea so n , th e  restric tions 

on the  form of the m agnetic  field strength constrain  th e  freedom  of 

th e  t ran sp o rt  p roperties  co rresponding  to g e n e ra l  toroidal p la sm a  

e q u il ib ria .

A derivation of th e  particle drift Hamiltonian of Eq. (2 .2 6 )  will 

now  b e  p re se n te d .  W e will a s s u m e  th a t  th e  m agne tic  field is 

s ta tio n a ry  in time a n d  th a t  the  p la sm a  p r e s s u re  function g ives  

pe rfec tly  n e s te d  to ro ida l s u r f a c e s .  This de riv a tio n 42  can b e  

g e n e ra l iz e d  to apply for slowly chang ing  m ag n e tic  f ie lds  with 

is lands  s truc tu res  and  s toch as tic  field lines, although th e s e  effects 

a r e  not re le v a n t  to th e  a s s u m p t io n s  m a d e  th ro u g h o u t  th is  

d i s s e r t a t io n .

42Boozer, A. H. (1984). Phys. Fluids 27, 2441.
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To derive the drift Hamiltonian of Eq. (2 .26 ), w e  begin with the  

ex ac t  Lagrangian of a  particle in a  sta tionary  m agnetic  and  electric 

field, which is given by

T h e  vector A is the vector potential of the  m agnetic field defined by 

B s V x A ,  a n d  the  v ec to r  V is simply th e  particle  velocity.

The adiabatically conserved  m agnetic moment, ; i  of Eq. (2 .27 ), 

s u g g e s t s  a  poss ib le  sim pification. T h e  particle  kinetic e n e rg y  

perpendicu lar to the m agnetic  field,

c an  be t rea te d  a s  a  potential energy  within the  particle Lagrangian. 

T his resu lt is the  e x a c t  reduction  th a t  would b e  m ad e  if the  

particle  g y ro p h a se  w e re  entirely ignorable  within th e  Lagrangian . 

S in c e  th e  ad iaba tic  conserva tion  of ji is an  e x t r e m e l y  a c c u ra te  

a p p r o x i m a t i o n 43 fo r  c o n f ig u ra t io n s  with su ff ic ien tly  la rg e  

m agnetic  field strength , the particle Lagrangian can  be  approxim ated 

in the  form first given by Taylor44

L = ( 1 / 2 ) m v 2 + eA *v -  e<I>. (2 .31 )

jiB = (1 / 2 ) m { v 1 }2, (2 .3 2 )

L = (1 /2 )m |V |,}2 + eA*v -  JiB -  e<t>. (2 .3 3 )

43Kruskal, M. (1957). Rendiconti del Terzo Congresso Internazionale sui Fenomeni 
D'lonizzazione nei Gas tenuto a Venazia, Societa Italians di Fisica, Milan, p. 56.

44Taylor, J. B. (1964). Phys. Fluids 7, 767.
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The sign of the  product jiB within Eq. (2 .3 3 )  may ap p ea r  e rroneous a t  

first, b u t  m erely follows from trea ting  jiB of Eq. (2 .3 2 )  a s  a  

potential energy  rather than  a  kinetic energy.

In o rder  to implement Taylor’s  drift Lagrangian of Eq. (2 .33 )  to 

derive B oozer 's  drift Hamiltonian of Eq. (2 .26 ) ,  w e m ust ex p re ss  all 

va riab les  in term s of Boozer coo rd ina tes . A form of th e  vec to r

potential c o n s is te n t  with th e  con travarian t  form of the  m agne tic  

field in Eq. (2 .12 ) is

A = - XMV<P, (2 .34 )

with %(\p)  th e  poloidal m agnetic  flux de fined  in Fig. 2 . T he  

con travarian t form of the  particle velocity is defined by

v = \ K e x / W  + e ( d x / 6 e )  + cj>(ax/e<p). (2 .35 )

Hence, th e  inner product A*v becom es

A-v = ^ 9  - X W 'P -  (2 .36 )

The covariant form of the  m agnetic field of Eq. (2 .13 ) and  the 

expression  for the particle velocity of Eq. (2 .3 5 )  yield the  com ponent 

of the particle velocity parallel to the  m agnetic  field,

V„ = {G(vjr)4> + 1(^)9 }/B(^,9,<P). (2 .3 7 )
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T h e  product w as neg lected  within the  equa tion  for vH in Eq. 

(2 .3 7 ) ,  b e c a u s e  the  drift out of a  p re s su re  su r fa c e ,  which is 

de term ined  by \}/, is a s su m e d  to be much smaller than  th o se  given by 

9 and  tp. Using Eqs. (2 .3 6 )  and (2 .37), the  expression for the lowest- 

o rder drift Lagrangian of Eq. (2 .33 )  becom es

L(^.e.cp.e.tp) = ( i / 2 ) m { l / B 2ty,e.<P)} W ) t p  * W e } 2

+ e { \ f / e  -  XW0<P} -  >iB(^,e,tp) -  e$(\p,e,<P),

(2 .3 8 )

in te rm s of Boozer coordinates.

The Lagrangian of a  charged particle is generally  a  function of 

s ix  v a r ia b le s :  th r e e  non-triv ial c o o rd in a te s  a n d  th e ir  tim e 

derivatives. However, the  reduced particle Lagrangian of Eq. (2 .3 8 )  

d e p e n d s  explicitly on only five variables, s ince  $  d o e s  not ap p ea r .  

T h e  genera lized  m om enta, p, a re  defined to be  the  partial derivatives 

of th e  L agrang ian  with re s p e c t  to th e  tim e d e riva tiv e  of th e  

coord ina tes , q, that is, p = 8L /dq . Hence, the vanishing of from the  

L agrangian  of Eq. (2 .38 )  implies tha t p^  is identically zero. The 

m om enta  p0 and  p<p agree  with that given in Eqs. (2 .2 8 )  and (2 .29).

The Hamiltoian, H, is defined in term s of the Lagrangian via

H = v^p^ + 0 p 9 + (pp«p -  L. (2 .3 9 )

Application of the  particle Lagrangian of Eq. (2 .38 ) yields the  Boozer
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Hamiltonian of Eq. (2 .26 ). Hamilton's equations a re  generally given 

by q = (8H /6p )  and p = -O H /d q ) ,  with q a  coordinate a n d  p a  canonical 

m om entum , a s  in Eqs. (2 .30). Since p^  van ishes , p ^  = (dH/d^O 

v a n is h e s  identically, and  = (dH /dp^) is not well defined. This 

a p p a re n t  paradox  merely implies tha t  a  particle trajectory  relative 

to the $  su rfaces  is entirely specified by its values of {©• pQ. <P. Pep} 

a t  so m e  particular time. This result is obvious from the  d e p e n d e n c e  

of $  on the  canonical momenta, p0 and p^  given in Eqs. (2 .28) a n d

(2 .29 ).

II-D. I so m o rp h ic  Equilibria

T he  constan t  p re s su re  su rfaces  corresponding  to axisymm etric 

to k a m a k  equilibria a re  sim ple, n e s te d ,  ax isym m etric  tori. The 

e x p re ss io n  for the  m agnetic  field s treng th  co rrespond ing  to su c h  

equilibria m ust be independen t of the  toroidal a n g le  <p. Thus, the 

particle drift Hamiltonian of Eq. (2 .26 ) is independen t of tp, so  tha t  

p<p b e c o m e s  a  co n s tan t  of the  motion via Hamilton's equations, Eq.

(2 .3 0 ) .  This result also  applies for the  exac t particle  Hamiltonian 

corresponding  to the  exact Lagrangian of Eq. (2 .31). This constan t of 

th e  m otion  for pa rt ic le  t ra je c to r ie s  g iv e s 45 th e  well con fin ed  

t r a n s p o r t  of e n e rg y  a n d  p a r t ic le s  th a t  a re  c h a ra c te r i s t i c  of 

ax isym m etric  tokam ak  equilibria.

T h e  ac tual e q u a t io n s  governing  th e  tran sp o rt  p ro p e rt ie s  of 

ax isym m etr ic  to kam ak  equilibria  a re  b e y o n d  th e  s c o p e  of this

45Boozer, A. H. (1983). Phys. Fluids 26, 496.
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disse r ta t ion . However, th e s e  eq u a t io n s46 a re  simply e x p re ss io n s  

for the  fluxes of particles, energy, and  poloidal flux in te rm s of the  

therm odynam ic  forces which d e p e n d  upon the profiles of chem ical 

potential, p la sm a  tem p era tu re ,  and  toroidal electric  curren t. T he  

matrix e lem en ts  th a t  rela te  the  fluxes to th e  therm odynam ic forces 

d e p e n d  upon the  particular collisionality regim e of th e  p lasm a  and 

the  geom etry  of the  confining m agnetic  field.

Axisymmetric tokam ak  p la sm a  equilibria exhibit o n e  m ajor 

d ra w b a c k ,  d e s p i te  th e ir  benefic ia l  t r a n s p o r t  p ro p e r t ie s .  All 

a x isy m m etr ic  c o n fig u ra tio n s  m u s t  p o s s e s s 47 a  toroidal electric 

cu rren t within the  p lasm a, I(^) in Fig. 2, in order to yield a  p lasm a 

equilibrium. H ence , so m e  con tinuous form of c u rre n t  drive is 

required to maintain any  axisymmetric equilibrium. In addition, this 

toroidal cu rren t a lso  provides a  sou rce  of free  en erg y  for p lasm a  

in s t a b i l i t i e s 4 8 . N o n - a x i s y m m e t r i c  s te lla ra to r  configura tions  do 

n o t  re q u i re  c o n t in u o u s  c u r r e n t  d rive  to g iv e  a  p la s m a  

e q u i l i b r i u m 4 9 . H ow ever, m o s t  s te l la r a to r  eq u il ib ria  h a v e  

extrem ely poor transport properties due  to the  lack of an  invariant 

of the  canonical momentum type50.

G enerally , the  m agne tic  field s tren g th  within a  c o n s ta n t -^

46Boozer, A. H. (1990). submitted to Phys. Fluids.
47Friedberg, J. P. (1987). ideal Magneto-Hydrodynamics, Plenum Press, New York, 

p. 107.
48Bateman, G. (1978). MHD Instabilities, MIT Press, Cambridge, Massachusetts, and 

London, England., p. 89.
49Friedberg, J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York, 

p. 185.
S0Beidler, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear 

S o cie ty i7 , 148.
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surface  d e p e n d s  on the  two a n g le s ,  0 and  cp. S u p p o se  that non- 

axisym m etric  ste llara tor configurations exist in which th e  m agnetic  

field strength  dep ends on only the  one  helical angle o * se -N < p  within 

the  c o n s ta n t - ^  surfaces, so tha t it has  the  form B(\p,9-Ntp). The 

corresponding drift Hamiltonian of Eq. (2 .26) would also d ep en d  only 

on the  helical angle, cx, within the flux surfaces. The ex is tence  of an 

ignorable  cood ina te  within su c h  a  drift Hamiltonian s u g g e s t s  th e  

ex is tence of a  canonically conserv ed  momentum analogous to the p̂ > 

invariant of axisymmetric tokam ak  equilibria. However, neither of 

the  c an o n ica l  m o m e n ta  p9 and  of Eqs. (2 .28) and  (2 .29 ), 

respectively, are  invariant for a  m agnetic  field strength  of th e  form 

B(vp,0-N<p). A chang e  of variable51 is obviously required in order to 

find the desired  invariant m om entum .

T h e  form of th e  helical a n g le  o< = 0-N<P s u g g e s t s  the  

rep la ce m e n t 9 -kx  + N<P within the  two forms of the  m agnetic  field of 

Eqs. (2 .1 2 )  and (2 .13 ). Similar forms of the m agnetic field a re  then 

o b ta ined ,

with the  “helical" rotational transform  and  poloidal e lectric  curren t 

defined by

BCon = V^xVo< + l h(xp)V<pxVy,

Bcov = GhW)V<p + W V o f  + MV'.of.tpjVvp,

(2 .40)

(2 .41 )

51 Boozer, A. H. (1983). Phys. Fluids 26, 496.
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6 hty )  = G(\p) + N Ityr),

42

(2 .42 )

(2 .43 )

respectively . T he  new  co o rd ina tes  within th e s e  two form s of the  

m agnetic  field a re  { \ p , o <,(p}, instead of ( V > . T h e s e  coordinates, 

a re  g u a ra n te e d  to be  non-trivial s in c e  the ir  spa tia l

Ja c o b ia n ,

J  = 1 /{V ^*{V otxV (p}}  = 1 / iV ^ * { V 0 x V < p } K  (2 .4 4 )

is iden tica l to th a t  co rre sp o n d in g  to the  orig ina l c o o rd in a te s ,

{vM .*Ph

T h e  m o m e n ta  canon ica lly  c o n ju g a te  to th e  new  a n g u la r  

variables, {<x,(p}, a re  given by

=  ( m  I ( \ f O / B ( y , e , 0 ) } v , |  +  e ^ .  ( 2 . 4 5 )

Ph = (m ® h ( ^ 7 b (^*9,<P)} V|j -  e % ht y ) ,  (2 .46)

with th e  helical poloidal flux function defined by

X h M - X W - N f c  (2 .47 )

in an a lo g y  with Eqs. (2 .28) and  (2 .29). The n e w  form of the

canonical momentum  of Eq. (2 .4 6 )  can be  ex p re ssed  in term s of the

old m om enta  of Eqs. (2 .28 ) and  (2 .2 9 )  via



43

Ph = P<p + Np0, (2 .48)

This m om entum , ph, is conserved  exactly, within th e  fram ework of 

th e  g u id in g -c e n te r  theo ry , for all c o n fig u ra tio n s  in w hich the  

m agnetic  field strength  has the  form B (^ .e-N cp). F o rN  = 0, this 

invariant m om entum , ph of Eq. (2 .48), red uces  to th e  invariant 

corresponding  to the  B (^ ,6 )  field strength of axisymmetric tokam ak 

eq u il ib ria .

M a g n e t ic  field s t r e n g th s  c o r re sp o n d in g  to  a x isy m m etr ic  

to kam ak  equilibria, B(v^,e), a re  said to b e  isomorphic to th o se  of 

quasi-helically  symmetric equilibria, B(\/(,9-N<j>). T he equations for 

isom orphic  equilibria exam ined  within th is section  perta in  to field 

s tren g th s  with only o n e  Fourier harmonic, but th e  resu lts  c an  be  

g e n e r a l i z e d 52 to apply for field s t re n g th s  with m ore th an  o n e  

Fourier harm onic. S ince  m agnetic  field s tre n g th s  with m ore  than 

o n e  Fourier harmonic do not have  an invariant canonical momentum, 

th is d isse r ta t ion  will be  restric ted  to fields with a  single  Fourier 

harm onic.

In C h a p te r  VI, we prove that non-axisym m etric  configurations 

which exhibit a  m agnetic  field strength of th e  form B(v/r,0-N0) do 

n o t  ex is t.  H ow ever, w e a lso  show  th a t  s u c h  quasi-he lica lly  

sym m etric  equilibria c an  be well approxim ated, s in ce  the  sym m etry  

breaking occu rs  at third order in a  generalized  inverse  a s p e c t  ratio, 

e =s1 /1 0 .  In addition, the  freedom  of the  m agentic  field strength

S2Boozer, A. H. (1983). Phys. Fluids 26, 496.
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within o n e  flux surface, which will be  dev elo ped  within C hap ter V, 

perm its  configura tions with e x a c t  quasi-helical sym m etry  on o n e  

flux surface . However, the breaking of quasi-helical sym m etry n e a r  

th e  m agnetic  axis sc a le s  a s  {(ea)2 - e 2}e for a  configuration w hose  

flux s u r fa c e  with e x a c t  quasi-h e lica l  sym m etry  c o r re s p o n d s  to

£ = Eg.

N iihrenberg  an d  Zille53 h ave  com putaionally  found  th ree -  

d im ensional s te llara tor equilibria which closely  app rox im ate  q u a s i ­

helical sym m etry . T h e  g y ro -cen te r  particle  t ra jec to r ie s  of su c h  

equilib ria  a re  very sim ilar to th o s e  of ax isym m etr ic  to k am ak  

equilibria, in te rm s of B oozer coo rd ina te s .  In fact, M onte Carlo 

particle sim ulations reveal that th e s e  s te llara tors  have  e ither no o r 

a  neg lig ib le  n u m b e r  of s u p e r - b a n a n a  o rb i ts54 th a t  give th e  

e n h a n c e d  transport of traditional s te llara tor configura tions.

53Nuhrenberg, J., and Zille, R. (1988). Phys. Lett. A 129, 1T3.
s4Beidler, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear 

S o c ie ty  1 7 , 148-



CHAPTER III 

MAGNETIC AXIS

The m agnetic  axis is th e  m agnetic  field line th a t  co rre spo nds  

with the  central, d e g e n e ra te  p lasm a p re ssu re  su rface  of a  toroidal 

equilibrium. The only constra in t on this m agnetic  field line is tha t  

it m ust be a  sm ooth, c losed  curve in th ree  d im ensions. T he  sh a p e  

a n d  field s tren g th  of th e  m agn e tic  axis largely  d e te rm in e  th e  

properties of the neighboring field lines, and  thus  th e  m agnetic  field 

strength  in the  vicinity of th e  axis.

In C h ap te r  IV, w e s e e k  solutions to the  p la sm a  equilibrium 

equation , Eq. (1 .1), by performing a  Taylor expansion  in the  radial 

co o rd in a te  ab o u t  a  g e n e ra l  m agnetic  axis . To apply  su c h  an  

exp ansion , a  s e t  of unit vec to rs  de term ined  by th e  m agnetic  axis 

itself should be  im plem ented to define the  spatial position n ea r  the 

ax is . The orthonorm al s e t  of F ren e t  vec to rs  for s p a c e  cu rv es  

provides such a  convenient vector set.

Ill-A. F rene t Unit V ecto rs

The orthonormal s e t  of F renet vectors55 {k 0(A), I^oCfi-)}

(s e e  Fig. 4) define a  "locally" Cartesian coordinate  sy s tem  in term s 

the  spatial position, ToU), of any curve. The p a ram ete r  JL d e n o te s

5SMathews, J., and Walker, R. L, (1970). Mathematical Methods of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.

45
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th e  a rc  length along th e  curve. The vector iTq(IL) gives the  local unit 

vecto r  that is tangent to the sp a c e  curve. T h e  unit normal vector 

Kq(JL) lies in th e  o p p o s i t e  direction to the  local radius of curvature 

and  is perpendicular to l)0( i ) .  The local unit "binormal" vector £q (4 )  

is defined by r 0(£) 5^q(JL)xKo(IL) .

T he  F rene t unit vectors, { k 0U ) ,  * o (4 ), lT0U )} ,  a r e  uniquely 

determ ined by the  spatial position of a  curve, r0U):

d r 0/ d  fi. = £ 0U ) ,  (3 .1 )

db>dJL = k U ) k 0U ) ,  (3 .2 )

dK0/d J I = - K U ) b ~ „ U ) - * ( 0 * 0 ( 4 ) .  (3 .3)

d * 0/ d 4 = ? U ) k 0(4). (3 .4 )

T h e  cu rva tu re  function x (4 )  is simply the reciprocal of the  local 

rad ius of curvature, Rc(£), of the  curve. The torsion function * U )  

gives the  "twist" of the curve o u t  of a  plane.

W e now presen t a  derivation of the  F ren e t  vectors , which is 

found within m any  m a th em atics  texts5 6 . We begin with the spatial 

position, r0U), of the cun/e  defined with respec t to s o m e  coordinate 

sys tem . We a ssu m e  th a t  the spatial position is an analytic function 

of its a rc  length, 4, s o  that all derivatives of r 0(4 )  exist. The 

differential d r0(4 )  is th u s  defined, which is clearly ta n g e n t  to the 

curve  a t  all po in ts  along the curve. T he  derivative d rV d f t  yields a  

v e c to r  of unit length th a t  is ta n g e n t  to th e  curve a t  all points .

56Mathews, J., and Walker, R. L, (1970). Mathematical Methods o f Physics, W. A. 
Benjamin, Inc., New York, 2nd ed., p. 408.
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Defining the vector fTo(Jl) to be  this unit tan gen t to the  curve yields 

Eq. (3 .1).

The p resu m ed  analyticity of r o ( i )  implies th a t  th e  derivative 

of the  unit tangen t vector, dlTo/dH, is a lso  defined. This vector m ust 

be  perpendicular to the unit vector iTqCJI), since the  derivative of any  

v e c to r  of c o n s ta n t  leng th , but c h an g in g  d irec tion , is a lw ay s  

p e rpen d icu la r  to the  original vector. To d e m o n s tra te  this result, 

notice that for any vector a of constan t length, the  equation

0 = ( d / d t ) ( a 2) = ( d / d t ) ( a * a )  = 2 a - ( d a / d t )  (3 .5 )

implies th a t  ( d a /d t )  m ust be either exactly ze ro  or perpendicular to 

the  c o n s ta n t  vector a. The fact that the vector dl3o/dJl m ust b e  

perpendicu lar to the  unit vector tTo(Jl) implies th a t  dlT0/dJL can  be  

e x p re s se d  in th e  form of Eq. (3.2), with ()q( £ ) 'K o(JL) = 0. The 

c u rv a tu re  function , k(JI) of Eq. (3 .2), is th e  reciprocal of th e  

magnitude of the  lo c a l  radius of curvature, Rc (&), of the curve.

The c ross  product of the two unit vectors iTq( 2.) and  ic0(4 )  can  

be u se d  to define a  third unit vector

£ 0U )  s  lfoU )xi<0U ) ,  (3 .6 )

which is mutually perpend icu lar to th e  o ther  two. This vecto r is 

called  the  unit "binomial" to curve. Thus, th e  th ree  orthonormal 

F renet vectors, { i < o ( i l ) , r 0 ( i l ) , ^ 0 ( J l ) } ,  define a  local "Cartesian-like"
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coo rd ina te  sy s tem  th a t  follows the  cu rves  a n d  tw ists of a  s p a c e  

curve  in th re e  dim ensions. For a  curve th a t  lies entirely within 

so m e  p lane, the  tangen t and normal unit vectors, 6^(2.) and 

re spec tive ly , lie within th a t  p lane , w h e re a s  the  unit b inorm al, 

r 0(£ ), is a  constan t vector perpendicular to the  plane.

Differentiating Eq. (3 .6) for roCJL) gives

d £ 0/d!L = (dSi j /dJUxKoU) + l?oU)*(dKo/<iJO = f i o U M d K o / d * )

(3 .7 )

with th e  last s te p  obtained  using Eq. (3 .2). Hence, d£o/d&  is 

perpendicu lar to £qU ), and since £ 0(Jl) is a  unit vector, d £ 0/dJL is 

also  perpendicu lar to t 0(4). Thus, d i Q/ d l  must lie in the  direction 

of K0(&). so  th a t  h a s  the general form of Eq. (3 .4). T he  torsion 

function, t ( £ )  of Eq. (3 .4), g ives the twist of a  curve ou t of a  p lane. 

The torsion is exactly zero for a  cu rve  that lies entirely within a  

p la n e .

T he  only Frenet equation that h a s  yet to been  derived is Eq. 

(3 .3) for dK0/dJL  To d e r iv e  th is  e q u a t io n ,  d if fe re n t ia te  

= £ 0U ) x Id0U ) ,  giving

d K o /d i  = (d"Co/dH) x lT0( A) + €o(JL)x(dl>o/dA). (3 .8 )

Use of the  previously derived Eqs. (3 .2 ) and (3 .4 )  then clearly yields 

the desired  equation for dKo/dJZ., Eq. (3 .3 ) .

As s ta te d  earlier  in th is  sec tion , the  m agn e tic  axis of a
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toroidal p la sm a  equilibrium is constra ined  to be  a  sm ooth , c lo sed  

curve  in th ree  d im ensions . Hence, the curvature , k U ) ,  an d  the  

torsion, r U ) ,  functions of Eq. (3 .1 ) - (3 .4 )  m ust be  consistent with a  

sm ooth , c losed  curve, in o rder  to give a  m agnetic  axis. Integration 

of the F renet equations of Eqs. (3 .1 )- (3 .4 )  implies that a  given k U )  

an d  tt(JL) uniquely de term ine  a  s p a c e  curve to within an  irrelevant 

transla tion  and rotation. T he  probability th a t  an arbitrary cho ice  of 

k (&) and  r (J t)  y ields a  sm ooth , c losed  curve  o ccup ies  a  s e t  of 

m e a su re  zero . However, s e t s  of k (£ )  and r ( 4 )  tha t give viable 

m ag n e tic  a x e s  c a n  be  o b ta in ed 57 by im plementing a  pa ram etr ic  

sp e c if ic a t io n  of th e  a x is  e x p la in ed  within S e c .  Ill-B, o r  a  

com putational se lection  of th e  Fourier harm onics within k U )  and 

■e(Jt) developed within Sec. Ill-C.

III-B. P a ram e tr ic  S pecifica tion  of th e  Axis

O n e  m ethod of finding s e ts  of the curvature, k(JI), and  the  

torsion, z(J t), th a t  a re  co n s is ten t  with sm ooth, c losed  curves  is to 

g iv e 58 th e  spatial position, r0[£($)], of a  c losed  curve a s  a  function 

of so m e  param eter, <i>. An example is given by

r0U($)] = {1 + Ccos(N<t>/M)}tf(<I>) + C s i n ( N $ / M ) £ ,  (3 .9 )

with C. N, and M c o n s tan ts ,  and  {£($), 4>(<t>), the  s ta n d a rd  

cylindrical coord ina te  sy s tem . Application of the  F renet eq u a tio n s

57Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805. 
58lbid.
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of Eqs. (3 .1 ) - (3 .4 )  gives the  following express ions for the  curvature 

and  torsion functions59,

| (<Jro/d<J>)x(d2r o / d $ 2) | 2
{ « (♦ )  }2 = (3 .1 0 )

| ( d r 0/d4>) | 6

- { (d r0/d<l>) 9*(d2r 0/d4»2) } *(d3r 0/d<i>3)
*(40 = (3 .1 1 )

| ( d r 0/d4>)x(d2r 0/d4>2) | 2

in te rm s of the axis param eterization, 4>. Expressions for (dPo/d4>), 

(d2r 0/d<D2), and (d3r 0/d4>3) within Eqs. (3 .10) and (3 .1 1 )  a r e  found by 

using th e  chain rule of calculus, with the axis length length, 4, a  

function of only the  param eterization, 4>. Substitution of the  various 

derivatives of r 0($ )  into the  right hand side of Eqs. (3 .1 0 )  and  (3 .1 1 )  

readily verifies th e  equa tions  for the  curvature an d  torsion in te rm s  

of 4>. To obtain the  curvature  and torsion a s  functions of the  ax is  

length , 4, in s te a d  of th e  pa ram ete r iza tio n , 4>, th e  differential 

eq u a tio n

which holds for any  4>, m ust be  integrated in order to find 4>(4), a n d  

thus k [4>(4)] and *[4>(4)].

T he M=1 family of m agnetic a x e s  of Eq. (3 .9 )  c o rre sp o n d s  to

"Lortz, D., and NOhrenberg, J. (1979). Z  Naturforsch. 34a, 167.

d<t>/d4 = {(d r0/d<*>) - Cdr0/d4>) /2 (3 .1 2 )
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conventional N-period, "helical-like" axes . An exam p le  with N = 5, 

M = 1, and C = 1 / 1 5 is shown in Figs. 1 and 6. As with m ost axes  of 

this particular form, th e  fractional variation of th e  torsion is larger 

than  that of th e  curvature.

Various knotted configurations a re  a lso  poss ib le . Exam ples 

a re  found using Eq. (3 .9 )  with M x 1. The simplest knot is the N = 3,

M = 2, C = 1 /  2  c a s e  shown in Figs. 7  and  8.

Ill-C. C om putational O ptim ization of th e  Axis

An a lte rna te  m ethod for finding s e ts  of the  curvature , k U ) ,  

and  torsion, ?:(£), consis ten t with closed cu rves is a  computational 

s e l e c t io n  p r o c e d u r e 6 0 . As w e will prove in S e c .  Ill-D, c losed  

c u rv e s  can b e  ob ta ined  by varying only two Fourier  coefficients 

within a  se t  of k (£ )  and t U ) .  We find closed curves of length L = 2 i t  

of th e  form

by varying only two of the  four p a ra m e te rs  k ’, t*. 5, and  £. For 

exam ple , su p p o s e  that w e  wish to find a  five-period curve of length 

L = 2T t with fractional curvature variation S = 0 .8  and  m ean  torsion 

F L / 2 T t  = 0 .2 5 .  The quantity F L /2 7 T  is of particular interest since 

it g iv es  the contribution to the lowest order express ion  for the

k U )  = k { \  * S c o s(2 7 tN ft /L )} ,  

r U )  = F { 1  - £ c o s ( 2 t t N £ / L ) h

(3 .13)

(3 .14 )

60Garmn, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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FIGURE 6

CURVATURE AND TORSION OF FIVE PERIOD HELICAL AXIS

0.80.60 .40.2

T h e  curvature, k (£ ) ,  and torsion, r ( £ ) ,  functions corresponding  to 
th e  "helical-like” ax is  of Fig. 1 with ax is  length 2 i t .
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FIGURE 7 

THREE PERIOD "KNOTTED” AXIS

A "knotted" axis given by Eq. (3 .9 ) with M = 2, N = 3, and C = 1 / 2 .
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I
FIGURE 8

CURVATURE AND TORSION OF THREE PERIOD KNOTTED AXIS

0.80.2

The curvature , k ( 4), and torsion, ?(JL), functions co rrespond ing  to 
th e  "knotted" axis of Fig. 7  with length L = 2 tt.
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rotational transform , i ( y p )  of Fig. 2, du e  to torsion. The param eters  

k  and  £  a re  varied until the  integration of the  F renet formulae, Eqs.

(3 .1 ) - (3 .4 ) ,  yields a  sm ooth , c losed  curve. T h e  curve obtained 

d e p e n d s  on the  choice of the  initial va lues of the  p a ram ete rs  kT and  

£. O ne solution is k *L /2 tc = 1.741 and £  = 2 6 .3 6 ;  a  graph of this 

curve is shown in Fig. 9.

W e c an  optim ize th e  m ag n e tic  ax is  s h a p e  u n d e r  so m e  

additional restriction. For exam ple, we may wish to minimize the  

maximum curvature  along the  length of an axis with a  given m ean 

torsion. Assuming the form of the curve given in Eqs. (3 .1 3 )  and 

(3 .1 4 )  with z T L /2 t t  = 0 .5 , our  optimization routine lea d s  to a  

"knotted" curve with p a ra m ete rs  k T . /2 t c  = 3 .3 3 7 ,  S = 0 .5 3 1 ,  and  

C  = 4 .7 7 9 ,  which is shown in Fig. 1 0 .  A curve optimized to have 

c o n s ta n t  cu rva tu re  is show n in Fig. 11. The p a ra m e te rs  of this 

"helical-like" cu rve  a re  given by ' k L / 2 ' K  = 4 .7 4 6 ,  5 = 0 .0 ,

F L /2 T C  = 2 .0 , and C  = 1 .0 7 0 .

Ill-D. P roof of Two P aram e te r  O ptim iza tions

In this section, w e dem on s tra te  tha t only two free  pa ram ete rs  

a re  re q u ire d 61 in o rder tha t  integration of th e  F renet form ulae of 

Eqs. (3 .1 ) - (3 .4 )  produce a  sm ooth, c losed  curve. This analysis 

ju s t i f ie s  th e  u s e  of only two v a r ia b le  p a r a m e t e r s  in th e  

c o n s tru c t io n  of m ag n e tic  a x e s  d e v e lo p e d  within th e  p rev ious  

s e c t io n .

e1Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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FIGURE 9 

COMPUTATIONALLY SELECTED AXIS

A curve of the form of Eqs. (3 .13) and  (3 .14 ) with )T L /2 tc =  1 .741 , 
8 = 0 .8 ,  T L / 2 n  = 0 .2 5 , and £  = 2 6 .3 6  obtained by computationally 
selecting the  v a lues  of kT and



57

FIGURE 10

AXIS WITH OPTIMIZED MAXIMUM CURVATURE

A curve of the  form of Eqs. (3 .1 3 )  and (3 .1 4 )  with k "L/ 2TC  = 3 .3 3 7 ,
S = 0 .5 3 1 ,  F L /2 T C  = 0 .5 , and E, -  4 .7 7 9  obtained by optimizing ic,  8 ,  

and  £  to find a  curve  with a  given m ean  torsion T L / 2 T Z  and  a  
minimum value  for the  maximum curvature along its length.
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FIGURE 11

CONSTANT CURVATURE OPTIMIZED AXIS

A curve of the  form of Eqs. (3 .1 3 )  and  (3 .14) with 1TL/2TC = 4 .7 46 ,
8 = 0 .0 ,  F L / 2 t c  = 2 .0 , and E, = 1 .0 70  obtained by optimizing kT and E, to 
give a  c losed  curve with co n s tan t  curvature x*.
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W e a s s u m e  analy tic  form s of th e  c u rv a tu re  and  to rs ion  

functions, a s  in Eqs. (3 .1 3 )  and (3 .14), with two variable  Fourier 

coefficien ts  within this s e t  for the  se lec tion  p ro ced u re  to g ive a  

sm ooth, c losed  curve. W e a ssu m e  that th e s e  functions have so m e  

non-trivial periodicity o ther  than that corresponding to the  length of 

the curve itself. That is, both the  curvature, k (<P), and  torsion, 7r(<p), 

m ust both have  period 2TC/N, with N * 1, if the  period of <p is 2 tc. 

Then, given an  initial s e t  of F renet vec to rs  defined a t  a  point in 

sp a ce ,  the  Frenet equations of Eqs. (3 .1 ) - (3 .4 )  a re  integrated over 

its lowest period, 2TC/N, giving a  new se t  of Frenet vectors.

T h e  F re n e t  v e c to r s  c o rre sp o n d in g  to a n y  po in t in th e  

integration of Eqs. (3.1 ) - (3 .4 )  a l w a y s  form an orthonormal s e t62 . 

Thus, the  s e t  of Frenet unit vectors can  be  treated a s  a  rigid body in 

th ree  dim ensions. The general transformation of any rigid body is a  

rotation followed by a  translation. H ence, the  integration of th e  

F re n e t  v e c to r s  o v e r  o n e  p e riod  c an  t r e a te d  a s  a  g e n e ra l  

transform ation  of the  rigid s e t  of initial F renet v ec to rs .  That is, 

th e  F re n e t  v e c to rs  a f te r  integration th rough  o n e  period  of th e  

c u rv a tu re  a n d  torsion  functions can  be  ob ta ined  by a  ro tation 

followed by a  translation of the  initial s e t  of F rene t  vectors. W e 

apply the  active  view of transform ations in which th e  coord ina te  

s y s te m  is h e ld  fixed o n c e  it is c h o s e n .  T h e re fo re ,  all 

transfo rm ations a re  actually applied to the  position a n d  orientation 

of the  F renet vecto rs  them se lves .

62Mathews, J., and Walker, R. L., (1970). Mathematical Methods of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.
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W e n o w  find c o n s t r a in t s  on  th e  form  of g e n e r a l  

transfo rm ations of a  s e t  of Frenet vectors, which applied N tim es, 

re tu rn  the v e c to r s  to th e ir  initial position a n d  orientation. The 

g e n e ra l  tranform ation  T of any su ch  rigid body is a  rotation R. 

followed by a  d isp lacem ent d, i.e.,

with the  t r a n s p o se  of the  column vector x given by (x, y, z ) .  The 

vecto r x gives th e  coordinates corresponding to a n y  point in sp a ce .

We seek  forms of th e  transformation of Eq. (3 .1 5 )  such th a t  N 

applications g ive the original coordinates of a ll points in sp a ce ,  i.e.,

S u c h  a  d e s i re d  result c o rre sp o n d s  to integration of the  F ren e t  

fo rm u la e  o v e r  N periods giving a  cu rve  which joins its initial 

position smoothly. Use of Eq. (3 .15) within Eq. (3 .1 6 )  thus implies

T x  = R x  + d, (3 .1 5 )

t n x = x. (3 .16 )

N-1
r .n x + { £ r J  }d = x, 

j=o
(3 .1 7 )

m u s t  hold for an y  position vector x. This resu lt  follows if the  

e q u a t io n s
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ftNX = X, (3 .18 )

N-1
{ Efti }d = 0 
i - o

(3 .19 )

both hold. We will now sh o w  that only one  cons tra in t  m u s t  be

app lied  to  the  form of th e  rotation matrix, f t , a n d  only one  

co n s tra in t  to th e  form of th e  d isp lacem en t vector, d, in o rder to

satisfy (3 .1 8 )  and (3 .1 9 )  with N * 1.

T he  axis ab o u t  which to  perform the  rotation, f t ,  is entirely 

arbitrary. However, we will show  th a t  the  an g le  of rotation, of, 

abou t th is axis is constra ined  to be a  rational n u m ber  in o rd e r  to 

satisfy Eq. (3 .18). To prove this result, ch o o se  th e  z-axis of our

C artesian  coordinate  system  to  correspond  with the  axis of rotation.

The cho ice  of the  x and y a x e s  is arbitrary. Using the s tan d ard  

rotation matrix corresponding to  this coordinate  sy s tem ,

th e  constraint of Eq. (3 .18) implies that th e  rotation angle, of, m ust 

b e  2TCM/N, with M any  integer.

W e now use  of = 2TCM/N within f t  in Eq. (3 .19) to determine any 

additional c o n s tra in ts .  N otice  th a t  multiple app lica t io n  of the  

rotation matrix g ives f t i (o i )  = R ( jo f ) ,  which is obvious using Eq.

c o s  (of) sin(of) 0
R(of) = -sin(o<) c o s  (of) 0

0 0 1 L
(3 .20 )
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(3 .2 0 ) .  Thus, the  sum  of th e  rotation m atrices within Eq. (3 .19 )  

g ives a  finite sum  of the  form £ c o s ( j 2 T t l i / N )  for its xx and  yy 

com ponents , and  one of the form ± 2  sin(j2TCM /N) for its xy and yx 

com ponen ts . Application of the  relations

cos(o<) = {1 /2}  (exp(io<) + exp(-io«)}, (3 .21 )

sin(oO = { 1 /{ 2 i} } { e x p ( io 0  - e x p ( - io O } ,  (3 .22 )

then  g ives  finite geom etric se ries  of the  form

N 1 -  r N
Z  ri  = --------------  (3 .23 )

j=i 1 -  r

for each  of the xx, xy, yx, and  yy e lem ents of the  matrix sum  of Eq.

(3 .1 9 ) .  S in ce  the  v a lu e  for r  in e a c h  of t h e s e  s e r i e s  is 

exp(±2TCiM/N), th e s e  matrix e lem en ts  all sum  to zero, provided 

N x 1. The geometric se ries  of Eq. (3 .23 )  is indeterminant for N = 1. 

The only non-zero  e lem ent within the  resulting matrix of Eq. (3 .1 9 )  

is the  z z  e lem ent, which trivially reduces  to N.

The t ran sp o se  of the  d isp lacem ent vector, d, tak e s  the general 

form (Xg.yo.Zo)- Application of the  sum  of m atrices  within Eq.

(3 .1 9 )  then simply gives

( 0 , 0 ,  Nz0) = ( 0 , 0 , 0 ) . (3 .24 )
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This equa tion  sho w s th a t  the  d isp lacem en t parallel to th e  axis of 

ro tation, which is g iven by Z q, is co ns tra ined  to b e  zero . The 

d is p la c e m e n t  p e rp e n d ic u la r  to th e  a x is  of ro ta t io n , which is 

de te rm ined  by x0 and  y0, is arbitrary.

W e have show n that in order satisfy Eq. (3 .1 6 ) ,  th e  rotation 

abou t the  arbitrary axis is constrained to be  a  rational an g le  and the 

d isp lac em e n t  tha t  follows is constra ined  to b e  zero  parallel to the  

axis of rotation, provided N *  1. Thus, there  a re  only two constraints 

tha t  m ust b e  satisfied in finding a  general transform ation of the  s e t  

of F re n e t  vec to rs  which, applied so m e  finite nu m ber  of tim es, is 

e q u iv a le n t  to th e  identity tran sfo rm a tion . T h e re fo re ,  th e  two 

variab le  p a ra m e te rs  within the  curvature  a n d  torsion functions a re  

su ff ic ien t to yield a  sm oo th , c lo se d  c u rv e , p ro v ided  th a t  th e  

c u rv a tu re  a n d  to rs io n  fu n c tio ns  both h a v e  s o m e  non-trivial 

p e r io d ic i ty .



CHAPTER IV 

TOROIDAL PLASMA EQUILIBRIA

In th is  c h a p te r ,  a  g e n e r ic  m e th o d  fo r  finding th re e -  

d im e n s io n a l ,  toroidal p la s m a  equilibria  is d e v e lo p e d .  T h e s e  

e q u il ib ria  a r e  so lu t io n s  to th e  p la s m a  equilibrium  e q u a t io n ,  

j*B  = V p, with j = (1 / ^ l0)V xB, via Am pere’s  law, coupled with the 

d iv e rg en ce -f ree  property of the  m agnetic  field, V ‘B = 0. P la sm a  

equilibria  a r e  actually co n s tru c ted  by performing a  Taylor s e r ie s  

ex p an s io n  abou t a  genera l  m agnetic  axis. C om prehension  of this 

ex p an sion  m ethodology is vital to the  elucidation of the restrictions 

in th e  form of the  m agnetic  field s treng th  th a t  a re  g iven  within 

C hap ter  V.

IV-A. B asic  E quations of Toroidal P lasm a Equilibria

In S e c .  Il-B, we p resen ted  a  derivation of a  s e t  of curvilinear 

c o o rd in a te s ,  {yr,9,<Ph (se e  Fig. 2), developed  by Boozer63 . The 

c o n s ta n t  s u r fa c e s  of the  radial coord ina te , ty, co rre sp o n d  to the  

n e s te d ,  toroidal, p lasm a p re s su re  su rfaces .  The poloidal ang le , 9, 

d e fines  the  "short way" around the  torus and  the  toroidal ang le , <p, 

d e f in e s  the  "long way" around th e  torus. The primary ad v an tag e  of 

im p lem en ting  th e s e  c o o rd in a te s  is th a t  they  a r e  the  c an o n ica l

63Boozer, A. H. (1981). Phys Fluids 24, 1999.

64
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c o o rd in a te s  of th e  g u id in g -c en te r  drift H am ilton ian  p r e s e n te d  

within S e c .  ll-C. Furtherm ore , widely differing p la s m a  equilibria 

w ith r e la te d  m a g n e t ic  field  s t r e n g th s  in t e rm s  of B o o z e r  

c o o rd in a te s  can  h a v e  sim ilar64 tran spo rt  p roperties , a s  outlined 

within S ec . II-D.

The u se  of Boozer coo rd ina tes  perm its the  m agnetic  field of 

a n y  toroidal p lasm a  equilibrium to be e x p re ssed  s im ultaneously  in 

th e  two simplified rep re sen ta tio n s65 of Eqs. (2 .12) and  (2 .13). The 

only critical assum ption  u sed  is that th e  m agnetic  field can  n e v er  

van ish  within the  toroidal region. The con travarian t form of th e  

m agnetic  field of Eq. (2 .12), which is d ivergence  free , insures th a t  

th e  m agnetic  field lines lie within su r fa ce s  of c o n s ta n t  p re s su re .

T h e  covariant form of the field in Eq. (2 .1 3 )  g u a ra n te e s  tha t  th e

e le c t r ic  c u r re n t  t r a je c to r ie s  lie within th e s e  s a m e  p r e s s u r e  

s u r f a c e s .  T he  c o n s t ra in t  th a t  th e  field l ines  a n d  c u r r e n t  

trajectories lie within p ressu re  su rfaces  is given by Eq. (1 .2), which 

trivially follows from the  p lasm a equilibrium equation of Eq. (1 .1).

The equality of the  two rep resen ta tions  of the  m agnetic  field 

of Eqs. (2 .1 2 )  and (2 .1 3 )  implies the constraint66

VxjfxVe + ity)V cp*V\/f = G(l#0 Vtp + I(\fOV0 + P * ty .e .< P )V ^,

(4 .1 )

for all s c a la r -p re s s u re ,  equilibrium m ag ne tic  fields e x p re s s e d  in

64Boozer, A. H. (1983). Phys. Fluids 26, 496.
^B oozer, A. H. (1981). Phys Fluids24, 1999.
66Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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term s of Boozer coordinates. The constraint of Eq. (4 .1) g u a ra n te e s  

th a t  th e  m a g n e tic  field is  d iv e rg en ce -f ree , an d  th a t  both th e  

m ag n e tic  field lines and  electric c u rren t  tra jec to ries  lie within th e  

to ro id a l  p la s m a  p r e s s u re  s u r fa c e s .  Application of th e  dua l 

rep resen ta tion  of the  m agnetic  field via Eq. (4 .1 )  also red u c es  the  

v e c t o r  p lasm a  equilibrium equation of Eq. (1 .1 ) , jx B  = V p, to a  

s c a l a r  equation, a s  will now  be given.

T he  p lasm a equilibrium equation of Eq. (1 .1 )  can be  ex p ressed  

in th e  form

{V  x Bcov} x Bcon = JloVp, (4 .2 )

using A m pere 's  law, V*B = j io j ,  and  the  two forms of the  m agnetic 

field of Eqs. (2 .1 2 )  and (2 .1 3 ) .  This vector equation c o n d en se s  to the 

s c a la r  equation

{(dG/d^O -  ( d 0 M/3fP)} + T.ty){(dI/d\fO - ( 8 0 * / a e ) }

+ j i0 ( d p /d ^ M G(vfO + i ( \ / r )  I(xjf)}/B2(^,0,fP) = 0 , (4 .3 )

since both the V 9  and Vtp com ponen ts  of Eq. (4 .2 )  reduce  to zero. 

The sca la r  force balance  equation of Eq. (4 .3) provides a n  additional 

c o n s t r a in t  on equilib ria  with non-trivial c u r r e n t  a n d  p r e s s u re  

profiles. In deriving Eq. (4 .3 ) ,  the  spatial Jaco b ian  of th e  Boozer 

coordinates given in Eq. (2 .2 5 )  was implemented.

T h e  sca la r  force b a la n c e  equation  of Eq. (4 .3 ) can  b e  solved
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analytically if both J3„(\p,0,<p) and  1 /B 2(\p,6,<p) a re  fully Fourier

d eco m po sed  in both 0  and (p. Therefore, 1 /B 2 should be  expressed  in 

the  form67

l / B 2Cvp,e,(p) = { 1 /< B 2>H1 + I ' [ f f n, jy O c o s (n < p -m 0 )

+ x n . m M s i n ( n c p - m 0 ) 3 h  ( 4 . 4 )

with the  apostrophe  on the summation indicating th e  omission of the 

n=0, m = 0 term. The flux function <B2> of Eq. (4 .4 ) is the average  of 

B2(^ ,0 ,tp) within a  magnetic surface, i.e.,

( d / 6 \p ) / B 2 d3x
< B 2 > s  - - - - - - - - - - - - - - - - — . ( 4 . 5 )

(d/6\p) J"d3x

To obtain Eq. (4 .5), the  spatial Jacobian  of the  B oozer coordinates, 

Eq. (2 .2 5 ) ,  and the relation d3x = J  d\pd0d(p for transforming volume 

e le m e n ts  w ere  both utilized.

Averaging the  sca la r  equilibrium equation  of Eq. (4 .3 ) over 8 

and (p g ives68

dG/dvp + i(vp)dl/dvp + ]i0 (dp/dip){[G(VO + i t y )  IW 03 /< B 2 >} = 0.

(4 .6 )

This p rocedure  then implies th a t  the function 0*(^.0,<P) h as  the  form

67Boozer, A. H. (1981). Phys Fluids 24, 1999.
68Kruskal, M. D., and Kulsrud, R. M. (1958). Phys. Fluids 1, 265.
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£ * (W .< P )  = )ioCdp/dV/){{G(^) + i ( ^ ) I ( ^ ) } / < B 2>}

XZI n /C n-L ( \^ )m 3 H  2Tn m(^f)sin(ntp -  m e)

- ^n.mMcosCntp -  m e ) }, (4 .7 )

with the  functions 2fn m(\^) and o<n>m(\J0 de term ined  by the  Fourier 

coefficients of 1 /B 2 in Eq. (4 .4). The additional function of $  th a t  

may be  a d d ed  to can be  absorbed  into the  choice of the

toroidal ang le , <p, by a  transformation of the form <p-*cp + f(^ ) .  T he  

function 1 / B 2 is a s s u m e d  to b e  analytic, so  tha t  th e  functions 

^ n .m M  anc* of Eqs. (4 .4) and  (4 .7) have the form

Sn.m W  = r ' 2  >>W. (4 .8 )

with h (^ )  so m e  analytic function of yji a n d  m so m e  nonn ega tive  

integer. The generic  form of analytic functions in te rm s  of B oozer 

coo rd ina tes  will be  p resen ted  within Sec. IV-C.

In su m m ary , th e  vector differential equa tion  resulting from 

the  equality of the two forms of th e  m agnetic  field, Eq. (4.1), a n d  

th e  sca la r  equilibrium equation of Eq. (4 .3) define a  sca la r-p ressu re , 

MHD equilibrium in te rm s of Boozer coordinates. T he  co n s tan ts  of 

integration a sso c ia ted  with the differential equation  of Eq. (4 .1 ) a re  

sufficient to give a  continuous spectrum  of MHD equilibria an d  a re  

equ iva len t to freedom  of the  s h a p e  of th e  bounding m agnetic  flux 

su r fa c e .

T he  sca la r  force ba lance  equation of Eq. (4 .3 )  is satisfied if
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th e  av erag e  force balance  equation, Eq. (4.6), holds with th e  function 

£ * M 0 *tP) given by Eq. (4.7), which involves the Fourier coefficients

of the  m agne tic  field s treng th . H ence, the e q u a t io n s  th a t  define 

sca la r-p ressu re  equilibria can be  given by Eqs. (4 .1 ) ,  (4 .6), a n d  (4.7). 

T h e s e  co n s tra in t  eq u a tio n s  p reven t arbitrary spec if ica tion  of the  

m ag n e tic  field s tren g th  in te rm s  of Boozer c o o rd in a te s .  Thus, 

m ag n e tic  field s t re n g th s  th a t  give d es irab le  g u id in g -c e n te r  drift 

tra jec to rie s  and  a sso c ia ted  t ransport  m ay not co rre sp o n d  to actual 

toroidal p la sm a  equilibria.

An anno ta tion  is m ade  for p la sm a  equilibria with m ore  than 

o n e  field period . All p e r io d ic  equilibria  a r e  m ath em a tica l ly  

e q u iv a le n t  to th o se  with only one  field period. This resu lt  is 

d e m o n s tra te d  by th e  transform ation69

with I ,  I ,  and © the  per-period quantities of th e  toroidal angle, 

m a g n e tic  ax is  length , rotational transform , a n d  poloidal electric  

current, respectively . The form of the  resulting equa tions  in term s 

of the  new  va riab les  is identical to th a t  of th e  old, w ithout the  

period, N, appearing  explicitly.

69Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.

G -* N©,

L -» N l ,  
1 -+ N

N<p -♦ <$>, (4.9)

(4 .10)

(4 .11)

(4 .12 )



70

IV-B. Inverse  Method for Defining th e  C o o rd in a tes

Finding se ts  of {v(f, e , 0 ,  G(^), I ty ) ,  i t y ) .  p tyO l which satisfy 

th e  equilibrium equations  of Eqs. (4 .1), (4 .6 ) , and  (4 .7 )  is quite  

arduous. We se ek  solutions by performing an  Taylor se r ies  expansion 

abou t an  arbitrary magnetic axis, since th e  m ost critical constra in ts  

of MHD equilibria a re  determ ined by the  lowest o rd e r  term s in the  

e x p a n s io n .  To im plem ent th is ex p an s io n  tec h n iq u e ,  the  b a s ic  

eq u a tio n s  a re  e x p re ssed  in te rm s of th e  spatial position x(^,e,<p) 

(se e  Fig. 3), instead  of the coordinates, {^(x), 9 (x ) , <p(x)}. This 

inverse  transform ation is accom plished  through the  u s e  of th e  dual 

r e l a t i o n s 70 of partial differential theory, which w e re  p re se n te d  in 

Sec . Il-A. Application of the  dual relations to B oozer 's  coordinates, 

{^ . 9. <Ph yields

6x/d\Jr = JV G x V tp  and (6X /69) x(8x/8<p) = JVvJr, (4 .1 3 )

plus all even  permutations of ty ,  6. <Ph with the spatia l Jacob ian  J 

given by

j  = {(ax/d\f0 x(ax/ee)H8x/d<p) = i /{{v^xve}-v<p}. (4.14)

Using the dual relations of Eqs. (4 .1 3 )  and (4 .1 4 ) ,  the equality 

of the  two forms of the m agnetic  field via  Eq. (4 .1 )  b e c o m e s  th e  

v ec to r  differential eq ua tion 71

70White, R. B. (1989). Theory of Tokamak Plasmas, North Holland Physics, 
Amsterdam, p. 6.

71Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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cex/ecp) -  i ( ^ ) ( a x / a e )  = G (\jo (6 x /ev /o * (6 x /d e )  

+ i(v ^ ) (a x /a (p )x (a x /a ^ )

♦ ^ M ^ .e . t p J O x /a e jx c a x /a tp ) .  (4 . 15 )

T h e  c o n s tra in t  of Eq. (4 .15 ) is e x p re s s e d  in te rm s  of partial

derivatives of the  spatial position, X(vjr,e,<p), w h e re a s  the  original

eq u a tio n  of Eq. (4 .1 )  u s e s  th e  g ra d ie n ts  of th e  c o o rd in a te s ,

{yKx), e (x ) ,  tp(x)}. Toroidal p lasm a equilibria can be  defined using 

Eqs. (4 .15), (4 .6 ) ,  and (4 .7), in lieu of Eqs. (4 .1 ) , (4 .6), and  (4 .7). W e 

im plem ent Eq. (4 .1 5 )  throughout the  rem ainder of this d issertation , 

s in c e  this eq ua tion  app lies  the  inverse  m eth od  for defining th e  

coord ina tes , which facilitates the expansion abo u t th e  axis.

The Jacob ian  of the  Boozer coordinates, given by Eqs. (2 .2 5 )  

a n d  (4 .14 )  permit the  magnetic field strength to be  e x p re ssed  in the  

fo rm

i (6x/<ty) * { ( a x /6 e ) x ( e x / e ( p ) }
-----------------  = --------------------------------------------- . (4 .1 6 )

B2(y/,e,tp) G ty) + i t y O W )

However, a  form that will prove to be more enlightening within Sec .

IV-(E-G) is o b ta in e d  by apply ing  th e  in n e r  p ro d u c t  of th e  

co n trav a r ian t  form of th e  m agnetic  field, Eq. (2 .12 ) ,  with itself. 

This p rocedu re  yields
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i | cax/a<p) ♦ iW M x/ae) | |z
----------------- =  ( (4 .1 7 )

B2(>(/,0,f) {ew * iwiwi2

using the  form of 1 /B 2 in Eq. (4 .16).

We perform the Taylor expansion about a  genera l m agnetic axis 

using the  orthonormal s e t  of F renet vectors72, { K o U ) .£ o ( 0 .

( s e e  Fig. 4), defined within Sec . Ill-A. T he  vector lT0(A) is simply 

th e  local unit vector that is tan g e n t  to a  s p a c e  curve , everyw here. 

T h e  unit normal vector k 0U )  lies *n the opposite  direction of the  

local rad ius  of curvature, and  th e  unit binormal v e c to r  r 0U )  is 

mutually perpendicu lar to the  o th er  two.

T h e s e  F re n e t  unit v e c to rs  form a  local "C artes ian -like"  

c o o rd in a te  sy s tem  with repec t to any  sm oo th  cu rve . T herefore , 

t h e s e  vec to rs  can  be  used  to e x p re s s  the  spatial position near  the 

ax is  in the  form73

xty,e,(j>) = r0[Jt(<p)] + Xty.e,<j>)K0[JU<P)] + Yty.e.tp) r 0U(<P)3

+ 2(^,9.<P) G0um
(4 .1 8 )

W e  constra in  X(v^r=0) = Y(^=0) = Z(^p=0) = 0, so  tha t th e  vector 

function TqU(<P)] co rresponds to th e  m agnetic  axis, with JL(<p) the  

d istance  along the axis. The functions {X(^,0,tp), Y(^,9,<p), Z(^,0,<P)} 

of the spatia l position of Eq. (4 .1 8 )  can  b e  u sed  to e x p re ss  a n

72Mathews, J., and Walker, R. L., (1970). Mathematical Methods o f Physics, W. A. 
Benjamin, Inc., New York, 2nd ed., p. 408.

73Garren, 0 . A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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arbitrary point n ea r  the  m agnetic  ax is  in term s of the  co o rd in a te s  

{^. 0,<PK The form of the spatial position in Eq. (4 .1 8 )  is completely 

general, s ince  the corresponding Frenet Jacobian,

J F = 1 /{ { VX * VY}*VZ}, (4 .1 9 )

is neither zero , nor infinite, in the region of interest.

The form of the spatia l position given in Eq. (4 .18 )  is not 

unique. For example, an alternate  representation is given by

X(^,0 ,(P) = Q(^,9,tp) X + R (^ ,0 ,cp )f  + S(\Jr,0,(p)z, (4 .20 )

with {x, y, £} the  C artesian  unit vectors. For a  given equilibrium, 

the  form of the  functions (Q(vp.0.<P). R(^,0,<p), S(v^,0,tp)} of Eq. (4 .2 0 ) ,  

is c h an g e d  under a  coordinate  translation or rotation. However, the  

form of the  functions {X(*p,0,<p), Y(^.0.<P). 2 ( ^ ,0 ,<p)} of the  Frenet 

rep resen ta tion  of Eq. (4 .1 8 )  is independen t of the coordinate  origin 

and  orientation. Hence, the  F renet represen ta tion  d o e s  not contain

any  a p p a re n t  freedom in the  configuration that is m erely d u e  to the

trivial f re e d o m s  of tran s la t io n s  a n d  ro ta tions of the  c o o rd in a te  

sy s te m .

W e em ploy the F renet represen ta tion  of the spatial position in 

Eq. (4 .1 8 )  throughout the  rem ainder of this dissertation. This u s e  of 

th e  F rene t  rep resen ta tion  is e sse n tia l  to the  counting of th e  free  

functions of cp tha t  will b e  d e v e lo p ed  within C h a p te r  V on the
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restrictions of the m agnetic  field strength. Use of a  represen ta tion  

o ther than  Eq. (4 .1 8 )  may give additional free functions of 9  tha t 

r e p r e s e n t  irre levan t t ra n s la t io n s  or ro ta t io ns  of th e  c o o rd in a te  

sy s te m , r a th e r  th a n  a n y  add itiona l f reed o m  in th e  p la s m a  

equ ilib rium .

IV-C. Analytic F u n c tio n s  of Boozer C o o rd in a tes

W e have  sh o w n  th a t  th e  task  of finding toroidal p la s m a  

equilibria can  be defined using Eqs. (4 .15), (4.6), and  (4 .7 ) . Generic 

so lu t io n s  will be  found  in th e  rem a in d e r  of th is  c h a p te r  by 

performing a  Taylor se r ie s  expansion  abou t a  genera l m agnetic axis. 

To com prehend  the  details of this expansion  technique, the  gen era l  

form of an  analytic function in term s of Boozer co o rd in a te s  m u st  

first be  understood.

W e will dem o ns tra te  that any  function that is analytic in so m e  

local toroidal region can  be c a s t  in the form

00

f(^.e,<P) = I \pm / 2 { a m(^ ,< p )s in (m e )  + bmty ,< p )co s (m e)} , (4 .2 1 )  
m=0

in term s of Boozer coord inates , {^, 9, <p). The poloidal coefficients 

a m ( M )  a nci bm(^,<p) a re  analytic functions of }ff and cp, so  that they 

a re  ex p re ssed  as

am( M )  = am.oW * am-2(<p)i|» -  am,,(ip)V'a ♦ ™. M .22)
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with am,0(<p), a m,2(<P). am.4C<P), etc., periodic in <p.

To begin the  proof of Eqs. (4 .2 1 )  and (4 .2 2 ) ,  a s su m e  that £(x) 

and n ( x )  define “Cartesian-like" coord inates su ch  tha t  V £  and V t\  

a re  finite and  non-zero  within so m e  tw o-d im ensional su rfa ce  of 

in te res t.  If the  c ro ss  product V £ * V t\  is nonzero  within the  

surface, then  any  analytic function of position can  b e  ex p an ded  in a  

power s e r ie s  of th e  form74

with the fjk constant, ab o u t som e arbitrary origin in tha t surface. A 

choice for £  and n  is

so  that \p1/2 co rresponds to the “radial-like” coord ina te  and  0 to the  

“polar-like" co o rd in a te .

T h e  sq u a re  root of the toroidal flux, }f/U 2 , is c h o se n  to 

co rre sp o n d  to th e  radial coordinate  within E qs. (4 .2 4 )  and  (4 .25), 

in s tead  of the flux itself, This selection w a s  m a d e  s ince  the  

toroidal flux is roughly \pssB0Ttr2, with r the  minor rad ius from the  

m agnetic  axis to the  fiux surface. Thus, the  function f(£,Ti) can  be  

e x p re s se d  in the form

74Kuo-Petravic, G., and Boozer, A. H. (1987). Comp. PhysicslZ , 107.

= Z f j i j t V .  ] > 0 ,  k > 0 ,  (4 .23 )

£ 5  \p1 / 2  cos(e), 

t\ s  \p1 / 2  sin(9),

(4 .24 )

(4 .2 5 )
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f ( ^ .e )  = £  fjic yp l̂ *k ) / 2  {cos(0)}J {sin(0)}k, (4 .2 6 )

using Eqs. (4 .2 3 ) - (4 .2 5 ) .  The product {cos(0)H {sin(0)}k of Eq. (4 .2 6 )  

can  be Fourier expanded a s

{co s(e )} J {sin (e )}k = £ { a m s in ( r n e )  + bmc o s ( m e ) } ,  (4 .2 7 )

with the range  of m given by 0 < . m <. j + k, with m even  (odd) if j+ k  is 

even  (odd). Therefore, f (^ ,0 )  can  be  expressed  in the  form

00

f ( ^ ,0 )  = Z  ^ m /2 {a m(v/0 s in ( m 0 )  + bm( ^ ) c o s ( m 0 ) } ,  (4 .2 8 )  
m=0

with am(yO and  bm(\p) analytic functions of i.e.,

= am,0 + am,2 $  * anM + (4 .2 9 )

with anri^1 am,4* etc., constan ts .

S u p p o s e  that a  third coordinate , $ ,  is then defined su ch  that 

th e  reciprocal of the  spatial Jacob ian , (V ^xV 0}*V y), is finite and  

no n-zero  every w here  within the  region of in teres t. We will a lso  

a s s u m e  th a t  th e  coord inate  <p is periodic, so  that 0, form a  

toroidal coordinate  sys tem . Then Eqs. (4 .2 8 )  and  (4 .2 9 )  imply tha t
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a n y  function which is analytic within a  given toroidal region can  be  

c a s t  in the  form of Eq. (4 .21 ).

IV-D. Expansion  about th e  Magnetic Axis

The th ree  functions {X(^,e,(p), Y(yf,0,<P), Z(v/f,e.<P)f within the  

spatia l position of Eq. (4 .1 8 )  are analytic in th e  a b s e n c e  of islands 

or s tochas tic  regions. H ence, these  functions can  all b e  ex p ressed  in 

th e  analytic form of Eqs. (4 .2 1 )  and (4 .22), or more specifically,

x t y . e . f )  r  6 X,(e,tp) + s 2 x 2(e.<P) * e 3 Xj(e.ip) * (4 .30)

with

X ^e .tp )  = X1t1s(<p) s in ( e )  + X1tlc(cp )cos(e ) ,  (4 .31)

X2(0.<P) = X2,o(^P) + X2,2s ($ )  s i n ( 2 9 )  + X2,2c ^ J  c o s ( 2 9 ) ,  (4 .32)

X3(0,(p) = X3fls(cp )s in (9 )  + X3,1c( (p )c o s (e )

+ X3,3s( (P )s in (3 0 )  + X3 i3c(<P)cos( 3 0 ) ,  (4 .33)

X4(0,<p) = X4(0(<P) + X4t2s( tP ) s in (2 0 )  + X4f2c( ^ ) c o s ( 2 0 )

+ X4l4s(tp) s i n ( 4 0 )  + X4.4c(<P) c o s ( 4 0 ) ,  (4 .34)

etc. T hese  expressions for {X(^,9,<p). Y(^,9,(P), Z(^,8.<P)} are simply 

p o w e r  s e r i e s  e x p a n s io n s  a b o u t  a  m agne tic  axis in te rm s  of a  

d im e n s io n le s s  p a ram eter ,
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e a ty'(Kmax)2/Bmin}1/2I (4.35)

with 1 /K max the  scale  length an d  Bm{n th e  sc a le  m agne tic  field 

s treng th . Obviously, the  expansion  p a ram eter , e, is proportional to 

the sq u a re  root of the toroidal magnetic flux, ^ 1/2-

T h e  only sc a le  length that a p p e a rs  in vacuum  m agnetic  fields 

is the radius of curvature of the m agnetic axis. W e c h o o se  Kmax to 

b e  th e  maximum local curvature  of the  ax is  and  Bmin to be  the 

minimum m agnetic  field strength  of the axis, so  th a t  the  expansion  

p a ra m e te r ,  e, is maximized. This maximization of e insures  tha t the 

expansion  coefficients a re  all of o rder  unity o r  less. The expansion 

p a ra m e te r  is approxim ate ly  e s r / R c, with r  the  minor radius from 

the  axis to the outerm ost flux surface , and  Rc the m i n i m u m  radius 

of curvature of the  axis. Since Rc do es  not necessa r ily  co rrespond  

with th e  global toroidal rad ius of c u rv a tu re  of th e  ax is , the  

e x p a n s io n  p a ra m e te r ,  e, is not necessarily  the  traditional inverse 

a s p e c t  ratio.

T h e  reciprocal of th e  sq u a re  of the  m agne tic  field s treng th , 

1 /B 2(^,0,(P), and the function £*(^,e,<P) are e ac h  expanded  in a  form

similar to that of {X(yr,0,tp), Y ty.e .tp), Z(\/f,e,^>)}, with the  addition of 

a  zeroth order term  that is a  function of only <p, i.e.,

i/BJ(V/.e,ip) = H/|B0(ip))2l . E [ i / 8 2],(e.tp) ♦ e2ti/B2]2(e,ip) ♦
(4.36)
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= 0 * O(<P) + e ^ / e . ' P )  + e 2£ * 2(0,<p) + (4 .3 7 )

The poloidal expansions of [1 /B 2]1(e,(P), £ * 2(0,<p), etc., have  the form

of Eqs. (4 .3 1 ) - (4 .3 4 ) .  T he rotational transform, i t y ) ,  the poloidal 

e lectr ic  cu rren t, G(^), th e  toroidal electric current, I(*/0, and  the  

p lasm a p ressu re ,  p(^0, are  simply Taylor expanded  in term s of

t t y )  = i 0 + e2 l 2 + M  + "'* (4 .3 8 )

with i 0, 1 2* l 4> ©to., constants .

In th e  r e m a in d e r  of th is  d i s s e r t a t io n ,  t h e  e x p lic i t  

dimensionality of all of the  functions has been  removed. T hat is, th e  

factors of x max, Bmin, and p 0 have been  rem oved from a ll  of the  

e q u a t io n s  in th is ana ly s is .  H ence , th e  e x p an s io n  coeff ic ien ts , 

Xi(e,<p), Xjte.fP), P2. £ * 0(fP). ©tc., a re  all d im ensionless.

IV-E. V a c u u m  M a g n e t ic  F ie ld s  w ith  P e r f e c t  S u r f a c e s

Nonzero  p lasm a p re s su re  a n d  electric cu rren t provide only a  

slight modification of the  m ethod u sed  to study  vacuum  m agnetic  

fields. T here fo re , we will first perform a  de ta iled  investigation75 

of vacuum  m agnetic  fields with perfectly torodial flux su rfaces .  W e 

will then  outline the  a d ju s tm en ts  n e c e s s a ry  for analyzing  force- 

free  m agne tic  fields and sc a la r -p re ssu re  p la s m a  equilibria in th e  

two following sections.

75Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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For v a cu u m  m a g n e tic  fields, th e  p la s m a  fo rc e  b a la n c e

e q u a t io n ,  j * B  = Vp of Eq. (1 .1), is trivially sa tisfied , a n d  the  

covariant form of the m agnetic  field of Eq. (2 .12 )  red uces  to

BCov = GqV^P. (4 .3 9 )

For vacuum  fields, the toroidal coordinate, <p, b e c o m e s  the  m agnetic

potential of Laplace's equation, V 24> = 0. The non-zero constant Go of 

Eq. (4 .3 9 )  is the  poloidal current in the  field coils that gen e ra te  the  

toroidal m agnetic  field ( se e  Fig. 2). The equality of the  two form s 

of the  m agnetic  field, Eq. (4 .1 5 ) ,  then  gives th e  vector differential 

equ ation

G0 (8 x / a ^ M a x / a e )  = (ax/a<p) + i( \p)(ex/ee) .  (4.40)

Using the Frenet formulae of Eqs. (3 .1 ) - (3 .4 )  and  the chain rule of 

calculus, the  three  com po nen ts  of this matching constrain t are

K0: G0{(eY/dv/0 (dZ/dvJO - (6 Z/8 VOOY/ee)}

= =(vp,e,<p) ♦ l (yp) (8 X /8 0 ) ,  (4 .4 1 )

r 0: Go{(az/evp)(8 x / a 0 ) -  ( a x / a y x a z / a o ) }

= T(\p,0 ,<p) + l<V0 (aY/a©), (4.42)
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if0: G0{ ( a x /a y o ( a Y /e e )  -  c e Y /a ^ JC a x /a e )}

= a  t y . e . t p ) + 1- W  ( a z / a o ) ,  (4 .4 3 )

w ith

5 (^ ,0 ,(P ) = (ax /a<p) + (dJt/d<p){rU(<P)]Y(\p,0 ,<p) ♦ K U (0 )]Z ty ,0 ,(p )} ,

(4 .4 4 )

T ( ^ , 0 ,tp) = (dY/acp) -  (dJt/dtp)r[JL(tp)]X(^,0 ,(P), (4 .4 5 )

A t y ,0 ,<p) = caz /a tp )  + (d fi./d<p){ 1 -K[Jl((p)]X(^.0 t(P)}. (4 .46 )

Similarly, the express ion  for the magnetic field strength  is given by 

1 /B 2(vp,e,<p) = { (d i /d tp )2

+ 2 (d it/d<p){(az/a tp) + i ( \p ) ( a z / a 6 )

-(d£/dg))K (il((p))X(\p.0 ,cp)}

+ { (a x /a tp )  + i ( ^ ) ( a x / a © )

+ (di/d<J>){r[Jl(<p)]Y(V',e.$) * K(l(<p))Z(<fr,e,WH2

♦ ueY /d<p) + i W ( d Y / a e )

- (d4/d<f>)r(JU<p))X(<|',e.<P))2

* (<az/dg>) ♦ i W ( a z / a e )

-  (di/d<p)K(4(<P))X(y/,e,<P))2 } /(G 0P , (4.47)

using Eq. (4.1 7)

In order tha t  the  spatial position, x(\p,0,<p) of Eq. (4 .18 ) ,  and
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th e  rotational transform, i(\p), give a  vacuum  field with perfect flux 

su r fa ce s ,  the  th ree  com ponen ts  of the  m atching constra in t of Eqs. 

(4 .41 ) - (4 .4 3 )  m ust hold through all o rders in e, or identically, vp1/2* 

W e begin by solving th e s e  equations at e° and  e 1 orders, an d  then 

elicit th e  c o n s t ra in ts  involved in s u c c e s s iv e ly  h ig h e r  o rd e rs .  

Application of this procedure  will indicate a  gen era l  m ethodolgy for 

constructing  v acuum  m agnetic  fields with p e rfec t  su r fa c e s  through 

all orders in e.

IV-E-1. Vacuum  Magnetic Fields through Zeroth O rder

Application of the three  matching constra in ts  of Eqs. (4 .4 1 ) -

(4 .4 3 )  at e° o rder gives

k 0 a t  e°: Y ^ e .^ K d Z T /a e )  -  z ^ e . tp ) ( d Y T /a e )  = o, (4 .48)

i Q a t  e°: z 1(8,<p)(ex1/ e e )  -  x x e . c p x a z ^ a e )  = o, (4 .49 )

a t  e°: { G o / z H X ^ e ^ K d v a e )  -  Yl (0 . (p ) (ax 1/ a e ) l  = (di/dtp).
(4 .50 )

The e° order term  of the magnetic field strength  is

1/{B0((P)}2 = {1 /G 0}2(dA/d(p)2, (4 .5 1 )

using Eq. (4 .4 7 ) .  Integration of Eq. (4 .5 1 )  through the entire length L 

of the  m agnetic  axis yields
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L
e 0 = ------------------------------ f (4 .5 2 )

-.2TC

d<P {1 / B 0(<p)}
j  0

for the  total poloidal electric current in the coils.

W e can  solve for the function Zi(0,<p), using Eqs. (4 .48 ) and  

(4 .49 ) .  The product of Eq. (4 .4 8 )  and Xi (9,<p) add ed  to the product of 

Eq. (4 .49 ) and Y ^e.tp ) gives

Z^e.tpHdJL/dip) = 0. (4.53)

T he function Z ^e .tp )  can  be  non-zero only for va lues of (p in which 

(dJt/d(p) vanishes. Eq. (4 .5 1 )  implies that the  function (d£/d<p) 

van ish es  only for va lues of <p in which the  axis field strength, Bo(tp), 

is infinite. S ince singular m agnetic  field s tren g th s  a re  clearly not 

possible , the  function (dll/d tp) must be  non-zero for all (p. The non­

vanishing of the function (d£/d<p) within Eq. (4 .5 3 )  then implies that 

th e  function Zi(0,«p) is constrained to b e  zero for all values of 0 and  

<p. Consequently, the  vacuum  k 0 and r 0 constraints a t  e °  order, Eqs. 

(4 .4 8 )  and  (4 .49), hold trivially.

T he only non-trivial vacuum  constra in t a t  e° order, the  fio 

constraint of Eq. (4 .50 ), b ecom es
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ff0 a t  e°: {60/2}{  Xl l lc (tp)Y1 ils((p) - Y , , l c (<p)Xi,l s (<P)} = (dH/d(p),

(4 .54 )

using th e  poloidal expansions for X i(9 ,$ )  and  Yi(9,<p) given in Eq.

(4 .31 ) .  The function (dH/d<p) is a  free function of <p, provided that it 

never van ishes . Therefore, Eq. (4 .54 )  is on e  constraint involving the  

first o rder functions X1(ls((p), Xl l l c ((p), Ylt1s(<p), and Yl l l c (<p) of Eq.

(4 .31 ) .  H ence, this equation will be  reserved  for the  first order s e t  

of constra in ts  developed  within the  next subsection .

T he previous analysis h a s  shown th a t  the zero th  order s e t  of 

e q u a tio n s  a re  trivial. This result follows s ince  the  m agnetic  axis 

a lone  c h a ra c te r iz e s  toroidal p la sm a  equilibria through zeroth  o rder  

in the expansion . The analysis developed within C hap te r  III c an  be  

u se d  to g e n e ra te  m agnetic  a x e s  of vacuum  m agnetic  fields with 

perfec t flux su rfa ce s .

IV-E-2. Vacuum Magnetic Fields through First Order

W e now find the  equa tions  for vacuum  equilibria through first 

o rder  in th e  expansion  p a ram ete r ,  e. Application of the  matching 

constraints of Eqs. (4.41 ) - (4 .4 3 )  at e1 order produces

k 0 a t  e 1: {Go/2 } { Y 1(0.cp){ez2/ae)-222(0 .«P)(aY 1/ a e ) }

= ( a x t /a<p) + l o t a x ^ a e )  + (dA/d<pM<p)Yt(9,<p),

(4 .5 5 )
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i Q a t  e 1: {Go/ 2 }{2 Z2C0 .tP)(eXl / 8e ) - X 1(0 ,(p)(eZ2/ e 0 )}

= (8Y,/8<p) + 1 0 ( 8 ^ / 8 8 )  - (dJ I /cW JrW XTte .cp) ,

(4 .56 )

£0 a t  e 1: {Go/ 2 H X 1( 0 1(p)(8Y2/ 0 0 ) - 2 Y 2(e,<P)(8X1/ 0 0 )

+ 2 X 2(0,<p)(8Y1/8 0 )  -  Y^G.tpJCdXz/d©)}

= -(d A /d ^ )K (4 » )X ,(0 .$ )  (4 .57)

W e su b s ti tu te  the  poloidal exp an s io n s  of th e  functions X2(0,<p), 

Y2(0,tP), and Z2(8,<p) of Eq. (4 .3 2 )  into the three  com ponents of Eqs.

( 4 .5 5 ) - (4 .5 7 ) .  The resulting coefficients of s in (0 )  a n d  c o s (0 )  a re  

then s e t  equal to zero, so  that Eqs. (4 .5 5 ) - (4 .5 7 )  hold for all values 

of the  poloidal angle, 6. This procedure yields th e  six equations

£ 0  a t e ’ , s i n ( e ) :  G0 {Y1, l c W (Z 2 ,o (< P ) -Z 2 .2 0( 'P)t  -  V , , l s C<P)Z2 .2s C<P)}

= ( d X t . ^ / t K P J - l o X M c W t f d l / d i p j T r t c p j Y , , , ^ ) .

(4 .58 )

Ko a t e ’ , c o s ( 0 ): G0{ - Y 1, , s(<P){Z2. o W * Z 2,20W )  .  Y , .1c(<j>)Z2.2s(<P))

= (d X , , ic / d t p ) .  i 0 X , ,1s(<P) * (dl/d<p)t( if>)Y, ,l c (<p),

(4 .59 )

t 0 a t e ’ , s in (0 ): © o i- X ,.1c(<P){Z2.0<<P)- Z2.2C( ^ ) > * X i . i s(<P)Z2,2S(<Pn

= ( d Y M s / d f P J - i - o Y M c W - t d i / d W r W X , , , ^ ) ,

(4 .60 )

S o a t e ' . c o s t O ) :  © o lX , .1s ((P)lZ2 ,o(<P)* Z2.2c(^ )}  -  X , . , c (<J»Z2 .2s W )

= (dYll1c/d<p).  i 0Y , . i s(«P) -  (d i /d<p)r(<P)X, .1c(«p),

(4 .6 1 )



86

b‘o a t  e1, since): G0 ( X , , , c((|»( Y2l0(<p)- Y2.2cC<P)} -  X , ,1sC<P) Y2,2s(<p)

-  Y, ,1cC<P) {X2.0C«p) -  X2l2o(<P)} ♦ Y , S(<P) X2l2sW }

= - ( cU A W k W X , . , ^ ) ,  (4 .62)

b'o a t  E1, c o s (e ) :  G „{- X ,.1s(<p){ Y2l0(<P) * Y2 t2c (<|>)) * X , . l c C<P)Y2l2sC<p)

* Y, l ls (<P)lX2.oC<P) * X2i2c(» m  -  Y , . , c( ? ) Z 2.2s(? ) (  

= -  Cdl/dtpjKCtPJX, .lc C<p). (4 .63)

T here  is obviously sufficient freedom  in the  six functions of <p 

within X2(9,<p) and  Y2(9,cp), i.e., X2l0(<P), X2,2s(<p), etc., to satisfy the 

two vacuum  1>0 constrain ts a t  e 1 order, Eqs. (4 .6 2 )  a n d  (4 .63). 

However, th e re  is not sufficient freedom  in th e  th ree  functions of <p 

within Z2(9,<p) to solve the four K0 and  r 0 constrain ts a t  e 1 order, 

E qs. ( 4 .5 8 ) - ( 4 .6 1 ). The m agnetic  ax is  cu rva tu re  a n d  torsion 

functions, x(tp) and ?(<P), respectively, canno t generally b e  used  to 

satisfy th e s e  constraints , s ince  our expansion  techn ique  is valid for 

any  sm ooth  m agnetic  axis. Therefore, we m ust utilize th e  freedom 

in X^g.cp) and  Yi(9,<p), in addition to that within Z2(9,<p), to satisfy 

the  k 0 and  r 0 constra in ts  a t  e 1 order, Eq. (4 .55 ) and  (4 .56 ). 

However, the  functions X^e.^p) and Yi(9,<p) must also satisfy the f>o 

constra in t  a t  e° order, Eq. (4 .5 0 ) ,  a s  w as  show n in S e c  IV-E-1. 

Sum m arizing, the  functions X ^e .tp ) , Y-j(9,^)), and  Z2(8,<p) m ust be 

u se d  to satisfy the  t)0 constraint a t e° order, Eq. (4 .5 4 ) ,  and  the k <j 

an d  r 0 constrain ts a t  e 1 order, Eqs. (4 .5 8 ) - (4 .6 1 ) .  We will refer to 

th e s e  constra in ts  a s  the  first o rder s e t  of vacuum  field constraints.
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T he equations of the Kg an d  i n  constrain ts a t  e 1 order, Eqs.

( 4 .5 8 ) - (4 .6 1 ) ,  can  be  expressed  in the  form

t 0V,(<p) = X ^ e W f d X M s A W  -  X , , l 5(<p)(dX,,,c /d<p)

* Y g . ^ W C d Y ^ s / d i f l )  - Yg,l s (*P)CdY1,1c /d<p)

* (4/G oK d! /d<p)J r(<j>), (4.64)

Z2,0(<P) = -  {1 /  {8 (d t /d<p)}} CdVi/d<P), (4.65)

Z2,2s(4>) = - (1 / ( 8 ( d u / d i p ) } n ( d v 2/ d $ )  -  2 1 0 V 3 W ) ,  (4 .6 6 )

Z2.2cW  = - ( l / { 8 (d l /d (P )} } { (d V 3/ d < p ) » 2 l o V 2(<P)h (4.67)

w i th

Vi(<P) = {Xl i l s (<p)}a*{Xl i l c (<p)}2 *{Y l i l s (<p)}2 + {Yl i l c (fp)}2,

(4 .68 )

V2(<P) ^  2 { X l i l s ((P)Xl ,l c ((p) + Y1,l s ((p)Y1tlc((P)}) (4 .6 9 )

V3(<P) s  {X1b1c(«P)>2 -  i X i fi s W > 2 * ( Y m c W J 2 -  {Y ,.l s (4>)*a-

(4 .7 0 )

T h e  s e c o n d  o rder  configura tion  function Z2(0,<P) is com plete ly  

determ ined  by the first order functions Xi(0,<p) and Y^Ce.fP) via Eqs. 

(4 .6 5 ) - (4 .6 7 ) .  Hence, if the configuration is d e s ired  through only 

first o rder  in e, then E qs. (4 .6 5 ) - (4 .6 7 )  can  be  safely  ignored. 

Therefore, the  only equations  re levant to the  c o n f i g u r a t i o n  through
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e 1 order a re  the  t50 matching constraint a t  e° order, Eq. (4 .54), and 

th e  non-linear, first-order differential equation of Eq. (4 .64 ).

T h e  m agnetic  field strength through e 1 order is given by

Bty,e,<P) = B0(<P){1 + e K ^ X ^ e . tp )}  ♦ (4.71)

using Eq. (4 .47 ). Thus, if the first order s e t  of constra in ts  holds, 

then all of the functions appearing  in 1 / B 2 through first o rder a re  

specified, so  th a t  the  m agnetic  field strength is uniquely determ ined  

through first order. The result is not immediately obvious if som e

other form of th e  m agnetic  field strength than  th a t  of Eqs. (4 .17 )

and (4 .4 7 )  is used.

T he  express ion  for the  m agnetic  field strength  in Eq. (4 .7 1 )  

g ives  th e  c o n s tra in t  th a t  the first o rd e r  varia tion  of the  field 

s t re n g th  m ust n o t  co m ple te ly  van ish , p rov ided  th a t  th e  field 

s t re n g th  itself n e v e r  v a n is h e s .  This re su l t  im plies  th a t  th e  

m agnetic  field s treng th  c a n  be m ade  uniform within a  flux su rface  

for to ro ida l p la s m a  equilibria only in limits76 in which the  axis

field s treng th  v a n ish e s  o r the  flux su rfa ce s  b e c o m e  open . Such  

"isodynam ic" o r "om nigenous"  equilibria w ere  first p ro p o se d  by 

P a lu m b o 77.

W e will now  actually  construc t78 sa m p le  v a cu u m  m agn e tic  

f ie lds  w ith p e r f e c t  flux s u r f a c e s  th ro u g h  first o rd e r  in th e

76Bernardin, M. P., Moses, R. W., and Tetaronis, J . A. (1986). Phys. Fluids 29, 
2605.

77Palumbo, D. (1968). II Nuovo CimentoX53B, 507.
78Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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expansion . The magnetic axis is presum ed to b e  given by the results 

of S ec . I1I-B. W e  wish to retain the  m axim al freed om  in th e  

specification of th e  sh a p e  of the m agnetic  flux su rfaces  o r the  form 

of the  m agnetic  field strength .

IV-E-2-a. Specification of Magnetic Flux Surface  S h a p e

In o rder  to de term ine  the  s h a p e  of th e  first o rd e r  m agnetic  

flux su rfaces , it is convenient to exp ress  X](0,<p) and Yi(9,ip) in the 

fo rm 79

XtCQ.cP) = r((P){cos(0-^(<p)) + f;Ctp)cos(8-3'((P)-A((p))K (4.72)

Y1(e. >̂) = r(^){sin(0-W))-OT)sin(e-2f(y>)-A(«p))K (4.73)

T he  s h a p e  of th e  c o n s ta n t  }f/ su r fa c e s  to low est o rd e r  can  b e  

asce r ta in ed  by the evaluation of {r(0,(p)}2 s { X 1(0,tp)}2 + {Y1(0,(p)}2, 

giving

{r(0,<p)}2 = {r(tp)}2{1 + [f,(tp)]2 + 2 £ ,(< j> )cos(20 -22W -A (< p))} .

(4 .7 4 )

T h e  function r(9,<p) is proportional the  d is tance  from th e  m agnetic  

axis to a  particular point on a  given m agnetic flux surface. The form 

of r(0,<p) in Eq. (4 .7 4 )  indicates that th e  flux su r fa ce s  a r e  ellipses 

through low est order. The function r(tp){1 + {£(<P)}2}1/2 is the 

79Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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av erag e  minor radius of the  ellipse. The function £(tp) is a  m ea su re  

of the  eilipticity, and  the  function A(tp) is a  m easu re  of the  p h a se  of 

rotation of th e  ellipse. The periodic function 2T(<p) is s e t  by th e  

constra in t tha t  the  rotational transform  on axis be  cons tan t ,  a s  will 

be  show n later in this subsection.

Examination of Eq. (4 .74) reveals  that £,(tp) = 0 g ives perfectly 

circular flux su r fa c e s  through first order, a n d  £(<p)-*1 yields flux 

su r fa ce s  that pinch off to infinitely thin ribbons. Application of the  

axis field strength of Eq. (4 .51) and  the tf0 constraint a t  e° order of 

Eq. (4 .5 4 )  produces

{ I W } 2 = 2 /  {Bq(<P) {1 -K(<P)32}}, (4 .7 5 )

Hence, the  corresponding average  minor radius, T(<P){1 + [£(<P)32}1/2, 

b e c o m e s  s ingu lar  in th is limit, a ssum ing  non-zero  field s treng th . 

T hat is, the  flux su r fa c e s  b e c o m e  ribbons tha t a re  both infinitely 

thin a n d  infinitely tali a s  the eilipticity, £ ($ ) ,  a p p ro a c h e s  unity.

The first-order, non-linear differential equation  of Eq. (4 .6 4 )  

y ie ld s  th e  following re la tion  fo r  the  ro ta tiona l t ran s fo rm  on  

a x i s 80,

l„  = <*2T/d<p + u(cp), (4 .7 6 )

w ith

80Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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u(<P) =  {{1 - ( t W I 2 Kd!l/d«p)*(<p) * («<|>))2(d A /d < j> n /n  *{«<P))2 L

(4 .7 7 )

Therefore , the rotational transform on axis is g iven by

f 27tl 0 = {1 /(2rt)} dcp uC<p), (4.78)
-*o

so that the  periodic function 2f(<p) of Eq. (4 .76) se rv es  to insure tha t 

lo  is a  constant. The rotational transform n ea r  the  axis for vacuum  

fields is p rodu ced  by81 th e  torsion of the m ag ne tic  axis and  th e  

eilipticity, a s  is evident from Eqs. (4 .7 6 )  and (4 .7 7 ) .  The eilipticity 

tends to reduce  th e  contribution due  to the th e  torsion, but it te n d s  

to in c re a se  the contribution due  to th e  change  in the  orientation of 

the ellipse a s  tp varies, i.e., the  contribution due  to dA/d<p * 0.

IV-E-2-b. Specification of Magnetic Field S teng th

S in c e  partic le  drift tr jectories a re  d e te rm in e d 82 by only th e  

m ag n e tic  field s treng th  in term s of Boozer c o o rd in a te s ,  a  m ore  

va luable  p roced u re  is to find equilibria co rrespond ing  to d es irab le  

forms of the  field strength. The gen era l  form of the m agnetic  field 

strength  in Boozer coord inates is

Bty,e.<P) = Bo((P){1 + e 6(<p)cos(0-<x(tp))}, (4 .7 9 )

81Spitzer Jr., L. (1958). Phys. Fluids 1, 253.
82Boozer, A. H. (1984). Phys. Fluids 27, 2441.
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through first order in e. We wish to retain the  maximal freedom  in 

the <p-functions, B0(<P), 8(<p), and  <x(tp). The field strength  of Eq. 

(4 .7 9 )  c an  be exp ressed  in the form83

= B0(<p){1 ♦ e{2 /B 0(<p)}1/2K(tp)T\(cp)cos(e -o<((p))} ,
(4 .8 0 )

with th e  lowest order flux su rfaces  given by

X-iCe.fP) = {2/B0(tp)}1/2Tt(tp)cos(Q -o<((p)), (4.81)

Yi(0,<P) = {2/Bo(*P)}1 /2 {1/Tl ((P)}{sin(0 - of(<p)) + cr(<p)cos(0-o<(<p))}.

(4.82)

T hese  forms for Xjte.^p) and  Y^O.tp) a re  completely general, but only 

th ree  of the  four cp-functions B0((p), -qC#), tf(<P), and  o<(<p) a re  

unconstra ined . It is convenien t to c h o o se  the  tp-functions Bo(<p), 

T\(cp), a n d  <*(<p) to be  arbitrary, so  that the  m agnetic  field strength 

through first o rder is freely specified. The <p-function <J(cp) is then 

c o n s t r a in e d  to  sa t is fy  th e  f i r s t-o rd e r ,  n o n - l in e a r  d if fe ren tia l  

equa tion

da/d<J> = { 2 e 0 / B 0(<P)H TlW l2 * W

- U 0 -(do</d(p)Hl ♦ { n W I ‘l ♦ ( o W ) 2}, (4 .8 3 )

with th e  periodicity condition <5{<p=0) = <J(<p=2Tt). Solutions to Eq. 

83Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2905.
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(8 .4 3 )  a re  found by integrating it forward in <p, minimizing th e  

quantity  <5(<p=0) -  <J(tp = 2Tt) by varying either the  initial point of 

in tegra tion , c (tp  = 0), o r  th e  value of the  axis transform, i 0- The 

re m a in d e r  of th e  v a r iab le s  tha t e n te r  a r e  free , e x c e p t  for the  

cons tra in ts  th a t  k [£(<P)] and t;[£((p)] a re  c o n s is ten t  with a  c lo sed  

curve and  th a t  B0((p) and  T\(<p) never vanish or becom e infinite. The 

solution ob tained  for cj(<p) need not be  unique, since Eq. (4 .8 3 )  is 

n o n - l in ea r .

T he previous functions of <p that conveniently  d e sc r ib e d  th e  

m ag ne tic  flux su r fa ce s  c a n  be  rep re sen ted  in te rm s of th o se  th a t  

ch a rac te r ize  th e  m agnetic  field strength  via th e  re la tions84

{r(<p)}2 =
{{{T\((p)l2 + U 2 + {cj((p)}2}

2 B0(<p){n(«P)}2
(4 .8 4 )

u r n 2 =
Un(<p»2 - 1}2 + i<*m2 

U n W )}2 + 1}2 + M9 ) ) 2

(4 .8 5 )

Zf(tp) = 0<(<p) -  tan -i
<J(fP)

. { t \W } 2 + 1 -

(4 .86 )

A(<p) = t a n -1
< J ( < P )

{t i(«P)}2 - 1 .
t a n -1

i n m 2 * 1
(4 .8 7 )

A pproxim ately circular flux su rfaces  a re  ob ta ined  if 7\(<p) is n e a r  

84Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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unity and  cj($) is near  zero . The flux surfaces pinch off to ribbons 

that a re  both infinitely thin and infintely tall a s  | n(<p) | a p p ro a c h e s  

zero or infinity or a s  | <J(<p) | a p p ro ach es  infinity.

The m agnetic  field strength of a  general vacuum  configuration 

with perfect su rfaces  h as  the  form of Eq. (4 .79) with

8(cp) = {2/B0(<p)>1 /2 x(cp)Ti(fP)» (4 .88 )

using Eq. (4 .8 0 ) ,  which implies that th ere  exists a  large d e g re e  of 

freedom  in th e  s h a p e  of the  flux su rfaces .  C onfigurations with 

widely varying m agne tic  a x e s  c an  h av e  the  s a m e  form of the  

m agne tic  field strength  through first order. For exam ple , th e  flux 

s u r fa c e s  of th e  five-period helical configuration show n in Fig. 12 

and  the  three-period knotted configuration of Fig. 13 both p o s s e s s  a  

field strength of the form of Eq. (4 .7 9 )  with B0(<P) = 1, 5{<p) = 1 .25 , 

and  <x((p) = Ntp. The m agnetic  axes of Figs. 12 and  13 a re  given by 

Figs. 5 and  7, respectively. The flux surfaces of Figs. 12 an d  13 are  

e x a m p le s  of con figu ra tions  which a r e  quasi-he lica lly  sym m etric  

th rough  first order, s in ce  their field s tren g th s  through  first o rder 

a re  functions of only one  helical angle , of=8-N<p, within th e  flux 

s u r fa c e s .  W e exam ine  quasi-helical sym m etry  in g re a te r  detail 

within C hap te r  VI.

IV-E-3. Vacuum Magnetic Fields through Higher O rder

The vacuum  constraint equations a t  second  and  higher orders
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FIGURE 12 

FIVE PERIOD HELICAL CONFIGURATION

A flux or ^  s u r f a c e  of a  c o n v e n t io n a l  f iv e -p e r io d  h e lica l  
con figu ra tion  with a  "quasi-helically  sym m etric"  m a g n e tic  field 
s treng th  through first o rd e r  given by Eq. (4 .7 9 ) ,  with B0(cp) - 1 ,  
S(tp) = 1.25, and  o<(<p) = Ntp. The m agnetic axis of this configuration 
co rrespon ds  to that of Figs. 1 and  6. The toroidal lines show the  
true  co n s tan t  8 su rfaces  through lowest o rder  for Figs. 12, 13, 14, 
16, and 18, but the poloidal lines w ere  ch osen  by the  adaptive s te p  
s iz e  Runge-K utta  routine used , and  h ence  do  not re p re se n t  true  
co n s tan t  <p surfaces.
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FIGURE 13

THREE PERIOD KNOTTED CONFIGURATION

A flux su rface  of a  three-period knotted configuration with the  sa m e  
m agnetic  field strength  in Boozer coord inates through first o rder a s  
th a t  co rre sp ond ing  to th e  five-period helical configuration of Fig. 
12. The m agne tic  axis of this configuration c o rre sp o n d s  th a t  of 
Figs. 7  and 8.
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follows th e  construction  of th e  first o rder  s e t  of constra in ts . W e 

will p re s e n t  the  se c o n d  o rd e r  se t  of vacuum  constra in ts  and  then  

give th e  g en e ric  s c h e m e 85 for eliciting th e  higher o rder  constra in t 

e q u a tio n s .

In S e c .  IV-E-2, we found that the  two iTq constra in ts  a t  e 1 

order, Eqs. (4 .62 )  and  (4 .63), could be  satisfied by the six functions 

<p within X2(0,<P) and ¥ 2(0 ,<p). T hese  constraints were not assoc ia ted  

with th e  first o rder  s e t  of constra in ts , s ince  they did not require  

lower o rd e r  func tions  of <p to be free, a s  did the  k 0 and Z q 

constraints a t  e 1 order, ( 4 .5 8 ) - ( 4 .6 1 ).

W e now exam ine  the th re e  com po nen ts  of m atching the  two 

forms of the  m agnetic  field, Eqs. (4.41 ) - (4 .4 3 ) ,  a t e2 order. The 

poloidal ex p an s io n s  of the functions X3(0,<p), Y3(0,<p), and  Z3(e,<p) 

show n in Eq. (4 .3 3 )  imply th a t  e a c h  c o m p o n e n t  y ie lds th re e  

independen t constrain ts , i.e., on e  each  for matching the <p-dependent 

coefficien ts of th e  s in (2 0 ) ,  co s (2 0 ) ,  and  constan t  te rm s. T he 

h ighest o rder  functions that e n te r  both the Kq and z 0 constra in ts  of 

e2 o rder  a re  X2(0,<P), V2(0,<P), and  Z3(0,<p). The h ighest order 

functions tha t  en te r  into the fo  constraint a re  X3(0,<P), Y3(8,tp), and  

Z 2 (Q,<P). The eight functions of <p within the  poloidal expansio ns  of 

X3(0,cp) and  Y3(0,<p) are  sufficient to satisfy the three ^ -c o n s t r a in ts  

of the  tf0 m atching  co n s tra in t  a t  e 2 o rder. However, the  four 

functions of <p within Z3(e,<p), i.e., Z3l1s(cp), Z3flc(<p), Z3,3s((p), and 

Z3,3CW  of Ecl- (4 .4 3 )  are  n o t  sufficient to sa tisfy  th e  six

85Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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in d ep e n d en t  tp-constraints of the  K0 and r 0 constraints at e 2 order.

Following th e  pa ttern  s e t  by first order, th e  d e lim m a of 

satisfying th e s e  se co n d  order equations is am eliorated by combining 

the  Kg and  r 0 constrain t equations at e2 order and  th e  tf0 constra in t 

equations  a t  e 1 order into the second  order se t  of vacuum  constraint 

equations. The functions of <p within X2(0,<p), Y2(e,<p), and Z3(e,<p) 

a r e  sufficient to satisfy  this s e t  of constra in t equations .

W e c an  rep resen t  the six independent ^ “Constraints of the  Ko 

a n d  r 0 co n s tra in ts  a t  e 2 o rder  in a  le s s  elusive fashion. This 

p ro c e s s s  follows in an an a log ous  fashion to tha t of obtaining the  

simplified form s of Eqs. (4 .6 4 ) - (4 .6 7 )  from the four independent tp- 

cons tra in ts  of the k 0 and €0 constraints a t  e 1 order, Eqs. (4 .5 8 ) -

(4 .6 1 ) .  Four of the  six resulting equations determ ine  the function 

Z 3(9,tp), i.e., via the  <p-functions Z3,1s(<p), Z3,lc (tp), Z3l3s(<p), and  

Z3,3C(tP). T he remaining eq ua tion s  a re  two non-linear, first-order 

d if fe ren t ia l  e q u a t io n s  in t e r m s  of s e c o n d  a n d  low er o rd e r  

configuration quantities, i.e., X2( 9 ttp), Y2(9,<p), etc.

W e will now give a  g en e ra l  m ethodology for satisfying the  

vacuum  constra in t equations, E qs. (4.41 ) -(4 .4 3 ) ,  through arbitrary 

o rder  in the  expansion param eter, e. The functions Xj(0,tp), Yj(e.tp), 

a n d  Zj+1(0,(p) must b e  used to satisfy the iTq matching constrain t a t 

e J-1 order and  the Kq and r o  matching constraints at order. More 

specifically , we u se  the  j+1 free  functions of <p in each  of the  

functions Xj(e.cp) and  Yj(0,fP), an d  the j + 2 free functions of <p within 

Zj*i(e,<p) to satisfy th e  j in d ep e n d en t  <p-constraints in th e  l3o
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m atch ing  co n s tra in t  a t  e^"1 o rder  and the  j + 1 in d ep e n d en t  <p- 

con s tra in ts  in each  of the  and  £ 0 m atching con s tra in ts  a t  

o rder . W e d e n o te  th e s e  particular constra in ts  a s  th e  j ib - s e t  of 

m atching constraints . That is, the  3 j  + 2 independen t eq u a tio n s  of 

the  jib . o rder s e t  of matching constra in ts  must b e  satisfied by the  

3 j+ 4  functions of <p that first en te r  into th e se  equations. Obviously, 

e ac h  new s e t  of constrain ts  introduces two new free  functions of <p 

that may be used  to give som e freedom  in specifying th e  magnetic 

configuration. As will be  shown in C hap te r  V, th e  freedom  of two 

functions of <p for each  order in th e  expansion is sufficient to permit 

nearly  a rb itrary  freedom  in th e  m ag n e tic  field s tren g th  on o n e  

particu lar flux su rface .

This m ethodology for sa tisfying th e  constra in t e q u a t io n s  of 

Eqs. (4.41 ) - (4 .4 3 )  follows from the vanishing of the  function Z-j(0,<P) 

for gen era l  toroidal m agnetic  fields with perfect flux su rfaces . The 

pecu lia r  p ro ce d u re  for satisfying th e  constra in t  eq u a tio n s  implies 

that the  functions X(\p,0,$) and Y(vp,9t<p), given through so m e  order 

e J, constrain  the  form of Z(\p,0,<p) through the n e x t  h igher order, 

e J+1. That is, the  function Z ty .e .tp), which g ives  the dom inan t 

contribution to the sh a p e  of the m agnetic  potential or tp surfaces, is 

subdom inant to the functions X(^.0.<P) and Y(y/,0,<P), which give the  

dom inant contribution to the  sh a p e  of the  flux or vp su rfaces. This 

re su l t  is m ere ly  a  d irec t c o n s e q u e n c e  of t h e  d iv e rg e n ce -fre e  

p ro p er ty  of g e n e ra l  m ag ne tic  fie lds a n d  requiring n e s te d  flux 

s u r fa c e s .
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We now  exam ine  the com plica tions involved in constructing  

vacuum  m agne tic  fields with perfec t su rfa ce s  through so m e  order. 

A ssum e tha t  w e  wish to find a  m agnetic  configuration through so m e  

order, say  e J, in the spatial position, x(^,e,<P). W e apply th e  results 

of first and  se co n d  o rd e r  to infer a  g e n e r ic  s c h e m e  for finding 

x(^.9.<P) through  arbitrary  order. S ec . IV-E-2 revealed  tha t  one 

first-order, non-linear differential equation , in addition to the  m ore  

trivial i)0 constrain t a t  e° order, must b e  satisfied to give the first 

o rd e r  flux su rfa ce s .  For flux su rfaces  through seco nd  order, two 

first-order, non-linear  differential e q u a tio n s  a n d  the  m ore  trivial 

$o  constra in ts  a t  e 1 o rd e r  m u s t  hold. Extending this p rocedure  

th ro u g h  a rb i t ra ry  o r d e r  im plies th a t  j f i r s t -o rd e r  d iffe ren tia l  

equations m u s t  hold in specifying the configuration through e* order, 

via x(^,8,(p), assum ing  that the  configuration is given through one  

lower order, e J \  T his result follows from the  fact tha t the j+2 

functions of within Z j+1(e,<p) c a n  be u se d  to satisfy all but j of

the 2{j+1}K 0 and *c0 <p-constraints at e* order.

IV-F. F o r c e - F r e e  M a g n e t ic  F ie ld s

We now extend th e  resu lts  of the  previous section regarding 

m agnetic  fields with perfectly n e s te d  toroidal su r fa c e s  to apply for 

m ag n e tic  co n fig u ra tio n s  with fo rce -free  e lec tr ic  c u rre n ts .  T h e  

p lasm a force balance equation of Eq. (1.1) b eco m es

jx B  = 0, (4 .89)
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for su c h  configurations, s ince  no forces a re  ex e r ted .  H ence , no 

p la s m a  p r e s s u r e  g ra d ie n t  c an  exis t within fo rce -f ree  m a g n e tic  

fields. Eq. (4 .8 9 )  obviously implies that the  m agnetic  field and  the 

e lectric  cu rren t m ust lie in th e  s a m e  direction, s o  th a t  the  cu rren t 

can  b e  ex p re ssed  in the  form

j(x)=o<(x)B(x), (4 .90 )

with o<(x) so m e  scala r function of position. Taking the  d ivergence of 

Eq. (4 .9 0 )  then yields

B 'V o i = 0, (4 .91 )

so  th a t  the  m agnetic  field lines and  electric cu rren t  tra jec tories  lie

within su rfa ce s  of constan t  o<(x). Thus, function o<(x) gives n es ted

to ro ida l  m a g n e tic  s u r f a c e s ,  p rov ided  th a t  V o< is w ell-defined  

everyw here  ex cep t on the  magnetic axis.

T he  co v ar ian t  rep re se n ta t io n  of th e  m ag n e tic  field of Eq. 

( 2 .1 3 )  reduces  to

Bcov = Gty)V<P * KvJOVQ, (4 .9 2 )

for force-free  configurations. This form follows s in c e  th e  function 

£ * ( ^ .9 .0 )  of Eq. (2 .13 ) is proportional86 to the  p la sm a  p re s su re

g rad ien t, a s  d em o n s tra ted  within S ec . IV-A. T he  partial differentia!

aeBoozer, A. H. (1981). Phys Fluids 24, 1999.
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e q u a t io n s  resu lting  from th e  equality  of th e  two form s of the  

magnetic field, Eq. (4 .15), b e co m es87

(dx/d<p) + i ( \p ) (d x /d e )  = G ( \JO (d x /0 ^ M 0 X /d e )

+ W (e x /d (J> )x (d X /e y O . (4 .93 )

T he  three  com ponen ts  of this matching constraint a re  given by

k 0: G W U e Y / d w e z / d W  - (ez /e \ /0 (ay /de )}

+ W U a z / a y O Y t y . e . t p )  -  (d Y /a^ )A (^ ,0 ,(P )}

= Ety.e.cp) + l ( ^ ) ( a x / d e ) ,  (4.94)

* 0s e(\//){cez/ex^)(ax /ee)  - ( a x / a v o ta z / a o ) )

+ K iW  (a x /a y )A ( \ f r ,0 ,<p) -  ( a z / a ^ ) s ( ^ . 8 i«p)}

= rty,9,<p) + i (^ ) (dY /d0) ,  (4.95)

SQi G(\frH(dx/a\fO(dY/ae) - ( a y / a ^ u a x / a © ) }  

+ I(^){(dY/a^)S(^.0.<P) - (ax/6\ff)Y(^t0.<P)}

= A(^,0.<P) + l t y f ) ( a z /d 0 ) ,  (4 .9 6 )

with 5 ( ^ ,0 , tp), Y(\p,0 ,(p), and A ( ^ ,8 ,fP) defined in Eqs. (4 .4 4 ) - (4 .4 6 ) .  

T h e  reciprocal of the  field strength , 1 /B 2, for fo rce-free  m agnetic  

fields can be  obtained by using Eq. (4 .17), which g ives88

87Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805. 
88lbid.



103

1 / B 2 (\fr,8,tp) = { ( d £ / d $ ) 2

+ 2(dA/d<p){(ez/d<p) + i ( \p ) (8 Z /d 8 ) 

-(dJL/d<p)K(Jl(<p))X(\p,0.<p)} 

+ { (e x /e tp )  + i (V r) (a x /d e )

♦ (dJL/d<j»{r[£ (<P)3Y( \p .e .<P)  + K U ( ( p ) ) Z ( v p , 0 ,<p)}}2 

+ {(ev/a^p) + i(yo(dY/ae)
- (d£/d<j>)?U(<P))X(vp.0,<p)}2 

+ { (e z /a tp )  + i ( y r ) ( a z / a e )

-  ( d f l . / d ( p ) K C £ ( ( p ) ) X ( ^ , 0 , t p ) } 2 } / { G t y )  + i ( ^ ) I ( ^ ) } 2 .

(4 .97)

This equation can  be  otained by making the  replacem ent

(G0)2 -* {G(\p) + l(\p) I(^)}2 (4 .98)

within the form of 1 /B 2 for the vacuum  case ,  Eq. (4 .47).

For fo rce -free  m agne tic  fields, th e  a v e ra g e  force  b a la n c e  

equation of Eq. (4 .6 ) is no longer trivially satisfied. This equation 

b e c o m e s 89

dG/d\p + L Q JfH d l/# )  = 0, (4 .99 )

using the  fact that d p /d ^  = 0 for force-free m agnetic  fields. S ince  a

p r e s s u r e  g rad ie n t  c a n  not e x is t  for fo rce -free  fields, th e  only

adm iss ib le  p re s su re  profile is o n e  of the  form p (^ )  = p0, with pg a  

89Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 2, 2805.
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c o n s ta n t .

T h e  functions G(^) and  I(\/0 of Eq. (4 .9 9 )  c a n  b e  Taylor 

e x p anded  in the  form of i ( ^ )  given in Eq. (4 .38 ) .  Finiteness of the 

toroidal e lectric  current density  on axis implies th a t  th e  c o n s ta n t  

term within I(\J0, i.e., I0, m ust be zero. The av e rag e  force ba lance  

equation of Eq. (4 .9 9 )  indicates that one of th e  th ree  flux functions 

dG/cty, dl/d\//, and  i ( ^ )  is constrained by the  other two, assum ing all 

th ree  functions a re  non-zero for all T h ese  th ree  flux functions 

a re  further restricted if any of them have z e ro es  within the  toroidal 

region.

IV-F-1. Force-Free  Magnetic Fields through Zeroth O rder

A pplication of the  fo rce -free  con s tra in t  e q u a t io n s  of E qs.

( 4 .9 4 ) - (4 .9 6 )  a t  e° order reveals tha t  these  equations a re  identical 

to th o se  for vacuum  fields. The only additional constrain t is

®2 = (4 .1 0 0 )

with th e  c o n s ta n t  G2 the  low est order, poloidal e lec tr ic  cu rren t 

within the  plasm a. Eq. (4 .1 0 0 )  is merely the av e rag e  force balance  

equation of Eq. (4 .99 )  at zeroth order in e. Hence, the sh a p e  and field 

s treng th  of the  m agnetic  axis a re  unaffected by fo rce -free  effects 

a t  low est order. Therefore, all of the  resu lts  within S e c .  IV-E-1 

regarding  m agnetic  a x es  of vacuum  fields a lso  hold for force-free 

m ag ne tic  fields.
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IV-F-2 Force-F ree  Magnetic Fields through First O rder

Modification of the  vacuum  field equa tio ns  due  to the  effects  

of a  non-zero , force-free electric curren t first o ccu rs  a t  e 1 o rder. 

T he first o rder s e t  of matching constra in ts  for force-free  equilibria 

is given by

if0 at e°: {g0/2 }{X!(0.4>)(av,/ae) - Y1(e,a>)(dx1/ae)} = (dJt/d<p),
(4 .1 0 1 )

k 0 at e 1: {Go/ 2 } { Y 1( 0 ,g ) ) (a 2 2 /e 0 ) -2 Z 2 (0 .« P ) (e Y l / e 0 ) }

= cexT/etp) + LoCaxT/eo) ♦ (dJi/d(p){r(<p)+ ( i / 2 ) i 2}Y1(0,cp),

(4 .1 0 2 )

i 0 at  e 1; {G o/2}{2Z 2(0 , (p ) (ex1/ e 0 ) - X 1(0,(P)(ez2/ e 0 ) }

= (dY^etp)  + loCeYt/d©) -  (dJl/dcp){r(<p) + (1 /Z j^ X ^ Q .fP ) .

(4 .1 0 3 )

T h ese  equations  reveal that the rep lacem ent90

?(<P) -> {r(<P) + ( l / 2 ) I 2} (4 .1 0 4 )

within th e  first o rder  vacuum  constrain ts  of Eqs. (4 .5 0 ) ,  (4 .55), 

(4 .5 6 )  g ives the  first order s e t  of force-free constra in t equations . 

The resulting equations for Z2,o(<P), Z2l2S(fP)t and Z2,2C($ )  a re  the 

sa m e  a s  tha t  of the  vacuum  case , Eqs. (4 .6 5 ) - (4 .6 7 ) ,  so  that the 

function Z2(0.<P) is unaffected by force-free effects. However, th e  

force-free form of Eq. (4 .64 ) b ecom es

90Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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Vo V, W  = X , . ,C(<P) (d X ,,l s /dtp) -  X , . ,S(<P) (d X ,l1c/d<p)

* Y1-lc«P) (d Y ,.1s/d<P) -  Y , , , 5(<|>) (d Y ,. l c /dtp)

* (4 /G 0K d l / d $ ) 2) r ( < p ) * ( l /2 ) l j ) .  ( 4 .1 0 5 )

T he  m agnetic  field s treng th  for force-free m agnetic  fields through  

first order is given by Eq. (4 .7 1 ) ,  just a s  for the  vacuum  c a s e .  

H ence , force-free  electric cu rren ts  do not modify th e  m agnetic  field 

s treng th  through  first order.

IV-F-2-a. Specification of M agnetic Flux Surfaces

The rotational transform on axis, i 0, for force-free  m agne tic  

fields con ta ins  one  additional contribution, which is th a t  due to the  

toroidal electric  current density on axis, l2 = ( d l /d ^ ) 0. The actual 

equation  for the  rotational transform  on axis  can  be  ob ta ined  by

applying th e  rep lacem ent ?(<p)-> {?($ )  + (1 / 2 ) l2} within Eqs. (4 .76 )

and  (4 .77), giving

i 0 = d2T/dcp + u(g>), (4 .1 0 6 )

w ith

u(<P) ^  {[1 -  {£(9)}23(d&/d<p)[r((p) + (1 / 2 ) I 2] * R(ip)}2(dA/d<p)}

* { 1 /{ 1  +{£,(<P)}2}}. (4 .1 0 7 )

T ogether  with the  contributions d u e  to torsion of the  axis and  the  

eilipticity of th e  flux su r fa ce s ,  th e s e  e ffec ts  give th e  m e a n s  to
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p r o d u c e 91 a  rotational transform  n ear  th e  m agnetic  ax is . This 

r e su l t  will a ls o  be sh o w n  to apply  for g e n e ra l ,  s c a la r -p re s s u re  

equilibria within Sec. IV-G.

IV-F-2-b. Specification of Magnetic Field S trength

In constructing force-free m agnetic  fields with a  d e s ired  form 

of th e  m agne tic  field s treng th  through first order, the  rep lacem en t 

{r((p) + ( 1 /2 ) I 2} should be applied to Eq. (4 .83), yielding

dtf/dtp = {2 G0/B 0(cp)Hn(<P)}2{*(<P) + ( 1 / 2 )I2}

-  { i 0 -  (do</d<p)}{ 1 + (n(<P)}4 * (<J(<P)}2},

(4 .108)

T h e  actual p rocedure  for constructing force-free  m agnetic  fields is 

g iven within S e c .  IV-E-2-b, implementing Eq. (4 .1 0 8 ) ,  instead  of Eq. 

(4 .8 3 ) .

IV-F-3 Force-Free Magnetic Fields through Higher Order

Close inspection of the  constrain t equations  of E qs. (4 .9 4 )-

(4 .9 6 )  for force-free m agnetic  fields reveals th a t  the leading order 

behavior of X(^,9,<p), Y(^,0,<p), and  Z(^,9,<p) is unmodified92 from 

its behavior for the vacuum  c a se .  Terms resulting from force-free 

cu rren ts , i.e., those  d u e  to G2, G^,..., and I2, [4,..., n e v e r  give the 

h ig h e s t  o rd e r  contribution within the  constra in t e q u a t io n s  of Eqs.

( 4 .9 4 ) - (4 .9 6 )  a t  a n y  o rder. H ence, p lasm a current e ffec ts  are

91Spitzer Jr., L. (1958). Phys. Fluids 1, 253.
92Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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subdom inan t to the  vacuum  field in th e  construction of the  m agnetic  

configuration. Therefore , the  m ethodology u s e d  in th e  matching 

c o n s tra in ts  for vacuum  fields is no t  significantly modified by th e  

inclusion of force-free currents.

The prev ious an a ly s is  d e m o n s tra te s  th a t  the  te c h n iq u e s  for 

finding fo rce - f ree  m ag n e tic  fie lds is s im ila r  to th a t  u s e d  in 

construc ting  vacuum  m agnetic  fields with p e rfec t  su r fa c e s .  T he  

av e rag e  force balance equation of Eq. (4 .99), which is a  constraint on 

th e  flux functions dG/d\/f, dl/d^r, and  i ( ^ ) ,  is th e  only additional 

restriction on the  sys tem .

IV-G. S c a la r -P re s s u re  P lasm a Equilibria

W e now  wish to de te rm ine  w h e th e r  th is  m ethodo logy  for 

co n s tru c tin g  force-free  m agnetic fie lds also  ap p lie s  for m agnetic  

configurations with a  non-zero p re s su re  gradient. That is, we wish 

to extend th e  formalism to general, sca la r-p ressu re , MHD equilibria.

The th re e  co m p o n en ts  of th e  constra in t  resulting from th e  

equality of the  two forms of the m agnetic field, Eq. (4 .15 ), a re  given 

b y 93

K0: G(\/0{(dY/8vJ0(dZ/8y0 -  ( d Z / e v ^ d Y / d e ) }

♦ i ( t ) { ( a z /a y / ) T ( ^ .0 . ( p ) - ( a Y /8 ^ ) A { \ / r .0 t(p)}

♦ 0H(\jf,e,(p){(aY/ae)Aty,e.(p) - (ez/ee)rty,e.0 »  
= =(tf.e.<P) ♦ ity)(ax/ee), (4 .109)

"G arren , D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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i Qi G (y ) { (d z /6 V 0 (d x /e e )  -  ( d x / a ^ ) ( a z / e e ) }

+ i ( ^ ) { ( a x / a ^ ) A ( ^ f0,(p) - ( e z / e ^ ) 5 ( ^ . e , t p ) }

♦ 0 * ( \M .< P ){ (d z /a e )sw ,e .f l> )  -  c e x / a e ) A ( ^ . 0 .<p)}

= TC^,e,(p) + i t y ) ( d Y / a e ) ,  {4 . 110 )

b-0: G ( \ ( f ){ (d x /d ^ )(d Y /a 0 ) -  c a Y / a ^ ) ( a x / a e ) }

+ ityMcaY/eyosty.e.tp) - (ax/a^)Y(^,e,cp)}
+ ^ C ^ .e . t p ) { ( a x / a e ) Y ( ^ e . c p )  -  (e Y /d e )s ty ,e ,< p )}

= a ( ^ , 0 .<p) * i ( ^ ) ( a z / a e ) ,  (4 . 111 )

with S(^,e,<p), Y (^ ,0 ,$ ) ,  and A(\//,0.<P) defined in Eqs. ( 4 .4 4 M 4 .4 6 ) .  

T h e  exp ress ion  for the  reciprocal of th e  m agne tic  field strength , 

1 /B 2, is exactly the  sam e  a s  th a t  for force-free m agnetic  fields, Eq.

(4 .97 ) .

The only function that e n te rs  into the  constra in t equ a tions  of 

Eqs. (4 .1 0 9 ) - ( 4 .1 11) for toroidal, sca la r-p ressu re  equilibria that is 

a b se n t  within the force-free equations is This additional

function is de te rm ined  by th e  Fourier coefficien ts of th e  m agnetic

field strength via Eq. (4 .7). The function £ M(\//,8 ,y)) will be shown to

neither augm ent, nor remove, any  freedom  in the  functions of <p that 

ex is t  within the force-free  ana lysis .

IV-G-1. S c a la r -P re ssu re  Equilibria through Zeroth O rder

The e° order equations a re  unmodified by th e  p re s e n c e  of a
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p r e s s u r e  g ra d ie n t ,  j u s t  a s  for th e  fo rc e - f re e  c u r re n t  c a s e .  

Therefore , the  m agnetic  axis analysis for vacuum  fields given within 

S ec . IV-E-1 a lso  applies to toroidal, sca la r-p ressu re  equilibria. The 

only modification is th a t  the  a v e rag e  force b a la n ce  equation , Eq.

(4 .6 ) ,  a t  lowest order, h a s  the  form

G2 + i 0 Ia ♦ p2G0/<{B0(<p)}2> = 0, (4 .1 1 2 )

for s c a la r -p re s su re  equilibria. This equation co n s tra in s  the lowest 

o rd e r  poloidal cu rren t  density  within the  p lasm a , G2, given the 

toroidal cu rren t  density , I2, and  p lasm a p re ssu re  g rad ien t, p2, to 

low est order.

IV-G-2 . S c a la r -P re s su re  Equilibria through First Order

F in ite  p r e s s u r e  g ra d ie n t  m odifica tions of th e  c o n s t ra in t  

e q u a t io n s  first occur a t  e 1 order. The first o rder s e t  of constraint 

eq u a tio n s  for sca la r-p re ssu re  equilibria is given by

S 0 a t  6°: { G o ^ H X ^ e . M d Y ^ d e ) -  Y ^ e .M a X T / d e ) }  = (dA/d<p),

(4 .1 1 3 )

K 0 a t  e 1: {Go/2 j{ Y 1(0 ,ip )(d Z 2/ e 0 ) - 2 2 2(0.<p)(eY1/ a 0 )}

= ( a x ^ d c p )  + l o t a x ^ e o )  + (da/dtp){-c:((p) + ( i / 2 ) i2}y 1(0,<p)

- (d a /d (p )^ Mo((p)(aY1/ d 0 ), (4.114)
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i 0 a t  e 1: {Go/2}{2Z2(e,(P)(dX1/ a 8 ) - X 1(0,<p)(ez2/a9)}

= O Y ^ e c p )  + l o ^ Y ^ e e )  -  (d£/d(p){7r(cp) + C1 / 2 )I2>X1 (0 .^)) 

+ ( d i / d ( p ) ^ W0((p ) (e X i/a e ) .  (4 .1 1 5 )

Examination of th e s e  matching constraints reveals  tha t the  equation 

for the  rotational transform on axis of Eq. (4 .1 0 5 )  and th e  functions 

z 2.2s ^ J  and  z 2.2c W  of Ecls * (4 .66 )  and  (4 .67) a re  not affected by a  

non-zero  p lasm a  p ressu re  gradient. T he  function £ * 0(<P), which is

proportional to the lowest o rd er  p ressu re  gradient, only modfies the 

seco n d  order function Z2,0($ )  via

Z2.o(<P) = - {1  /(8(da./d<p)>KdV1/dcp) + (1 /G0)CdA/dtp)^WQ(<p), (4 .1 1 6 )

with V-j (<p) defined in Eq. (4 .68 ).

T he e x p re ss io n  for th e  m agnetic  field strength  through e 1 

o rd e r  of s c a la r -p re s s u re  equilibria is identical to th a t  for vacuum  

fields, Eq. (4 .71). T herefo re , the first o rd e r  varia tion  in th e  

m a g n e tic  field s tren g th  of g enera l  s c a la r -p re s su re  equ ilib ria  is 

de te rm ined  by the curvature of the magnetic axis, so  th a t  ail o ther 

effects  en te r  a t  higher order. This result is consisten t with the  1/R  

d e p e n d e n c e  of the  m agne tic  field s treng th  of a  to k am ak  with 

toroidal rad ius R.

The p rev ious an a ly s is  has d e m o n s tra te d 94 th a t  a  non-zero  

p la s m a  p re s su re  g rad ien t  oniy modifies the secon d  o rd e r  function 

94Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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Z2(S,<P), and  thus d o e s  not affect the  magnetic field strength  or the 

s h a p e  of the flux su rfaces  through first order. H ence, the  force-free 

re su l ts  regard ing  th e  specifica tion  of the m ag n e tic  flux su rface  

s h a p e  and  th e  m ag ne tic  field s treng th  through first order, which 

w e re  given  within S e c ,  IV-F-2, a lso  apply for s c a la r -p re s s u re  

equilibria.

S u p p o s e  that th e  m agnetic  field strength  on axis is Fourier 

decom posed  in the form of Eq. (4 .4),

00

1/{B0(cp)}2 = {1/<{B0(<P)}2>H1 + I { y ncos(n0) + Xn sin(n$>)}}.

n = 1 (4 .11 7 )

with 2fn and  Xn cons tan ts  and <{B0(<P)}2> the av e rag e  of {B0(<P)}2 

within a  flux surface, a s  defined by Eq. (4.5). The function 0 * Q(<P)

then  has  the  form

00

£ * 0(<P) = {p2G0/<{B0(«P)}2>}Z{1/n}{3'nsin(n(p) - Xncos(ntp)K

n=l (4 .1 1 8 )

using Eq. (4 .7). A given m agnetic axis, lowest o rder  p lasm a pressure

g rad ie n t ,  p2, and ax is  m agne tic  field strength , B0(<P), uniquely

de te rm ine  the  function 0 * O(<P) via Eq. (4 .118). S ince 0 * O(<P) 's

com plete ly  d e te rm ined  by functions tha t e n te r  a t  zero th  order, a  

n o n -z e ro  p la s m a  p r e s s u r e  g r a d ie n t  n e i th e r  a u g m e n ts ,  n o r
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r e m o v e s 9 5 , a n y  f re e d o m  within the  firs t  o rd e r  c o n s t r a in t  

equations. We now extend these  results to higher order.

IV-E-3 S c a la r-P re s su re  Equilibria through Higher O rder

Inspection of the matching constraints of Eqs. ( 4 .1 0 9 ) - ( 4 .1 11) 

show s th a t  the leading o rder  behavior of X(^,e,tp), Y (^ ,0 ,(p), and  

Z(^,9,<p) is u n c h an g e d 96 from tha t  of the  vacuum  a n d  force-free 

c a s e s .  T erm s d u e  to a  non-zero p re s su re  g rad ien t and  e lectric  

current, i.e., th o se  involving any of the  factors P2, p ^  .... 62* 

and  I2, I4, .... n e v e r  give the  h ig h es t  o rd er  contribution to the  

m atching constra in ts  of Eqs. (4 .1 0 9 ) - ( 4 . 1 l 1 ) at a n y  order. The 

vacuum  m agne tic  field, which is g e n e ra te d  by e lectric  c u rre n ts  

o u t s i d e  of the p lasm a, always gives the leading order terms.

T h e  only new  function of position th a t  a p p e a r s  within th e  

s c a la r -p re s s u re  cons tra in t  e q u a tio n s  of Eq. (4 .1 0 9 ) - ( 4 .1 11) is 

This function is completely determ ined by the  form of

the m agnetic  field strength and the  flux functions, G(\/0 , l(^), ityO, 

and  p(yO, via Eq. (4 .7). Hence, th e  function 0*(^,0,<p) d o es  not

in tro d u c e  any  t ru e  f re e d o m  in to  th e  s y s te m  of e q u a t io n s .  

Furtherm ore, we will now dem o n s tra te  that a  non-zero 0 * (^ ,e .tp )

d o e s  no t affect th e  basic  m ethodology97 of satisfying the matching 

constra in ts  that w a s  used  for the vacuum  and  force-free field c a s e s .  

S e c .  IV-E-3 rev ea led  tha t th e  o rd e r  s e t  of m atching

"G arren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805. 
96lbid.
97lbid.
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constra in ts  is given by the k 0 and  z 0 matching co n s tra in ts  a t  e J 

o rder  a n d  the  iTq matching constra in t a t  order. T he highest 

o rder non-flux functions that a p p e a r  in both the k 0 and  r 0 matching 

constrain ts at e J order a re  given by Xj(0 ,<p), Yj(0 ,<p), Z j+ i(0 ,<p), and 

^ » j _ / 0 *^)* ^or matching constra in t a t  e J_1 o rder, the

highest order functions a re  X j(0 ,<p), Yj(0 ,<p), Z j_ i(0 ,<p), and  0* ._  

3(0,<P). T here fo re ,  the  low est o rd er  term  within th e  function 

that en ters  into the j i i i  o rder s e t  of m atching constrain ts

is £ * . ^ ( 0 ,$ ) . Thus, the function £*.(0,<p) first e n te rs  into the 

(j + l ) s t  order s e t  of matching constraints.

W e now have  ail the  n e c e s s a ry  eq u a tio n s  for constructing  

to ro idal, s c a la r -p re s s u re  MHD equilibria  o rder  by o rd e r  in the  

expansion . As noted earlier, the  function £*j(0,<P) first en te rs  into

the  Cj + 1 )^1 se t  of matching constraints. The form of £*(vp,0,<p) in Eq.

(4 .7 )  implies th a t  £ * . ( 0 ,<p) is de te rm ined  by th e  form of the

reciprocal of the field strength, 1 /B 2, through e J order. The leading 

o rd e r  function th a t  e n te rs  1 /B 2 through order is th e  X j(0 ,<P) 

factor within the  term -2e^ (dJ l/d (p )2K((p)Xj(01(p) of Eq. (4 .9 7 ) .  The 

function Xj(0,tp) is a sso c ia ted  with th e  order s e t  of m atching 

cons tra in ts .  All o ther  variab les tha t e n te r  1 /B2 through e 1 o rder 

d e te rm ined  by lower order s e t s  of m atching constra in ts . Thus, the 

function 0 * j(0 ,<p) is also determined by the j t k a n d  lower o rder se ts

of m atching constraints. However, £ * .{0 ,<p) first en te rs  the  (j + l ) s i
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s e t  of m atching constraints . Therefore, for eac h  o rder tha t a  term 

in th e  ex p an s io n  of first e n te r s  into th e  co n s tra in t

equations , it is completely determ ined by o n e  lower order.

T h e  only additional constra in t th a t  m ust hold is the  a v e rag e  

force b a la n c e  equation, Eq (4.6). This relation involves the  flux 

functions d p /d ^ ,  G(^), I(yO, l ( ^ ) ,  and <B2>, but d o e s  not affect the 

basic  m ethodology of satisfying the  equality of the two forms of the 

m a g n e tic  field. T herefo re , the  te c h n iq u e s  u se d  to sa tis fy  the 

c o n s t r a in ts  for vacuum  a n d  fo rce -f ree  m a g e n tic  fie lds is not 

s ign ifican tly  modified by including a  p la s m a  p r e s s u r e  g rad ie n t  

within th e  toroidal region.

IV-H. P hys ica l In terp re ta tion  of O rdering

T h e  techniques outlined within this d issertation can  b e  u sed  to 

in v e s t ig a te  th e  spec tru m  of p o ss ib le  th re e -d im e n s io n a l  p la s m a  

equilibria . Such  equilibria a re  typically c h a ra c te r iz e d  by certa in  

p a ra m e te r s ,  su ch  a s  m agnetic  field s treng th , rotational transform , 

p la sm a  current, and  others. T here  exist sufficient approxim ations 

of th e s e  p a ram ete rs  near the  m agnetic  axis of any equilibrium. We 

will qua lify98 th e  particular o rder in the  expansion  in which each  

of th e  re le v a n t  p a ra m e te r s  first e n te r s .  W e find th a t  the  

p a ra m e te rs  of primary in te res t to th e  fusion program  h ave  su itab le  

approxim ations through third order in the expansion .

98Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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IV-H-1. Zeroth Order

Zeroth order in th e  expansion  is charac terized  entirely by the  

m agn e tic  ax is  itself. T he  s h a p e  of this m agnetic  field line is 

arbitrary, provided tha t it is a  sm ooth, closed curve. In addition, the  

m agne tic  field s treng th  of th e  ax is  itself is arbitrary. However, 

th is axis field s treng th  m u s t  be non-zero  in o rder to apply th e  

m e th ods  within this d isserta tion .

IV-H-2 . First O rder

Through first order in the expansion, the  c ross  sec tions  of the  

m a g n e tic  flux s u r f a c e s  a r e  e l l ip se s .  T he  m ag n itu d e  of th e  

ellipticity, £(<p), can  vary with the toroidal angle, <p. In addition, the  

elliptical flux su r fa c e s  c an  also  ro ta te  with <p a n d  g e n e ra te  a  

con tr ibu tion  to th e  ro ta tiona l t ran s fo rm  on  axis , i 0, a s  w a s  

d em o n s tra ted  within Sec . IV-E-2 .

The m agnetic  field strength  a t  first o rder  is governed  by the  

m agnitude  of the  curvature  of the  axis, reg a rd less  of the  p la sm a  

current an d  p ressu re  profiles, a s  w as  shown in Sec . IV-G-2. As the  

m agnetic  axis curves and  twists through s p a c e ,  the m agnetic  field 

strength  is stronger on the  inboard s ide  of the lo c a l  cu rva tu re , and  

it is w eaker on the  outboard side.

The form of the rotational transform on axis, Iq, is apparen t at 

this order. The toroidal electric cu rren t on axis , Ij, th e  torsion of 

the  axis, r 0(<P), ancl the  ellipticity, £(<p), can  all contribute to the  

transform on axis, a s  w as dem onstra ted  in Sec . IV-G-2 .
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Obviously, the  m agnetic  flux su rfaces  c an  admit a  non-zero  

p la sm a  p re s su re  gradient, p2, and poioidal electric current, G2, n ea r  

th e  axis. T he  only constra in t on th e s e  flux functions is th a t  they  

sa tis fy  th e  low est order, a v e ra g e  force b a la n c e  equa tion  of Eq. 

(4 .1 1 2 ) .

A nother charac ter is tic  of toroidal configurations is th e  s h e a r  

of the  m agnetic field lines. The field line s h e a r  is defined to b e  the  

c h a n g e  in the  p i t c h "  of neighboring m agnetic field lines. Desirable 

p la sm a  equilibria should h ave  large local s h e a r100 in regions of bad  

c u rv a tu re  in o rd e r  to m itigate  ce r ta in  p re s su re -d r iv e n  p la s m a  

instabilities. T he  interrelation of th e  freedom  in th e  local s h e a r  

c o u p le d  with th a t  of th e  m agne tic  field s t re n g th  w ould  b e  a  

form idable, bu t useful, topic for fu ture  investigation. T he  low est 

o rd e r  m agnetic  flux su r fa ce s  give th e  dom inant contribution to the  

local s h e a r ,  a s  will be  d e m o n s tra te d  within the  following two 

p a rag rap h s .

The local s h e a r  S(^,0,tp) in te rm s of B oozer co o rd ina te s  is 

defined by101

sty,e,ij>) e  | v y | " 4 {(B*

= <1 / J ) < d i / # )  ♦ B -V {(G W g#e - J  |V#|-2H.

(4 .1 1 9 )

"Friedberg, J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York, 
p. 72.

100N£Jhrenberg, J., and Zille, R. (1987). Theory of Fusion Plasmas, Proceedings of the 
workshop held at Villa Cipressi-Varenna, Italy, Aug. 24-28, Societa Italians di 
Fisfca, Bologna, Italy, p. 3.

101 Ibid.



118

with J(^,e,<p) the spatial Jacobian of Eq. (4 .14 ) an d  g^0 and the 

m agnetic  field metrics defined by

g^e s  (dx/axjo - ( a x / a e ) ,  (4 . 120 )

g^y, s  (ax /a < p )* (a x /a ^ ) .  (4 . 121)

Using the expansion  functions defined  within th is d isse ra tion , the

lowest order expression  for the m agnetic  field line sh e a r  b eco m es

s(<jr,e,<p) = {G0/B(<J£/d<P)2 e2 H

( a / a e ) f  { x , ( e .4m 2 ♦ ( Y ^ e , ? ) } 2 ! !
* ((a/a<p) + vq ( a / a © ) }

(ax,/ae)2 *(aY,/ae)2
(4 . 122)

The lowest order expression  for the  s h e a r  obviously d e p e n d s  on the 

d e ta i l s  of the  configuration. T h e  low est o rd e r  non-trivial flux 

su rfaces , which a re  determined by the functions X^e.cp) and Yj 

g ives the  dom inant contribution to the  local sh e a r .

The lowest order contribution to the local s h e a r  of Eq. (4 .1 1 9 )  

d iverges  a s  the p lasm a  radius ap p ro a ch e s  zero, a s  exhibited by the  

1 / e 2 d e p en d en ce  of Eq. (4 .122). This peculiar result is consis ten t 

with the  fact that the  g l o b a l  shear ,  i.e., the  (di/dv/0 term  of Eq.

(4 .1 1 9 ) ,  is a  e° order term. The global sh e a r  is independent of the 

toroidal and  poloidal angles, 9  and <p, respectively, unlike the  local 

sh ear .  The global shear, which is given by i ^ / I q  within our analysis,



119

e n te r s  th e  equilibrium eq u a tio ns  a t  th i rd  order in e, w h e re a s  the  

lowest o rder  flux su rfaces  which de term ine  the  local s h e a r  e n te r  a t  

first o rder in e. T h us , the  local s h e a r  e n te r s  th e  equilibrium 

e q u a t io n s  two o rd e r s  lower th an  th e  g lobal s h e a r ,  w hich is 

c o n s is ten t  with the  fac t th a t  the lowest o rder local s h e a r  of Eqs.

(4 .1 1 9 )  and (4 .1 2 2 )  is two orders lower than the global shear.

IV-H-3. S eco nd  Order

T h e  s e c o n d  o rd e r  flux s u r f a c e s  c a n  exh ib it  t r ia n g u la r  

con tribu tions to the  flux su rface  c ro s s  sec tion . Additionally, the  

c e n te r  of the  flux su rface  c ross  section can  b e  shifted with re sp ec t  

to the  m agnetic  axis. This offset of the flux su r fa c e s  with re sp ec t  

to the  axis is called the  Shafronov shift102. The actual flux surface  

s h a p e  can  be  evaluated  using the  function

{r-ty.e.tpn2 = {Xty.e.tp)}2 ♦ {Y(^e,fP)}2, (4.123)

with X(y/,0 .<p) and  Y(\p,0 ,<p) given through second  o rder  in e. T he  

function r(^,e,<p) gives the  d is tance  from the  m agnetic  axis to a  

point de te rm ined  by a  s e t  of coord inates, {^, 0 , fp}. Flux su rface  

c ro s s  sec tions  a re  determ ined  by varying over the  ang les  8 and  <p, 

while holding the  toroidal flux, \p, fixed.

The p a ra m ete rs  th a t  de term ine  the  sh a p e  of the  flux su rfaces  

th rough  se c o n d  o rder  a re  in terrelated  with th e  a v e ra g e  m agnetic

102Shafranov, V. D. (1966). In Reviews of Plasma Physics, edited by M. A. Leontovich, 
Consultants Bureau, New York, Vol. It.
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well, which first en te rs  th e  form of the  field s treng th  a t  s e c o n d  

order. The a v e rag e  m agnetic well is defined to be  the  derivative of 

th e  a v e ra g e  m agne tic  field s tren g th  within a  flux su r fa c e ,  with 

re sp e c t  th e  flux coordinate , vp, a s  described  within th e  introduction. 

T he a v e ra g e  m agnetic  well, in addition to th e  field line sh ea r ,  can  

s e rv e  to s ta b i l iz e 103 a  p la sm a  a g a in s t  certa in  p re s su re -d r iv e n  

in s t a b i l i t i e s .

Many o th er  effects give contributions to the  m ag ne tic  field 

strength  a t  secon d  order. The toroidal and poloidal p la sm a  currents  

n e a r  the axis, l2 and  G2, respectively, the p la sm a  p re s su re  gradient 

n e a r  the  axis, p2, the torsion of the  axis, tr(Jl), the  curvature  of the  

axis, k ( H  the  rotatioal transform on axis, Iq, ar|d products  of th e se  

te rm s  all contribute to the  m agnetic  field s treng th  a t  se co n d  order. 

This resu lt is obtained by examination of the genera l formula for the 

m agnetic  field strength  of Eq. (4 .97 ). Due to our inability to m ake 

a n y  insightful simplifications, we did not explicitly g ive  the  field 

streng th  through second  o rder  within this d isserta tion .

IV-H-4. Third O rder

At third o rder  in the  expansion , the flux su rface  s h a p e  can  

exhibit a  contribution d u e  to b e a n - s h a p e d n e s s ,  in addition to an 

e n h a n c e m e n t  of the  ellipticity. T he  b e a n - s h a p e d n e s s  a r is e s  from 

M = 4 poloidal harm onics within th e  m agnetic  field s trengh , ju s t  a s  

triangularity a r ise s  from poloidal harm onics with M = 3. The sh a p e  of

103Frledberg, J. P. (1987). Ideal Magneto-Hydrodynamlcs, Plenum Press, New York, 
p. 73.
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the  flux su rfaces  is d iscerned via { r ( ^ t9,<p)}2 of Eq. (4 .1 2 3 ) ,  using 

X(vp,e,(P) and Y(\p,6 ,<p) evaluated through third order. The m agnetic  

field s t re n g th  of Eq. (4 .97) th ro u g h  th ird  o r d e r  c o n ta in s  

contributions due  to the global sh ear ,  i 2Ao> and higher order p lasm a 

current an d  p ressu re  quantities, such  a s  G*, !«, and p4.

A toroidal p la sm a  equilibrium c a n  p o s s e s s  a  n e t  toroidal 

e lectric  cu rren t th a t  is driven by a  non-zero p re s su re  g rad ie n t104. 

S ince  th e  p re s su re  grad ien t m ust vanish a t  the  m agnetic  axis for 

analy tic  m agnetic  fields, this electric  cu rren t m ust a lso  van ish  on 

axis . T he  low est order value of this so-called  “b oo ts trap  cu rren t” 

is given by I4 within our analysis.

T h e  d e p e n d e n c e  of the boo ts trap  cu rren t on the  geom etric  

p roperties  of the  m agnetic  configuration c an  be  ex trac ted  using the 

ro ta tiona l transfo rm , i(\/0 , and  th e  Fourier ha rm onics  within the  

m a g n e tic  field s treng th , B(\p,9,<p), a s  outlined by B oozer a n d  

G a r d n e r 105. The details of their results a re  beyond the  sc o p e  of this 

d isserta tion  and will thus not be given. However, the  relevant point 

is th a t  approxim ations permit th e  com putation of a  se lf-consis ten t 

v a lu e  for the  bo o ts trap  curren t n ea r  th e  m agne tic  ax is  of any  

toroidal p la sm a  equilibrium.

104Nishkawa, K., and Wakatanl, M. (1990). Plasma Physics: Basic Theory with Fusion
Applications, Springer-Verlag Berlin Heidelberg, Germany, p. 266.

105Boozer, A. H., and Gardner, H. (1991). Phys Fluids B: Plasma Physics 2, 2408.



CHAPTER V

RESTRICTIONS ON THE MAGNETIC FIELD STRENGTH

W e a re  ab le  to elicit s e v e ra l  g en er ic  res tric tions106 on the  

form of the  m ag n e tic  field s t re n g th  c o rre sp o n d in g  to g e n e ra l  

toroidal p la sm a  equilibria. For equilibria in which the  m agne tic  

field s treng th  never  v a n ish e s  within th e  toroidal region, (1) th e  

first o rd e r  curvature  term  in the  m agnetic  field streng th  c a n n o t  b e  

m ade to completely  vanish, an d  (2) the  m agnetic  field s treng th  is 

not arbitrary through th ird  o rd e r  in the  expansion  pa ram ete r ,  e. 

However, we a lso  clarify the specific  freedom s in the  form of the 

m agnetic  field s teng th . T hese  freedom s a re  that: (1) the m agnetic  

field strength  is arbitrary through se c o n d  order in e, provided th a t  

the  first order curvature  term d o e s  not entirely vanish , and  (2) the 

m agnetic  field strength  on one particular m agnetic  flux su rfa ce  is 

fully arb itrary , aga in  with th e  provision th a t  th e  first o rd e r  

curvature  term is non-zero.

A. Non-Vanishing of th e  First Order C urvature  Term

T h e  m agne tic  field s tren g th  through  e 1 o rd e r  for toroidal, 

sc a la r -p re ssu re  equilibria is given by Eq. (4 .71). The first order 

term in this expression  is EK(<p)Xi(e,<P). The function k(<P) is the 

1oeGarren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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reciprocal of th e  m agnitude of the  lo c a l  radius of curvature  of the 

m agnetic  axis. Clearly, x(<p) can n o t  be identically zero, s ince  the 

m agnetic  axis is required to bend  for som e  values of 9  for it to be  a  

c losed  curve. Hence, the  function Xi(B.cp) m u s t  b e  exactly zero  in

order tha t the  first order curvature term in the field strength  vanish

id en tica lly .

T he p rodu c t eX-|(0 ,<p) is th e  first o rd e r  term  in the  pow er 

se ries  expansion of X(vp,e,<p) (see  Fig. 5), defined in Eqs. (4 .30 ) and

(4 .3 1 ) .  This lowest o rder  expression for X(vp,0,<p) c o rre sp o n d s  to 

x(^,0,<P) of Eq. (1.4). The form of the function X^(B.cp) given in Eq. 

(4 .8 1 )  is exactly zero if and only if the function Ti(<p) com plete ly  

v a n ish es ,  a ssum ing  non-zero ax is  field strength , B0(<P). However, 

the  low est-o rder  flux su r fa c e s  co llap se  to ribbons th a t  a re  both 

infinitely thin a n d  a n d  infinitely tall in th e  s in g u la r  limit th a t

tx(<P)->0, with Bq(cP) * 0 ,  a s  revealed in Sec. IV-E-2. Therefore, the 

first o rder  variation in th e  m agnetic  field strength  can n o t  b e  m ade 

to perfectly  v a n is h 107 for all v a lues  of the  toroidal angle, <p. This 

resu lt  app lies  to any toroidal p la sm a  equilibrium with non-trivial

m agnetic  flux su rfaces  an d  non-vanishing m agnetic  field strength .

B. N o n -A rb i t r a r in e s s  th r o u g h  T h ird  O rd e r

T he  m agnetic  field strength  of toroidal p la sm a  equilibria h as  

the  gen era l  form of Eq. (1.3). W e will d e m o n s tra te  that th e  <P- 

periodic functions B0(<P), Pi(cp), X^fP), W0(<P), F2(<p), S2(<p), C^cp), 

ffi(<P). C3(cp), an d  ^ ( (p )  of Eqs. (1 .3 ) - (1 .6 )  canno t a ll  b e  ch osen

107Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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freely. T hat is, the  m agnetic  field strength  of Eq. (1 .3 )  is not 

arbitrary through third o rd er  in th e  e x p an s io n 108, even  if the  first 

order curvature  term, K(<p)x(\p,e,<p), is guaran teed  to be  non-zero, in 

acco rd  with the  previous subsec tion . We now p re s e n t  the  explicit 

p ro cedu re  for extracting this result.

T h e  m ag n e tic  field s t re n g th  co rre sp o n d in g  to a  g e n e ra l  

toroidal p lasm a  equilibrium can be  expressed  a s

BC^.e.tp) = B0(<P){1 + e { b 1t1s(y ))s in (0 )+  b1<lc((p)cos(e)}

+ e 2{ b2,0(<P) + b 2l2s(<p) s in (2 0 )  + b2l2c(<p) c o s ( 2 0 ) } 

+ e 3{b3t1s(<p)sin(0) + b3,l c (<p)cos(e)

+ b3t3s(<P) s in(30) + b3t3c(<p) c o s ( 3 0 ) }

+ ■**},  (5 .1 )

using th e  form of analytic expans ions  p re sen te d  within S e c .  IV-C. 

S u p p o s e  th a t  w e  would like to  c o n s tru c t  a  to ro ida l  p la s m a  

equilibrium with a  particu lar form of the m ag n e tic  field s treng th  

th roug h  s o m e  order, s a y  e 1. That is, w e  s e e k  a  m agnetic  

configura tion  co rre sp o n d in g  to s o m e  arb itrary  c h o ic e  of the  <P- 

periodic functions within th e  m agnetic  field s treng th  of Eq. (5 .1) 

through e J order. The free selection of e a c h  of th e se  functions of <p 

is e q u iv a le n t  to im posing  on e  in d e p e n d e n t  c o n s t ra in t  on th e  

functions of <p which de te rm in e  th e  actual m agne tic  configuration. 

T h e s e  c o n s tra in ts  arising from th e  choice  of th e  m ag n e tic  field 

s treng th  m ust be  applied in addition to th o se  which g u a ra n te e  the  

108Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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e x is te n c e  of equilibria th rough  arbitrarily high o rd er ,  which w ere  

deve loped  within C hapter IV.

In S e c s .  IV-(E-G)-2, we sho w ed  that th e  first o rd e r  s e t  of 

m atching  constra in ts  uniquely determ ine  the  m agnetic  field strength  

th ro u g h  e 1 o rder. Similarly, th e  first through th e  j&- s e t s  of 

m atching constra in ts  d e te rm ine  the  field s treng th  through e* order. 

This result follows since  the  h ighest o rder function tha t en te rs  into 

th e  m agnetic  field strength  of Eq. (4 .9 7 )  through e J order is the 

Xj(e,<p) function of the 2 (d A/d<p)2x(tp)Xj(e.tp) term. The Xj(0.<p) 

function is de term ined  by th e  j&L s e t  of matching constra in ts . All 

o th e r  functions tha t  e n te r  the  m agnetic  field s treng th  through e* 

o rder  a re  de te rm ined  by lower o rder s e t s  of m atching constra in ts . 

H ence, the jib- and lower order se ts  of matching constrain ts  uniquely 

d e te rm ine  th e  m agnetic  field strength  through e J order. This result 

is not a s  t ran sp a ren t  if so m e  form of the  m agnetic  field s treng th  

other than that of Eq. (4 .1 7 )  is implemented.

A ssum e  tha t  a  m agn e tic  configuration h a s  b e en  con s truc ted  

through e J_1 order. Correspondingly, the  m agnetic  field strength  is 

a lso  de te rm ined  through e 1"1 order. Eq. (5 .1 ) clearly show s that an 

arbitrary cho ice  of the 6  ̂ o rder  term of the  m agnetic  field strength  

involves j + 1 functions of <p. Thus, j + 1 independen t constra in ts  m ust 

be  satisfied  by the  functions of <p th a t  first en te r  th e  configuration 

at e J order. Using the  m ethodolgy of constructing toroidal p la s m a  

equilibria given within S e c s .  IV-(E-G), the  3 j + 2  in d ep e n d en t  4>- 

e q u a tio n s  of the  jib. o rder  s e t  of m atching co n s tra in ts  m ust a lso
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hold. Hence, a  grand total of 4 j + 3 independen t ^ -co n s tra in ts  m u s t  

be  sa tis f ied  in constructing  torodial equilibria with arbitrary form s 

of the  m agnetic  field strength a t  e J order, assum ing  th e s e  equilibria 

already exist through e J 1 order. The functions that a re  available to 

fulfill t h e s e  co n s tra in ts  a re  the  3 j + 4  functions of <P within th e  

poloidal expansions of X(vp,0,<p), Y (^ ,0 ,<p), and Z(\p,0 ,<p), given within 

Eqs. (4.31 ) - (4 .3 4 ) .  Obviously, th e  leading o rder  of th e  new 

constra in ts  that en te r  a t  a  particular order, which sca le s  a s  4 j, will 

eventually  ove rtake  th e  3 j scaling of the  new  functions of (J) th a t  

en te r .  T herefo re , th e  g e n e r ic  freedom  in th e  expansion  of th e  

m agne tic  field s treng th  will b e  broken a t  so m e  particular o rder in 

th e  expansion . W e prove tha t this loss of freedom  o ccurs  a t  third 

o rd e r .

T he  functions of <p available to satisfy  th e  various constra in t 

e q u a t io n s  a re  not all co n ta in ed  within the  functions X(^,0,<p), 

Y(^.0.«P), and  Z(\p,0,<p). T he  a rb itrariness of the  m agnetic  axis 

implies th a t  th e  cu rva tu re , k(<P), an d  torsion, r(<p), fu n c tio n s  

introduce additional freedom into the system  of equations. The only 

constra in t on th e s e  two functions is th a t  they  m ust be  c o n s is te n t  

with a  sm ooth , c lo sed  curve. Only two Fourier harm onics within a  

se t  of k ( £ )  and  •*:(£) need  b e  varied in computational optimizations 

to obtain a  smooth, c losed  curve, a s  w as  shown in Sec. Ill-C.

W e show  the  breakdown in the  freedom  of the m agnetic  field 

strength  by an eventual loss of free functions of <p a s  the  expansion  

is tak en  to higher order. T hus, w e will a s su m e , incorrectly in a
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strict s e n s e ,  th a t  k (<P) and r(<p) a re  entirely free  functions of <p. 

This p resum ed  freedom of the  curvature and  torsion functions can  be  

u s e d  to help satisfy  the  ^ -c o n s t r a in ts  in c o n s tru c t in g  to ro ida l 

equilibria  with des ired  m agnetic  field s treng ths . In addition, this 

a s su m e d  freedom of x(cp) and r(<p) do es  not affect the  3 j  scaling of 

the  functions of (p available to satisfy the  <p-constraints a t  order. 

W e now exam ine the specific constraints and  functions of <p involved 

a t  e a c h  order in the expansion.

V-B-1. Zeroth O rder

Only one  constraint is im plem ented in the  specification of the  

m ag n e tic  field s treng th  a t  e° order. This so le  constra in t  a r ise s  

from the  freedom  of the m agnetic field strength on axis, B0(cp) of Eq. 

(5 .1 ) .  The d e p en d e n t  configuration functions available to satisfy 

this constra in t a re  £(<p), K[Jl((p)], and  *[£((P)], which com pletely  

de te rm ine  the magnetic axis. Eq. (4 .5 1 )  show s that the  axis length, 

H((P), and  the poloidal coil current, Go. uniquely give th e  m agnetic  

field strength  of the  axis, B0((p). Thus, the functions k (<P) and r((p) 

rem a in  en tire ly  a rb itrary  in th e  c h o ic e  of th e  m a g n e tic  field 

s treng th  of th e  axis. The p resum ed  freedom  of th e s e  two functions 

can  be  used  to a ss is t  in the constra in ts  of arbitrarily selecting th e  

first o rder  term of the m agnetic  field strength .

V-B-2 . First O rder

Two new constrain ts arise  in the  specification of the  m agnetic
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field strength  at first o rder in e, which resu lt from th e  freedom  of 

th e  functions b1f-|S(<p) and  bl l l c (<P) of Eq. (5 .1 ) .  The (p d e p e n d e n t  

configura tion  functions within the  m agne tic  field s tren g th  of Eq.

( 4 .9 7 )  a re  required to yield this desired  form. In addition, th e s e  

configu ra tion  functions m ust a lso  sa tis fy  th e  first o rd er  s e t  of 

m atching constra in ts  that were defined within S e c s .  IV-(E-G). Thus, 

th e  entire s e t  of constrain ts is given by: a) the  two constrain ts  that 

a r i s e  form th e  arbitrary specification of the  functions b l t l s ((p) an d  

b l l l c (4» the  field strength in Eq. (5 .1), b) the two k 0 m atching 

c o n s tra in ts  a t  e 1 order, c) the  two r 0 m atching co ns tra in ts  a t  e 1 

order, and  d) the one 6*0 matching constrain t a t  e° order. The nine 

functions of (p that a re  available to satisfy th e s e  s e v e n  constra in ts  

a r e  specifically given by X1l1s(<p), Xl t l c ((p), Y1t1s (<p), Yl t 1c(<p), 

Z2,o(<P). Z2 ,2s (<p), and Z2l2c(<p) of Ec!s - (4 .3 1 )  and (4 .3 2 ) ,  and the 

re s id u a l  z e ro th  o rd e r  functions k(<P) and  z(<p). Therefore , a  

maximum of two functions of tp remain free  after the  m agnetic field 

s treng th  h a s  been  ch o sen  through first order. The freedom  of th e s e  

two functions can  be u sed  within the  analysis a t  se co n d  order.

V-B-3. S eco nd  Order

In ch o o s in g  the  se c o n d  o rder  term  of th e  m agnetic  field 

s tren g th , w e  m ust satisfy a) th e  th ree  constra in ts  th a t  arise  from 

th e  specification of the functions b2,0(<p), b2l2s (<p), and  b2t2c(<p) of 

th e  field s treng th  of Eq. (5.1). Furthermore, w e m ust a lso  fulfill the  

s e c o n d  o rd e r  matching co ns tra in ts  of S e c s .  IV-(E-G), which a re
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explicitly given by: b) the th ree  k 0 matching constra in ts  a t  e 2 order, 

c) the  th ree  £ 0 matching constrain ts  a t  e2 order, and  d) the  two lf0 

matching constra in ts  at e 1 order. The functions of <P a v a i la b le  to  

s a t i s f y  th e s e  constraints a re  X2(0(<P), X2l2s(<p), X2l2c((P), Y2l0(<p), 

Y2.2 s ^ ) .  Y2,2c((P), Z3,l s (<p), Z3,lc (<p), Z3.3s(cp), and  Z3.3c(<p) of Eqs.

(4 .3 2 )  and  (4 .33 ) ,  in addition to the  two functions of <P that remain 

free  a f te r  specifica tion  of th e  field s treng th  th rough  first order. 

This result yields a  grand total of twelve free  functions of <p that 

a r e  av a ilab le  for e leven  in d e p e n d e n t  c o n s tra in ts .  T hu s , a fte r  

construction  of th e  desired  m agnetic  field s treng th  through seco n d  

order, a  m axim um  of one  free  function of <p is a cc ess ib le  to the  

constra in ts  of third order.

V-B-4. Third O rder

The con s tra in ts  that e n te r  in specifying th e  third o rd e r  term 

of the  m agnetic  field s treng th  are: a) the  four constra in ts  arising 

from the  choice  of the  functions b3f1s(<p), b3llc(tp), b3l3s(<p), an d  

t>3,3C(<P) of Eq- (5 .1 ) ,  b) the four k 0 matching constrain ts at e3 order, 

b) the  four £ 0 matching constraints a t  e3 order, an d  c) the th ree  lT0 

m atch ing  c o n s t ra in ts  a t  e2 order. T h e s e  fifteen in d ep e n d en t  

co n s tra in ts  m ust be  satisfied  by the  thirteen functions X3, i s (<p), 

X3.1cW >  X3l3s(tp), X3l3c(tp), Y3, i s (tp), Y3,ic (<p), Y3t3s((p), Y3l3c(tp), 

Z4(0(<p), Z4t2s(cp), Z4f2c((p), Z4l4s(tp), and  Z4l4c(tp), plus a  maximum of 

o n e  additional function of <p not constra ined  through secon d  order. 

T hus, a  maximum of fourteen functions of (p a re  access ib le  to the
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fifteen in d ep e n d en t  constra in ts , yielding an  overde term ined  sy s te m  

of equations . Therefore, we do not have generalized  freedom  in th e  

specifica tion  of th e  m agnetic  field s treng th  through  third o rd e r  in 

th e  expansion .

IV-C. F ield S treng th  Freedom  Through S econd  O rder

In th e  previous section, w e  proved th a t  the  m agnetic  field 

s treng th  correspond ing  to toroidal p lasm a equilibria is not arbitrary 

through third order. In this sec tion , w e sho w  th a t  the re  e x is ts  

sufficient freedom  to permit arbitrary form s of the  m agnetic  field 

s treng th  th rough  s e c o n d  o rd e r109. The only provision is the n o n ­

vanishing of the  zero th  and first order te rm s of the  m agnetic  field 

s t re n g th .  More specifically , torodial p la s m a  equ ilib ria  c a n  b e  

construc ted  with desired  forms for the functions B0(<P), p-|(<P), X^tp), 

W0(<P), F2(<P), and S2(tp) of the m agnetic field strength of Eqs. (1 .3 ) -

(1 .5), provided that neither B0(<p), nor pi(<p), vanish for any  value of

<P-

T h e  d e m o n s tra t io n  of th e  freedom  in the  m ag n e tic  field 

strength  through se c o n d  order follows in a  m anner sim ilar to tha t of 

th e  restriction in th e  field s treng th  through third o rder .  However, 

th is  resu lt  regarding the  field s treng th  freedom  is different from 

th a t  of th e  previous section  in o n e  major respec t. To prove th e

restriction in the m agne tic  field strength  through th ird  order, w e  

a s s u m e d  th e  m a x i m a l  freedom of the m agnetic  axis . That is, th e  

c u rv a tu re ,  x(<p), and  torsion, ?(<p), functions w ere  ta k e n  to b e

109Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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completely f ree  functions of (p. This presum ption followed from the  

analysis  of S e c .  Ill-D, which proved th a t  only two Fourier harmonics 

within a  s e t  of k (JL) a n d  t ( 4 )  n e ed  be  varied in optimizations to 

obtain a  sm ooth, c losed m agnetic axis.

To sh o w  the f r e e d o m  in the m agnetic  field strength  through 

seco n d  order, w e m ust a ssu m e  the  m in im a l  possible  freedom of the  

m agnetic  axis  functions, x (£ )  a n d  z (4 ) .  Clearly, w e can  presum e 

th a t  one th e s e  two functions is completely arbitrary, s ince only two 

Fourier harm onics within the s e t  of * U )  and r ( £ )  a re  required to 

s e rv e  a s  variable pa ram eters  in obtaining smooth, c losed a x es .  T he 

deta iled  an a ly s is  of th e  previous section for satisfying th e  matching 

constra in ts  a n d  the d es ired  form of the m agnetic  field strength  can  

th en  be refashioned to give the result of this section, using only one  

f ree  function of <p within x[!L((p)] and r[JL(<p)]p instead  of two. The 

un iq u en ess  of the  F rene t  representation of the spatial position for a  

g iv e n  to ro id a l  equ ilib rium  im plies th a t  th e  <p d e p e n d e n t  

c o n fig u ra tio n  fu nc tion s  within this a n a ly s is  co n ta in  n o  trivial 

f ree d o m s resulting  from only trivial tran s la tio n s  and  ro tations of 

th e  coordinate  system , a s  show n in S e c .  IV-B. Furthermore, s ince  

n o n -ze ro  p la s m a  c u rre n t  and  p re s su re  do no t affect th e  b a s ic  

m ethodo logy  of satisfying the  m atching co ns tra in ts , a s  rev ea led  

within S e c s .  IV-(F-G), this resu lt  of th e  freedom  in the  m agnetic  

f ie ld  s tre n g th  th rough  se c o n d  order holds for g e n e ra l  toroidal 

p la s m a  equilibria.

Detailed analysis a lso  sh o w s that only o n e  of the two poloidal
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harm onics  in the  m agnetic  field s treng th  a t  third order is free110, 

g iven  arbitary form s of th e  field s treng th  th ro ugh  s e c o n d  order. 

T hat is, either the M= 1 poloidal harmonic functions C<|(<p) an d  ^ ( (p )  

of Eq. (1 .6) o r  the M = 3  poloidal harmonic functions C3((p) an d  2T3(«p) 

a re  arbitrary, in addition to the  lower order functions B0((p), p-,(<p),

X-! C<P), W0(<P), F2(<p), and  S2(<P) within the  field strength of Eqs. (1 .3 )-

(1 .5 ) .  This result follows since  two n e w  functions of <p rem ain free 

a fte r  the  m atching cons tra in ts  a t  e a c h  particular order h av e  b e en  

applied, a s  dem o n s tra ted  in Sec . IV-(E-G)-3. In a  re la ted  fashion, 

o n e  poloidal harm onic  within the  m agnetic  field s tren g th  a t  an y  

o rder  can  be  chosen  a t  whim. However, the o ther  poloidal harmonics 

within the  field s tre n g th  a t  this particular o rd e r  w ould  not be  

a rb i t r a ry .

V-D. F re e d o m  o n  O n e  P a r t ic u la r  F lux  S u r f a c e

W e have shown that th e  magnetic field s treng th  corresponding  

to a  toroidal p lasm a  equilibrium cannot be  c h o sen  freely throughout 

the  three-d im ensional volum e in the vicinity of the  m agne tic  ax is . 

This result is m erely a  reiteration of the  no n -arb itra r iness  of th e  

m agn e tic  field s treng th  th rough  third order, which w a s  proven in 

S e c .  V-B. However, th e  m agnetic  field strength  is n o t  prohibited  

from being specified freely on a  two-dim ensional flux su rface . In 

fact, w e  find tha t  th e  m agn e tic  field s treng th  on o n e  particu lar 

m ag ne tic  flux su rface  is com pletely f r e e 111, provided th a t  the  first

110Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
111 Ibid.
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o rd er  curvature  term d o e s  not entirely vanish.

To com prehend  the freedom  of the  m agnetic  field strength  on 

o n e  flux su rface , cons ider  th e  genera l  form of th e  field streng th  

within any  flux surface,

00

Bty.e.tp) = B0(<P) + Z e m {bm s ((p )s in (m 9)+  bmiC((p)cos(m e)K  (5 .2 )
m=l

This equ a tio n  is c o n s is te n t  with th e  form of analy tic  functions 

derived  within IV-C. The particular m agnetic  flux su rface  d e p e n d s  

on the  value of e, which now takes  the  role of a  p a ra m ete r  ra ther 

than  a  variable. Recall from S ecs . IV-(E-G)-3 that e ac h  order in the  

gen era l  equilibrium constra in ts  in troduces two functions of <p that 

c a n  b e  u se d  to give so m e  freedom  in the  specification of the  

configuration. Arbitrariness of th e se  two functions of a t  jib- order 

permits one to choose  the functions b j#s(cp) and b j iC(tp) of Eq. (5 .2 ) to 

g ive a  d e s i re d  form for the e J o rder term  of th e  m agnetic  field 

s tren g th .  S ince  th is se lec tion  ap p lie s  for all o rd e rs  in e, th e  

m agnetic  field strength  on o n e  flux su rface  can  be  ch osen  entirely 

freely. The only restriction is that the zeroth an d  first order te rm s 

m u st not completely vanish, in accord with S ec . V-A. This result is 

fully g e n e ra l  for any  toroidal, sc a la r -p re ssu re  p la s m a  equilibrium. 

H ence, the  confinem ent properties can be  optimized m ore freely near  

o n e  pa rticu la r  m ag ne tic  flux su r fa c e  than  th ro u g h o u t  a  th re e -  

d im ensional volume.



CHAPTER VI 

QUASI-HELICALLY SYMMETRIC EQUILIBRIA

The exp ress io n  for the  m agnetic  field s treng th  in te rm s  of 

B o o z e r  c o o rd in a te s  largely  d e te r m in e s 112 the  confinem en t a n d  

s ta b i l i ty  p r o p e r t i e s  of a  to ro id a l  p la s m a  eq u il ib riu m , a s  

d e m o n s tr a te d  within C h a p te r  II. Fu rthe rm ore , w idely differing 

configurations with similar forms for th e  m agnetic  field s treng th  in 

te rm s  of B oozer co o rd ina tes  w ere  show n to h av e  rela ted  p la sm a  

t ra n sp o r t  p ro p e r t ie s113. However, toroidal equilibria corresponding 

to d es irab le  forms of the  m agnetic  field strength m ay not a lw ays 

ex is t.  Specifically, th e  T aylor-Fourier se r ie s  e x p a n s io n  of th e  

m a g n e tic  field s tre n g th  h a s  re s t r ic t io n s1 14 th a t  a r ise  from the  

toroidicity of th e  configuration and  the  d iv ergence-free  property  of 

th e  m agnetic  field, a s  proven within the previous chap ter.

In this ch ap te r ,  we will im plem ent the  g e n e r ic  res tric tions 

a n d  f re e d o m s  of the  m a g n e tic  field s tre n g th  to in v e s t ig a te  

particularly  significant ty p es  of toroidal p lasm a  equilibria. The 

m ost des irab le  c la ss  of toroidal p lasm a equilibria exhibits c o n s ta n t  

m ag ne tic  field s treng th  within the  p la s m a  p re s s u re  su rfa ce s ,  a s  

first p roposed  by Palum bo115. However, such toroidal "isodynamic"

112Boozer, A. H. (1984). Phys. fluids 27, 2441.
113Boozar, A. H. (1983). Phys. fluids 26, 496.
114Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 2, 2805.
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equilibria c a n  exist only in limits in which m agnetic  field strength  

on  axis v a n is h e s  or th e  m agnetic  flux su r fa c e s  b e c o m e  open, a s  

p ro v en  by B em ard in ,  M oses , a n d  T a ta ro n is 116 . T hus, th e s e  

inv es tiga to rs  conclude  th a t  toroidal isodynam ic equilibria a re  not 

practical for applications of constructing a  fusion reac to r . In the  

first sec tion  of this c h a p te r ,  we will d e m o n s tra te  th e  first o rder  

sy m m etry  b reak ing  of toroidal isodynam ic  equilibria  within th e  

fram ework of our analysis.

The nex t most des irab le  c la ss  of toroidal p lasm a equilibria is 

c h a rac te r ize d  by a  m agne tic  field strength which d e p e n d s  on only 

o n e  angular coordinate within the constan t p re s su re  su rfaces . Such 

toroidal equilibria a re  sa id  to be "quasi-helically sym m etric"117. In 

th e  se c o n d  section  of th is ch ap te r ,  we sh o w  that quasi-helica l 

sym m etry  is a l w a y s  broken a t  third order118 , i.e., ( A B ) /B s : e 3. 

N e v e r th e le ss ,  good approxim ations of quasi-helical sym m etry  exist 

for practical va lues of e » 1 / 1 0 ,  s ince  the sym m etry breaking occurs 

a t  third order, rather than  som e lower order. The remaining sections 

of this c h a p te r  are  d e v o te d  to developing g en eric  p ro p ert ie s  an d  

s a m p le  configura tions of toroidal p lasm a  equilibria w hich  highly 

ap p ro x im ate  quasi-helical sym m etry.

11sPalumbo, D. (1968). II Nuovo Clmento X53B, 507.
116Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29, 

2605.
117Nuhrenberg, J., and Zille, R. (1988). Phys. Lett. A. 129, 113.
118Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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Vl-A. B reak ing  of Toroidal Isodynam ic E quilibria

T he  m agnetic  field s trength  of isodynamic p la sm a  equilibria is 

defined to be uniform within su rfaces of constan t p ressu re .  Hence, 

the  m agne tic  field strength h a s  the generic  form B(v/0 in te rm s of 

Boozer coo rd ina tes . As first noted by Palum bo119, such  equilibria 

a re  highly d esirab le , s ince their guiding-center particle  trajec tories 

rem ain  within th e  p re s su re  su rfaces  for ail time. T h ese  favorable 

particle  t ra jec to rie s  a rise  from the conserva tion  of the  canon ica l 

m om en ta  pQ and using Eq. (2 .30), which follows from the ab sen c e  

of the  co o rd in a te s  0 and <p from the magnetic field strength  of the 

drift Ham iltonian in Eq. (2 .26 ) .  B e c a u s e  th e  g u id in g -cen te r  

t ra jec to rie s  do hot c ro ss  th e  p re s su re  su rfaces ,  p la sm a  tran spo rt  

a c ro ss  th e  p re s su re  surfaces d u e  to guiding-center drift motion do es  

not exist. However, transport due to c lassical diffusion rem ains, 

a lthough it is w e ak e r  than guiding-center transport by the  ratio of 

the  particle  gyro-radius to th e  radius of curvature of the  m agnetic  

field lines. This ratio is approximately 1/500 for p la sm a s  of fusion 

in t e r e s t .

Bernardin, M oses , and T ataronis120 have perform ed a  detailed 

in ves tiga tion  of isodynam ic  equilibria! They h a v e  p rov en  that 

t o r o i d a l  isodynam ic  equilibria exist only in two limits: 1) the  

m ag n e tic  flux s u r fa c e s  b e c o m e  open, and  2) th e  m agne tic  field 

s tre n g th  of the  m agne tic  ax is  v an ish es .  We will now u s e  the  

119Palumb0 , D. (1968). II Nuovo Clmento X53B, 507.
120Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,

2605.
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formalism d ev e lo p ed  within th is d isserta tion  to d e m o n s tra te  t h e s e  

two limits through first order in an  expansion about a  magnetic ax is .

VI-A-1. First Limit: Collapsing Magnetic Flux Surfaces

T he m agne tic  field s tren g th  correspond ing  to toroidal MHD 

equilibria through first order is given by Eq. (4 .71 ). This form of th e  

field s treng th  applies regard less  of the p lasm a  current and  p re s su re  

profiles, a s  shown within S e c s .  IV-(F-G). The exp ress ion  for th e  

m agnetic  field strength  in term s of Boozer coord inates, Eq. (4 .7 1 ) ,  

m ust h av e  th e  form B(vJ0 in o rder  to be  co n s is ten t  with torodial 

isodynam ic  equilibria.

The m agnetic field strength on axis, B0(<p) of Eq. (4 .71), c an  

obviously b e  m ade to be  independent of <p. Thus, toroidal isodynamic 

equilibria trivially ex is t  through e° order. However, ob s tac les  a r is e  

in constructing  toroidal isodynam ic equilibria through first order.

T he  first o rd e r  term in th e  m agnetic  field s tren g th  of Eq. 

(4 .71 )  is given by B0k(<P)Xi(9,<P), with B0 constan t Assuming non­

vanishing axis field strength, the  product x ftp jX ^e .fp ) is required to 

b e  in d e p e n d e n t  of th e  a n g le s  6 and  in order to give toroidal 

isodynam ic eqilibria. The function Xi(9,<p) always exhibits n o n ­

trivial 0 d e p e n d e n c e ,  presum ing the function t i(<J>) of Eq. (4 .81) is  

non-zero . In the  s ingular limit in which th e  function T\(«p) d o e s  

vanish , th e  lowest o rd er  flux su r fa ce s  co llap se  to r ibbons that a r e  

both infinitely thin a n d  infinitely tall, a s  deve loped  within Sec . IV- 

E-2-b. S ince  the axis curvature, x(<p), cann o t completely vanish for 

toroidal configura tions, the first o rder term  of the  m agnetic  field
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strength  is com pelled to have  non-trivial 9 d e p e n d e n c e ,  a ssu m in g  

the  m agnetic  field strength  of the axis is non-zero.

O n e  obvious limit in which toroidal isodynam ic equilibria exist 

co rre spon ds  to the  vanishing of the  function t\(<P) of Eq. (4 .81 ). For 

this c a s e ,  the  m agne tic  flux su rfa ce s  co llapse  to ribbons th a t  a re  

both infinitely thin a n d  infinitely tall n e a r  the  m agnetic  axis . That 

is, th e  flux su r fa c e s  a re  flattened along the local curvature  vec to r  

of th e  m ag n e tic  ax is , k 0(JL) of Fig. 5. This limit of toroidal 

isod ynam ic  equ iib ria  c o r re sp o n d s  to the  m ag n e tic  flux s u r f a c e s  

becom ing  open , a s  first d e m o n s tra te d  by Bernardin, M oses , an d  

T a ta r o n i s 121.

VI-A-2. S e co n d  Limit: Vanishing Axis Field Strength

P a l u m b o 122 analytically  co n s tru c ted  a  particu lar c l a s s  of 

a x is y m m e tr ic  iso d y n a m ic  equ ilib ria . T h e s e  to ro ida l p l a s m a  

equilibria a re  charac te r ized  by zero  m agnetic field strength  on the  

m agnetic  axis. Thus, the  local p lasm a beta, which is defined to b e  

the ratio of the p la sm a  energy  density to that of th e  m agnetic  field, 

i.e., £ 3 2 j i 0p /B 2, is infinite on the m agnetic axis. As expected , he 

found th a t  this c la s s  of toroidal isodynam ic equilibria w a s  highly 

u n s tab le  to p ressu re -d riven  perturbations.

T h e  near-ax is  resu lts  of Palum bo equilibria can  be  o b ta in ed  

through observation  of Eq. (4 .8 0 )  for the m agnetic field s trength  of

121 Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,
2605.

122Palumbo, D. (1968). II Nuovo CimentoX53B, 507.



139

genera l MHD equilibria through first order. T he  vanishing of the axis 

field strength , B0(<P) in Eq. (4 .80), clearly elim inates the  zeroth  and  

first o rd e r  te rm s  within th e  m agnetic  field s treng th . This resu lt 

can  b e  achieved  using non-trivial va lues for the  curvature, *(<p), and  

ellipticity along th e  curva tu re , T\(tp), of Eq. (4 .80). S ince  the 

explicit 0 and  tp d e p en d e n ce  has b e en  entirely vanqu ished  from the 

field s tre n g th  through  first o rder, toroidal iso dyn am ic  equilibria 

exist a t  lea s t  through first order, in this limit.

T h e  vanishing of th e  m agnetic  field s treng th  on axis  implies 

th a t  z e r o  n e t  poloidal electric  cu rren t  flows th rough  th e  c lo sed  

curve  comprising the  m agnetic  axis. Thus, the  poloidal d iam agnetic  

cu rren t  within th e  p lasm a m ust totally offset the  poloidal current in 

th e  field coils, in order th a t  th e  axis field s tren g th  com plete ly  

vanish. An extremely large volume-averaged, p lasm a b e ta  <0>ss1  is 

requ ired  to m ake  the m agnetic  field strength  of the  ax is approach  

zero. H ence, this class of toroidal isodynamic equilibria is expected  

to be  exceedingly  unstable to pressure-driven perturbations.

T h e s e  two limits for attaining toroidal isodynam ic  equilibria,

i.e., th e  flattening of the magnetic flux su rfaces  and  the  vanishing of 

the  axis field strength , are  independent. One can  obviously construct 

low b e ta  equilibria in which the flux su r fa ce s  a re  highly flattened  

along  th e  cu rv a tu re  vector. O ne  can  a lso  co n s tru c t  high b e ta  

equilibria  with near-circu lar m agnetic  flux su rfa ce s .
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Vl-B. B re a k in g  o f  Q u a s i -H e lic a l  S y m m e tr y

In the  previous section, te rm s of first o rder in e w ere  show n 

to p rec lude  the  e x is te n ce  of e x ac t  toroidal isodynam ic  equilibria. 

B e c a u se  the  sym m etry  breaking occu rs  a t  first order, ra ther than  

so m e  h igher o rder , good  approx im ations  of toroidal isodynam ic  

equilibria  do not exist. T herefo re , w e  a ttem p t to find toroidal 

e q u il ib ria  with th e  s e c o n d  m o s t  d e s i r a b le  p la s m a  t r a n s p o r t  

p roperties , which a re  th o se  exhibiting quasi-helically symmetry.

T h e  m agnetic  field s treng th  co rresp ond ing  to quasi-helically  

sym m etric  equilibria h a s  the  general form B(\p,oO, with o* = e-N<p a  

helical coordinate  and  N an integer, in term s of Boozer coordinates. 

This form of th e  m agne tic  field s t re n g th  obviously  ex is ts  fo r 

configurations which a re  perfectly axisymmetric, i.e. <p independen t, 

giving the  trivial N = 0 case .  N o n - a x i s y m m e t i c  toroidal equilibria 

in which the m agnetic  field s treng th  d e p e n d s  on only o n e  angu lar 

c o o rd in a te  within th e  flux s u r fa c e s  w ere  ca lled  "quasi-helically  

symmetric," by Nuhrenberg and Zille123. They computaionally found 

large a s p e c t  ratio s te lla ra to r equilibria which c losely  approx im ate  

q u as i-he lica l  sym m etry .

T h e  partic le  drift t ra jec to r ie s  of quasi-he lica lly  sym m etric  

s te lla ra to r  equilibria would be  sim ilar124 to th o se  of axisymm etric 

tokam ak equilibria. For exam ple, the  tips of a  trapped  b a n an a  orbit 

for bo th  quasi-helically  sym m etric  s te l la ra to rs  a n d  ax isym m etric  

tok am aks  remain within one  m agnetic  flux su rface . T h a t is, quasi-

123Nuhrenberg, J., and Zille, R. (1988). Phys. Lett. A. 129, 113.
124Boozer, A. H. (1983). Phys. Fluids 26, 496.
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helically sym m etric  s te lla ra to rs  would have  a  negligible num ber of 

s u p e r - b a n a n a 125 orbits tha t  lead  to the  e n h a n c e d  tran sp o rt  of 

conven tion a l  s te l la ra to rs .

T he favo rab le  drift t ra jec to rie s  of quasi-helically  sym m etric  

equilibria  a r is e  from the  e x is te n c e  of a  canon ica lly  c o n s e rv e d  

m om entum , ph of Eq. (2 .48), that is analogous to the p<p invariant of 

axisym m etric  tokam ak  equilibria. The invariance of ph w a s  proven 

in Sec . Il-D.

T he m agne tic  field s tren g th  correspond ing  to quasi-helically  

sym m etric  p la sm a  equilibria m ust satisfy th e  constra in t

||Bty,e,<p)|| = Bty.oO, (6 .1)

with of = 0 -Ntp the  helical coord ina te  and  N any integer. Such a  

constra in t of forcing a  genera l function of th ree  va riab les  to be  a  

function  of only two is obviously  in d e p e n d e n t  of th e  g e n e ra l  

equilibrium constra in ts  developed  within S ec . IV-(E-G). In addition, 

the quasi-helical constrain t of Eq. (6 .1 ) d o e s  not introduce any free  

functions of position into the  sy s tem  of equations.

W e a t t e m p t  to find q u a s i-h e l ic a l ly  sy m m etr ic  eq u ilib ria  

th rough  all o rd ers  in the  ex p an s io n  abou t a  m agnetic  axis. T h e  

m ag n e tic  field s treng th  of a  quasi-helically  sym m etric  s te l la ra to r  

h a s  th e  general form

125Beidler, C., at. al. (1990). Fusion Technology: A Journal of the American Nuclear 
Society 17, 148.
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B(^,o<) = B0 {1 + e {hf>l5sin(o<) + hl l l c cos(oO}

+ e 2{h2,o + h2,2 s sin(2oO + h2,2ccos(2o<)}

+ e 3 {h3 l l s sin(oO + h3 t lc cos(oO

+ h3,3 s sin(3oO + h3l3ccos(3o<)}

+ "• h (6 .2 )

with th e  Fourier coefficients B0l h1t1s, h l l l c , h2(0, h2l2s, e tc ., all 

co n s tan t .  W e apply th e  results of Sec. V-B regarding th e  generic  

restriction in the  expansio n  of th e  m agnetic  field s trength  through 

third order. This ana lysis  implies that o n e  or m ore of th e  Fourier 

coefficients B0, h1(1s, h1 tlc , h2t0, h2(2s, h2l2c, h3,is , h3,ic , h3t3s, and 

h3,3c of Eq. (6 .2 )  m ust exhibit non-trivial <p d e p en d e n ce .  H ence, 

quasi-helically  sym m etric  p lasm a  equilibria do not ex is t126 through 

through t h i r d  order in e.

W e a lso  d e d u c e  tha t  quasi-helica l sym m etry  is b roken  by 

te rm s of seco n d  order in z  for toroidal p la sm a  equilibria constra ined  

to h av e  c ircu lar m ag n e tic  a x e s 127 . This result is ob tained  in a  

m a n n e r  sim ilar to th a t  for the  third o rder  sym m etry  b reak ing  of 

toro idal equilibria  with u ncon stra in ed  m ag ne tic  a x e s .  T h e  only 

modification of th e  a n a ly s is  for th e  circular axis c a s e  is th a t  th e  

ax is  curvature, K(tp), m ust  be  constant, and  the ax is  torsion, r((p), 

m ust be  zero. Thus, th e s e  two magnetic axis functions a re  no longer 

available  to a s s is t  in satisfying th e  various ^ -c o n s t ra in ts  involved 

in construc ting  quasi-helically  sym m etric  equilibria.

126Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
127lbid.
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Vl-C. P r o p e r t i e s  o f  A p p r o x im a te  Q u a s i -H e l ic a l  S y m m e tr y

G o o d  a p p ro x im a tio n s  to  q u a s i-h e l ic a l  sy m m etry  c a n  b e  

cons truc ted , s in ce  the  sym m etry breaking sc a le s  a s  third o rd e r  in 

th e  expan sion  param eter , e. W e obtain the  following characteristics 

of p la s m a  equilib ria  th a t  a c c u ra te ly  a p p ro x im a te  q u a s i-h e l ic a l  

s y m m e t r y 128:

1. Non-Zero Curvature of the Magnetic Axis

T he  curvature  of the  m agnetic  axis, x(tp), m ust  never vanish 

for p la sm a  equilibria which a re  quasi-helically sym m etric  through 

first o rd e r  in e. A dem onstra tion  of th is resu lt will b e  derived  

within th e  S ec . Vl-D.

2. Non-Zero Torsion of the  Magnetic Axis

The torsion of the magnetic axis, r(<p), must b e  non-zero, since 

quasi-he lica t sym m etry  is broken a t s e c o n d  o rder for circular-axis 

configurations, but only a t  third order for configurations with non­

ze ro  to rs io n .  In add ition , c i r c u l a r - a x i s  e q u i l ib r ia  w hich  

a p p ro x im a te  quasi-h e lica l  sym m etry  and  h av e  z e ro  n e t  toroidal 

cu rren t  a re  co n s tra ined  to have  zero  rotational transform  o n  axis, 

i 0, a s  w e  will dem o n s tra te  in S e c .  Vl-D. An equilibrium which 

a p p ro x im a te s  quasi-helical sym m etry  and  has  a  h e l i c a l - l i k e  axis 

a n d  v an ish in g  ne t toro idal c u r re n t  is n o t  requ ired  to h a v e  a  

van ish ing  axis transform . A non-zero  rotationat t ransfo rm  on  axis

128Garren, D. A., and Boozer, A. H. f1991). Phys. Fluids B: Plasma Physics 3, 2822*
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is beneficial s ince  it stabilizes a  p la sm a  'equilibrium a g a in s t  certain 

p re s su re -d r iv e n  p e r tu rb a t io n s129.

3. Small Toroidal Variation of the Magnetic Flux Surface S h ap e

Quasi-helically  sym m etric  equilibria a re  ob ta ined  in the  limit 

in which the functions X(yr,0,<p), Y(vp,e,<p), and  Z(\p,0,cp) of the  spatial 

position of Eq. (4 .1 8 )  all becom e independent of the  toroidal angle, tp. 

This result follows from the  fact that a  given num ber of independen t 

^ -equa tio ns  can  be satisfied by a  fewer num ber of functions of <p if 

all of the  functions of tp a re  chosen  to b e  constan ts . T he  expansion  

coefficients within the  flux functions G(\p), I(tp), i(vp), and  p(vp) 

provide the  additional co ns tan ts  n e c e ssa ry  to satisfy this sy s tem  of 

q u as i-h e lica l  equilibrium  eq u a tio n s .  H ow ever, if th e  func tions  

X ty.e .tp), Y(^,9,tp), and Z(^,9,<P) are all required to be  independent of 

<P, th e n  the  ax is  cu rva tu re , k (<P), an d  torsion, r(<p), m ust be  

constan ts . Integration of the Frenet equations  of Eqs. (3 .1 ) - (3 .4 )  

rev e a ls  th a t  any  cu rve  with c o n s tan t ,  non-vanish ing  torsion an d  

c u rva tu re  form s a  s tra igh t helix, and  thus  c a n n o t  form a  c lo sed  

curve. The cho ice  of zero torsion and  constan t, non-zero curvature  

m erely reduces  the  equilibium to the  trivial axisymm etric c a s e .

Small fractional tp-variation of th e  cu rva tu re  and  torsion of 

the  m agn e tic  ax is  g iv es  a  b e tte r  approxim ation  to quasi-he lica l 

sym m etry . T h e  beating  of (p-harm onics within th e  n o n - l in e a r  

e q u a t io n s  involved is not conducive  to acc id e n ta l  proximity of

129Bateman, G. (1978). MHD Instabilities, MIT Press, Cambridge, Massachusetts, and 
London, England, p. 64.
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q u as i-he lica l  sym m etry  for large  fractional <p-variation. Thus, if 

f(<p) is so m e  appropriate  m easu re  of the  fractional toroidal variation 

of th e  m ag n e tic  flux su r fa c e s ,  th en  quasi-he lica l  sy m m etry  is 

broken by term s of order f(<p)e2 for circular axis configurations, and  

by term s of order f(<p)e3 for configurations with unconstra ined  axes .

Q uasi-helica l sym m etry  is m ost accu ra te ly  approx im ated  by 

configurations with a  large num ber of m agnetic  field pe riods  N, so  

th a t  th e  m agne tic  axis can  approx im ate  a  s t ra igh t helix locally. 

This resu lt  follows from the  sm aller fractional ^ -varia tion  of th e  

curva tu re  and  torsion of the  m agnetic  axis a s  th e  num ber of field 

pe riods  is in c reased . H ence, the  factor f(<p) within th e  third o rder 

sym m etry  breaking term  c an  be  m ade  to be  relatively small for 

configurations with many field periods. Sam ple  configurations tha t  

dem o n s tra te  th e s e  results will be p resen ted  in Sec . Vl-D.

4. Small Local Inverse Aspect Ratio

T he  e x p an s io n  p a ra m e te r ,  e, is roughly th e  quotien t of the  

p la sm a  minor radius, r, and  the m i n i m u m  local rad ius of curvature 

of the  m agnetic  axis, Rc. Keeping this expansion p a ra m e te r  small, 

i.e., e s  1 /1 0  corresponding to the  maximum p re s su re  gradient, also 

m in im izes  th e  a sy m m e tr ie s  in th e  m ag n e tic  field s t re n g th  for 

configura tions th a t  highly approxim ate  quasi-helical sym m etry .

5) Quasi-Helical Symmetry on O ne Flux Surface

W e have  d em o ns tra ted  that quasi-helical sym m etry  can n o t be
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m a d e  e x a c t  within th e  three-d im ensional volume in the  vicinity of 

th e  m ag n e tic  axis for non-axisymmetric, toroidal p la sm a  equilibria. 

However, th is proof d o es  not prohibit th e  ex is tence  of quasi-helical 

sym m etry  within o n e  particular m agnetic  flux su rface . In fact, the 

ana lysis  of Sec. V-D permits the  ex is ten ce  of p la sm a  equilibria in 

which the  m agnetic  field strength  is a  function of only o n e  angular 

c o o rd in a te  within o n e  particular flux su r fa c e 130, but not within its 

th re e  d im ensional interior. Such  toroidal equilibria would have  no 

p la s m a  t r a n s p o r t  a c ro s s  th is  particu lar flux su r fa c e ,  to  lowest 

o rd e r  in t h e  guiding-center analysis.

T h e  m a g n e t ic  field s t r e n g th  within a  q u a s i -h e l ic a l ly  

sym m etric flux su rface  has the  general form

00

B(o<; e) = B0 + Z  em{hmiSsin(rnoO + hmiCcos(moi)}, (6.3) 
m = l

in term s of the  helical angle o<se-N<p, with the ax is  field strength , 

Bo, and th e  Fourier coefficients hm>s and  h mtC all co n s tan ts .  The 

re le v an t  m a g n e tic  flux su rfa ce  is d e te rm in e d  by  the  particu la r  

cho ice  of th e  param eter, e. T he analysis in Sec. V-D dem o ns tra te s  

th a t  the  m agnetic  field strength  within o n e  particu lar flux surface , 

Eq. (5.2), c a n  be ex p re sssed  in the  quasi-helical form of Eq. (6.3). 

T h e  only requ irem ent is that th e  first o rd e r  term m u s t  be  non-zero, 

s o  that {{hl tS }2 + {hl(CP } 1/2 is compelled to b e  a  positive constant.

130Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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We have shown th a t  the m agnetic field strength can  be  m ade  to 

d e p e n d  on only o n e  a n g u la r  c o o rd in a te  within o n e  p a rt icu la r  

m agnetic  flux surface , co rrespond ing  to quasi-helical sym m etry  on 

th a t  flux su rface . However, the  th ree  dim ensional interior of this 

flux su rface  could be  only approxim ately quasi-helically sym m etric. 

In fact, the breaking of quasi-helical symmetry n e a r  the  m agnetic  

axis of such an  equilibrium would s c a le 131 a s  {(ea)2 - e 2}e, ra ther 

than  e 3. This result follows s ince  an  additional first o rd er  term  in 

the  m agnetic  field strength  that s c a le s  a s  (ea)2e m ust be used  to 

offset the e 3 order sym m etry-breaking term a t  the  m agnetic  su rface  

corresponding  to e = ea. Hence, imposing quasi-helical sym m etry on 

o n e  particu lar flux su r fa ce  w o rs e n s  the  approxim ation  of q u a s i ­

helical sym m etry  within its interior.

Vl-D. E xam ples of A pproxim ate Q uasi-H elical Sym m etry

Q uasi-helical sym m etry through zeroth o rder is ch arac te r ized  

entirely by th e  m agnetic  axis itself. The s h a p e  of this m agnetic  

field line is com plete ly  arbitrary, provided th a t  it is a  sm o o th , 

c lo s e d  cu rve . T he only additional c o n s tra in t  for quasi-he lica l  

sym m etry  through zeroth  order is th a t  the m agnetic  field s treng th  

of th e  axis m ust be ind ependen t of the toroidal an g le , <p. S ince  

s a m p le s  of quasi-helica l sym m etry  through zero th  o rd e r  c an  b e  

found trivially, w e begin by constructing configurations which a re  

quasi-helically  sym m etric  through first order.

131Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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VI-D-1. Exam ples of Quasi-Helical Symmetry through First Order

Q uasi-helica lly  sym m etric  equilibria th rough  first o rd er  a r e  

d e te rm ined  by th e  m agnetic  flux su r fa ce s  through  first order. In 

o rd er  to g e n e ra te  th e s e  lowest o rder  flux su rfaces ,  an  appropria te  

m agnetic  axis m ust first be  chosen . The axis curvature, x(<p), of a  

co n fig u ra tio n  w hich is q u as i-h e l ica l ly  sy m m etr ic  th ro u g h  firs t 

o rd e r  m u s t  n e v e r  van ish , a s  w e will d e m o n s tra te  la te r  in th is 

sec tion . W e im plem ent the  param etric  a n a ly s is  of S e c .  Ill-B to 

c o n s tru c t  m a g n e tic  a x e s  com patib le  with quasi-he lica l  sym m etry  

through first order. This procedure  entails choosing  the  p a ram ete rs  

N, M, and  C within r 0U(4>)] of Eq. (3 .9), so  th a t  the cu rva tu re  

function, x(*t>) of Eq. (3 .10), never van ishes along the axis length.

Given an axis with non-vanishing curvature, the  resu lts  of Sec . 

IV-E-2-b can  be  u sed  to construct the  lowest order, quasi-helical 

flux s u r f a c e s  a b o u t  th e  axis . T he m a g n e tic  field  s t re n g th  

corresponding  to quasi-helical sym m etry through first o rd e r  has  th e  

form of Eq. (4 .79 ) ,  with B0(<P) and 5(<p) positive c o n s ta n ts  and 

«x(<P) = N<J>. Use of Eq. (4 .88) for 8(<p) implies that the function 7\(tp) 

m ust have  the  form

nOP) = n/K(<p), (6 -4 )

with t[  a  positive constant. However, the function Ti(tp) is required 

to be  non-zero  a n d  non-infinite for all <P in o rd e r  tha t th e  lowest 

o rder  flux s u r fa c e s  not co llapse  to ribbons th a t  are  infinitely thin
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and  infinitely tall, a s  revealed within Sec . lV-E-2-b. Hence, Eq. (6 .4) 

d e m o n s tra te s  th a t  the  axis curvature, ic(<p)t can  never van ish  for 

c o n fig u ra tio n s  w hich  a re  quasi-he lica lly  sy m m etric  th ro u g h  first 

o r d e r 13 2 . This resu lt w as  the  first generic  condition given  within 

S ec , Vl-C for approximating quasi-helical symmetry.

In sum m ary, given an  axis with non-vanishing curvature , the 

flux su r fa c e s  co rrespond ing  to quasi-helical sym m etry  th rough  first 

order c a n  be obtained using B0(tp) = 1, T\((p) = t[7k(<P), and  o<(<p) = N<p 

within Eqs. (4 .7 9 ) - (4 .8 3 )  of Sec . IV-E-2-b. Integration of d<J/d<p in 

Eq. (4 .8 3 )  from zero to 2% reveals  that the  constan t i 0-N  is bound 

be tw een  zero  and

2ic

2G0 /{n((p)}2U(<p) + (1 /2 )I2}d<p 
0

u = ---------------------------------------------------- , (6.5)
27t
/{i +{n(WH<p

for q u as i-h e lica l  sym m etry  through first order. This restriction 

sh o w s  th a t  the true  transform on axis, t.0-N f v a n is h e s  for quasi-  

helically  sym m etric  equilibria with a  c ircu lar m a g n e tic  a x is  and  

zero  n e t  toroidal current on axis, I2. Higher order effects c an  give a  

global sh e a r ,  i 2 / I q ,  to g u a ra n te e  the ex is tence  of su ch  equilibria 

with vanish ing  ax is  transform. However, toroidal equilibria with a  

v a n ish in g  ro ta tiona l transform  on ax is  a re  u sua lly  u n s ta b le  to

132Garren, D. A., and Boozer, A. H. f1991). Phys. Fluids B: Pl&sma Physics3, Z8SSL
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certa in  p re s su re -d r iv e n  pertu rba tio ns133.

W e im plem ent Eqs. (6 .4 )  and (4 .8 0 ) - (4 .8 3 )  to graph quasi- 

helically sym m etr ic  flux su r fa c e s  through  first o rd e r  a b o u t  any  

m agne tic  axis with non-vanishing curvature. The m agnetic  ax is  of 

our first exam ple is given by Eq. (3.9) with N = 5, M = 1, and  C =  1 /1 5 ,  

which is the five-period helical curve of Figs. 1 and  6. The co ns tan t  

Tf of Eq. (6 .4) is determined by t [  = \ . 2 S / < / 2 \  so  that the  function 

S(<p) within the field strength of Eq. (4 .7 9 )  is 8(<p) = 1 .2 5 .  This 

ch o ic e  y ields elliptical flux su rfaces  which a re  ra th e r  f la t tened  

p e rp e n d icu la r  to the  cu rva tu re  vector, resulting in a  so m e w h a t  

m inimized first o rd e r  variation of the  m agnetic  field s treng th . A 

s a m p le  m a g n e t ic  flux s u r f a c e  for th is  f iv e -p e r io d  h e lica l  

configura tion  is g iven in Fig. 12. T he  rotational transfo rm  is 

de te rm ined  by to  = 3 .673 , so that the largest value of |d(tP)|, which 

g ives a  contribution to the  ellipticity of the  flux su r fa c e s  via Eq. 

(4 .85 ), is minimized.

T he  ro tational transform  utilized within th is  d is se r ta t io n  is 

not th e  conventional rotational transform. Within this analysis , the  

9 = 0 position ro ta tes  with th e  curvature vector, K0(<P), w h e re a s ,  

customarily, it d o e s  not. Our choice of th e  transform is t ran sp aren t 

th rough  o b se rv a tio n  of "knotted" configuration of Fig. 13, T he  

co n v en tiona l  ro tational transfo rm  i con is de term ined by | \  -  N | , 

with i  th e  transform  of this analysis.

A ten  period helical toroid exhibiting quasi-helical sym m etry

133Bateman, G. (1978). MHD Instabilities, MIT Press, Cambridge, Massachusetts, and 
London, England, p. 64.
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through  first o rder  is in troduced within Fig. 14. T he p a ra m e te rs  

corresponding to this configuration a re  specified by N = 10, M = 1, and  

C = 1 /1 5  within Eq. (3 .9) for r 0U(<J>)]. The constant t[  w as chosen  to 

be  1 . 2 5 / ^ 2 "  in order to yield the s a m e  first o rder variation of the 

m agnetic  field strength  for this ten-period  helical toroid a s  for the  

on e  of five periods given in Fig. 12. The minimization of |o((p)| 

leads to a  transform on axis of i 0 = 7 .6 3 1 .

T he norm alized  v a lu e s  for th e  axis cu rva tu re , k (SL), a n d  

torsion, r(JL), co rresponding  to th e s e  helical toroids is com puted  

using Eqs. (3 .1 0 )  and (3 .11 ). T h ese  axis functions for the five and  

ten  period c a s e s  a re  given by Figs. 6  and 15, respectively. T h e se  

g ra p h s  d e m o n s tra te  th e  sm aller  variation of th e  cu rva tu re  a n d  

to rsion  with a  larger n um ber of field periods . However, t h e s e  

figures also  indicate  th a t  the  m ean  curvature  in c re a s e s  with th e  

num ber of field periods. Hence, the re  exists a  com prom ise be tw een 

th e  varia tion  of th e  c u rv a tu re  a n d  to rsion  fu n c t io n s , which 

de te rm ines  th e  flattening of the quasi-helical flux su rfaces , and  the  

m e a n  c u r v a tu r e ,  w hich  d o m in a te s  th e  g u id in g - c e n te r  drift 

tra jec to rie s  within the  equilibrium.

C onfigurations o th e r  than  th o s e  of conventional s te lla ra to rs  

can  yield quasi-helical symmetry through first order. O ne  sam ple  Is 

the  three-period knotted configuration of Fig. 13. The magnetic axis 

of this configuration is determ ined by {N = 3, M = 2 , C = 1 / 2 }  within

Eq. (3 .9), a s  in Figs. 7  and  8. The corresponding  m agnetic  field 

streng th  exhibits the sa m e  first order variation a s  tha t of the
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FIGURE 14 

TEN PERIOD HELICAL CONFIGURATION

T he lowest o rder  flux su rfaces  of a  ten-period helical configuration 
sa t is fy in g  q u a s i -h e l ic a l  sy m m etry  th ro u g h  first o rd e r .  T h e  
m agnetic  axis is given by Eq. (3 .9 )  with N = 10, M = 1, and  C= 1 / 1 5 .  
T he  m ag n e tic  field s treng th  h a s  th e  form of Eq. (4 .7 9 )  with 
S(tp) = 1 .25, and the rotational transform on axis is i 0 = 7 .6 3 1 .
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FIGURE 15

CURVATURE AND TORSION OF TEN PERIOD HELICAL AXIS

0 . 4 0.60.2

T he cu rva tu re  an d  to rsion  co rrespond ing  to th e  ten -period  helical
configuration  of Fig. 14, a ssu m in g  th e  m ag n e tic  axis h a s  length
L = 2tT.
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helical configurations of Figs. 12 and  14. T he value for i 0 is 0 .9 9 1 ,  

again chosen  to minimize the maximum of | <J(*P) | .

A nother sa m p le  of a  three-period  knot exhibiting quasi-helical 

sym m etry  through first order is show n in Figs. 16 and 17. T he  axis 

co rresponding  to this configuration is ob tained  using {N = 3, M = 2, 

C = 3 / 4 }  within Eq. (3 .9). The value of the constan t 1 \  of Eq. (6 .4 )  is 

again  c h o sen  to be  1 .2 5 / - /2 " ,  giving the  s a m e  first order field 

s treng th  variation a s  in the  previous exam ples . Minimization of the  

la rg e s t  value of |<J(<p)| gives i 0 = o *565* Unfortunately , th e  

sm o o th e r  cu rva tu re  and  torsion functions, which yield a  sm alle r  

toroidal variation of the  m agnetic  flux su rface  sh a p e ,  co rre spo nd  to 

the le s s  practical, "tightly" knotted configuration of Fig. 16.

A five-period knot with quasi-helical sym m etry  through  first 

order is p resen ted  in Figs. 18 and  19. Its configuration p a ram ete rs  

are  given by {N = 5, M = 2. C = 1 / 2 ,  n  = 1 - 2 5 / ^ 2 ' ,  l 0 = 1.671 }. The 

c u rv a tu re  and  torsion co rrespond ing  to the  m agnetic  axis  of this 

e x a m p le  a re  relatively sm ooth , a s  s e e n  in Fig. 19, giving the  

so m e w h a t  minimized toroidal variation in the  s h a p e  of the  m agnetic  

flux su rfaces  of Fig. 18.

VI-D-2. Exam ples of Quasi-Helical Symmetry through S econd  O rder

In Sec. Vl-B, we show ed that quasi-helical sym m etry d o e s  not 

exist through  se c o n d  o rder for circular axis configurations. T he 

s h a p e  of the axis, via the  curvature, xU (tp )]  , and  torsion, ?[£(<p)] 

functions, m ust be  optimized in o rder to obtain quasi-heiical
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FIGURE 16

"TIGHTER" THREE PERIOD KNOTTED CONFIGURATION

A "tighter" th ree -period  knotted configuration in which the  quasi-  
helically sym m etric  flux su rfaces  a re  le s s  fla ttened  th an  th o se  of 
Fig. 13. The p a ram ete rs  for this configuration a re  given by {N = 3, 
M = 2 , C = 3 /4 .  8(<p)= 1 .25 , l 0 = 0 .565}  within Eqs. (3 .9 )  and  (4 .79 ) .
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FIGURE 17

CURVATURE AND TORSION OF TIGHTER KNOTTED AXIS

0T80.2
H / 2 T C

The curvature  and  torsion corresponding to the  "tighter" knot of Fig.
16, with axis length L = 2Tt.
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FIGURE 18 

FIVE PERIOD KNOTTED CONFIGURATION

A flux su rface  corresponding  to a  five-period knotted  configuration 
which is q u a s i-h e l ic a l ly  sy m m etr ic  th ro u g h  firs t  o rd e r .  Its 
p a ra m e te rs  a re  given by {N = 5 , M = 2 , C = 1 / 2 ,  5 ( (p )= 1 .2 5 ,
l 0 = 1.671 \  within Eqs. (3 .9 )  and (4 .79 ).



FIGURE 19

CURVATURE AND TORSION OF FIVE PERIOD KNOTTED AXIS

T h e  curva tu re  and  torsion corresponding to th e  five-period knotted
configuration of Fig. 18, with axis length t  = 2TC.
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sym m etry  th rough  se c o n d  order. H en ce , w e  c a n n o t  apply th e  

simplistic p rocedure  th a t  w as  used  for first o rder  to obtain  q u a s i ­

helical sym m etry  through se co n d  order. Axis optim izations, which 

tend to be  rather difficult computationally, m ust be applied.

T h e  e q u a t io n s  govern ing  q u a s i-h e l ic a l  sy m m etry  th rou gh  

se c o n d  o rd e r  a re  p re sen te d  within th e  Appendix. N ineteen  first- 

order, coupled , linear differential equations  m ust b e  s im ultaneously  

i n t e g r a t e d 1 3 4 , u s in g  an  op tim iza tion  of e ig h t  in d e p e n d e n t  

p a ra m e te r s  to insure  that the  n ineteen in tegrated  variab les  a re  all 

periodic in cp. The task  of constructing com putational solutions of 

quasi-helical sym m etry through second  order is beyond the  scop e  of 

this d isse r ta t ion . All of th e  equations  involved a re  clearly  given 

within th e  Appendix.

Vl-D-3. Quasi-Helically Symmetric Bounding Flux Surface

N uhrenberg  an d  Zille135 optimized the  boundary  of ste llara tor 

configura tions to minimize all but one  Fourier harm onic  within th e  

m ag n e tic  field s tre n g th .  T hey referred  to su c h  s te l la ra to rs  a s  

p o s s e s s in g  "quasi-helically symmetry." T he bounding m agnetic  flux 

s u r f a c e s  ap p ro x im ate  quasi-helical sym m etry  to an  a c c u ra c y  of 

be tter  than  one  percen t. For exam ple, on e  optimization gave  a  six- 

period  configuration  with boundary  ripple perturb ing  quasi-helica l 

sym m etry on the order of one half of a  pe rcen t for an a s p e c t  ratio o f  

tw e n ty .  However, only five poloidal a n d  five toroidal harm onics

134Garran, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics Z, 2822.
135NGhrenberg, J., and Zille, R. (1988). Phys. Lett. A. 129, 113.
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w e re  used  within their optim ization. S o m e  of th e  resulting fifth 

o rder  Fourier harm onics w ere  non-zero. If Nuhrenberg and  Zille had  

b een  able to implement an  infinite num ber of harm onics, then exac t  

quasi-helical sym m etry  on  the  bounding su rface  would h ave  b e e n  

ach iev e d , but its th ree  d im ensional interior would have  been  only 

approxim ately quasi-helically symmetric. In fact, if e a c o r re sp o n d s  

to th e  flux su r fa c e  on which quasi-helical sym m etry  is im posed , 

then  th e  b reak in g  of quasi-h e lica l  sym m etry  within th e  interior 

sc a le s  a s  {(ea)2 - e 2}e, rather than e 3, a s  explained within Sec . Vl-C.



CHAPTER VII 

DISCUSSION

W e investigate  toroidal p lasm a  equilibria in which the  reg ions 

of c o n s t a n t  p la s m a  p r e s s u r e  form perfec tly  n e s t e d  to ro ida l  

su rfaces . T he m agnetic  field corresponding to such an  equilibrium is 

forced to have  both its contravariant and  covariant rep resen ta tio ns  

in te rm s of B oozer c o o rd in a te s136, with the  additional requ irem ent 

tha t a  sc a la r  force ba lance  equation hold137. T h ese  constrain ts a re  

e q u iv a le n t  to sp e c ify in g  a  to ro id a l,  s c a l a r - p r e s s u r e ,  MHD 

equilibrium in te rm s of B oozer co o rd ina te s .  The application of 

B oozer c o o rd in a te s  offers the  a d v a n ta g e  of giving gu id ing-cen ter 

drift t r a je c to r ie s  a n d  a s s o c ia t e d  p la s m a  t r a n s p o r t  which a re  

d e t e r m i n e d 138 by the  magnetic field strength a s  a  function of th e s e  

c o o rd in a te s .  The spa tia l position is defined  in te rm s  of t h e s e  

co o rd in a te s ,  i.e., x(^,9,y)), which perm its e a sy  evaluation of th e  

c o o rd in a te  s u r f a c e s  a n d  fac i l i ta te s  th e  e x p a n s io n  a b o u t  th e  

m agnetic  axis.

W e c o n s tru c t  toroidal p la sm a  equilibria  by perform ing a  

Taylor-Fourier expansion  about a  general magnetic axis using Boozer 

coo rd ina tes . The m agnetic  field is a ssu m e d  to be  analytic, so  tha t

136Boozer, A. H. (1981). Phys Fluids 24, 1999,
137Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma P h y s ic s 2805. 
138Boozer, A. H. (1984). Phys. Fluids 27, 2441.
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the  re levan t functions of position a re  Taylor e x p a n d e d  in te rm s of 

the sq u a re  root of the toroidal flux, \Jr1/2, an d  Fourier ex p an d ed  in 

te rm s of the poloidal angle, 0, and the  toroidal angle, <p. The Taylor 

se r ie s  expansion in v̂ 1/2 is equivalent to a  power se r ie s  expansion in 

t e r m s  of a  g e n e ra l i z e d  in v e rs e  a s p e c t  ra tio , e, w hich is 

approxim ately th e  minor p lasm a  radius, r, over the  maximum radius 

of curvature  of th e  axis, Rc. We find a  specific m ethodology that 

m ust b e  implemented in constructing toroidal, sca la r -p re ssu re ,  MHD 

equilibria for e ac h  order in the  expansion.

T h e  rad ius of co n v erg en ce  for the  exp an s io n s  tha t w e  have  

c o n s id e re d  h a s  not b e en  found, a lthough  th e s e  e x p a n s io n s  well 

r e p r e s e n t  the  known toroidal equilibria. Even if th e  ex p an s io n s  

converge , it is not obvious tha t they converge  to a  true equilibrium. 

For e x a m p le ,  if the  equilibrium c o n ta in e d  te rm s  of th e  form 

fCx) = expC -1 /x ) ,  then the  expansions would converge, but not to the 

equilibrium. {The Taylor se ries  of e x p ( - 1 / x )  about x = 0 converges  to 

zero, ev en  though this function is not identically zero.}

W ith in  t h i s  analysis, w e have a lso  a ssu m e d  that the  p lasm a 

p r e s s u r e  form s perfectly n e s te d  toroidal su r fa c e s .  In prac tice , 

sm all e rro rs  in the  m ag ne tic  field coils can  lead  to significant 

s to c h a s t ic  reg ions  within the  m agnetic  field. E xcep t in c a s e s  of 

sy m m etry ,  th e r e  a lso  re m a in s  th e  difficulty th a t  th e  p la s m a  

p re s su re  grad ien t must vanish for va lues  of the  toroidal flux, }Jt, that 

c o rre spo nd  to rational va lues  of the  rotational transform, 1.(^0. This 

resu lt is obvious through exam ination of Eq. (4 .7 )  for
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which b e c o m e s  singular if i ( ^ )  = n /m  and  d p / d ^ * 0 .  However, for 

practical fusion dev ices , only the  low o rd e r  rational num bers  n eed  

b e  avioded.

W e show  that the  constra in ts  of constructing  toroidal p lasm a  

equilibria  with p e rfec t  su r fa c e s  p rev en t a rb itrary  specification  of 

th e  m ag ne tic  field s tre n g th 139 within a  th ree -d im ens io na l  volume 

through third order in the  expansion abou t the  axis. In addition, we 

p rove  th a t  th e  first o rd er  cu rva tu re  te rm  in th e  m agne tic  field 

s t re n g th  c a n n o t  b e  m ad e  to com ple te ly  van ish  for all toroidal 

configurations with non-vanishing axis field streng th . However, the  

m ag ne tic  field s treng th  on o n e  particular flux su rfa ce  is arbitrary, 

provided th a t  the curvature term does  not completely vanish.

T he  expansion  m ethod developed  within this d isserta tion  can  

b e  u se d  to clarify the  types of toroidal p la sm a  equilibria which a re  

m o st promising for p lasm a confinement. T h e se  tec h n iq u e s  can be  

u s e d  to c o n s t ru c t  th e  e n t i re  s p e c t ru m  of th re e -d im e n s io n a l  

equilibria in the  vicinity of a  magnetic axis. The lowest o rder  term s 

in th e  e x p a n s io n  largely d e te rm in e  th e  stability  and  t ran sp o rt  

p ro p e r t ie s  for any  equilibrium with a s p e c t  ratio on the  order of 

e = s1 /1 0 .  This approximation is generally  quite valid s in c e  the 

m axim um  p re s s u re  g rad ien t  of m ost ex is ting  s te l la ra to r  d ev ices  

c o r r e s p o n d s  to £ < .1 /1 0 .  T hus, the  first th ree  o rd e rs  in the 

e x p an s io n  ab o u t the  ax is  provide a  very  a c c u ra te  descrip tion  of 

poss ib le  toroidal p lasm a  equilibria, s ince  only te rm s of o rd e r  10"3

139Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics3, 2805.
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a r e  n e g le c te d .  In addition, th e  accuracy of the drift approximation 

for most fusion p lasm as is only on the order 10 "3 or w orse.

The m o s t  use fu l p roduct of th is d isse r ta t io n  is  n o t  th e  

pa rticu la r  ex p an s io n  m ethod  u s e d  to c o n s tru c t  toro idal p la s m a  

equilibria. T he m o s t  va luab le  ou tcom e is th e  ana ly tic  re su l ts  

co n ce rn in g  th e  p o s s s ib le  fo rm s for the  m agn e tic  field s tre n g th  

c o rre sp o n d in g  to toro idal p la s m a  equilibria. Existing c o m p u te r  

c o d e s  which construc t toroidal equilibria c a n  be  modified to ta k e  

advan tage  of these  analytic results.

We app ly  the  te c h n iq u e s  of this d isse rta tion  to investiga te  

pa rt icu la rly  a d v a n ta g e o u s  p la s m a  co n fig u ra tio n s .  T he  m o s t  

d e s i r a b le  c l a s s  of to ro idal equ il ib ria  w ould  b e  iso d y n a m ic  

e q u i l ib r ia 1 4 0 , which would exhibit a  m agnetic  field s treng th  which 

is strictly uniform within the m agne tic  flux su r fa c e s .  H ow ever, 

t h e s e  equilibria  c an  ex is t141 only in limits in which th e  m agnetic  

field strength  on axis van ishes or the m agnetic flux su rfaces  becom e 

o p en . This result implies that th e  m agnetic  field s treng th  of n o n ­

trivial to ro ida l equilibria  m ust h a v e  so m e  d e p e n d e n c e  on th e  

poioidal ang le , 9. H ence, the  guiding-center drifts corresponding  to 

a n y  toroidal p lasm a equilibrium m ust a lw ays traverse  th e  m agnetic  

flux su r fa ce s .

The n e x t  m ost a d v a n ta g e o u s  c la s s  of toridai equilibria a re  

q u a s i -h e l ic a l ly  sy m m etr ic  s te l la ra to r  eq u il ib ria142 , in which th e

140Palumbo, D. (1968). II Nuovo Cimento X53B, 507.
141Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29, 

2605.
142Nulirenberg, J., and Zille, R. (1988). Phys. Lett A. 129, 113.
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m agnetic  field strength d e p en d s  on only one  Fourier harmonic within 

th e  m agn e tic  flux su rfaces . Such  toroidal equilibria h av e  strictly 

con fined  gu id in g -cen te r  drift t r a jec to r ie s143, ju s t  a s  axisym m etric  

tokam ak equilibria. However, diffusive transport on the  o rder  of the  

gyro-rad ius to th e  sy tem  size would remain, leading to a  relatively 

slow loss  of the  plasm a out of the  confinement region.

T h e  res tric tions in the  m ag ne tic  field s tre n g th  sh o w  th a t  

quasi-helical sym m etry  is a l w a y s  broken by term s of third order in 

e , a n d  th u s  e x a c t  quasi-he lica lly  sym m etric  equilibria  do not 

e x i s t 1 4 4 . H ow ever ,  c o n fig u ra tio n s  ex is t  with q u a s i -h e l ic a l  

sym m etry  on o n e  particular m agnetic  flux surface, but not within its 

th ree -d im en s io nal  interior. T he breaking of quasi-helical sym m etry  

within th e  interior of su ch  an equilibrium sc a le s  a s  {(ea)2 - e 2}e, 

s ince  a  term  of order (e a)2e m ust be added  to the f i r s t  o rd e r  field 

strength  in o rder  to offset the e 3 order sym m etry breaking term a t  

the  flux su rface  e = Ea . Such quasi-helically bounding equilibria145 

offer m a n y  of the  fav o ra b le  t r a n s p o r t  p ro p e r t ie s  typ ica l o f 

axisym m etric  tokam ak equilibria.

T he  third order term  in the  m agnetic  field s treng th  breaking  

q u a s i-h e l ic a l  sym m etry  is e i th e r  an  M = 1 po lo ida l  h a rm o n ic ,  

T\i(<p)cos(9 + Ci(<P)), or an  M = 3 harmonic, T\3(ip )cos(3e  + C3(<P)), or 

s o m e  l in ea r  com bina tion  of th e  two. T he a c tu a l  form of th e  

functions t\t( tp ) , Ci(<P). T\3((p), and C3C9 ) depends upon the details of 

143Boozer, A. H. (1983). Phys. Fluids 26, 496.
144Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
145Beidler, C., et. at. (1990). Fusion Technology: A Journal of the American Nuclear

Society 17, 148.
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th e  configuration. However, we can  conclude that th e  m agnitudes of 

th e  functions (<p) and ^ ( ( p )  is on the  order of the fractional 

toroidal variation in the s h a p e  of th e  m agnetic  flux surfaces.

Q uasi-helica l sym m etry is m o s t  a cc u ra te ly  ap p ro x im a te d 146 

by a  to ro ida l "helical-like" configuration with a  relatively la rge  

num ber  of twists an d  a relatively small p lasm a  radius, a s  one  might 

naively ex p ec t.  More exotic "knotted" configura tions can  also  be  

u s e d  to approxim ate  quasi-helical symmetry. The breaking of quas i­

helical symmetry c a n  m ade of o rder  10-3 for an inverse  a sp e c t  ratio 

of order, 6 = 1 /1 0 . In comparison, tokam aks with d iscrete  field coils 

typically exhibit a  m agnetic  field ripple on the  order of 2 * 1 0 “3.

A n a l y t i c 147 and  c o m p u ta t io n a l148 e v id e n c e  s u g g e s t s  th a t  

q u a s i -h e l ic a l  s te l la ra to r  equ ilib ria  ex is t  which h a v e  sy m m etry  

break ing  on  the o rder  of that co rrespond ing  to tokam ak  equilibria. 

However, a  contiuous toroidal electric cu rren t within the  p lasm a  is 

n e e d e d  to su s ta in  a  tokam ak  equilibrium 149, w h e re a s ,  su ch  a  

to ro id a l  c u r re n t  is  not e s s e n t ia l  for th e  e x i s te n c e  of non -  

a x i s y m m e t r i c  s t e l l a r a t o r  eq u il ib ria .  T h e r e fo r e ,  s t e l l a r a t o r  

equilibria  which highly approx im ate  quasi-helical sym m etry  might 

provide a  solution to the dilem ma of constructing  a  fusion dev ice  

which exhibits g ood  p lasm a confinement p roperties  and  requires no 

n e t  toroidal p lasm a  current.

146Garren, D. a ., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822. 
147lbid.
148Beidler, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear 

Society 17, 148.
149Friedberg, J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York, 

p. 107.



APPENDIX

QUASI-HELICAL SYMMETRY THROUGH SECOND ORDER

W e will p r e s e n t  the  e q u a t io n s  th a t  yield quas i-he lica lly  

sym m etric configurations through se co n d  order in s .  Quasi-helically 

sym m etry  is m ost re levan t to s te lla ra to r  equilibria, which exhibit 

vanishing net toroidal electric current n e a r  the  axis. Hence, w e  se t  

the  c o n s tan t  I2, which is a  m easu re  of the n e t  toroidal current on 

axis, to zero in the following analysis.

W e will d e m o n s tra te  tha t  th e  e q u a t io n s  govern ing  q u a s i ­

helical sym m etry  through first and s e c o n d  o rd ers  m ust be  solved 

c o n c u r r e n t ly 150. To g e n e ra te  quasi-helical configurations through 

s e c o n d  o rd e r  in a  co n v en ien t  m an n e r ,  we shou ld  employ the  

reciprocal of th e  sq u a re  of the magnetic field strength, 1/B 2(^,9,y>), 

in lieu of th e  field s treng th  itself, B(^,9,<p). Thus, w e first 

re i te ra te  the  e q u a t io n s  of q u as i-h e lica l  sym m etry  th rough  first 

order using 1 / B 2(^,0,cp).

The first order s e t  of constraint equa tions  is given by the  l50 

constrain t a t  e°  order and  the k 0 and £0 constraints a t  e 1 order, a s  

explained within Sec. IV-(E-G). T hese  equations permit the magnetic 

field s treng th  to be e x p re ssed  in the quasi-helical form

1S0Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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1 / B 2(v|r,o0 = { 1 / B 0}2 {1 - V 8 " ‘e n c o s ( o < ) }  * ( A .1 )

through first o rder  in e, with the  helical coord ina te  o*s0-N<p, in 

te rm s of Boozer coordinates. T he  configuration through first order 

is de te rm ined  by the  spatial position of Eq. (4 .18). The functions 

{X(^,0.tP), Y(V'.0,<P), 2 ( ^ ,0 ,<p)} of the  spatial position a re  a ssu m ed  to 

h av e  the  form given within Eqs. (4 .3 0 ) - (4 .3 4 ) ,  with the  poloidal 

ang le ,  6, rep laced  by the  helical angle, <*. For a  configuration 

exhibiting a  m agnetic  field s treng th  of th e  form of Eq. (A.1), the 

coefficients of Eqs. (4 .3 0 ) - (4 .3 4 )  are

T he  function <j(<p) of Eq. (A.5) is de te rm ined  by th e  differential 

e q u a tio n

dcJ/d<p = 2 G 0 ‘c (tp ){T f/K ((P )}2 -  { I q- N H I  + [t[ / k:(<P)]4 + [cy(cp)]2 },
(A.6)

with th e  periodicity condition <3(<p=0) = q ( (p = 2 T t) ,  a s  in Eq. (4 .83).

T he  first order s e t  of matching constra in ts  a lso  d e te rm in e s  

th e  function 2 ( ^ , 0 , tp) through second  order in e. Recall that its first 

o rd e r  term , Zi(0,<p), v an ish es  exactly  for genera l  toroidal MHD

X i . i s W  = 0. 

X i . i c W  = V2"n/K(<P), 

Y i,1s(<p) * - /2  'k W / %  

Y i . i0 W  = )kC<P)/ti.

(A.2)

(A.3)

(A.4)

(A.5)
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equilibria, a s  derived within S e c .  IV-E. T h e  se c o n d  o rd e r  term, 

Z2(e.ip), is given by

Z 2 .0W  = “ {l/tSGottCdVT/dtp), (A.7)

Z2.2SW  = - f 1 /C8G0]}{CdV^/dtp) -  2 [i 0-N]V3(<P)}, (A.8)

Z2.2cW» = - n / E 8 G 0]}{(dV3/d(p) + 2[io-N]V2(«P)h (A.9)

w i th

V, (4>) = {x1>tc(<p)}2 .  {Y,,ts((P)l2 * lY1t1c(<|>)}2, (A.10)

V2W  = 2Yl .ls(lP)Y),1cC<p), {A. 11)

V j W  S {X,.l0C<P)l2 * {Y,.,0(<P)}2 -  {Yl l l s W } 2, (A .12)

which a re  ana logo us  to Eqs. (4 .6 5 ) - (4 .7 0 ) .  Investigation of Eqs. 

(4 .1 1 7 )  and  (4 .1 1 8 )  reveals  that the  zeroth order term  within the  

£*(^.0.<P) function, i.e., J5#0(<p), van ishes  exactly for quasi-helically

sym m etry  th rough  first order, so  tha t it is a b s e n t  from th e s e  first 

o rd e r  equations.

The se co n d  order s e t  of constrain t equations  a re  de term ined  by 

the  £ q  matching constraint a t e 1 order and th e  Kq and  matching 

co n s tra in ts  a t  e 2 order. T hese  equations  give e ight in d ep e n d en t  

c o n s tra in ts  on  functions of $ . Sufficient freedom  e x is ts  within 

t h e s e  c o n s t r a in ts  to yield q u a s i-h e l ic a l ly  sy m m etr ic  equ ilib ria  

through s 2 order, a s  explained in S e c .  Vl-B.

The m agnetic  field strength of an equilibrium which is quasi-



170

helically sym m etric  through se c o n d  o rder h a s  th e  explicit form151

1 /B 2(i/r,oO = 11/B0| 211 - y 8 " e n c o s ( o i )

* e2{ W * C sln (2 o () .F c o s (2 o ()}  * "• J, (A .13)

with W, C, and  F co ns tan t ,  in te rm s of B oozer co o rd in a te s .  The

q u as i-h e lica l  form of the m agne tic  field s t re n g th  in Eq. (A .13) 

constra ins th e  functions of if  within X2(9,<P) to h ave  the  form

X2,o W  = {ho(<P)-W}/(2K(<P)h (A.14)

X2.2s(<p) = {h2sW -C } /< 2 K « P )} ,  (A. 15)

X2 .2c«p) = (h2o(<p) -  F ) / { 2 k (<P)}, (A .16)

w ith

h0(«P) = 2 p2 * (2 / e 0KdZ2,0/dip)

* {{qc((P)}2 * {rc(<p)}2 .  ( s c (<p)|2 .  (qs(<P)}2 .  f r s (<p)}2 t/{2{G0P ) ,

(A .17)

h 2s(<p) e  (2 /© 0H (dZ 2.2s/d<P) -  2{1.o-N}Z2.2c(4>))

* fq s W % W * r s W r c W I / f Go}2. (A.18)

h2c(<p) S ( 2 / 6 0H (dZ 2l2c/d(J>) * 2 ! l 0-N}Z2,2s«p))

* f(q0(iP))2 * (rc («P))2 * i s c («p))2 -  (qs (<P)}2 -  {rs W ) 2 ) /{ 2 (G 0}2 }.

(A. 19)

and

1s1Garren. D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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qs(<P) s  - l l o - N l X , . , ^ )  * G o * W Y 1l1s((P), (A .20)

q0(<P) a  (d X ,,1c/d<j>) ♦ G0 *(<P)Y1,t c (<p), (A.21)

r s(<P) a  (d Y i, i s/d<P) -  {l.0-N } Y ,. l0 (<p), (A .22)

r 0(<P) = CdYi,ic /d«P) * f l 0- N l Y , , l s (ip) -  G0 r (q ) )X , , l c (iP). (A .23)

sc (<P) a  y 2 " G 0r[. (A.24)

Four of the  eight equations of th e  second  order s e t  of matching 

co n s tra in ts  d e te rm in e  th e  form of th e  function 23(0 ,<p) via the  

functions 2 3l ls ((p), Z3,ic (<p), z 3.3sW)« and  Z3.3Ĉ *  T hes® functions 

of (p partially de te rm ine  th e  configuration through third order. W e 

a re  only c o n c e rn e d  with the  form of the  configura tion  through  

seco nd  order, so  that th e s e  functions of <p within Z3(e,cp) will not be  

explicitly given.

Two of the  four remaining se c o n d  order <p-constraints can  be  

ex p re ssed  a s  relations for Y2,2S(fP) and Y2,2C(*P) v 'a

Y2l2s(<P) = -K(<P)-)K(<P)/Trl2 (X2.0(<P)*X2,2c((P)-<J((P)X2t2s(<P)t,

(A.2S)

Y2t2o(<P) = Y2l0(<P) * {>c(<p)/Tl }2 {X2.2sC<PJ -  d(<PMX2,o(<P)-X2l2o(<(*)}}.

(A.26)

T he two rem aining equa tion s  of the  seco nd  o rder  s e t  of matching 

constra in ts  a re  given by

X1. i c W f x . 2s W  * y , , 1o(<p)fy-2s(*p) -  Y1 lls (4>Hf!l.2c(<p)*r!J. o W )  = 0 ,

(A .27)
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X l .1 c W J f x .2 c W )  " fx.oWM ♦ Y i.i jO P )  fy ,2sW )

♦ Yi.icWHfy.fcW-fy.oWt = 0

with

rx.0(W  =  ( d x 2l0/d<p)
* e 0M<)>)Y2,0c<p)*K(<p)z2,o W

-  2 Z 2l2s(<P)Y2,2c(<P) * 2 Z 2,2c(<P)Y2l2s(<P)

- \\pl p2Goll/{lo-NHYitic(<P)},

f„ 2s<>P) 3 tdX2.2s/d<P) -  fv0-N}X2.ac(<P)

* G0lr (< P )Y 2.2s (<P) * K(tp)Z2.2s t<p)
-  2 Z 2 ,o<<J>)Y2,2C(<P) * 2  Z2l2o(<P)Y2,0(ip)

* { v ^ 'p 2G o n V I '-o -N H Y i.is(<P)l.

f x>2c(<P) 3  CdX2 ,2c/d iJ»  * { io-N >X 2 ,2s(tP)

* e 0 {E(()))Y2.2c(? )  * x(<P)Z2.2o(<P)

-  2 Z 2l2s(<P)Y2 ,oW) * 2 Z 2.o(‘P)Y2.2s(<P)

+ \ y [ 2  p2G(jTl/{t.o“ W}}Yi,ic ((p)}.

(A .28)

(A.29)

(A.30)

(A.31)

fu.0(«p) 3  (dY2 ,0/d<p)

-  e 0 { r W X 2 .o(<l» -  2 Z 2>2s( iP )X 2,2c(tp) ♦ 2 Z 2 .2 c (<p)X2 .2 sW
-  {s /2  p2 G o H / { l 0- N } }X i , i c (ip)h (A.32)
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f a . 2 s W  =  MY2.2s/d<P) -  U o- N |Y 2,2cW

- G0 W < p)X 2 ,2s(<p) -  2 Z 2,0(<P)X2l2c(<p) ♦ 2 Z 2.2c((P)X2,0((P) 

* { y 2 " p 2 G0:n / ( ' - 0 - N ( } X , ,1s( $ ) ( ,  (A .3 3 )

f*,2cW  -  CdY2l2c/d<P) ♦ ( l 0- N |Y 2t2s($ )

-  G0 (*(<J>)X2,2c(<P)) -  2 Z 2,2sM))X2 ,0(iP) * 2 Z 2.0C<P)X2,2s(<P) 

♦ ( y 2 " p 2 G0T i / ( l .0- N } l X , . , e (ifl)), (A .34)

In su m m ary , toroidal p la sm a  equilibria  which a r e  q u a s i-  

helically sym m etric  through se co n d  order in e m ust sa tis fy152 the  

th re e  non-linear differential equations of Eqs. (A.6), (A.27), and  

(A .28). All ^ -d e p e n d e n c e  within th e s e  th re e  e q u a t io n s  can  b e  

e x p re s s e d  in term s of the four ^-functions zr(cp), k (<P), and

Y2,oCfP). a n d  their derivatives of various o rders . Herein lies the  

difficulty  in c o n s tru c t in g  q u a s i-h e l ic a l ly  sy m m e tr ic  equ il ib ria  

through seco n d  order.

Finding g e n e r a l  toroidal equilibria through s e c o n d  order is 

quite m an a g ea b le .  First, one  m ust c h o o se  a  m agnetic  axis ab o u t  

which to perform  the  expans ion . F irst-o rder flux s u r f a c e s  a re  

o b ta in e d  by in teg ra tin g  o n e  non-linear , f i r s t -o rd e r  d ifferetial 

equation  similar to tha t of Eq. (A.6). A com putational optimization 

in o n e  d im ension m ust be  performed to insure  tha t  th e  in tegrated 

function of $  is periodic. Second  order corrections to th e se  first 

o rder  flux su rfaces  a re  then obtained by integrating two non-linear, 

first-order differential equations similar to th o se  of Eqs. (A .27) and

152Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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(A.28). An optimization in two dim ensions is required to insure  that 

both integrated functions of <p are also periodic.

O bta in ing  q u a s i - h e l i c a l i y  s y m m e t r i c  equilibria  th rough  

se co n d  o rder is considerably  more difficult. First, th ree  of th e  four 

functions, k (<P), ?(<p), <?(<p), and Y2,o(<P) m ust be u se d  to solve the  set 

of differential equations given by Eqs. (A.6), (A .27), and (A .28). 

Thus, a t  least  one of the functions xc(<p) or z((p), which determ ine  the 

s h a p e  of m agnetic  axis, m ust be optimized in o rd e r  to sa tis fy  this 

s e t  of differential equations. If one of th e se  two functions, k (<P) or 

■zr(tp), is given, then the  other can obviously be varied  to satisfy  the 

th re e  differential e q u a t io n s  of Eqs. (A.6), (A .27), and (A .28). 

However, th e  probablity tha t the resulting se t of x(«p) and r(«p) is 

c o n s is te n t  with a  c lo sed  curve  o ccu p ies  a  s e t  of m e a su re  zero. 

H ence , a  s im ultaneous optimization153 of the curve  to "bite its own 

tail," in addition to an optimization of Eqs. (A.6), (A .27), and (A .28), 

is required  in o rder to find quasi-helical sym m etric  configurations 

through seco n d  order in the expansion.

Optimizing an  arb itrary  curve to  c lo se  o n  itself req u ire s  

integration of the F renet equations of Eqs. (3.1 ) - (3 .4 ) ,  with the  

periodicity condition th a t  all co m p o n e n ts  of th e  vec to rs  ro(tp), 

K0(<p), £q(<P), and 6q(<P) be periodic in (p. We can  write these  vectors 

in term s of the toroidal angle, <p, instead of the ax is  length, it, since 

th e s e  two variables a re  directly proportional for uniform m agnetic  

field s treng th  on axis. Axis optimizations yielding a  c lo sed  curve 

c a n  be  ob tained  by varying only two Fourier harm onics within a  se t 

153Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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of *(<p) a n d  t((p), a s  developed within Sec. Il-C.

A s e c o n d  c o m p lica tio n 154 of com p uta tiona lly  co n s tru c tin g  

quasi-he lica lly  sym m etric  equilibria through s e c o n d  o rder  is th a t  

Eqs. (A .27 )  and (A .28) involve third derivatives of the  functions x((p) 

and  <J(<p). Im plem enting  s ta n d a rd  te c h n iq u e s  for in teg ra ting  

differential equations, the  th ree  differential eq u a tio n s  of Eqs. (A.6), 

(A.27), a n d  (A.28) a re  equivalent to seven  independent, non-linear, 

f i r s t -o rd e r  d if fe ren tia l  e q u a t io n s .  An o p t im iz a t io n  in six 

d im ensions is required in order to find initial conditions which solve 

th ese  s e v e n  first-order equations , assum ing  o n e  p a ra m e te r  c an  be  

elim inated a s  an arbitrary p h a s e  of integration. This optimization 

of six in d e p e n d e n t  p a r a m e te r s  to s o lv e  s e v e n  f i r s t -o rd e r  

differential equations m ust be  coupled with th e  optimization of two 

in d e p e n d e n t  p a ra m e te r s  u se d  to sa tisfy  th e  tw elve  f irs t-o rde r  

differential equations of the  F renet equations. Thus, an  integration 

of n in e teen  first o rder  differential equations  using an  optimization 

of eight in d ep e n d en t  p a ra m e te rs  is required in o rder  to cons tru c t  

quasi-helically  sym m etric  equilibria through  s e c o n d  o rd e r  in the  

expansion param eter, e.

W e do not intend to p resen t the m ethods developed  within this 

d i s s e r ta t io n  a s  a  p rac t ica l  m e a n s  for c o n s t ru c t in g  to ro id a l  

equilibria through se c o n d  and  higher o rders . Many com putational 

c o d es  w hich  find equilibria with des irab le  stability and  tran sp o rt  

p roperties  a lready  exist. For exam ple , N uhrenb erg  an d  Zille155

154Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
155NQhrenberg, J., and Zille, R. (1988). Phys. Lett. A. 129, 113.
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c o n s t r u c t  e q u il ib r ia  w h ich  highly  a p p ro x im a te  q u a s i - h e l ic a l  

sym m etry  using a  minimization of all but one  Fourier h a rm on ic  of 

th e  m agnetic  field s treng th  on a  particular m agnetic  su rface .  The 

primary application of th is dissertation is the insight rece ived  from 

such  an  analytic investigation. Computaional c o d e s  developed  in the 

future can  exploit the analytic results that we h ave  obtained.
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