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ABSTRACT

The goal of nuclear fusion research is to confine a deuterium-
tritium plasma at a sufficiently high temperature (15keV) and

density (3x1020m-3%) for a sufficient length of time (1sec) to
produce net fusion power. One means to attain the required plasma
confinement is to embed the plasma within a magnetic field. The
global structure of this magnetic field determines the variation of
magnetic field strength within the surfaces of constant plasma
pressure. This field strength variation in turn determines many of
the stability and confinement properties of the plasma.

This dissertation gives the first detailed exposition of the
spectrum of possible forms for magnetic field strength
corresponding to toroidal plasma equilibria, both within any three-
dimensional volume and within any two-dimensional surface of
constant plasma pressure. Constraints due to the toroidicity of the
configuration and the divergence-free property of the magnetic field
are found to limit the form of the field strength.

Three-dimensional stellarator equilibria corresponding to a
particular form of the magnetic field strength are especially
interesting. These "quasi-helically symmetric® equilibria are non-
axisymmetric, toroidal configurations in which the magnetic field
strength depends on only one angular coordinate, instead of two,
within the constant plasma pressure surfaces. Unlike conventional
stellarator equilibria, these quasi-helically symmetric equilibria
exhibit the favorable confinement properties of axisymmetric
tokamak equilibria. We show that stellarators with exact quasi-
helical symmetry do not to exist, but that good approximations can
be found.

viii
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CHAPTER
INTRODUCTION

The heating of a gas to temperatures over 109 Kelvin permits
most of the electrons to overcome their atomic binding energies.
The global behaviour of such an ionized gas is very different from
that of an ordinary gas of particles. We refer to this particular type
of gas as a "plasma." The trajectories of the ions and electrons
within a plasma are significantly affected by the magnetic and
electric fields that they themselves create. Thus, a complete
description of the macroscopic properties of a plasma is not
conducive to simple analysis.

The global properties of a plasma depend upon many factors,
including the temperature and density. The particular class of
plasmas that will be examined within this dissertation are relevant
to the design of a thermonuclear fusion reactor. In order that fusion
reactions occur, the ions of the plasma must have sufficient energy
to overcome their repulsive Coulomb potentials. Such a condition is
satisfied within a thermal plasma if the temperature of the ions is
sufficiently high. Fusion "breakeven" occurs when the energy release
from fusion reactions is greater than the rate of energy loss due to
bremstrahlung radiation. For deuterium-tritium plasmas, this |

condition is expressed using Lawson's criterion!, which requires
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the plasma number density n and the energy confinement time zg to
satisfy nzg>f(T), with f(T)=3x1020m-3s at a temperature of
T=15keV.

Lawson's criterion is modified for the plasmas of the sun and
other stars, since their fusion reactions primarily involve weak
nuclear reactions instead of strong nuclear reactions. The particle
density and energy confinement time within the hydrogen plasmas of
stars must be many orders of magnitude higher than that within the
deuterium-tritium plasmas of the laboratory. Stars use their
immense gravitational fields to give the required plasma
confinement to yield net fusion energy. Obviously, some other means
must be applied for laboratory plasmas, such as magnetic
confinement.

It is well known that charged particles gyrate about magnetic
field lines, obeying the Lorentz force equation, m{dv/dt}=qvxB.
The radius of gyration, which is called the cyclotron radius, is
inversely proportional2 to the strength of the magnetic field.
Hence, a strong magnetic field can serve to confine the charged
particles of a plasma in directions perpendicular to the field lines.
Stronger field strength results in better confinement perpendicular
to the field lines, since the rate at which the charged particles drift
across the field lines is inversely proportional® to the magnetic

field strength. However, charged particles with a sufficiently high

TLawson, J. D. (1957). Proc. Phys. Soc. London, Sec. B 70, 6.

2Nishkawa, K., and Wakalani, M. (1990). Plasma Physics: Basic Theory with Fusion
Applications, Springer-Verlag, Berlin, Heidelberg, Germany, p. 15.

3lbid, p. 19.
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velocity parallel to the field lines are not confined in this direction.
This particular dilemma can be alleviated by bending the field lines
into a toroidal geometry, so that there exist no open ends through
which the charged particles can escape.

The direction of gyration of the charged particles about
magnetic field lines is always such as to decrease* the strength
of the magnetic field B. The collective motion of these charged
particles yields an electric current j within the plasma. The sum of
the Lorentz force, qvxB, over all the particles gives a force per unit
volume jxB. In equilibrium, this force density exactly balances that
due to the plasma pressure gradient Vp. Thus, plasma equilibrium is

given by
jxB = (1/7115){V=B}xB = Vp, (1.1)

using Ampere's law j = (1/Uy)VxB. Eg. (1.1) defines the magneto-
hydrodynamic® (MHD) description of plasma equilibria. Stability
requirements usually limit ‘ﬁ, which is the ratio of the plasma
pressure p to the magnetic energy density B2/{2 1o}, to less than ten
percent.

A trivial consequence of the plasma equilibrium equation, Eq.
(1.1),is

4Nishkawa, K., and Wakatani, M. (1990). Plasma Physics: Basic Theory with Fusion
Applications, Springer-Verlag, Berlin, Heidelberg, Germany, p. 15.

5Friedberg, J. P. (1987) Ideal Magneto-Hydrodynamics, Plenum Press, New York,
p. 7.




B-Vp = j-Vp = 0. (1.2)

Hence, both the magnetic field lines and electric current
trajectories lie in surfaces of constant pressure. The "hair" theorem
of topology states that the only .surface in the three dimensions that
can have a finite vector field which is tangent everywhere is a
topological torus. Thus, the constant plasma pressure surfaces must
be nested toroidal surfaces. The central curve, which generally
corrresponds to the maximum plasma pressure, is called the
magnetic axis. The shape of this closed, smooth curve determines
many of the macroscopic properties of a plasma equilibrium. An
example of a five-period, “helical-like” axis is shown in Fig. 1.

A set of magnetic coordinates defined in terms of the pressure
surfaces of a plasma equilibrium was developed by Boozerf. The
derivation and application of these particular coordinates will be
presented within Chapter ll. The major advantage of implementing
Boozer coordinates is that many transport and stability properties
of toroidal MHD equilibira can be determined? using only the
strength of the magnetic field, |B(x)|. expressd in terms of these
coordinates. Information regarding the actual direction of the fieid
is of little relevance to plasma stability and confinement.
Furthermore, widely differing plasma configurations can have very

similar® transport properties, if expressions for their magnetic

8Boozer, A. H. (1981). Phys Fluids 24, 1999.
7Boozer, A. H. (1984). Phys. Fluids 27, 2441.
8Boozer, A. H. (1983). Phys. Fluids 26, 496.




FIGURE 1

FIVE PERIOD "HELICAL-LIKE" MAGNETIC AXIS

A ‘"helical-like" axis given by Eq. (3.9) with M=1,N=5, and
{=1/15.



field étrengths in terms of Boozer coordinates have similar forms.

This dissertation gives the first detailed exposition of the
spectrum of possible forms for the magnetic field strength
corresponding to toroidal plasma equilibria, both within any three-
dimensional volume and within any two-dimensional pressure
surface. The entire analysis is performed in terms of Boozer
coordinates, due to their facility in determining transport and
stability properties of plasma equilibria. The particular expansion
method that is applied is particularly conducive for such an analysis
of the field strength in terms of Boozer coordinates.

Configuration properties other than the magnetic field
strength, such as the local and global shear of the magnetic field
lines, also affect the stability and confinement properties of
general toroidal plasma equilibria. There exist suitable
approximations to these parameters for any toroidal plasma
equilibrium. The methods developed in this disseratation allow one
to investigate the parameter space of optimal toroidal plasma
equilibria, using appropriate approximations for the plasma
parameters. Thus, we can clarify the variety of three-dimensional
toroidal plasma equilibria that are available to the fusion program.

The actual method used to investigate toroidal plasma
equilibria involves a Taylor expansion in a radial coordinate and
Fourier expansions in two angular coordinates. We implement a
Taylor series expansion because plasma stability and transport

properties depend primarily on the low order terms of the Taylor
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series. In addition, scalar-pressure MHD equilibria must satisfy the
force balance equation, Eq. (1.1), whichis non-linear in the magnetic
field, making tractable analysis extremely difficult.

The expansion about the axis is actually performed using
Boozer coordinates?, {y,6,9} (See Fig. 2), due to their facility in
determining confinement properties. The toroidal magnetic flux
surfaces Y define the radial coordinate from the magnetic axis to a
particular toroidal surface. The plasma pressure, p, is a function of
¥ alone, so that Eq. (1.2) implies B-VV, giving field line trajectories
within surfaces of constant Y. The poloidal angie © defines the
"short way" around the toroidal -surfaces, and the toroidal angle ¢
defines the "long way" around the toroidal \-surfaces.

The direct method for determining coordinate surfaces
involves specifing the coordinates as a function of position, i.e.,
{y(x), e(x), §(x)}. In this dissertation, we apply the inverse
method10 in which the spatial position is defined with respect ot
the coordinates, i.e., x(y,8,0) (see Fig. 3). Our representation of
x(y.8.9) utilizes the orthonormal Frenet vectors!! for space
curves, {Kg(2),Zg(2),bp(L)} (see Fig. 4) to define the spatial
position in the vicinity of the magnetic axis. The length along the
axis, 2, of the Frenet vectors is a function of only the torcidal angle,
9.

The spatial position, X(y.8,9), is Taylor expanded in terms of

®Boozer, A. H. (1981). Phys Fluids 24, 1999.
10Garren, D. A., and Boozer, A. H. (1991). Phys. Filuids B: Plasma Physics 3, 2805.

11Mathews, J., and Walker, R. L., (1970). Mathematical Mathods of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.




FIGURE 2
BOOZER COORDINATES

/B da,= 271X JB-da,= 21Uy
J(VxB)-da,= 216G J(VxB)-da,= 27t

The toroidal flux within a magnetic surface is 21y = [B-da¢; the

poloidal flux outside of a magnetic surface, i.e., through the hole in
the torus, is 2mX(y)=-[B-dap; the rotational transform is
WY)=dX/dy, ie., the poloidal advance per toroidal transit of a
‘magnetic field line is 271C1(Y); the net poloidal "coil" current outside
of a constant ¥ surface, which gives the toroidal magnetic field, is
216(Y)/ g = (1/139) [(V=B)-dap; the net toroidal "plasma” current
enclosed by a constant Y surface, which gives the poloidal magnetic
field, is 27TCI(Y)/ g =(1/1g) J(VxB) da;; the poloidal and toroidai
angles are given by 8 and ¢, respectively.
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FIGURE 3

SPATIAL POSITION

A unique value for the spatial position, x(y,8,f), with respect to
some coordinate system is obtained by specifying the Boozer
coordinates {y, 8, P}. Coordinate surfaces are found by holding the

coordinate in question fixed, and varying the other two.
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FIGURE 4

FRENET UNIT VECTORS

The orthonormal set of Frenet unit vectors {Kg(2), Tq(2),bp(2)}
form a local Cartesian-like coordinate system about a curve; by(2)
is the local tangent to the curve; Ky(&) is the local normal to the

curve, i.e., the unit vector lying in the direction of the local
curvature; and %,() is the local binormal to the curve that is

mutually perpendicular to the other two.
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the square root of the toroidal flux, ¥¥/2, and Fourier expanded in
terms of the poloidal angle, ©, and the toroidal angle, ¢. The
torodial flux, ¥, is approximately Y =Bgmtr2, with r the average
distance from the magnetic axis to the outermost pressure surface.
Hence, the Taylor expansion in the square root of the toroidal flux,
Y172, is equivalent to an expansion in the plasma minor radius, . In
normalized units, this procedure is simply a power series expansion
in terms of a generalized inverse aspect ratio € =I/R, with R, the
scale length of the magnetic field. The value of R, is chosen to
correspond to the minimum of the local radius of curvature of the
magnetic axis, so that the expansion parameter, €, is maximized.
This maximization of € minimizes the magnitude of the expansion
coefficients, thus insuring validity of the expansion throughout the
toroidal region.

The direct method for expanding about a magnetic axis was
developed by Mercier'2, Lortz and Nirhenburg?3:14.15  and
Solov'ev and Shafranov'8, using the toroidal flux ¥(r.e,2), Taylor
expanded in the plasma radius r, and Fourier expanded in a poloidal
angle © and the axis length &. Lortz and Niirhenburg also used the
inverse method to Taylor expand the spatial position x(y.0.9) in

terms of the square root of the toroidal flux, W'/2, and Fourier

12Marcier, C. (1964). Nucl. Fusion 4, 213.

13Lortz, D., and Nuhrenberg, J. (1976). Z. Naturforsch. 31a, 1277.

141 ortz, D., and Nihrenberg, J. (1977). Nucl. Fusion 17, 125.

1Stortz, D., and Nohrenberg, J. (1979). Z. Naturforsch. 34a, 167.
1650lov'ev, L. S., and Shafranov, V. D. (1970). Reviews of Plasma Physics 5, 1.
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expand in terms of a poloidal angle 8 and a toroidai angle ¢, in order
to evaluate the Mercier stability criterion. However, their
coordinates did not correspond to the Boozer coordinates used
within this analysis, so that the stability and transport of their
equilibria are not as easily analyzed.

The most valuable product of this dissertation is not the
particular expansion method used to examine toroidal plasma
equilibria. It is the generic restrictions on the form of the magnetic
field strength corresponding to toroidal plasma equilibria. These
limitations in the freedom of the field strength confine the
spectrum of possible plasma equilibria that are availble to the
fusion program.

The expansion of the magnetic field strength corresponding to

generic toroidal plasma equilibria is found to have the form17

B(y,8.9) = Be(P){ 1 + x(P)x(y.0,9) + yF(8,9) + Yy3/2C(0,9) + = }.
(1.3)
This expression is a Taylor series in the square root of the toroidal
flux, Y1/2, and a Fourier series in the poloidal and toroidal angles, ©
and ¢, respectively. The particular notation in Eq. (1.3) was chosen
since the function F(8,9) is free and the function C(8,9) is
constrained, as explained later within this introduction.
The field strength of the magnetic axis axis, Bg(¢P) in Eq. (1.3),
is assumed to be non-zero, since the application of Boozer

coordinates requires that the magnetic field strength never

17Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Fhysics 3, 2805.
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vanish18 within the toroidal region. The function x(¢) is the locai
curvature of the magnetic axis, which is the reciprocal of the
maghitude of the local radius of curvature of the magnetic axis.

The function x(y,8.9), which has the form
x(¥.8.9) = ¥1/2p (@) cos(8 - A (), (1.4)

is the lowest order expression for X(y,8,P) (see Fig. 5), which is the
distance from the axis to a constant-y surface along the local
curvature vector, Xg(2), of the axis.

The first order variation of the magnetic field strength of Eq.
(1.3) is determined entirely by the x(P)x(y,8,9) term. This term
demonstrates the dominant role of the local curvature of the axis,
k(P), in the first order variation of the field strength. The magnetic
field strength of Eq. (1.3) shows that a positive (negative) value for
x(¥,8,9) in Fig. 5 gives a first order variation in the field strength
which is positive (negative). That is, the magnetic field strength is
stronger in the direction in which the field lines are curving, and it
is weaker in the opposite direction, as one would naively expect.
This result is independent of the current and pressure profiles,
which give a higher order correction to the magnetic field strength.

The function pq(P) of Eq. (1.4), which gives the magnitude of
x(¥,0,9), must always be non-zero in order that the lowest order
flux surfaces not be completely flattened along the local curvature

vector, Kg(2), which is apparent from Fig. 5. In the limit in which

18Boozer, A. H. (1981). Phys Fluids 24, 1999.
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FIGURE 5
X(y,8,9) AND Y(y,8,9) FUNCTIONS

A

To

The function X(y.8.9) is the distance from the magnetic axis along
the local curvature vector, X¢(9), to the magnetic flux surfaces.
The function Y(y,8,Q) is the distance from the magnetic axis along
the local binormal vector, To(9), to the flux surfaces.
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p1(9) does vanish, the distance from the axis to the flux surfaces
along the local binormal vector, which is given by Y(y.8,9) in Fig. 5,
diverges, provided that the axis field strength is non-zero. Thus, the
magnetic flux surfaces become ribbons that are both infinitely thin
and infinitely tall in this singular limit.

The curvature of the axis, k(¢@), must be non-zero for at least
some values of the toroidal angle, ¢, in order to give a toroidal
configuration. Together with the necessary non-vanishing of the
p1(Q) function of Eq. (1.4), these restrictions yield one limitation in
the freedom of the magnetic field strength. This constraint simply
states that the product x(¢Q)x(y,8,0) of the first order variation in
the field strength of Eq. (1.3) cannot be made to vanish throughout an
entire surface of constant .

The second order function F(8,P) of the magnetic field strength

in Eq. (1.3) has the general form
F(8,9) = Wo(Q) + Fo(P)cos(28 - 5,(9)). (1.5)

If the @-average of Wy(¢P) of Eq. (1.5) is positive, then the average of
the field strength of Eq. (1.3) within a flux surface increases with
increasing . A plasma configuration having such an average
magnetic welll® is stable against certain pressure-dri\)en
instabilities. In a strict sense, it is the corresponding term within

the reciprocal of the square of the field strength, 1/B2(\,0,9),

19¢riedberg, J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York,
p. 73.
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rather than that within the field strength itself, B(y,0,p), which is
relevant to stability calculations29.

Our analysis reveals that the magnetic field strength through
second order in W1/2, which is determined by Egs. (1.3)-(1.5), is
nearly arbitrary. Sufficient freedom exists to permit non-trivial,
toroidal plasma equilibria corresponding to arbitrary choices of the
three second-order, periodic ¢-functions Wg(9), Fo(@), and 8o(9) of
Eq. (1.5), the two first-order, periodic Q-functions py(¢P) and Aq(9P)
of Eq. (1.4), and the one zeroth-order, periodic @-function Bg(¢) of
Eq. (1.3). The only proviso is that the product k({9)p,(P) of Egs. (1.3)
and (1.4) must be non-zero for at least some values of the toroidal
angie, ¢, assuming that the axis field strength, Bo({), does not
vanish.

The form of the third-order function C(8,9) of the magnetic

field strength of Eq. (1.3) is

C(8,9) = C1(P)cos(e - 71(P)) + C3(P)cos(30- F3(P)). (1.8)

Our analysis reveals that only one of the two poloidal harmonics of
the field strength at third order, i.e., either the M=1 or the M=3

harmonic of Eq. (1.6), can be chosen freely for arbitrary choices of
the field strength through second order. That is, equilibria exist

corresponding to arbitrary choices of the zeroth-order function

20Nahrenberg, J., and Zille, R. (1987). Theory of Fuslon Plasmas, Proceedings of the
workshop held at Villa Cipressi-Varenna, ltaly, Aug. 24-28, Societa ltallana di
Fisica, Bologna, Italy, p. 3.
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Bo(®) of Eq. {1.3), the first-order functions p,(¢) and X(P) of Eq.
(1.4), the second-order functions Wg(9), Fo(®), and §5(9) of Eq. (1.5),
and either the third order M=1 poloidal harmonic functions C,(¢{)
and () or the third order M=3 poloidal harmonic functions Cz(¢)
and ¥3(Q) of Eq. (1.6). Again, the only provision is that the product
k(P) p1(P) of Egs. (1.3) and (1.4) not vanish for all values of ¢§.

In the previous paragraph, we presented the freedom in the
magnetic field strength that exists through third order in y1/2, We
now give the generic restrictions in the form21 of the field
strength through third and higher orders. The four functions
determining the magnetic field strength at third order, i.e., Ci(9),
F1(9), C3(P), and 73(P) of Eq. (1.6), cannot all be chosen freely,
given arbitrary forms of the lower order ¢§-functions Bgy(9), p1(9),
A1(D), Wo(9), Fo(@), and 8,(P) of Egs. (1.3)-(1.5). This result is a
consequence of enforcing equilibrium and the divergence-free
property of all magnetic fields. Therefore, even though one may
construct forms of the magnetic field strength that give desirable
confinement properties, these field strengths may not correspond to
actual toroidal plasma equilibria.

We have presented the constraint that the field strength in the
three-dimensional volume around the magnetic axis cannot be chosen
freely through third order in Y172, However, the magnetic field
strength on one particular plasma pressure surface22 is nearly

arbitrary. This result merely follows from the freedom in the shape

21Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
22\pig.
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of the two-dimensional bounding toroidal pressure surface. The only
constraint on the field strength within such a flux surface is that a
curvature term of the form k(P)x(y.8,9), as in Eq. (1.3), must be
non-zero for at least some values of ¢. Thus, a particular plasma
pressure surface of a toroidal plasma equilibrium can be optimized
to have nearly any stability and confinement properties, although
those of its interior are more restricted.

We implement these results regarding the freedoms and
restrictions of the magnetic field strength to resolve the existence
of certain classes of toroidal plasma equilibria. The most desirable
class of toroidal plasma equilibria would be those in which the
magnetic field strength is constant within the pressure surfaces,
i.e., B(y), in terms of Boozer coordinates. The lowest order particle
trajectories23 of such equilibria would always lie within the
pressure surfaces. Thus, these toroidal equilibria would have little
plasma transport out of the confinement region. Palumbo24 was
the first to suggest these "isodynamic,” or "omnigenous,” equilibria.
However, Bernardin, Moses, and Tataronis?® have shown that
toroidal, isodynamic equilibria can exist only in limits in which the
magnetic field strength of the magnetic axis vanishes or the
magnetic flux surfaces become open. Since the symmetry breaking
of toroidal isodynamic equilibria occurs at first order in Y172,

rather than some higher order, these equilibria cannot even be well

23pglymbo, D. (1968). /I Nuovo Cimento X538, 507.
24|pid,

25Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,
2605.
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approximated.

The next most desirable class of torocidal plasma equilibria are
those in which the magnetic field strength depends on only one
angular coordinate, instead of two, within the pressure surfaces.
The magnetic field strength corresponding to such equilibria has the
form in Boozer coordinates B(s(!.qt). with ot=8-N¢ a helical
coordinate and N an integer. This form of the magnetic field
strength obviously exists for axisymmetric, i.e., §-independent,
tokamak equilibria, which give the trivial N=0 case. Non-
axisymmetic toroidal equilibria in which the magnetic field
strength depends on only one angular coordinate within the flux
surfaces were called "quasi-helically symmetric® by Niihrenberg and
Zille26.  They computaionally found three-dimensional stellarator
equilibria which closely approximate quasi-helical symmetry.

The particle trajectories of quasi-helically symmetric
equilibria would be very similar to those of axisymmetric tokamak
equilibria27.‘ Thus, these three-dimensional stellarator equilibria
would exhibit the desirable confinement properties of axisymmetric
tokamak equilibria. Indeed, a stellarator which highly approximates
quasi-helical symmetry has few super-banana orbits2® that give
the enhanced transport of traditional stellarators.

The freedom of the magnetic field strength through second

order in Y1/2 permits the existence of quasi-helically symmetric

268 (ihrenberg, J., and Zille, R. (1988). Phys. Lett. A.129, 113.

27Boozer, A. H. (1983). Phys. Fluids 26, 496.

28Rgidler, C., et. al. (1980). Fusion Technology: A Journal of the Amarican Nuclear
Sociely 17, 148.
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equilibria through second order2®, This result can be obtained by
setting the functions Bo(9), p1(9), Wo(9), and Fa(¢P) of Egs. (1.3)-
(1.5) to constants and requiring the functions \,(¢§) and §,(¢P) of Egs.
(1.4) and (1.5) to have the form Aq(P)=NP +k; and 8,(P) = 2N@ + ks,
with Ky and ks constants. Although there does not exist sufficient
freedom to permit quasi-helical symmetry throughout a three-
dimensional volume through third order in Y172, the field strength
can be made exactly quasi-helical symmetric on one particular
pressure surface. The most important flux surface for plasma
transport is the surface on which the plasma pressure gradient is a
maximum. The enforcement of exact quasi-helical symmetry on such
a flux surface causes the symmetry breaking near the axis to scale
as Y172, rather than y3/2,

We can deduce several generic properties3? of toroidal
plasma equilibria which nearly approximate quasi-helical symmetry.
First, the curvature of the magnetic axis must never vanish. Second,
the toroidal magnetic axis should have a helical-like shape, as
opposed to a circular shape. Third, the toroidal variation in the
shape of the magnetic flux surfaces should be minimized. Finally,
the toroidai plasma configuration should be relatively thim,

corresponding to a rather large aspect ratio, 1/¢.

29Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
301bid.




CHAPTERII
BOOZER COORDINATES

In this chapter, the background material relevant to the
coordinates developed by Boozer3! is presented. These coordinates
will be used to investigate toroidal plasma equilibria throughout
this dissertation. In the first section, the theory of general
curvilinear coordinates in three dimensions is given. The second
section presents a derivation of the particular curvilinear
coordinate system developed by Boozer. The third section gives the
primary application of Boozer coordinates, which is the dependence
of charged particle trajectories32 and associated plasma transport
on only the strength of the magnetic field expressed in terms of
these coordinates. The final section shows the manner in which
widely differing plasma configurations can have related33® plasma
transport properties, if expressions for their magnetic field

strengths in terms of Boozer corrdinates have similar forms.

II-A. Genera! Curvilinear Coordinates
The study of toroidal plasma equilibria suggests the use of a

coordinate system in which one of the coordinates corresponds to

31Boozar, A. H. (1981). Phys Fluids 24, 1999.
32Boozer, A. H. (1984). Phys. Fluids 27, 2441.
33Boozer, A. H. (1983). Phys. Fluids 26, 496.
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the toroidal plasma pressure surfaces. Since a given 'pressure
surface is only constrained to be a topological torus, general
curvilinear coordinates must be applied for the fully three-
dimensional case. For any non-trivial curvilinear coordinate system,
there exist two fundamental sets of basis vectors. These two sets
are given by the gradients of the coordinates and the cross products
of the gradients of the coordinates.

The gradients of the coordinates are related to the partial
derivatives of the spatial position via the dual relations of partial
differential theory. The dual relations in any n-dimensional vector
space appear in many differential geometry texts. Only the three-
dimensional case34, which is most relavent to plasma physics, is
presented within this dissertation. The dual relations for three

curvilinear coordinates {&1, 82,83} are given by

JVE2xVES = Jx/dE ], (2.1)
(9%/3E2)x(dx/3E8%) = Y VET, (2.2)

provided that the spatial Jacobian

J = (0x/3E1) - {{3x/3E2)x (Ix/IEZ)} = 1/7{VEI-{VE2x VES}H
| (2.3)
is non-zero and non-infinite within the region of interest. Cyclic

permutation of the indices {1, 2, 3} within Egs. (2.1) and (2.2) also

34white, R. B. (1989). Theory of Tokamak Plasmas, North Holland Physics,
Amsterdam, p. 6. :
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yields valid relations. The dual relations of Eqs. (2.1)-(2.3) will be
used to implement the inverse method developed within Chapter IV,
which entails expressing the gradients of the coordinates in terms
of the partial derivatives of the spatial position with respect to the
coardinates.

To simply derive the dual relations of Eqgs. (2.1)-(2.3), we
begin with the fact that the spatial position X can be specified by
three nontrivial coordinates {&!, &2, £3}, i.e., X(E1,£2,E3). If X is

written in terms of Cartesian coordinates,
X(X,U.2) = XX + yy§ + 22, (2.4)

then {X, U, z} can be considered functions of {£1,£2, &3}, and vice
versa. The derivative of one of the coordinates with respect to

position is

9&1(x,4,2)79x = VEI(x,u,2) = (3EI/3x)X + (dEi/aY) T + (d&isaz)Z,
(2.5)

and the derivative of the position with respect to one of the

coordinates is
IX(ENE2,E3)/Q8] = (3x/AEI)K + (3y/dEN)§ + (3z/3ENZ.  (2.6)

The fact that 9&1/9¢] equals the Kronecker delta, 8ij, and the chain

rule imply
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5i; = AEI/AE] = (EI/AX) (3x/9E1) + (3E1/3y) (dy/3E )
+ (3E1/32)(3z/3E)).  (2.7)

These equations, Eq. (2.7), are called the orthogonality relations and

can be written in the condensed form
Sij = VEi- (ax/9&]). (2.8)
The two forms of a three-dimensional vector B in terms of any
non-trivial curvilinear coordinate system are the contravariant
representation
Beon = ¥ B (3%/9E1), (2.9)
and the covariant representation

BCOV = Z Bj Vaj. (2-10)

The orthogonality relations of Eq. (2.8) imply that the coefficients

within these two representations are given by
Bl = B-VEI and Bj = B-(x/3L)). (2.11)

If the cross product VE2xVED is expanded as a contravariant vector
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and (9x/9&2)x(3x/9&5%) as a covariant vector, then evaluation of

their components leads to the dual relations of Egs. (2.1)-(2.3).

11-B. Derivation of Boozer Coordinates

A set of coordinates that is particularly well suited for
transport studies was developed by Boozer35. These coordinates
permit the magnetic field B consistent with any torcidal plasma
equilibirum, Eq. (1.1), to be expressed simultaneously in two

simplified forms,

Beon = V¥YxVE + L(Y)VPxVY, (2.12)
Beov = G(WIVY + 1(Y)Ve + 8,(4.8,0) VY. (2.13)

These equations for the magnetic field correspond to reduced forms
of the contravariant and covariant representations of Eqs. (2.9) and
(2.10), respectively. The two simplified forms of the magnetic field
of Egs. (2.12) and (2.13) always exist provided that both the
magnetic field strength and the gradient of the plasma pressure
never vanish within the toroidal region of interest.

The coordinates used within the two representations of the
magnetic field in Egs. (2.12) and (2.13) are given by {y, 8,9} (see
Fig. 2). The constant ¥ surfaces, which give the toroidal magnetic
flux through a cross section of the torus, correspond to the toroidai
plasma pressure surfaces. The poloidal angle 6 defines the short

way around the torus, and the toroidal angle ¢ defines the long way

35Boozer, A. H. (1981). Phys Fluids 24, 1999.
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around the torus (see Fig. 2).
The contravariant representation of the magnetic field, Eq.
(2.12), implies

B-VY¢ =0 and B-V{e-1(y)9} =0, (2.14)
so that magnetic field line trajectories are determined by
\jl = B’lo and G-L(\}l)(j) = O, (2.15)

with Y¢ and 8y constants that determine the particular field line.
Hence, the magnetic field lines lie in the toroidal fiux, or pressure,
surfaces, with the field line twist about the magnetic axis given by
the rotational transform, 1(y).

The covariant form of the magnetic fieild of Eq. (2.13),
satisfies {VxB}V{¥ = 0, insuring that the current trajectories also
lie in the nested flux surfaces. The function 2TTG(y)/ 4, of Eq. (2.13)
is the net poloidal "coil” current through the "hole" defined by a
toroidal flux surface (see Fig. 2). The function 2TCI{(y)/}, is the net
toroidal "plasma” current through a cross section of a toroidal fiux

surface. The function 8,(y.8,9) is proportional to the plasma

pressure gradient, dp/dy, as will be explained within Chapter V.
The derivation36 of the two forms of the magnetic field given

in Egs. (2.12) and (2.13) will now be presented. We first assume

36Boozer, A. H. (1981). Phys Fluids 24, 1999,
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that the gradient of the plasma pressure is finite and non-zero
everywhere in the toroidal region except on the magnetic axis, which
is the degenerate torodial surface. Choose any poloidal & and
toroidal ¢ angles which make the reciprocal of the Jacobian,
Vp{VvexV¢@}, finite and non-zero throughout the toroidal region.

Then any three-dimensional vector can be expressed in terms of the

general contravariant representation of Eq. (2.9),
B = a(p,8,P)VpxVE + b(p,B,9)VYPxVp + c(p,8,)VE=xVY. (2.16)

The fact that the magnetic field lines must lie within the pressure
surfaces, B*Vp=0 of Eq. (1.2), shows that the coefficient
c(p,8,9)=0. Zero divergence of the magnetic field, V*B=0, then

implies
(da/a¢) + (abs/3v®) = 0, (2.17)

using the fact that the divergence of crossed gradients is zero. The

choice

a(p.8,9) = ag(p){1 + (dw/a8)}, (2.18)
b(p.B.9) = bylp) - ag(p)(dw/d8), (2.19)

with @ a function of all three coordinates, {p, @, ¢}, satisfies Eq.
(2.17). Setting dy = ag(p)dp, L(Y¥)dy = be(p)dp, and 8 =8 +w then
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permits the general contravariant form of the magnetic field of Eq.
(2.18) to be expressed in the reduced form of Eq. (2.12).

In order to derive the other form of the magnetic field, Eq.

(2.13), we begin with the general covariant representation of a

vector field, Eq. (2.10), or alternatively,

B = o{p,8.9) VY + F(p.6,9) Ve + B(p.8,9)Vp. (2.20)

The fact that the electric current trajetories lie in the constant

pressure surfaces, (VxB)-Vp = 0 of Eq. (1.2), implies

(dct/d8) - (9%/99) = q, (2.21)

The choice
(p,8,9) = 6(p) + {6(p) + L(p)I(p)H(Jv/39Y), (2.22)
¥(p,8.9) = 1(p) + {G(p) + L(p)I{p)HIu/38), (2.23)

is consistent with Eq. (2.21). We now choose new poloidal and
toroidal angles defined by 8,=86 + 1(p)v(p.6.9) and §,= ¢ + v(p,8,¥),
respectively. The transformation from the old angles, {8,¢}, to thé
new angles, {8, 9.}, permits the general covariant form of the
magnetic field in Eq. (2.20) to be expressed in the simplified form of
Eq. (2.13). Furthermore, this transformation of the poloidal and
toroidal angles does not alter the reduced contravariant form of

the magnetic field of Eq. (2.12). Hence, the magnetic field
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corresponding to toroidal plasma equilibria defined in Eq. (1.1) can
be simultaneously expressed in the two forms of Eqgs. (2.12) and
(2.13).

Application of the inner product of the two representations of

the magnetic field of Egs. (2.12) and (2.13) yields37
{VyxVe} VP = B2(y,0,9)/{6(Y) + L(¥) I{y)}. (2.24)

The left hand side of Eqg. (2.24) is simply the reciprocal of the
spatial Jacobian, J, for Boozer coordinates, using Eq. (2.3). This
result obviously implies that the spatial Jacobian is inversely

proportional to the square of the magnetic field strength,
J(,8,9) = {G(Y) + (W) 1(Y)}/B2(y,8,9). (2.25)

The Jacobian must be non-zero and non-infinite in order to
implement the dual relations of Egs. (2.1) and (2.2), and thus the
dual representation of the magnetic field of Egs. (2.12) and (2.13).
Therefore, the magnetic field strength must be non-zero within the

toroidal region in order to apply Boozer coordinates.

H-C. Particle Drift Trajectories
Plasmas of primary interest to fusion research lie in the low

collisionality regime. This fact follows since the mean free path of

37Boozer, A. H. (1981). Phys Fluids 24, 1999.
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the plasma particles is on the order of 10* meters, whereas the size
of most confinement devices is only a few meters. Hence, the
transport of energy and particles within these plasmas is dominated
by the trajectories of charged particles within the toroidal
magnetic field. For sufficiently strong magnetic field strength, a
charged particle gyrates about a magnetic field line in a small orbit
compared to the scale of the magnetic field. The motion parallel to
the magnetic field lines is relatively unconstrained, so that most of
the charged particles circulate witﬁin the toroidal magnetic
configuration along the field lines thousands of times before being
affected by collisions. A small percentage of the particles execute
“trapped” orbits which- do not transit the torus poloidally.

To a lowest order approximation, the charged particles within
a plasma merely follow the magnetic field lines themselves. The
center of a particle’s circular path in the plane perpendicular to the
field lines is called its “gyro-center.” To lowest order, a charged
particle’s gyro-center merely corresponds with the field line about
which it is gyrating. To first order in the particle gyro-radius to
the scale length of the magnetic field, there exist small drifts of
the particles in directions perpendicular to the magnetic field lines.
These drifts largely determine the transport of energy and particles
out of the confinement region of a low collisionality plasma. The
calculation of these particle drifts for a fully three-dimensional
configuration is extremely arduous using an arbitrary coordinate

system. Additionally, transport across the plasma pressure
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surfaces is dificuit to assess using non-flux coordinates.

The implementation of Boozer coordinates38 circumvents
many of the impediments of calculating plasma transport. The
primary application of using these coordinates is that the lowest
order expression for the particle drift trajectories3® depends on
the particular magnetic configuration only through the form of the
magnetic field strength expressed in terms of these coordinates.
The methods of Hamiltonian mechanics are used in the derivation of
the expression for the particle drift trajectories.

Boozer derives the lowest order Hamiltonian governing

particle drift trajectories within a toroidal plasma equilibrium,
H(®, pg. 9. Pg) = (1/2)m{v,}2 + uB + e, (2.26)

with m the particle mass, e its charge, v, the particle velocity
parallel to the magnetic field, B(y,0,9) the magnetic field strength,
and ¢(y.8,9) the electric potential. The parameter

y = {m{v, 12}/{2B} (2.27)

of Eq. (2.26) is called the particle’s “magnetic moment.” This name
follows using the value for the magnetic moment, = 1TTr2, due to a
circular loop of radius r and electric current 1. The time-averaged

electric current created by the gyrating particle is given by

38Boozer, A. H. (1981). Phys Fluids 24, 1999,
39B00zer, A. H. (1984). Phys. Fluids 27, 2441.
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| =ew/{27}, with w the angular frequency of gyration.
Approximating « and r by the cycloton frequency ®w =eB/m and the
cyclotron radius r=v,/w for a charged particle within a uniform
magnetic field then yields Eq. (2.27).

Kruskal4?® has shown that the magnetic moment is conserved
extremely accurately, provided that the particle gyroradius is smail
compared to the scale of the curvature of the magnetic field lines.
This adiabatic invariance of u follows since it is merely the
“action"#1 §p dq of Hamiltonian mechanics corresponding to the
particle gyration about a field line. Here, the coordinate q gives the
angle of rotation about the field line and p is its canonical
momentum. |

The Boozer coordinate angles © and ¢ are the two canonical
variables of the drift Hamiltonian of Eq. (2.26). The momenta

canonically conjugate to these two angles are

Pg = imI(Y)/B(Y.8.9)}v, + ey, (2.28)
Py = {IMG(Y)/B(Y.0,9)}v, - eX(Y), (2.29)

with X(y) the poloidal magnetic flux through the central hole of a
constant pressure surface (see Fig. 2). The poloidal flux is related
to the rotational transform 1(y) by the relation L(¥) = dX/dy. The

guiding-center drift trajectories are obtained by integrating

40Kruskal, M. (1957). Rendiconti del Terzo Cangresso Internazionale sui Fenomeni
D'lonizzazione nei Gas tenuto a Venazia, Societa Iltaliana di Fisica, Milan, p. 56.

41Goldstein, H. (1980). Classical Mechanics, Addison-Wesley Publishing Company,
Inc., Philippines, 2nd ed., p. 366.
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Hamilton's equations

e
P

(3H/3pg), ¢ = (3H/3py),
-(3H/38), Py = -(3H/3¢), (2.30)

"

with the overdots denoting time derivatives. Differing trajectories
within {8, pg, 9, py} space are obtained by varying the value of the
magnetic moment, J, and the initial values for the canonical
coordinates and momenta. The reduction of this Hamiltonian
mechanics problem from a system of six variables—8, pg, ¢, Py, M,
and the gyrophase—to a sytem of four variables follows from the
adiabatic invariance of ) and the corresponding irrelevance of the
gyrophase.

A set of {8, pg. P, py} at some given time determine the spatial
position of a charged particle's guiding center relative to the Boozer
coordinates, {Vy, 8, §}, of the particular magnetic configuration. The
position of a particle relative to the radial coordinate VY is
determined by the values of {8,pg.9,ppl. This result can be
obtained by solving for ¥ implicitly using Egs. (2.28) and (2.29). For
a vacuum magnetic field, the toroidal electric current, I(y),
vanishes, so that Eq. (2.28) trivially reduces to pg=ey. Thus, the
canonical mbmentum, Pg: gives the location of the guiding-center
relative to the toroidal flux surfaces for vacuum fields.

For most plasmas of interest to fusion research, the electric

potential, $(y,8,9) in Eq. (2.26), is approximately uniform within a
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constant-y or pressure surface, thus giving &(y). This result

follows from the high mobility of the electrons in the direction
parallel to the magnetic field lines. Hence, the poloidal and toroidal
variation of the magnetic field strength expressed in terms of
Boozer coordinates largely determines the particle drift
trajectories within a given magnetic configuration via Egs. (2.26)

and (2.28)-(2.30).

The form of the magnetic field strength, B(y,8,9),
corresponding to toroidal plasma equilibria cannot be chosen freely,
as will be shown in Chapter V. These restrictions in the form of the
magnetic field strengh are the primary results of this dissertation.
These field strength limitations imply that the drift Hamiltonian of
Eqg. (2.26) lacks the arbitrary freedom that could be trivially used
give desirable drift trajectories. For this reason, the restrictions
on the form of the magnetic field strength constrain the freedom of
the transport properties corresponding to general toroidal plasma
equilibria.

A derivation of the particle drift Hamiltonian of Eq. (2.26) will
now be presented. We will assume that the magnetic field is
stationary in time and that the plasma pressure function gives
perfectly nested toroidal surfaces. This derivation42 can be
generalized to apply for slowly changing magnetic fields with
islands structures and stochastic field lines, although these effects

are not relevant to the assumptions made throughout this

dissertation.

42800zer, A. H. (1984). Phys. Fluids 27, 2441.




36

To derive the drift Hamiltonian of Eq. (2.26), we begin with the
exact Lagrangian of a particle in a stationary magnetic and electric

field, which is given by
L=(1/72)mv2 + eA v - ed. (2.31)

The vector A is the vector potential of the magnetic field defined by

B=VxA, and the vector v is simply the particle velocity.
The adiabatically conserved magnetic moment, | of Eq. (2.27),

suggests a possible simpification. The particle kinetic energy

perpendicular to the magnetic field,

pB=(1/2)miv, I3, (2.32)

can be treated as a potential energy within the particle Lagrangian.
This result is the exact reduction that would be made if the
particle gyrophase were entirely ignorable within the Lagrangian.
Since the adiabatic conservation of U is an extremely accurate
approximation43 for configurations with sufficiently large
magnetic field strength, the particle Lagrangian can be approximated

in the form first given by Taylor44

43Kruskal, M. (1957). Rendiconti del Terze Congresso Internazionale sui Fenomeni
D'lonizzazione nei Gas tenuto a Venazia, Societa ltaliana di Fisica, Milan, p. 6.

44Taylor, J. B. (1964). Phys. Flulds 7, 767.
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The sign of the product UB within Eq. (2.33) may appear erroneous at
first, but merely follows from treating uB of Eq. (2.32) as a
potential energy rather than a kinetic energy.

In order to implement Taylor's drift Lagrangian of Eq. (2.33) to
derive Boozer's drift Hamiitonian of Eq. (2.26), we must express all
variables in terms of Boozer coordinates. A form of the vector
potential consistent with the contravariant form of the magnetic

field in Eq. (2.12) is
A = yVve - X(Yy)V9, (2.34)

with X(y) the poloidal magnetic flux defined in Fig. 2. The

contravariant form of the particle velocity is defined by
v = Y (Ix/9y) + é(ax/aé) + P (9x/39). (2.35)
Hence, the inner product AV becomes
AV = Y6 - X(¥) 9. (2.36)

The covariant form of the magnetic field of Eq. (2.13) and the
expression for the particle velocity of Eq. (2.35) yield the component

of the particle velocity parailel to the magnetic field,

v, = {G(Y)P + I(Y)8}/B(y.8,9). (2.37)
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The product §,¥ was neglected within the equation for v, in Eq.

(2.37), because the drift out of a pressure surface, which is
determined by V, is assumed to be much smaller than those given by
8 and . Using Eqs. (2.36) and (2.37), the expression for the lowest-
order drift Lagrangian of Eq. (2.33) becomes

L(y.8.9.8.9) = (1/2)m{1/82(y,0.0)H{(Y) § + I(Y)E}2
+ e{ye - X(¥) 9} - pB(Y.8,9) - ed(y,8.9),
(2.38)
in terms of Boozer coordinates.

The Lagrangian 6f a charged particle is generally a function of
six variables: three non-trivial coordinates and their time
derivatives. However, the reduced particle Lagrangian of Eq. (2.38)
depends explicitly on only five variables, since 3’1 does not appear.
The generalized momenta, p, are defined to be the partial derivatives
of the Lagrangian with respect to the time derivative of the
coordinates, q, that is, p = 8L/9q. Hence, the vanishing of ¥ from the
Lagrangian of Eq. (2.38) implies that Py is identically zero. The
momenta pg and py agree with that given in Eqgs. (2.28) and (2.29).

The Hamiltoian, H, is defined in terms of the Lagrangian via
H =\}lp,;,+6'pe+lj')p‘p-L. (2.39)

Application of the particle Lagrangian of Eq. (2.38) yields the Boozer
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Hamiltonian of Eq. (2.26). Hamilton's equations are generaily given
by q = (dH/dp) and p = -(dH/dq), with q a coordinate and p a canonical
momentum, as in Egs. (2.30). Since py vanishes, p;w:(au/aw)
vanishes identicaily, and ¥ =(3H/dpy) is not well defined. This
apparent paradox merely implies that a particle trajectory relative
to the Y surfaces is entirely specified by its values of {8, pg, (p,pq,}
at some particular time. This result is obvious from the dependence
of ¥ on the canonical momenta, pg and py given in Egs. (2.28) and

(2.29).

i-D. Isomorphic Equilibria

The constant pressure surfaces corresponding to axisymmetric
tokamak equilibria are simple, nested, axisymmetric tori. The
expression for the magnetic field strength corresponding to such
equilibria must be independeht of the toroidal angle ¢. Thus, the
particle drift Hamiltonian of Eq. (2.26) is independent of ¢, so that
Py becomes a constant of the motion via Hamilton's equations, Eq.
(2.30). This result also applies for the exact particle Hamiltonian
corresponding to the exact Lagrangian of Eq. (2.31). This constant of
the motion for particle trajectories gives4® the well confined
transport of energy and particles that are characteristic of
axisymmetric tokamak equilibria.

The actual equations governing the transport properties of

axisymmetric tokamak equilibria are beyond the scope of this

45Boozer, A. H. (1983). Phys. Fluids 26, 496.
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dissertation. However, these equations4® are simply expressions
for the fluxes of particles, energy, and poloidal flux in terms of the
thermodynamic forces which depend upon the profiles of chemical
potential, plasma temperature, and toroidal electric current. The
matrix elements that relate the fluxes to the thermodynamic forces
depend upon the particular collisionality regime of the plasma and
the geometry of the confining magnetic field.

Axisymmetric tokamak plasma equilibria exhibit one major
drawback, despite their beneficial transport properties. All
axisymmetric configurations must possess4’ a toroidal electric
current within the plasma, () in Fig. 2, in order to yield a plasma
equilibrium. Hence, some continuous form of current drive is
required to maintain any axisymmetric equilibrium. In addition, this
toroidal current also provides a source of free energy for plasma
instabilities4®. Non-axisymmetric stellarator configurations do
not require continuous current drive to give a plasma
equilibrium42, However, most stellarator equilibria have
extremely poor transport properties due to the lack of an invariant
of the canonical momentum typeS0.

Generally, the magnetic field strength within a constant-J

48Boozer, A. H. (1990). submitted to Phys. Fluids.

47Friedberg, J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York,
p. 107.

48pateman, G. (1978). MHD Instabilities, MIT Press, Cambridge, Massachusetts, and
London, England., p. 89.

49Eriedberg, J. P. (1987). /deal Magneto-Hydradynamics, Plenum Press, New York,
p. 185.

50Bgidler, C., et. al. {1990). Fusion Technology: A Journal of the American Nuclear
Society 17, 148.




41

surface depends on the two angles, 8 and ¢. Suppose that non-
axisymmetric stellarator configurations exist in which the magnetic
field strength depends on only the one helical angle ot=8-N¢ within
the constant-y surfaces, so that it has the form B(Y,8-N¢). The
corresponding drift Hamiltonian of Eq. (2.26) would also depend only
on the helical angle, o, within the flux surfaces. The existence of an
ignorable coodinate within such a drift Hamiltonian suggests the
existence of a canonically conserved momentum analogous to the py
invariant of axisymmetric tokamak equilibria. However, neither of
the canonical momenta pg and py of Egs. (2.28) and (2.29),
respectively, are invariant for a magnetic field strength of the form
B(y,8-N¢®). A change of variable51 is obviously required in order to
find the desired invariant momentum. |

The form of the helical angle «=8-N{ suggests the
replacement 8- ot+N¢ within the two forms of the magnetic field of
Egs. (2.12) and (2.13). Similar forms of the magnetic field are then

obtained,

Beon = VYxVot + L (Y)VPx VY, (2.40)
Beov = GR{(YIVY + {(Y) Vot + B (Y.t 9)VY, (2.41)

with the *“helical” rotational transform and poloidal electric current

defined by

S1Boozer, A. H. (1983). Phys. Fluids 26, 436.
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1(¥) = 1(Y) - N, (2.42)
Gh(¥) = 6(y) + NI(Y), (2.43)

respectively. The new coordinates within these two forms of the
magnetic field are {{, o, @}, instead of {y,8,9}. These coordinates,

{y,, 9}, are guaranteed to be non-trivial since their spatial

Jacobian,

J = 1/{VY{VuaxVP}} = 1/7{Vy{VexVP}}, (2.44)

is identical to that corresponding to the original coordinates,

{y.e.9l

The momenta canonically conjugate to the new angular

variables, {o, 9}, are given by

Po = {mM 1Y) /B(Y,0.9)} v, + ey, (2.45)
ph = {m GL(Y) /7 B(Y.8.9)} v, - eXp(¥), (2.46)

with the helical poloidal flux function defined by
Xnl¥) = X(¥) - Ny, (2.47)

in analogy with Egs. (2.28) and (2.29). The new form of the
canonical momentum of Eq. (2.46) can be expressed in terms of the

old momenta of Egs. (2.28) and (2.29) via
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Ph = Pg + Npg, (2.48)

This momentum, p;, is conserved exactly, within the framework of
the guiding-center theory, for all configurations in which the
magnetic field strength has the form B(y,8-N¢). For N=0, this
invariant momentum, py, of Eq. (2.48), reduces to the Py invariant
corresponding to the B({,8) field strength of axisymmetric tokamak
equilibria.

Magnetic field strengths corresponding to axisymmetric
tokamak equilibria, B(y,8), are said to be isomorphic to those of
quasi-helically symmetric equilibria, B(y,e-N¢). The equations for
isomorphic equilibria examined within this section pertain to field
strengths with only one Fourier harmonic, but the results can be
generalized52 to apply for field strengths with more than one
Fourier harmonic. Since magnetic field strengths with more than
one Fourier harmonic do not have an invariant canonical momentum,
this dissertation will be restricted to fields with a single Fourier
harmonic.

In Chapter VI, we prove that non-axisymmetric configurations
which exhibit a magnetic field strength of the form B(y,8-N¢) do
not exist. However, we also show that such quasi-helically
symmetric equilibria can be well approximated, since the symmetry
breaking occurs at third order in a generalized inverse aspect ratio,
€=1/10. In addition, the freedom of the magentic field strength

52Boozer, A. H. (1983). Phys. Fluids 26, 496.
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within one flux surface, which will be developed within Chapter V,
permits configurations with exact quasi-helical symmetry on one
flux surface. However, the breaking of quasi-helical symmetry near
the magnetic axis scales as {(e,)2-€2}e for a configuration whose
flux surface with exact quasi-helical symmetry corresponds to
€zE,

Nihrenberg and ZilleS3 have computaionally found three-
dimensional stellarator equilibria which closely approximate quasi-
helical symmetry. The gyro-center particle trajectories of such
equilibria are very similar to thbse of axisymmetric tokamak
equilibria, in terms of Boozer coordinates. In fact, Monte Carlo
particle simulations reveal that these stellarators have either no or
a negligible number of super-banana orbits54 that give the

enhanced transport of traditional stellarator configurations.

53N {hrenberg, J., and Zille, R. (1988). Phys. Lett. A.129, 113.

‘ 54geidler, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear
- Socigly 17, 148



CHAPTER Ill
MAGNETIC AXIS

The magnetic axis is the magnetic field line that corresponds
with the central, degenerate plasma pressure surface of a toroidal
equilibrium. The only constraint on this magnetic field line is that
it must be a smooth, closed curve in three dimensions. The shape
and field strength of the magnetic axis largely determine the
properties of the neighboring field lines, and thus the magnetic field
strength in the vicinity of the éxis.

In Chapter IV, we seek solutions to the plasma equilibrium
equation, Eq. (1.1), by performing a Taylor expansion in the radial
coordinate about a general magnetic axis. To apply such an
expansion, a set of unit vectors determined by the magnetic axis
itself should be implemented to define the spatial position near the
axis. The orthonormal set of Frenet vectors for space curves

provides such a convenient vector set.

IllI-A. Frenet Unit Vectors
The orthonormal set of Frenet vectorsS5 {K,(2), To(2), By(2)}
(see Fig. 4) define a "locally" Cartesian coordinate system in terms

the spatial position, ry(2), of any curve. The parameter ¢ denotes

55Mathews, J., and Walker, R. L., (1970). Mathematical Methods of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.
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the arc length along the curve. The vector by(2) gives the local unit
vector that is tangent to the space curve. The unit normal vector
Ko(2) lies in the opposite direction to the local radius of curvature
and is perpendicular to By(2). The local unit "binormal” vector €4(2)
is defined by Z¢(2)=bg(2)xKe(2) .

The Frenet unit vectors, {Ky(L), Z4(L), bg(2)}, are uniquely

determined by the spatial position of a curve, rg(2):

drg/de = By(L), (3.1)

dbg/d2 = k(2)K4(R), (3.2)
dRo/dR = -x(2)B(R) - z(2)Z (L), (3.3)
dze/dR = (L) Ky(2). (3.4)

The curvature function x(L) is simply the reciprocal of the local
radius of curvature, R.(2), of the curve. The torsion function z(2)
gives the "twist" of the curve out of a plane.

We now present a derivation of the Frenet vectors, which is
found within many mathematics textsS®. We begin with the spatial
position, rg(f), of the curve defined with respect to some coordinate
system. We assume that the spatial position is an analytic function
of its arc length, %, so that all derivatives of ro(2) exist. The
differential drg(2) is thus defined, which is clearly tangent to the
curve at all points along the curve. The derivative dry/d2 yields a

vector of unit length that is tangent to the curve at all points.

58Mathaws, J., and Walker, R. L., (1970). Mathematical Mathads of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.
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Defining the vector t?o(l) to be this unit tangent to the curve yields
Eq. (3.1).

The presumed analyticity of ro() implies that the derivative
of the unit tangent vector, dby/d%, is also defined. This vector must
be perpendicular to the unit vector By(2), since the derivative of any
vector of constant length, but changing direction, is always
perpendicular to the original vector. To demonstrate this result,

notice that for any vector a of constant length, the equation
0 = (d/dt)(a?) = (d/dt)(a-a) = 2a+(da/dt) (3.5)

implies that (da/dt) must be either exactly zero or perpendicular to
the constant vector a. The fact that the vector dby/d% must be
perpendicular to the unit vector 5'0(9.) implies that dli'oldl can be
expressed in the form of Eq. (3.2), with By(2)-%,(2)=0. The
curvature function, k(%) of Eq. (3.2), is the reciprocal of the
magnitude of the local radius of curvature, R.(), of the curve.

The cross product of the two unit vectors Dg(2) and Ko(L) can

be used to define a third unit vector

Zo(R) = by(L)xKg(2), (3.5)

which is mutually perpendicular to the other two. This vector is
called the unit "binormal" to curve. Thus, the three orthonormal

Frenet vectors, {q(2),Zo(2).55(2)}, define a local "Cartesian-like”
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coordinate system that follows the curves and twists of a space
curve in three dimensions. For a curve that lies entirely within
some plane, the tangent and normal unit vectors, bg(2) and Kg(2),
respectively, lie within that plane, whereas the unit binormal,
To(1), is a constant vector perpendicular to the plane.

Differentiating Eq. (3.8) for Z4(2) gives

dzg/dL = (dBy/dR)xKo(R) + Bo(L)x(dKo/dR) = Bg(2)x(dKg/dL)
(3.7
with the last step obtained using Eq. (3.2). Hence, dZye/dl is
perpendicular to by(2), and since Zo(2) is a unit vector, dZo/d2 is
also perpendicular to Z¢(2). Thus, d€o/d2 must lie in the direction
of Ko(2), so that it has the general form of Eq. (3.4). The torsion
function, (%) of Eq. (3.4), gives the twist of a curve out of a plane.
The torsion is exactly zero for a curve that lies entirely within' a
piane.
The only Frenet equation that has yet to been derived is Eq.
(3.3) for dkg/dR. To derive this equation, differentiate
Kol) = To(R)xBy(2), giving

dKg/d2 = (dTo/dR)xDg(2) + To(2)x(dbp/dL). (3.8)
Use of the previously derived Eqs. (3.2) and (3.4) then clearly yields

the desired equation for diy/d2, Eq. (3.3).

As stated earlier in this section, the magnetic axis of a
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toroidal plasma equilibrium is constrained to be a smooth, closed
curve in three dimensions. Hence, the curvature, x(1), and the
torsion, T(%), functions of Eq. (3.1)-(3.4) must be consistent with a
smooth, closed curve, in order to give a magnetic axis. Integration
of the Frenet equations of Eqgs. (3.1)-(3.4) implies that a given k(%)
and z(2) uniquely determine a space curve to within an irrelevant
translation and rotation. The probability that an arbitrary choice of
k(2) and z(1) yvields a smooth, closed curve occupies a set of
measure zero. However, sets of k(%) and z(%) that give viable
magnetic axes can be obtained®? by implementing a parametric
specification of the axis explained within Sec. IlI-B, or a
computational selection of the Fourier harmonics within k(%) and
z(2) developed within Sec. HlI-C.

Hl-B. Parametric Specification of the Axis

One method of finding sets of the curvature, k(2), and the
torsion, (), that are consistent with smooth, closed curves is to
give5® the spatial position, rg[2($)], of a closed curve as a function

of some parameter, ¢. An example is given by
rol2(e)1 = {1 + {cos(N&/M)IR($) + {sin(Ne/M)Z,  (3.9)

with C, N, and M constants, and {R(¢), $(¢),Z} the standard

cylindrical coordinate system. Application of the Frenet equations

57@Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
581bid.
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of Egs. (3.1)-(3.4) gives. the following expressions for the curvature

and torsion functions$9,

| (dro/d®)x(d2ry/de?) | 2
{(k(®)}? = : (3.10)

| (dro/de) |®

—{(dro/d®) x(d2ry/d$2) } *(d%ry/d$3)
z($) = : (3.11)

| (dro/d®)=(d2rg/de2) |

in terms of the axis parameterization, ¢. Expressions for (dry/d®),
(d2ry/de?), and (d5ry/d$3) within Eqgs. (3.10) and (3.11) are found by
using the chain rule of calculus, with the axis length length, 2, a
function of only the parameterization, $. Substitution of the various
derivatives of g(9) into the right hand side of Eqgs. (3.10) and (3.11)
readily verifies the equations for the curvature and torsion in terms
of $. To obtain the curvature and torsion as functions of the axis
length, &, instead of the parameterization, ¢, the differential
equation

d/d0 = {(drg/d®)-(dro/de)} /3, (3.12)

which holds for any ¢, must be integrated in order to find (%), and
thus k[¢(2)] and z[$(2)].
The M=1 family of magnetic axes of Eq. (3.9) corresponds to

59 0rtz, D., and Nohrenberg, J. (1979). 2. Naturforsch. 34a, 167.
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conventional N-period, "helical-like" axes. An example with N=35,
M=1,and { =1/15 is shown in Figs. 1 and 6. As with most axes of
this particular form, the fractional variation of the torsion is larger
than that of the curvature.

Various knotted configurations are also possible. Examples
are found using Eq. (3.9) with Mz 1. The simplest knot is the N=3,
M =2, =1/2 case shown in Figs. 7 and 8.

lII-C. Computational Optimization of the Axis

An alternate method for finding sets of the curvature, (%),
and torsion, ©(2), consistent with closed curves .is a computational
selection procedure®0?. As we will prove in Sec. IlI-D, closed
curves can be obtained by varying only two Fourier coefficients
within a set of x(2) and z(2). We find closed curves of length L=21T

of the form

k() = x{1 +« 8cos(2NL/L)}, (3.13)
z(2) = T{1 - E&cos(2TMN2 /L)}, (3.14)

by varying only two of the four parameters K, T, §, and £. For
example, suppose that we wish to find a five-period curve of length
L = 27C with fractional curvature variation § = 0.8 and mean torsion
TL/21C = 0.25. The quantity TL/27TC is of particular interest since

it gives the contribution to the lowest order expression for the

80Garren, D. A., and Boozer, A. H. (1991). Phys. Flulds B: Plasma Physlcs 3, 2805.
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FIGURE 6
CURVATURE AND TORSION OF FIVE PERIOD HELICAL AXIS
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The curvature, k(2), and torsion, T(2), functions corresponding to
the "helical-like" axis of Fig. 1 with axis length 2x.




FIGURE 7

THREE PERIOD "KNOTTED" AXIS

A "knotted" axis given by Eq. (3.89) withM=2,N=3,and (= 1/2.
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FIGURE 8
CURVATURE AND TORSION OF THREE PERIOD KNOTTED AXIS
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The curvature, x(2), and torsion, z{%), functions corresponding to
the "knotted" axis of Fig. 7 with length L=2TC.
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rotational transform, (y) of Fig. 2, due to torsion. The parameters
K and & are varied until the integration of the Frenet formulae, Egs.
(3.1)-(3.4), yields a smooth, closed curve. The curve obtained
depends on the choice of the initial values of the parameters X and
£. One solution is KL/27C = 1.741 and & = 26.36; a graph of this
curve is shown in Fig. 9.

We can optimize the magnetic axis shape under some
additional restriction. For example, we may wish to minimize the
maximum curvature along the length of an axis with a given mean
torsion. Assuming the form of the curve given in Egs. (3.13) and
(3.14) with TL/27C= 0.5, our optimization routine leads to a
"knotted" curve with parameters K L/27t = 3.337, 8§ 0.531, and
C = 4.779, which is shown in Fig. 10. A curve optimized to have

constant curvature is shown in Fig. 11. The parameters of this
"helical-like”" curve are given by K L/27C= 4.746, § = 0.0,
TL/21C=2.0,and ( = 1.070.

N-D. Proof of Two Parameter Optimizations

In this section, we demonstrate that only two free parameters
are required®! in order that integration of the Frenet formuiae of
Eqgs. (3.1)-(3.4) produce a smooth, closed curve. This analysis
justifies the use of only two variable parameters in the

construction of magnetic axes developed within the previous

section.

81Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805,
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FIGURE 9

COMPUTATIONALLY SELECTED AXIS

A curve of the form of Egs. (3.13) and (3.14) with KL/27C= 1.741,
§=0.8,TL/27T=0.25, and & = 26.36 obtained by computationally
selecting the values of ¥ and &.




FIGURE 10

AXIS WITH OPTIMIZED MAXIMUM CURVATURE
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A curve of the form of Egs. (3.13) and (3.14) with K L/27C = 3.337,
§=0.531,TL/27=0.5, and & = 4.779 obtained by optimizing K, §,
and & to find a curve with a given mean torsion TL/27C and a
minimum value for the maximum curvature along its length.
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FIGURE 11

CONSTANT CURVATURE OPTIMIZED AXIS

A curve of the form of Eqgs. (3.13) and (3.14) with K L/2TC = 4.7486,
§=0.0,TL/27=2.0, and & = 1.070 obtained by optimizing X and & to
give a closed curve with constant curvature K.
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We assume analytic forms of the curvature and torsion
functions, as in Egs. (3.13) and (3.14), with two variable Fourier
coefficients within this set for the selection procedure to give a
smooth, closed curve. We assume that these functions have some
non-trivial periodicity other than that corresponding to the length of
the curve itself. That is, both the curvature, x(¢), and torsion, z(¢),
must both have period 27t/N, with N=1, if the period of ¢ is 27T.
Then, given an initial set of Frenet vectors defined at a point in
space, the Frenet equations of Eqs. (3.1)-(3.4) are integrated over
its lowest period, 27t/N, giving a new set of Frenet vectors.

The Frenet vectors corresponding to any point in the
integration of Egs. (3.1)-(3.4) always form an orthonormal set62.
Thus, the set of Frenet unit vectors can be treated as a rigid body in
three dimensions. The general transformation of any rigid body is a
rotation followed by a translation. Hence, the integration of the
Frenet vectors over one period can treated as a general
transformation of the rigid set of initial Frenet vectors. -That is,
the Frenet vectors after integration through one period of the
curvature and torsion functions can be obtained by a rotation
followed by a translation of the initial set of Frenet vectors. We
épply the active view of transformations in which the coordinate
system is held fixed once it is chosen.  Therefore, all
transformations are actuailly applied to the position and orientafion

of the Frenet vectors themselves.

82Mathews, J., and Walker, R. L., (1970). Mathematical Methods of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.
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We now find constraints on the form of general
transformations of a set of Frenet vectors, which applied N times,
return the vectors to their initial position and orientation. The
general tranformation T of any such rigid body is a rotation R

followed by a displacement d, i.e.,

TX =RX + d, (3.15)

with the transpose of the column vector X given by (X, y, z). The
vector X gives the coordinates corresponding to any point in space.
We seek forms of the transformation of Eq. (3.1S) such that N

applications give the original coordinates of all points in space, i.e.,

TNx = x. (3.16)

Such a desired result corresponds to integration of the Frenet
formulae over N periods giving a curve which joins its initial

position smoothly. Use of Eq. (3.15) within Eq. (3.18) thus implies

N-1
RNx + {TRIi}d = x, (3.17)
j=0

must hold for any position vector X. This result follows if the

equations
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RNx = ¥, (3.18)
N-1
{SrRild =0 (3.19)
j=0

both hold. We will now show that only one constraint must be
applied to the form of the rotation matrix, R, and only one
constraint to the form of the displacement vector, d, in order to
satisfy (3.18) and (3.19) with N= 1.

The axis about which to perform the rotation, R, is entirely
arbitrary. However, we will show that the angle of rotation, «,
about this axis is constrained to be a rational number in order to
satisfy Eq. (3.18). To prove this result, choose the z-axis of our
Cartesian coordinate system to correspond with the axis of rotation.
The choice of the X and y axes is arbitrary. Using the standard

rotation matrix corresponding to this coordinate system,

Rot) = | -sin(et) cos(et) O (3.20)

cos(ot) sin(ct) O 1
0 0 1 34

the constraint of Eq. (3.18) implies that the rotation angle, «, must
be 21tM/N, with M any integer.

We now use o = 21CM/N within R in Eq. (3.19) to determine any
additional constraints. Notice that multiple application of the

rotation matrix gives RIi(at) = R(jo), which is obvious using Eq.
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(3.20). Thus, the sum of the rotation matrices within Eq. (3.19)
gives a finite sum of the form 3 cos(j21tM/N) for its xx and yy
components, and one of the form £3 sin(j271tM/N) for its xy and yx

components. Application of the relations

cos(ot) = {172} {explict) + exp(-ixt)}, (3.21)
sin(et) = {1/7{2i}}{exp(ict) - exp(-iet)}, (3.22)

then gives finite geometric series of the form

N 1 -rN
> ri 2 — (3.23)
j=1 1-r

for each of the xx, xy, ux, and yy elements of the matrix sum of Eq.
(3.19). Since the value for r in each of these series is
exp(x27TiM/N), these matrix elements all sum to zero, provided
Nz 1. The geometric series of Eq. (3.23) is indeterminant for N=1.
The only non-zero element within the resulting matrix of Eq. (3.19)
is the zz element, which trivially reduces to N.

The transpose of the displacement vector, d, takes the general
form (Xg.Yg.Zg). Application of the sum of matrices within Eq.

(3.19) then simply gives

(0,0, Nzg) = (0,0, 0). (3.24)



63

This equation shows that the displacement parallel to the axis of
rotation, which is given by zo,'is constrained to be zero. The
displacement perpendicular to the axis of rotation, which is
determined by Xg and yg, is arbitrary.

We have shown that in order satisfy Eq. (3.16), the rotation
about the arbitrary axis is constrained to be a rational angle and the
displacement that follows is constrained to be zero parallel to the
axis of rotation, provided Nz 1. Thus, there are only two constraints
that must be satisfied in finding a general transformation of the set
of Frenet vectors which, applied some finite number of times, is
equivalent to the identity transformation. Therefore, the two
variable parameters within the curvature and torsion functions are
sufficient to yield a smooth, closed curve, provided that the

curvature and torsion functions both have some non-trivial

periodicity.




CHAPTER IV
TOROIDAL PLASMA EQUILIBRIA

In this chapter, a generic method for finding three-
dimensional, toroidal plasma equilibria is developed. These
equilibria are solutions to the plasma equilibrium equation,
j=xB = Vp, with j=(1/}3)V =B, via Ampere’'s law, coupled with the
divergence-free property of the magnetic field, V'B=0. Plasma
equilibria are actually constructed by performing a Taylor series
expansion about a general magnetic axis. Comprehension of this
expansion methodology is vital to the elucidation of the restrictions
in the form of the magnetic field strength that are given within

Chapter V.

IV-A. Basic Equations of Toroidal Plasma Equilibria

In Sec. II-B, we presented a derivation of a set of curvilinear
coordinates, {y,0,¢9}, (see Fig. 2), developed by Boozer83. The
constant surfaces of the radial coordinate, VY, correspond to the
nested, toroidal, plasma pressure surfaces. The poloidal angle, 6,
defines the "short way" around the torus and the toroidal angle, ¢,
defines the "long way" around the torus. The primary advantage of

implementing these coordinates is that they are the canonical

83Boozer, A. H. (1981). Phys Fluids 24, 1999.
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coordinates of the guidiﬁg-center drift Hamiltonian presented
within Sec. II-C. Furthermore, widely differing plasma equilibria
with related magnetic field strengths in terms of Boozer
coordinates can have similarf4 transport properties, as outlined
within Sec. [I-D.

The use of Boozer coordinates permits the magnetic field of
any toroidal plasma equilibrium to be expressed simultaneously in
the two simplified representations®S of Eqgs. (2.12) and (2.13). The
only critical assumption used is that the magnetic field can never
vanish within the toroidal region. The contravariant form of the
magnetic field of Eq. (2.12), which is divergence free, insures that
the magnetic field lines lie within surfaces of constant pressure.
The covariant form of the field in Eq. (2.13) guarantees that the
electric current trajectories lie within these same pressure
surfaces. The constraint that the field lines and current
trajectories lie within pressure surfaces is given by Eq. (1.2), which
trivially follows from the plasma equilibrium equation of Eq. (1.1).

The equality of the two representations of the magnetic field

of Egs. (2.12) and (2.13) implies the constraintt6

VYxVe + L(Y)VPxVY = G(YIVY + I(Y)VE + §,.(¥.8.9)VY,
| (4.1)

for all scalar-pressure, equilibrium magnetic fields expressed in

84Bgozer, A. H. (1983). Phys. Flulds 26, 496.
55goozer, A. H. (1981). Phys Fluids 24, 1999.
88Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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terms of Boozer coordin.ates. The constraint of Eq. (4.1) guarantees
that the magnetic field is divergence-free, and that both the
magnetic field lines and electric current trajectories lie within the
toroidal plasma pressure surfaces. Application of the dual
representation of the magnetic field via Eq. (4.1) also reduces the
vector plasma equilibrium equation of Eq. (1.1), jxB=Vp, to a
scalar equation, as will now be given.

The plasma equilibrium equation of Eq. (1.1) can be expressed

in the form
{VxBgoy I xBeon = HoVP, (4.2)

using Ampere's law, VxB = J15j, and the two forms of the magnetic
field of Egs. (2.12) and (2.13). This vector equation condenses to the

scalar equation

{(dG/dy) - (88, 790P)} + v(Y){(dI/dy) - (3 /38)}
+ Ro(dpsay){G(y) +1(¥) 1Y) } /B2y ,8,09) = O, (4.3)

since both the V6 and V@ components of Eq. (4.2) reduce to zero.
The scalar force balance equation of Eq. (4.3) provides an additional
constraint on equilibria with non-trivial current and pressure
profiles. In deriving Eq. (4.3), the spatial Jacobian of the Boozer
coordinates given in Eq. (2.25) was implemented.

The scalar force balance equation of Eq. (4.3) can be solved
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analytically if both B.(y.6.9) and 1/B2(y,8,9) are fully Fourier

decomposed in both @ and §. Therefore, 1/82 should be expressed in

the form67

1/B2(y,8,9) = {1/<{B>H1 + I '[¥, m(W¥)cos(ng - me)
* Anm(¥)sin(ng -me)l},  (4.4)

with the apostrophe on the summation indicating the omission of the
n=0, m=0 term. The flux function {B2) of Eq. (4.4) is the average of

B2(y,8,9) within a magnetic surface, i.e.,

(3/3y) [ B2 d3x
{B2) = — (4.5)
(9/3y) [ d¥x

To obtain Eq. (4.5), the spatial Jacobian of the Boozer coordinates,
Eq. (2.25), and the relation d%x = J dydedy for transforming volume
elements were both utilized.

Averaging the scalar equilibrium equation of Eq. (4.3) over 6

and ¢ gives®8

dG/dy + L(¥)dl/dy + pg(dp/d){IG(y) « 1(¥) I(¥)1/{B2>} = 0.
' (4.8)

This procedure then implies that the function B,.(¥,8,9) has the form

87Boozer, A. H. (1981). Phys Fluids 24, 1999.
88Kruskal, M. D., and Kulsrud, R. M. (1958). Phys. Fluids 1, 268.
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B8.(9,8,9) = poldp/dw){{6(Y) « 1Y) 1Y)}/ {B2D}

x3 {1/0n-1(Y)mIH T, m(¥)sin(ng - mo)
- Mm(¥)cos(ng - me)}, (4.7)

with the functions & m(¥) and o n(Y) determined by the Fourier
coefficients of 1/B2 in Eq. (4.4). The additional function of Y that
may be added to §,(¥.8,9) can be absorbed into the choice of the

toroidal angle, @, by a transformation of the form ¢ - @ « f(y). The
function 1/B2? is assumed to be analytic, so that the functions
Tn.ml¥) and Ay m(Y) of Egs. (4.4) and (4.7) have the form

Bam(¥) = Y™ 2 n(y), (4.8)

with h(y) some analytic function of ¥ and m some nonnegative
integer. The generic form of analytic functions in terms of Boozer
coordinates will be presented within Sec. IV-C.

In summary, the vector differential equation resulting from
the equality of the two forms of the magnetic field, Eq. (4.1), and
the scalar equilibrium equation of Eq. (4.3) define a scalar-pressure,
MHD equilibrium in terms of Boozer coordinates. The constants of
integration associated with the differential equation of Eq. (4.1) are
sufficient to give a continuous spectrum of MHD equilibria and are
eduivalent to freedom of the shape of the bounding magnetic flux
surface.

The scalar force balance equation of Eq. (4.3) is satisfied if
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the average force balance equation, Eq. (4.6), holds with the function
B.(y.8.9) given by Eq. (4.7), which involves the Fourier coefficients

of the magnetic field strength. Hence, the equations that define
scalar-pressure equilibria can be given by Egs. (4.1), (4.6), and (4.7).
These constraint equations prevent arbitrary specification of the
magnetic field strength in terms of Boozer coordinates. Thus,
magnetic field strengths that give desirable guiding-center drift
trajectories and associated transport may not correspond to actual
toroidal plasma equilibria.

An annotation is made for plasma equilibria with more than
one field period. All periodic equilibria are mathematically
equivalent to those with only one field period. This result is

demonstrated by the transformation®9

NP -+ @, (4.9)
L - NL, (4.10)
1L+ NY, (4.11)

G-+ NG, (4.12)

with @, L, ¢, and ® the per-period quantities of the toroidal angtle,
magnetic axis length, rotational transform, and poloidal electric
current, respectively. The form of the resulting equations in terms

of the new variables is identical to that of the old, without the

period, N, appearing explicitly.

89Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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IV-B. Inverse Method for Defining the Coordinates -

Finding sets of {y, 8, ¢, &(y), (y), v(y), p(¥)} which satisfy
the equilibrium equations of Eqs. (4.1), (4.6), and (4.7) is quite
arduous. We seek solutions by performing an Taylor series expansion
about an arbitrary magnetic axis, since the most critical constraints
of MHD equilibria are determined by the lowest order terms in the
expansion. To implement this expansion technique, the basic
equations are expressed in terms of the spatial position X(y.8,{)
(see Fig. 3), instead of the coordinates, {Y(x), 8(x), ¢(x)}. This
inverse transformation is accomplished through the use of the dual
relations79 of partial differential theory, which were presented in
Sec. II-A. Application of the dual relations to Boozer's coordinates,
{y, 8, 9}, yields

AX/9Y = JVExVYP and (9x/30)x(dx/3P) = JVY, (4.13)

plus all even permutations of {\, 6, P}, with the spatial Jacobian J

given by
J = {(dx/9Y) x (3x/96)}(d%/39) = 1/ {{VyxVe} VPl (4.14)

Using the dual relations of Eqgs. (4.13) and (4.14), the equality
of the two forms of the magnetic field via Eq. (4.1) becomes the

vector differential equation??

7Cwhite, R. B. (1989). Theory of Tokamak Plasmas, North Holland Physics,
Amsterdam, p. 6.

71Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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(3x/99) + 1(Y)(3x/90) = G(Y)(IxX/3Y)x(3x/38)
+ 1(Y)(Ix/3P) x(3x/9Y)
+ B.(y.8,0)(3%/90)x(3%x/3¢9). (4.15)

The constraint of Eq. (4.15) is expressed in terms of partial
derivatives of the spatial position, X(¥.8,0), whereas the original
equation of Eq. (4.1) uses the gradients of the coordinates,
{y(x), e(x), §(x)}. Toroidal plasma equilibria can be defined using
Eqgs. (4.15), (4.6), and (4.7), in lieu of Eqgs. (4.1), (4.6), and (4.7). We
implement Eq. (4.15) throughout the remainder of this dissertation,
since this equation applies the inverse method for defining the
coordinates, which facilitates the expansion about the axis.

The Jacobian of the Boozer coordinates, given by Egs. (2.25)
and (4.14) permit the rﬁagnetic field strength to be expressed in the

form

1 (0x/3y) -{(3x/90) x(3x/3¢) }
—_— (4.16)
B2(y.0,9) GO + L) 1Y)

However, a form that will prove to be more enlightening within Sec.
IV-(E-G) is obtained by applying the inner product of the
contravariant form of the magnetic field, Eq. (2.12), with itself.

This procedure yields
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] [ ax739) + 1(y) (3x/88) |2

] (4.] 7)

B2(y.8.9) {e(y) « 1(y) KY) 12

using the form of 1/82 in Eq. (4.18).

We perform the Taylor expansion about a general magnetic axis
using the orthonormal set of Frenet vectors?2, {Ky(R), Zo(2), bp(2)}
(see Fig. 4), defined within Sec. II-A. The vector By(2) is simply’
the local unit vector that is tangent to a space curve, everywhere.
The unit normal vector Ky(l) lies in the opposite direction of the
local radius of curvature, and the unit binormal vector Zy(L) is
mutually perpendicular to the other two.

These Frenet unit vectors form a local "Cartesian-like"
coordinate system with repect to any smooth curve. Therefore,
these vectors can be used to express the spatial position near the

axis in the form”3

X(¥.8.9) = rol(9)] + X(¥.0,9) Kol2(P)] + Y(y,8,9) TolL(YP)]
+ 209,8,9) bol2(9)].
(4.18)
We constrain X(y=0) = Y(\Jl:O):Z(\]I:O):O, so that the vector
function rol2(¢9)] corresponds to the magnetic axis, with () the
aistance along the axis. The functions {X({y,8,9), Y(y.8,9), Z(y.8.9)}

of the spatial position of Eq. (4.18) can be used to express an

72Mathews, J., and Walker, R. L., {1970). Mathematical Methods of Physics, W. A.
Benjamin, Inc., New York, 2nd ed., p. 408.

73Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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arbitrary point near the magnetic axis in terms of the coordinates
{y.0,9}. The form of the spatial position in Eq. (4.18) is completely

general, since the corresponding Frenet Jacobian,

Jp = 1/{{VX=xVY}-VZ}, (4.19)

is neither zero, nor infinite, in the region of interest.
The form of the spatial position given in Eq. (4.18) is not

unique. For example, an alternate representation is given by
X(¥.8.9) = Q(y,8,9) X « R(Y,8,9)§ + S(¥.8.9) 2, (4.20)

with {X, U, Z} the Cartesian unit vectors. For a given equilibrium,
the form of the functions {Q(y,8.9), R(y.8,9), S(y,8,9)} of Eq. (4.20),
is changed under a coordinate translation or rotation. However, the
form of the functions {X(y,8,9), Y(y,8.9), 2(y,8,9)} of the Frenet
representation of Eq. (4.18) is independent of the coordinate origin
and orientation. Hence, the Frenet representation does not contain
any apparent freedom in the configuration that is merely due to the
trivial freedoms of translations and rotations of the coordinate
system.

We employ the Frenet representation of the spatial position in
Eqg. (4.18) throughout the remainder of this dissertation. This use of
the Frenet representation is essential to the counting of the free

functions of ¢ that will be developed within Chapter V on the
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restrictions of the magnetic field strength. Use of a representation
other than Eg. (4.18) may give additional free functions of ¢ that
represent irrelevant translations or rotations of the coordinate
system, rather than any additional freedom in the plasma

equilibrium.

IV-C. Analytic Functions of Boozer Coordinates

We have shown that the task of finding toroidal plasma
equilibria can be defined using Egs. (4.15), (4.8), and (4.7). Generic
solutions will be found in the remainder of this chapter by
performing a Taylor series expansion about a general magnetic axis.
To comprehend the details of this expansion technique, the general
form of an analytic function in terms of Boozer coordinates must
first be understood.

We will demonstrate that any function that is analytic in some

local toroidal region can be cast in the form

o0

1(,0.9) = T ¥™2{a (y.0)sin(ma) + bp(¥.9)cos(m8)}, (4.21)

m=0

in terms of Boozer coordinates, {y, 8,9). The poloidal coefficients

am(y,9) and by(y,P) are analytic functions of ¥ and ¢, so that they

are expressed as

am(y.9) = am,o(P) + ag o(P)Y + am,qf‘PN’z + 0 (4.22)
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with am, o(P), am 2(P), 2 4(P), etc., periodic in @.

To begin the proof of Egs. (4.21) and (4.22), assume that &(x)
and m(x) define “Cartesian-like” coordinates such that V& and V1
are finite and non-zero within some two-dimensional surface of
interest. If the cross product VExVT is nonzero within the
surface, then any analytic function of position can be expanded in a

power series of the form74
(€)= ieln®, 20 k20  (4.23)

with the fjx constant, about some arbitrary origin in that surface. A

choice for & and 1 is

& = y1/2 cos(e), (4.24)
n = Y¥1/2sin(e), (4.25)

so that Y¥1/2 corresponds to the “radial-like” coordinate and 8 to the
“polar-like” coordinate.

The square root of the toroidal flux, Y'/2, is chosen to
correspond to the radial coordinate within Egs. (4.24) and (4.25),
instead of the flux itself, ¥. This selection was made since the
toroidal flux is roughly Y =ByTr?, with r the minor radius from the
magnetic axis to the flux surface. Thus, the function f(&,n) can be

expressed in the form

74Kuo-Petravic, G., and Boozer, A. H. (1987). Comp. Physics73, 107.
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fly.8) = ¥ i Y2 (eos(e)} (since)}, (4.26)

using Egs. (4.23)-(4.25). The product {cos(e)H {sin(e)}* of Eq. (4.26)

can be Fourier expanded as
{cos(e)H {sin(e)}* = > {apsin{me) + bpcos(me)}, (4.27)

with the range of m given by 0 < m < j+k, with m even (odd) if j+k is

even (odd). Therefore, f(y,8) can be expressed in the form

o0

1(¢,8) = ¥ y™?{a(y) sin(m8) + by(¥)cos(me)}, (4.28)
m=0

with an(¥) and by, (¥) analytic functions of y, i.e.,

am(¥) = amo * ama ¥ + 3mq W2 « -, (4.29)

with a0, 3m 2: 3.4, ©tC., constants.

Suppose that a third coordinate, ¢, is then defined such that
the reciprocal of the spatial Jacobian, {V{xV8}-V{, is finite and
non-zero everywhere within the region of interest. We will also
assume that the coordinate ¢ is periodic, so that {y,0,¢} form a

toroidal coordinate system. Then Eqgs. (4.28) and (4.29) imply that
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any function which is analytic within a given toroidal region can be

cast in the form of Eq. (4.21).

IV-D. Expansion about the Magnetic Axis

The three functions {X{y,8,9), Y(y.8,0), Z2(y.8.0)} within the
spatial position of Eq. (4.18) are analytic in the absence of islands
or stochastic regions. Hence, these functions can all be expressed in

the analytic form of Eqgs. (4.21) and (4.22), or more specifically,
X(y.8,9) = € X1(8,9) + €2 Xo(8,9) + 3 X3(0,0) + -+,  (4.30)
with
X1(8.0) = X;.14(9) $In(8) + Xy.15() cos(@), (4.31)
X2(8,9) = Xa,0({P) + X9,05(P)sin(28) + Xy,0.(P)cos(28), (4.32)

X3z(8,9) = X3,1s((j)) sin(@) + X3,1c((p) cos(e)
+ X3,35(P) sin(30) + X3,30(P) 905(39). (4.33)

X4(8,9) = X4,0(P) + X4,25(P) sin(286) + Xq,zc((P)COS(ZB)
+ X4,45(80) sin(4e8) + Xq,qc((p) cos(48), (4.34)

etc. These expressions for {X(y,8,9), Y(y.0.9), 2(y,0,9)} are simply
power series expansions about a magnetic axis in terms of a

dimensionless parameter,
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€ = {Y(Kmax)2/Bmint’2, (4.35)

with 1/Kmayx the scale length and Bnpin the scale magnetic field
strength. Obviously, the expansion parameter, €, is proportional to
the square root of the toroidal magnetic flux, Y142,

The only scale length that appears in vacuum magnetic fields
is the radius of curvature of the magnetic axis. We choose Kpax to
be the maximum local curvature of the axis and Bpgi, to be the
minimum magnetic field strength of the axis, so that the expansion
parameter, €, is maximized. This maximization of ¢ insures that the
expansion coefficients are a‘ll of order unity or less. The expansion
parameter is approximately €=r/R,, with r the minor radius from
the axis to the outermost flux surface, and R, the minimum radius
of curvature of the axis. Since R, does not necessarily correspond
with the global toroidal radius of curvature of the axis, the
expansion parameter, €, is not necessarily the traditional inverse
aspect ratio.

The reciprocal of the square of the magnetic field strength,
1/B2(y,0,9), and the function §,(y.8,9) are each expanded in a form

similar to that of {X(y.8.9). Y(y.8,9), Z(y,8,9)], with the addition of

a zeroth order term that is a function of only ¢, i.e.,

1/B2(y,8.9) = {1/{Bo(P)}2} + € [1/B2]4(8.9) + €2[1/B2]5(8,9) + ™,
(4.36)
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8.(y.8,9) = 5,.0(4)) + 55,1(949) + 525,2(9.(9) + o (4.37)

The poloidal expansions of [1/82],(8,9), Bu,(€.9), etc., have the form

of Egs. (4.31)-(4.34). The rotational transform, 1(y), the poloidal
electric current, G(y), the toroidal electric current, I(y), and the

plasma pressure, p(y), are simply Taylor expanded in terms of {,
W) =g+ €21+ ety -, (4.38)

with 1y, 19, 14, etc., constants.

in the remainder of this dissertation, the explicit
dimensibnality of all of the functions has been removed. That is, the
factors of Kpax Bmin @nd Mo have been removed from all of the
equations in this analysis. Hence, the expansion coefficients,
X1(8.9), X4(8,9), po, B,.o((P), etc., are all dimensionless.

IV-E. Vacuum Magnetic Fields with Perfect Surfaces
Nonzero plasma pressure and electric current provide only a
slight modification of the method used to study vacuum magnetic
fields. Therefore, we will first perform a detailed investigation?S
of vacuum magnetic fields with perfectly torodial flux surfaces. We
will then outline the adjustments necessary for analyzing force-
free magnetic fields and scalar-pressure plasma equilibria in the

two following sections.

7S@Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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For vacuum magnetic fields, the plasma force balance
equation, jxB=Vp of Eq. (1.1), is trivially satisfied, and the

covariant form of the magnetic field of Eq. (2.12) reduces to

Beov = GV Y. (4.39)

For vacuum fields, the toroidal coordinate, ¢, becomes the magnetic
potential of Laplace's equation, V29 =0. The non-zero constant Gq of
Eq. (4.39) is the poloidal current in the field coils that generate the
toroidal magnetic field (see Fig. 2). The equality of the two forms
of the magnetic field, Eq. (4.15), then gives the vector differential

equation
Go(Ix/9y) x(ax/38) = (3x/9¢) + L(Y)(9x/98).  (4.40)

Using the Frenet formulae of Egs. (3.1)-(3.4) and the chain rule of

calculus, the three components of this matching constraint are

Kot Go{(3Y/0y)(32/3Y) - (3Z/3Y)(3Y/d8)}
= E(y.8.9) + W(y) (ax/98), (4.41)

To:  Gol(32/3Y)(3X/a8) - (3X/3y)(92/38)}
= Y(¢,8.9) + 1Y) (3Y/38), (4.42)
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Bo:  Gol(dX/3Y)(dY/98) - (dY/3W)(3X/38)}
= A(,8,9) + L(y) (92/38), (4.43)

with

=(y,8,9) = (8X/39) + (d2/dP){z[8(P)1Y(y,0,9) + x[2(P)] 2(y.8,9) },
(4.44)
Y(¢.8.9) = (3Y/39) - (di/dY) z[L(P)1X(y,8,9), (4.45)

A(Y.8,9) = (32/39) + (dR/dP)1 -x[2(PIIX(¥.8.9)}.  (4.46)
Similarly, the expression for the magnetic'field strength is given by

1/B2(y,8,9) = {(d2/d9)2
+ 2(d2/d9){(32/39) + L(y)(3Z/38)
| - (d2/dP)k(2(9)) X(y,0,9)}
+ {{aX/39) + L(Y)(dX/d8)
+(d2/7dP=LUPTY(Y,8,9) + k(2(P)) Z(y,0,9) }
+ {(dY/3¢) + L(¥)(dY/a8)
- (d2/d9) =(L(P)) X(¥,8,9)}
+ {(92Z/799) + 1(¥)(32/38)
- (d2/dP)k(LPNX(¥.8.9) 12 1/{Gol2,  (4.47)

using Eq. (4.17)
In order that the spatial position, x({.8.9) of Eq. (4.18), and
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the rotational transform, (y), give a vacuum field with perfect flux
surfaces, the three components of the matching constraint of Egs.
(4.41)-(4.43) must hold through all orders in €, or identically, y1/2,

We begin by solving these equations at €% and ¢! orders, and then
elicit the constraints involved in successively higher orders.
Application of this procedure will indicate a general methodolgy for
constructing vacuum magnetic fields with perfect surfaces through

all orders in €.

IV-E-1. Vacuum Magnetic Fields through Zeroth Order
Application of the three matching constraints of Eqs. (4.41)-

(4.43) at €0 order gives

Ko at €0:  Y{(8,9)(32,/38) - Z,(8,9)(dY,/98) = 0, (4.48)

Toat €9 Z,(8.0)(9X,/38) - X,(8.9)(32;730) = O, (4.49)

By at €%  {Gg/2H X1(68,9)(3Y,/38) - Y;(8.9)(3X,/38)} = (d2/dY).
(4.50)

The €0 order term of the magnetic field strength is

1/{8o(P)}2 = {1/G4}2(dL/d9)?, (4.51)

using Eq. (4.47). Integration of Eq. (4.51) through the entire length L

of the magnetic axis yields
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GO - s (4-52)
270

Jd‘P {1/Bo(9)}
0

for the total poloidal electric current in the coils.
We can solve for the function Z,(8,9), using Egs. (4.48) and
(4.49). The product of Eqg. (4.48) and X(8,{) added to the product of

Eq. (4.49) and Y,(8,9) gives

Z1(8.9)(d2/d9) = 0. (4.53)

The function Z,(8,9) can be non-zero only for values of ¢ in which
(d2/d9) vanishes. Eq. (4.51) implies that the function (d2/d¢)
vanishes only for values of @ in which the axis field strength, Bg(¢),
is infinite. Since singular magnetic field strengths are clearly not
possible, the function (d&/d{) must be non-zero for all ¢. The non-
vanishing of the function (d2/d¢) within Eq. (4.53) then implies that
the function Z,(8,9) is constrained to be zero for all values of 8 and
¢. Consequently, the vacuum fc'o and fo constraints at €9 order, Egs.
(4.48) and (4.49), hold trivially.

The only non-trivial vacuum constraint at €% order, the Eg

constraint of Eq. (4.50), becomes
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Eo at £0; {Gg/2H X1,1c{P) Y1,15(9) - Y1,1(P)X1,15(P)} = (d2/d9),

(4.54)
using the poloidal expansions for Xi(e,9) and Y,(8,p) given in Eq.
(4.31). The function (d2/d9) is a free function of ¢, provided that it
never vanishes. Therefore, Eq. (4.54) is one constraint involving the
first order functions Xj,15(9), X1,1c(9), Y1,15(9), and Y;,1.(¢P) of Eq.
(4.31). Hence, this equation will be reserved for the first order set
of constraints developed within the next subsection.

The previous analysis has shown that the zeroth order set of
equations are trivial. This result follows since the magnetic axis
alone characterizes toroidal plasma equilibria through zeroth order
in the expansion. The analysis developed within Chapter lll can be
used to generate magnetic axes of vacuum magnetic fields with

perfect flux surfaces.

IV-E-2. Vacuum Magnetic Fields through First Order
We now find the equations for vacuum equilibria through first
order in the expansion parameter, €. Application of the matching

constraints of Egs. (4.41)-(4.43) at €' order produces

Ko at e':  {Gg/2H{ Y1(8.9)(82,/36) - 22,(8,9)(3Y;/386)}
= (X1/99) + 19(9%X1/98) + (d2/dP)=(P)Y,(8,9),
(4.55)
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‘5:'0 at 81: .{60/2}{2 Zz(e.(]))(e)(1lae) - X|(e.¢)(622/66)}
= (3Y1/99) + 14(3Y¢/30) - (d2/dP) z(P)Xq(8.9),

(4.56)
b at e':  {Gg/2H{X1(8.,9)(3Y5/38) - 2Y4(6,9)(3X/38)
+ 2X9(0,0)(3Y4/98) - Y1(8,9)(9X,/98)}
= -(d2/dP)k(P)X4(8,9) (4.57)

We substitute the poloidal expansions of the functions X3(8.9),
Yq(8,9), and Z,5(8,9) of Eq. (4.32) into the three components of Eqs.
(4.55)-(4.57). The resulting coefficients of sin(8) and cos(e) are

then set equal to zero, so that Eqgs. (4.55)-(4.57) hold for all values

of the poloidal angle, 6. This procedure yields the six equations

Ko ate!, sin(8): GolYq,1c(9){22,0(P) - Z2.25(P)} - Y1,15(P)22,25(P)}
= (dX1,15/49) - Lo X1,1(®) + (d2/7dP)2(P) Y1,15(9),
(4.58)
Koatel, cos(8): Gol-Y1,1s(P)Z2,0(P) + Z2,20(P)} + Y1,1c(P)2Z2,25(P)}
= (dX1,16799) + Lo X1,15(P) + (dR/dP)TAP) Y1 ,1(9),
(4.59)
Zgatel, sin(8): Ggl-X1,1c(9){22,5(P) - 22,2¢(P)} + X1,15(P)Z2,25(P)}
= (dY1,15/49) = 10 Y1.1c(P) - (d2/7dP) Z(P) Xq,16(P),
(4.60)
Toate!, cos(8):  GoiXy,15(0){Z2,0(P) * Zo.20(P)} - X1,1(P)2Z2,25(P) }
2 (dY1,16/49) + Lo Yy,15(9) - (d2/dP) (D)X 1 ,1(P),
(4.61)
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60 at el, sin(@): Gy {X1,1c(PHY2,0(9) - Ya,20(P)} - X1,15(P) Y2,25(9)
- Y1 .10_((9) {Xz.o(‘P) - Xz.zc(‘P)} + Y1 .1s(‘P)Xz.zs(tP)}
= = (dR/dP)x(P)Xq,15(P), (4.62)

boate!, cos(8):  Gol-X1,15(P) Ya,0(P) + Ya.00(P) } + X1,10(P) Y2,25(9)
+Y, ,15((P){X2,0(‘P) + x:,zc(‘p)} - Y ,13(‘13)22,25((9)}
= =(d2/dP) (P Xq,1c(P). (4.63)

There is obviously sufficient freedom in the six functions of ¢
within X3(8.9) and Y5(8,9), i.e., X3,0(P), X3,25(P), etc., to satisfy the
two vacuum by constraints at €' order, Egs. (4.62) and (4.63).
However, there is not sufficient freedom in the three functions of ¢
within Z,(8,9) to solve the four Eo and 'Eo constraints at €' order,
Eqgs. (4.58)-(4.61). The magnetic axis curvature and torsion
functions, x(¢) and z(¢), respectively, cannot generally be used to
satisfy these constraints, since our expansion technique is valid for
any smooth magnetic axis. Therefore, we must utilize the freedom
in Xq(8,9) and Y,(9,9), in addition to that within Z,(8,9), to satisfy
the Xy and £, constraints at €' order, Eq. (4.55) and (4.56).
However, the functions X;(8,9) and Y;(8,9) must also satisfy the by
constraint at €% order, Eq. (4.50), as was shown in Sec IV-E-1.
Summarizing, the functions X(8,9), Y(6.9), and Z2,(8.9) must be
used to satisfy the By constraint at €0 order, Eq. (4.54), and the K,
and %, constraints at €' order, Egs. (4.58)-(4.61). We will refer to

these constraints as the first order set of vacuum field constraints.
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The equations of the Kj and ¢, constraints at €' order, Egs.
(4.58)-(4.61), can be expressed in the form

'LOV1(‘;p) = X1,1c(¢)(dx1,1s/dfp) - X1,1s((P)(dX1,1c/d(P)
+ Y1,1(P)(dYq,15/d9) - Yq,15(P)(dYy,1./d9)
+ {4/G}(d2/d9)? =(9), (4.64)

Z2,0(9) = - {17{8(d2/dP)}} (dV4/d9), (4.65)
Z,25(P) = -{1/{8(d2/dQ) }}{(dVa/dY) - 214V5(P)}, (4.66)
Z9.2c(P) = -{1/{8(d2/dP)}}{(dV3/dP) + 214Va(P)), (4.67)
with

V1(‘:p) = {X1.1s(¢)}2 + {X1 ,13(@)}2 * {Y1 ,15(‘9)}2 + {Y1,1c(¢)}2u
(4.68)

Vo) = 2{X1,15(P) X1,1c(P) + Y1,15(P) Y1 1P}, (4.69)

Va(9) = {X1,1c(PI) 12 - {X1,15(PV 12 + {¥q,16(P) 2 - {Yq,15(D) }2.
(4.70}
The second order configuration function 2Z,(8,9) is completely
determined by the first order functions X;(8,9) and Y(8,§) via Egs.
(4.65)-(4.67). Hence, if the configuration is desired through only
first order in €, then Egs. (4.65)-(4.67) can be safely ignored.

Therefore, the only equations relevant to the configuration through
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e! order are the by matching constraint at €° order, Eq. (4.54), and
the non-linear, first-order differential equation of Eq. (4.64).

The magnetic field strength through el order is given by

B(y.8,9) = Bo(P)1 + EK(‘p))ﬁ(B.‘P)} + o, (4.71)

using Eq. (4.47). Thus, if the first order set of constraints holds,
then all of the functions appearing in 1/B2 through first order are
specified, so that the magnetic field strength is uniquely determined
through first order. The result is not immediately obvious if some
other form of the magnetic field strength than that of Eqgs. (4.17)
and (4.47) is used.

The expression for the magnetic field strength in Eq. (4.71)
gives the constraint that the first order variation of the field
strength must not completely vanish, provided that the fieid
strength itself never vanishes. This result implies that the
magnetic field strength can be made uniform within a flux surface
for toroidal plasma equilibria only in limits’6 in which the axis
field strength vanishes or the flux surfaces become open. Such
"isodynamic" or “"omnigenous" equilibria were first proposed by
Palumbo77.

" We will now actually construct’® sample vacuum magnetic

fields with perfect flux surfaces through first order in the

78Bgrnardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,
2605.

77pajumbo, D. (1968). /! Nuovo Cimento X53B, 507.
78Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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expansion. The magnetic axis is presumed to be given by the results
of Sec. llI-B. We wish to retain the maximal freedom in the
specification of the shape of the magnetic flux surfaces or the form

of the magnetic field strength.

IV-E-2-a. Specification of Magnetic Flux Surface Shape
In order to determine the shape of the first order magnetic
flux surfaces, it is convenient to express X(8,9) and Y(9,9) in the

form7°
X1(8.9) = I'(P){cos(e - &(P)} + E(P)cos( - T(P) - A(P))}, (4.72)
Yi(6.9) = T(P){sin(e - 7(P)) - E(P)sin(e - F(P)- A(P))}). (4.73)

The shape of the constant Y surfaces to lowest order can be
ascertained by the evgluation of {r(8,9) R ={X{(e,0)}2+{Y (8,912,

giving

{r(e,9)12 = {T(P)2{1 + [E(P)12 + 2&(P)cos(20-27(P) - A(P))].
(4.74)
The function r(e,9) is proportional_ the distance from the magnetic
axis to a particular point on a given magnetic flux surface. The form
of r(8,9) in Eq. (4.74) indicates that the flux surfaces are ellipses
through lowest order. The function T(P){1 +{&(P)}2}1/2 is the

79Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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average minor radius of the ellipse. The function &£(P) is a measure
of the ellipticity, and the function A(Q) is a measure of the phase of
rotation of the ellipse. The periodic function (¢Q) is set by the
constraint that the rotational transform on axis be constant, as will
be shown later in this subsection.

Examination of Eq. (4.74) reveals that £(Q)=0 gives perfectly
circular flux surfaces through first order, and &(QP)-1 yields flux
surfaces that pinch off to infinitely thin ribbons. Application of the
axis field strength of Eq. (4.51) and the by constraint at €° order of

Eq. (4.54) produces

{T(P)}2 = 2/7{Bo(P) 1 - [E(PIR}], (4.75)

Hence, the corresponding average minor radius, T(P){1 +[&(¢)12}1/2,
becomes singular in this limit, assuming non-zero field strength.
That is, the flux surfaces become ribbons that are both infinitely
thin and infinitely tall as the ellipticity, &(¢), approaches unity.

The first-order, non-linear differential equation of Eq. (4.64)
yields the following relation for the rotational transform on

axis80,
1o = dB/dY + v(9), (4.76)

with

80Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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v(P) = {{1-{EP)IPHAL/dP) 2(P) + {E(P)I2(dA/dP)}/ {1 + {E(P)}2).
(4.77)

Therefore, the rotational transform on axis is given by
2T
lg = {1/(21‘1:)}J dQ v(9), (4.78)
0

so that the periodic function (¢) of Eq. (4.76) serves to insure that
lg is a constant. The rotational transform near the axis for vacuum
fields is produced by8! the torsion of the magnetic axis and the
ellipticity, as is evident from Eqs. (4.76) and (4.77). The ellipticity
tends to reduce the contribution due to the the torsion, but it tends
to increase the contribution due to the change in the orientation of

the ellipse as ¢ varies, i.e., the contribution due to dA/d¢ = 0.

IV-E-2-b. Specification of Magnetic Field Stength

Since particle drift trjectories are determined82 by only the
magnetic field strength in terms of Boozer coordinates, a more
valuable procedure is to find equilibria corresponding to desirable
forms of the field strength. The general form of the magnetic field

strength in Boozer coordinates is

B(y,08.9) = Bo(P}{1 + € 5(P)cos(e - (D))}, (4.79)

81spitzer Jr., L. (1958). Phys. Fluids1, 253.
82800zer, A. H. (1984). Phys. Fluids 27, 2441.
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through first order in €. We wish to fetain the maximal freedom in
the ¢-functions, Bg(Q), 8{(¢), and (). The field strength oi Eq.
(4.79) can be expressed in the form83

B(y,8.9) = Bo(P) {1 + €{2/Bo(P)/2x(P)n(P)cos(e - (PN},
(4.80)

with the lowest order flux surfaces given by
X1(8.9) = {2/Bo(P)}/2n(P)cos(e - «(P)), (4.81)

Yq(8.9) - {2/Bo(P)/2{1/n(PIH{sin(e - H(P)) + c(P)cos(e - (P))}.
(4.82)
These forms for X4(8,9) and Y,(8,) are completely general, but only
three of the four ¢-functions Bg(9), N (¢P), o(P), and o(P) are
unconstrained. It is convenient to choose the Q-functions Bg(¢),
n(P), and «(P) to be arbitrary, so that the magnetic field strength
through first order is freely specified. The ¢-function o(¢) is then
constrained to satisfy the first-order, non-linear differential

equation

do/dQ = {2Gg/Bo(PIHT(P) 12 2(P)
- {1g-(dat/dP)H 1 + {N(PI}* + {o(P)}2}, (4.83)

with the periodicity condition o(¢=0)= o({=277). Solutions to Eq.

83Garren, D. A., and Boozer, A. H. (1981). Phys. Fluids B: Plasma Physics 3, 2805,
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(8.43) are found by integrating it forward in ¢, minimizing the
quantity o(P=0) - o(P=21C) by varying either the initial point of
integration, o(§=0), or the value of the axis transform, 14. The
remainder of the variables that enter are free, except for the
constraints that k[2(¢)] and =z[2(¢)] are consistent with a closed
curve and that Bo(¢) and n(¢Q) never vanish or become infinite. The
solution obtained for o(Q) need not be unique, since Eq. (4.83) is
non-linear.

The previous functions of ¢ that conveniently described the
magnetic flux surfaces can be represented in terms of those that

characterize the magnetic field strength via the relations84

{12+ 112 + {c(P)}2}
{T(9)}2 = S, (4.84)
2Bo(PH T (P)}2

{{n(P)2-1}2 + {c(P)}?
{&(P)}2 = ) (4.85)

{n(PI2+1}2 + {a(@)}2

a(9P)
7(P) = (P) - tan-! [ ] (4.86)
(P2 + 1
() a(g)
A(P) = tan™! [ ] + tan~1 [ ] (4.87)
(NP2 - 1 {M(P}2 + 1

Approximately circular flux surfaces are obtained if m{¢) is near

84Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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unity and o(¢) is near zero. The flux surfaces pinch off to ribi)ons
that are both infinitely thin and infintely tall as |11(lP)| approaches
zero or infinity or as IO'(Q))I approaches infinity.

The magnetic field strength of a general vacuum configuration

with perfect surfaces has the form of Eq. (4.79) with
§(9) = {2/Bo(IN/2k(P)(9), (4.88)

using Eq. (4.80), which implies that there exists a large degree of
freedom in the shape of the flux surfaces. Configurations with
widely varying magnetic axes can have the same form of the
magnetic field strength through first order. For example, the flux
surfaces of the five-period helical configuration shown in Fig. 12
and the three-period knotted configuration of Fig. 13 both possess a
field strength of the form of Eq. (4.79) with By(®) =1, §(¢)=1.25,
and «(P)=N¢. The magnetic axes of Figs. 12 and 13 are given by
Figs. 5 and 7, respectively. The flux surfaces of Figs. 12 and 13 are
examples of configurations which are quasi-helically symmetric
through first order, since their field strengths through first order
are functions of only one helical angle, o=8-N¢, within the flux
surfaces. We examine quasi-helical symmetry in greater detail

within Chapter VI.

[V-E-3. Vacuum Magnetic Fields through Higher Order

The vacuum constraint equations at second and higher orders
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FIGURE 12
FIVE PERIOD HELICAL CONFIGURATION

Yy a9
\\A\_\‘ -
A
AN, 877
g
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A flux or ¥y surface of a conventional five-period helical
configuration with a "quasi-helically symmetric® magnetic field
strength through first order given by Eq. (4.79), with Bg{{)=1,
8(9)=1.25, and «{¢P) =Ny, The magnetic axis of this configuration
corresponds to that of Figs. 1 and 6. The toroidal lines show the
true constant © surfaces through lowest order for Figs. 12, 13, 14,
16, and 18, but the poloidal lines were chosen by the adaptive step
size Runge-Kutta routine used, and hence do not represent true
constant ¢ surfacss.
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FIGURE 13

THREE PERIOD KNOTTED CONFIGURATION

A flux surface of a three-period knotted configuration with the same
magnetic field strength in Boozer coordinates through first order as
that corresponding to the five-period helical configuration of Fig.
12. The magnetic axis of this configuration corresponds that of
Figs. 7 and 8.
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follows the construction of the first order set of constraints. We
will present the second order set of vacuum constraints and then
give the generic scheme83 for eliciting the higher order constraint
equations.

In Sec. IV-E-2, we found that the two by constraints at €
order, Egs. (4.62) and (4.63), could be satisfied by the six functions
¢ within X5(8,9) and Y,(8,9). These constraints were not associated
with the first order set of constraints, since they did not require
lower order functions of ¢ to be free, as did the Ko and %,
constraints at €! order, (4.58)-(4.61).

We now examine the three components of matching the two
forms of the magnetic field, Eqgs. (4.41)-(4.43), at €2 order. The
poloidal expansions of the functions X3(8,9), Y3(8,9), and Z3(8,9)
shown in Eq. (4.33) imply that each component yields three
independent constraints, i.e., one each for matching the ¢-dependent
coefficients of the sin(26), cos(2e), and constant terms. The
highest order functions that enter bath the K, and "Eo constraints of
e2 order are X5(6.9), Y5(8,9), and Z3(6,9). The highest order
functions that enter into the By constraint are X3(6.9), Y;3(6,9), and
Z2(8,9). The eight functions of ¢ within the poloidal expansions of
X3(8,9) and Y;(8,9) are sufficient to satisfy the three @-constraints
of the By matching constraint at €2 order. However, the four
functions of @ within 23(8,9), i.e., 23,15(P), 23,1c(P), Z3,35(P), and
Z3.3c(9) of Eq. (4.43) are not sufficient to satisfy the six

85@arren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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independent ¢-constraints of the Kg and T, constraints at €2 order.

Following the pattern set by first order, the delimma of
satisfying these second order equations is ameliorated by combining
the Ky and €, constraint equations at €2 order and the B, constraint
equations at €! order into the second order set of vacuum constraint
equations. The functions of @ within X5(8,9), Yy(8.9), and 23(8,9)
are sufficient to satisfy this set of constraint equations.

We can represent the six independent ¢-constraints of the Kg
and Zg constraints at €2 order in a less elusive fashion. This
processs follows in an analogous fashion to that of obtaining the
simplified forms of Eqgs. (4.64)-(4.67) from the four independent ¢-
constraints of the Kq and Z¢ constraints at €! order, Eqs. (4.58)-
(4.61). Four of the six resulting equations determine the function
Z23(8,9), i.e., via the Q-functions Z3,15(P), Z3,1(P), Z3,35(P), and
Z23,3c.(¢). The remaining equations are two non-linear, first-order
differential equations in terms of second and lower order
configuration quantities, i.e., X5(8.9), Y5(8,9), etc.

We will now give a general methodology for satisfying the
vacuum constraint equations, Eqs. (4.41)-(4.43), through arbitrary
order in the expansion parameter, €. The functions X;(8,9), Yi(8.9),
and Zj,1(6,9) must be used to satisfy the 50 matching constraint at
e}~ order and the 120 and Z, matching constraints at el order. More
specifically, we use the j+1 free functions of ¢ in each of the
functions X;j(e.9) and Y;(8,9), and the j+2 free functions of ¢ within
Zj«1(8,9) to satisfy the j independent ¢-constraints in the Bo
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fnatching constraint at el”! order and the j+1 independent ¢-
constraints in each of the K, and €, matching constraints at ¢l
order. We denote these particular constraints as the jib set of
matching constraints. That is, the 3j+2 independent equations of
the jih. order set of matching constraints must be satisfied by the
3j+4 functions of ¢ that first enter into these equations. Obviously,
each new set of constraints introduces two new free functions of ¢
that may be used to give some freedom in specifying the magnetic
configuration. As will be shown in Chapter V, the freedom of two
functions of @ for each order in the expansion is sufficient to permit
nearly arbitrary freedom in the magnetic field strength on one
particular flux surface.

This methodology for satisfying the constraint equations of
Egs. (4.41)-(4.43) follows from the vanishing of the function 2,(8,9)
for generail toroidal magnetic fields with perfect flux surfaces. The
peculiar procedure for satisfying the constraint equations implies

that the functions X(y,8,9) and Y(y,8,9), given through some order

t-:j, constrain the form of Z(y,8,9) through the next higher order,
e/*!. That is, the function Z(y,8,9), which gives the dominant

contribution to the shape of the magnetic potential or ¢ surfaces, is
subdominant to the functions X(y.8,9) and Y(y.8,9), which give the

dominant contribution to the shape of the flux or ¥ surfaces. This
result is merely a direct consequence of the divergence-free
property of general magnetic fields and requiring nested flux

surfaces.
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We now examine the complications involved in constructing
vacuum magnetic fields with perfect surfaces through some order.
Assume that we wish to find a magnetic configuration through some
order, say ej, in the spatial position, X(y,8,9). We apply the results
of first and second order to infer a generic scheme for finding
x(y,0,9) through arbitrary order. Sec. IV-E-2 revealed that one
first-order, non-linear differential equation, in addition to the more
trivial Eo constraint at €9 order, must be satisfied to give the first
order flux surfaces. For flux surfaces through second order, two
first-order, non-linear differential equations and the more trivial
by constraints at ¢! order must hold. Extending this procedure
through arbitrary order implies that j first-order differential

j order,

equations must hold in specifying the configuration through €
via x(y,8,9), assuming that the configuration is given through one
lower order, ej"]. This result follows from the fact that the j+2

functions of ¢ within Zj”(e.tp) can be used to satisfy all but j of

the 2{j+1} K4 and €, P-constraints at ¢’ order.

IV-F. Force-Free Magnetic Fields

“We now extend the results of the previous section regarding
magnetic fields with perfectly nested toroidal surfaces to apply for
magnetic configurations with force-free electric currents. The

plasma force balance equation of Eq. (1.1) becomes

jxB =0, (4.89)
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for such configurations, since no forces are exerted. Hence, no
plasma pressure gradient can exist within force-free magnetic
fields. Eq. (4.89) obviously implies that the magnetic field and the
electric current must lie in the same direction, so that the current

can be expressed in the form

j(x) = (x)B(x), (4.90)

with o(X) some scalar function of position. Taking the divergence of
Eq. (4.90) then yields

B-Vo = 0, (4.91)

so that the magnetic field lines and electric current trajectories lie
within surfaces of constant o(X). Thus, function o(x) gives nested
toroidal magnetic surfaces, provided that Vo is well-defined
everywhere except on the magnetic axis.

The covariant representation of the magnetic field of Eq.
(2.13) reduces to

Beov = G(Y)VY + [(y) Vs, (4.92)

for force-free configurations. This form follows since the function

8.(y.8,9) of Eq. (2.13) is proportional®® to the plasma pressure

gradient, as demonstrated within Sec. IV-A. The partial differential

86mo0zer, A. H. (1981). Phys Fluids 24, 1999.
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equations resulting from the equality of the two forms of the

magnetic field, Eq. (4.15), becomes8”

(0x/99) + L(¥)(dax/38) = G(Y)(ax/dy)x(ax/a8)
+ 1Y) (Ax/3Q)x(9x/3y). (4.93)

The three components of this matching constraint are given by

Ko:  GY){(3Y/8y)(92/3y) - (8Z/3y)(dY/38)}

+ Y {(dz/3y) Y (y,8,9) - (3Y/A(Y,0,9)}
= 2(y.8.9) + L(Y)(3X/98), (4.94)

To:  GY){(9Z/9y)(3X/38) - (IX/9y)(82/98)}
+ [(YH(X/aY)A(Y.0,9) - (3Z/3y)=(y,.8.9)}
= Y(¢.8,9) « L(y)(dY/d8), (4.95)

Bo: GO {(dX/3Y)(3Y/38) - (3Y/dy)(dX/de)}
+ Y (QY/79Y)=(y,0,9) - (3X/3Y)Y(y,0,9)}
= A(Y,6,9) + L(Y)(3Z/38), (4.986)

with =(y,8,9), Y(y,9,9), and A(_ljl.e.q)) defined in Egs. (4.44)-(4.46).
The reciprocal of the field strength, 1/B2, for force-free magnetic

fields can be obtained by using Eq. {(4.17), which gives®8

87Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
88)bid.
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1/B2(y,8,9) = {(d2/dy)2
+ 2(d2/dP){(32/39) + 1(¥)(32/38)
- (d2/dP)x(2(P)) X(y,0.9)}
+ {(aX/99) + L(Y)(3X/38)
+(d2/dO){zI2PIY(Y,8,9) + k(2(P)) Z(Y.8.9)}
+ {(3Y/39) + L(¥)(dY/38)
- (d2/d9)z( (P X(¥.8,9)F
+ {(aZ739) + 1(y)(9Z/38)
- (d2/dP)R(LPNX(Y,0,.0) 1 17{6(¥) « LW 1Y) 12,
(4.97)

This equation can be otained by making the replacement
(Gg)2 » {G(Y) + () Y} (4.98)

within the form of 1/B2 for the vacuum case, Eq. (4.47).
For force-free magnetic fields, the average force balance
equation of Eq. (4.6) is no longer trivially satisfied. This equation

becomes8®
dG/dy + L(¥)(dl/dy) = 0, (4.99)

using the fact that dp/dy =0 for force-free magnetic fields. Since a
pressure gradient can not exist for force-free fields, the only

admissible pressure profile is one of the form p(y)=pg, with pg a

89Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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constant.

The functions G(Y¥) and I(y) of Eq. (4.99) can be Taylor
expanded in the form of 1(Y) given in Eq. (4.38). Finiteness of the
toroidal electric current density on axis implies that the constant
term within 1(y), i.e., lg, must be zero. The average force balance
equation of Eq. (4.99) indicates that one of the three flux functions
dG/dy, di/dy, and () is constrained by the other two, assuming all
three functions are non-zero for all Y. These three flux functions
are further restricted if any of them have zeroes within the toroidal

region.

IV-F-1. Force-Free Magnetic Fields through Zeroth Order
Application of the force-free constraint equations of Egs.
(4.94)-(4.96) at €0 order reveals that these equations are identical

to those for vacuum fields. The only additional constraint is
Gy = -1gly, (4.100)

with the constant G, the lowest order, poloidal electric current
within the plasma. Eg. (4.100) is mersly the average force balance
equation of Eq. (4.99) at zeroth order in €. Hence, the shape and field
strength of the magnetic axis are unaffected by force-free effects
at lowest order. Therefore, all of the results within Sec. IV-E-1
regarding magnetic axes df vacuum fields also hold for force-free

magnetic fields.
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IV-F-2 Force-Free Magnetic Fields through First Order

Modification of the vacuum field equations due to the effects
of a non-zero, force-free electric current first occurs at €' order.
The first order set of matching constraints for force-free equilibria

is given by

By at €0:  {Go/2H X1(8.9)(dY;/98) - Y1(8,9)(8X,/98)} = (dL/d9),

(4.101)

Ko at &' {Go/2H{ Y1(8.9)(9Z,/98) - 22Z4(8,9)(3Yy/38)}
= (9X/99) + Lo(ax1/ée) + (dR/7dP){z(P)+(1/2) 15} Y (8,9),
(4.102)

To at €1 {Gg/2H22Z5(6,0) (3X,/98) - X1(8,9)(8Z,/98)}
| = (9Y1/99) + 19(3Y1/38) - (dL/dP){z(P) + (1/2) 13} X4(8,9).
(4.103)

These equations reveal that the replacement?0

z(P) » {z(P)« (1/2) 15} (4.104)

within the first order vacuum constraints of Eqs. (4.50), (4.55),
(4.58) gives the first order set of force-free constraint equations.
The resulting equations for Z3,o(9), Z3,25(9), and Z5,5.(P) are the
same as that of the vacuum case, Eqs. (4.65)-(4.67), so that the
function Z,(8.,p) is unaffected by force-free effects. However, the

force-free form of Eq. (4.64) becomes

90Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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lo V1((9) = ch(lP) (dX1,15/d(p) - X1,15((P) (dX1,1c/d(P)
+ Y1.1e(9) (dY4,157d9) - Yq,15(P) (dYq,10/dP)
+ {4/GoH(dR/dP)2{z () + (1/2)I,}. (4.105)

The magnetic field strength for force-free magnetic fields through
first order is given by Eq. (4.71), just as for the vacuum case.
Hence, force-free electric currents do not modify the magnetic field

strength through first order.

IV-F-2-a. Specification of Magnetic Flux Surfaces

The rotational transform on axis, 1y, for force-free magnetic
fields contains one additional contribution, which is that due to the
toroidal electric current density on axis, I;=(dl/dy)y. The actual
equation for the rotational transform on axis can be obtained by
applying the replacement z(@)- {z(P)+(1/2)1,} within Eqs. (4.76)
and (4.77), giving

lg = d/7d¢ + v(9), (4.108)
with
v(P) = {[1-{&(PI21(de/dP) [z(P) + (1/2)15] + {E(P)}2(dA/dP)}
x {1/7{1 +{E(P)}2}}. (4.107)

Together with the contributions due to torsion of the axis and the

ellipticity of the flux surfaces, these effects give the means to
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produce?! a rotational transform near the magnetic axis. This
result will also be shown to apply for general, scalar-pressure

equilibria within Sec. IV-G.

IV-F-2-b. Specification of Magnetic Field Strength

In constructing force-free magnetic fields with a desired form
of the magnetic field strength through first order, the replacement
z(P) - {z(P) + (1/2}1,} should be applied to Eq. (4.83), yielding

do/dY = {265/Bg(PIH TP R{z(P) + (1/2)1,}
- {1g- (dot/dPIH 1 + {M()} + {a(P)}2],
(4.108)
The actual procedure for constructing force-free magnetic fields is
given within Sec. IV-E-2-b, implementing Eq. (4.108), instead of Eq.
(4.83).

IV-F-3 Force-Free Magnetic Fields through Higher Order

Close inspection of the constraint equations of Eqgs. (4.94)-
(4.96) for force-free magnetic fields reveals that the leading order
behavior of X(y,8,9), Y(y,8,9), and Z(y,8,9) is unmodified®2 from
its behavior for the vacuum case. Terms resulting from force-free
currents, i.e., those due to Gj, Gg4,..., and [j, l4,..., never give the
highest order contribution within the constraint equations of Eqgs.

(4.94)-(4.96) at any order. Hence, plasma current effects are

91spitzer Jr., L. (1958). Phys. Fluids1, 253.
92Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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subdominant to the vacuum field in the construction of the magnetic
configuration. Therefore, the methodology used in the matching
constraints for vacuum fields is not significantly modified by the
inclusion of force-free currents.

The previous analysis demonstrates that the techniques for
finding force-free magnetic fields is similar to that used in
constructing vacuum magnetic fields with perfect surfaces. The
average force balance equation of Eq. (4.99), which is a constraint on
the flux functions dG/dy, di/dy, and 1(y), is the only additional

restriction on the system.

IV-G. Scalar-Pressure Plasma Equilibria

We now wish to determine whether this methodoiocgy for
constructing force-free magnetic fields also applies for magnetic
configurations with a non-zero pressure gradient. That is, we wish
to extend the formalism to general, scalar-pressure, MHD equilibria.

The three components of the constraint resulting from the
equality of the two forms of the magnetic field, Eq. (4.15), are given
by93

Ko: G (3Y/3¥)(82/0Y) - (8Z2/9y)(dY/39)}
+ 1093279y Y(y.8.9) - (8Y/3Y)AlY,8,9)}
+ Bu(y,0.9){(3Y/38) A(Y,0.9) - (82/38)Y(y,8.9)}
= 2(y,8,9) + L(y)(aX/ae), (4.109)

93Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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Tor  G(Y){(32/3W)(3X/98) - (9X/9Y)(32/98)}
+ IY{(3X/3YIA(Y,8,9) - (3Z73Y)E(Y,8,9)}
+ Bu(V,8,0){(32/98)=(y,6.9) - (3X/38)A(Y,8,9)}
= Y(y,0,9) + 1(Y){aY/ae), (4.110)

Do:  G(Y{(8X/0¥)(dY/98) - (3Y/dY)(3X/38)}
+ [N {BY/3Y)E(Y.0,0) - (3X/3Y) Y(¥,8.9)}
+ Bu(y.8.9){(aX/308)Y(y.0.9) - (3Y/38)E(¥,8,9)}

= AlY,8.9) « L(Y)(3Z/98), (4.111)

with Z(.8,9), Y(y.6.0), and A{Y,0,9) defined in Egs. (4.44)-(4.46).
The expression for the reciprocal of the magnetic field strength,

1/B2, is exactly the same as that for force-free magnetic fields, Eq.

(4.97).
The only function that enters into the constraint equations of

Eqgs. (4.109)-(4.111) for toroidal, scalar-pressure equilibria that is
absent within the force-free equations is 8 ,(y,8,9). This additional

function is determined by the Fourier coefficients of the magnetic

field strength via Eq. (4.7). The function 8,(y.8.¢) will be shown to

neither augment, nor remove, any freedom in the functions of ¢ that

exist within the force-free analysis.

IV-G-1. Scalar-Pressure Equilibria through Zeroth Order

The €0 order equations are unmodified by the presence of a
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pressure gradient, just as for the force-free current case.
Therefore, the magnetic axis analysis for vacuum fields given within
Sec. IV-E-1 also applies to toroidal, scalar-pressure equilibria. The
only modification is that the average force balance equation, Eq.

(4.6), at lowest order, has the form
Gy + Lglg + PaGo/<L{Bo(P)2> = O, (4.112)

for scalar-pressure equilibria. This equation constrains the lowest
order poloidal current density within the plasma, G5, given the
toroidal current density, 15, and plasma pressure gradient, pj, to

lowest order.

IV-G-2. Scalar-Pressure Equilibria through First Order
Finite pressure gradient modifications of the constraint
equations first occur at €' order. The first order set of constraint

equations for scalar-pressure equilibria is given by

by at €% {Gy/21{X,(8.9)(3Y1798) - Y1(8,9)(dX1/38)} = (dL/d¢),
(4.113)
Ko at €1: {Gg/2HY,(8,0)(32,/88) - 22,(6,9)(3Y1/398)}
= (3X1/99) + 14(3X1798) + (dR/dP){z(P)+(1/2)15}Y4(8,9)
-{(d Q/dtp)ﬁ..o(@)(a‘a’,/ae), (4.114)
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50 at gl: {60/2}{222(6.(P)(6X1/66) - X1(6.¢)(622/66)}
= (3Y1/99) + 19(aY;/938) - (d2/dP){=(P) + (1/2)I,}X(8.9)
+(d2/7d9) B, (P)(9X,/38). (4.115)

Examination of these matching constraints reveals that the equation
for the rotational transform on axis of Eq. (4.105) and the functions
Z3,25(P) and Z;,5.(P) of Egs. (4.66) and (4.67) are not affected by a

non-zero plasma pressure gradient. The function B, (9), which is

proportional to the lowest order pressure gradient, only modfies the

second order function Z,,(9) via

22,0(9) = -{17{8(d2/dP)IHdV4/dP) + (1/Gg)(dL/dP) B, (P), (4.116)

with V¢(9) defined in Eq. (4.68).

The expression for the magnetic field strength through e
order of scalar-pressure equilibria is identical to that for vacuum
fields, Eqg. (4.71). Therefore, the first order variation in the
magnetic field strength of general scalar-pressure equilibria is
determined by the curvature of the magnetic axis, so that all other
effects enter at higher order. This result is consistent with the 1/R
dependence of the magnetic field strength of a tokamak with
toroidal radius R.

The previous analysis has demonstrated®4 that a non-zero

plasma pressure gradient only modifies the second order function

94@Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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Z2(0,9), and thus does not affect the magnetic field strength or the
shape of the flux surfaces through first order. Hence, the force-free
results regarding the specification of the magnetic flux surface
shape and the magnetic field strength through first order, which
were given within Sec. IV-F-2, also apply for scalar-pressure
equilibria.

Suppose that the magnetic field strength on axis is Fourier

decomposed in the form of Eq. (4.4),

17{Bo(P)}2 = {1/<K{Bo(PNZ>H 1 + T{F,cos(ng) « Ay sin(nP) }H,
n=1 (4.117)

with &, and X, constants and {{Bo({)}2> the average of {By({)}?
within a flux surface, as defined by Eq. (4.5). The function 5,0(30)

then has the form

Bug(9) = {p2Go/LIBo(PH2> Z{1/nH 7y sin(ng) - Aqcos(nd)t,
n=1 (4.118)

using Eq. (4.7). A given magnetic axis, lowest order plasma pressure
gradient, py, and axis magnetic field strength, Bg(¢), uniquely
determine the function 5..0('9) via Eq. (4.118). Since 5,.0((1)) is

completely determined by functions that enter at zeroth order, a

non-zero plasma pressure gradient neither augments, nor
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removes?®5, any freedom within the first order constraint

equations. We now extend these results to higher order.

IV-E-3 Scalar-Pressure Equilibria through Higher Order

Inspection of the matching constraints of Eqgs. (4.109)-(4.111)
shows that the leading order behavior of X(y,8,9), Y(y,8,0), and
2(y.8,9) is unchanged®® from that of the vacuum and force-free
cases. Terms due to a non-zero pressure gradient and electric
current, i.e., those involving any of the factors pg, P4, ..., Gg, Gy, ...,
and Ig, 4, ..., never give the highest order contribution to the
matching constraints of Eqgs. (4.109)-(4.111) at any order. The
vacuum magnetic field, which is generated by electric currents
outside of the plasma, always gives the leading order terms.

The only new function of position that appears within the
scalar-pressure constraint equations of Eq. (4.109)-(4.111) is
B.(y,8,0). This function is completely determined by the form of

the magnetic field strength and the flux functions, G(y), I{(y), L (),
and p(y), via Eq. (4.7). Hence, the function B,.(y.8.9) does not
introduce any true freedom into the system of equations.

Furthermore, we will now demonstrate that a non-zero §.(y.8.¢)

does not affect the basic methodology®’ of satisfying the matching
constraints that was used for the vacuum and force-free field cases.

Sec. IV-E-3 revealed that the jit order set of matching

95Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
961hid.
bid.
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constraints is given by the K, and £, matching constraints at €’

j-1

order and the Eo matching constraint at € order. The highest

order non-flux functions that appear in both the Ky and Z4 matching
constraints at €/ order are given by X;(e,9), Y;j(e,9), Z;.1(8,9), and
,8,1_1(9.(9). For the by matching constraint at gl order, the
highest order functions are Xj(e,9), Y;(8,9), Z;-1(e.9), and 5..]._
3(e.cj)). Therefore, the lowest order term within the function

8.(y,0,0) that enters into the jil order set of matching constraints
is 5*1-1(9-‘9)- Thus, the function ,B,.].(BJP) first enters into the

{(j+1)st order set of matching constraints.

We now have all the necessary equations for constructing
toroidal, scalar-pressure MHD equilibria order by order in the
expansion. As noted earlier, the function ,B..j(e.cp) first enters into

the (j+1)st set of matching constraints. The form of §,(y,8,9) in Eq.

(4.7) implies that 5,.j(e,tp) is determined by the form of the

recipracal of the field strength, 1/B2, through ej order. The leading
order function that enters 1/B2 through el order is the Xi(e,9)
factor within the term —2sj(d2/dg0)2x(tp)xj(e.tp) of Eq. (4.97). The
function x,-(e.cp) is associated with the ji order set of matching

constraints. All other variables that enter 1/B2 through el order
determined by lower order sets of matching constraints. Thus, the

function ,B,.j(e.(j)) is also determined by the jihb and lower order sets

of matching constraints. However, ,B,.j(e.cp) first enters the (j+1)st
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set of matching constraints. Therefore, for each order that a term

in the expansion of §,(y.8,9) first enters into the constraint

equations, it is completely determined by one lower order.

The only additional constraint that must hold is the average
force balance equation, Eq (4.6). This relation involves the flux
functions dp/dy, 6(y), I(y), (), and {B2), but does not affect the
basic methodology of satisfying the equality of the two forms of the
magnetic field. Therefore, the techniques used to satisfy the
constraints for vacuum and force-free magentic fields is not
significantly modified by including a plasma pressure gradient

within the toroidal region.

IV-H. Physical Interpretation of Ordering

The techniques outlined within this dissertation can be used to
investigate the spectrum of possible three-dimensional plasma
equilibria. Such equilibria are typically characterized by certain
parameters, such as magnetic field strength, rotational transform,
plasma current, and others. There exist sufficient approximations
of these parameters near the magnetic axis of any equilibrium. We
will qualify98 the particular order in the expansion in which each
of the relevant parameters first enters. We find that the
parameters of primary interest to the fusion program have suitable

approximations through third order in the expansion.

%8Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids 8: Plasma Physics 3, 2805.
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IV-H-1. Zeroth Order

Zeroth order in the expansion is characterized entirely by the
magnetic axis itself. The shape of this magnetic field line is
arbitrary, provided that it is a smooth, closed curve. In addition, the
magnetic field strength of the axis itself is arbitrary. However,
this axis field strength must be non-zero in order to apply the

methods within this dissertation.

IV-H-2. First Order

Through first order in the expansion, the cross sections of the
magnetic flux surfaces are ellipses. The magnitude of the
ellipticity, &(¢), can vary with the toroidal angle, ¢. In addition, the
elliptical flux surfaces can also rotate with ¢ and generate a
contribution to the rotational transform on axis, 13, as was
demonstrated within Sec. IV-E-2.

The magnetic field strength at first order is governed by the
magnitude of the curvature of the axis, regardless of the plasma
current and pressure profiles, as was shown in Sec. IV-G-2. As the
magnetic axis curves and twists through space, the magnetic field
strength is stronger on the inboard side of the local curvature, and
it is weaker on the outboard side.

The form of the rotational transform on axis, lg, is apparent at
this order. The toroidal electric current on axis, I, the torsion of
the axis, To(Q), and the ellipticity, £(9), can all contribute to the

transform on axis, as was demonstrated in Sec. IV-G-2.
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Obviously, the magnetic flux surfaces can admit a non-zero
plasma pressure gradient, p;, and poloidal electric current, Go, near
the axis. The only constraint on these flux functions is that they
satisfy the lowest order, average force balance equation of Eq.
(4.112).

Another characteristic of toroidal configurations is the shear
of the magnetic field lines. The field line shear is defined to be the
change in the pitch®® of neighboring magnetic field lines. Desirable
plasma equilibria should have large local shear90 in regions of bad
curvature in order to mitigate certain pressure-driven plasma
instabilities. The interrelation of the freedom in the local shear
coupled with that of the magnetic field strength would be a
formidable, but useful, topic for future investigation. The lowest
order magnetic flux surfaces give the dominant contribution to the
local shear, as will be demonstrated within the following two
paragraphs.

The local shear S{y.8,P) in terms of Boozer coordinates is

defined by101

$(¥,8,9) = |V¢|-* {{BxVy}-{Vx{BxVy}}}
= (17J)(dv/dy) + B'V{{G(&ﬂQg,g - l(W)g(p\;,}/{J |VS€’|‘2”.
(4.119)

99Friedberg. J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York,
p. 72.

100NGhrenberg, J., and Zille, R. (1987). Theory of Fusion Plasmas, Proceedings of the
workshop held at Villa Cipressi-Varenna, ltaly, Aug. 24-28, Societa ltaliana di
Fisica, Bologna, ltaly, p. 3.

101 piq,
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with J($,6,9) the spatial Jacobian of Eq. (4.14) and gye and ggy the

magnetic field metrics defined by

dye = (3x/3Y) (3x/98), (4.120)

Using the expansion functions defined within this disseration, the

lowest order expression for the magnetic field line shear becomes

S(y,8,9) = {Go/{4(d2/dP)2e2}}

(9/38){{X1(8,9)}2 + {Yq(0,9)}2}

x {(9/99) + 14(3/08)}
(3X,/98)2 + (3Y,/36)2 :
(4.122)

The lowest order expression for the shear obviously depends on the
defails of the configuration. The lowest order non-trivial flux
surfaces, which are determined by the functions X4(8,9) and Y,(6.9),
gives the dominant contribution to the local shear.

The lowest order contribution to the local shear of Eq. (4.119)
diverges as the plasma radius approaches zero, as exhibited by the
1/7e2 dependence of Eq. (4.122). This peculiar result is consistent
with the fact that the global éhear. i.e., the (di1/dy) term of Eq.
(4.119), is a €% order term. The global shear is independent of the
toroidal and poloidal angles, ® and ¢, respectively, unlike the local

shear. The global shear, which is given by 1,/14 within our analysis,
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enters the equilibrium equations at third order in €, whereas the
lowest order flux surfaces which determine the local shear enter at
first order in €. Thus, the local shear enters the equilibrium
equations two orders lower than the global shear, which is
consistent with the fact that the lowest order local shear of Eqgs.
(4.119) and (4.122) is two orders lower than the global shear.

IV-H-3. Second Order

The second order flux surfaces can exhibit triangular
contributions to the flux surface cross section. Additionally, the
center of the flux surface cross section can be shifted with respect
to the magnetic axis. This offset of the flux surfaces with respect
to the axis is called the Shafronov shift'92. The actual flux surface

shape can be evaluated using the function
{r(y.8.9)12 = {X(y.8,9)12 + {Y(y.6,9)}2, (4.123)

with X(y,8,9) and Y(y,8,9) given through second order in €. The
function r(y,8,9) gives the distance from the magnetic axis to a
point determined by a set of coordinates, {{y. 8, §}. Flux surface
cross sections are determined by varying over the angles 8 and ¢,
while holding the toroidal flux, ¥, fixed.

The parameters that determine the shape of the flux surfaces

through second order are interrelated with the average magnetic

102ghatranov, V. D. (1966). In Reviews of Plasma Physics, ediled by M. A. Leontovich,
Consultants Bureau, New York, Vol. Il.
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well, which first enters the form df the field strength at second
order. The average magnetic well is defined to be the derivative of
the. average magnetic field strength within a flux surface, with
respect the flux coordinate, ¥, as described within the introduction.
The average magnetic weil, in addition to the field line shear, can
serve to stabilizel’®3 a plasma against certain pressure-driven
instabilities.

Many other effects give contributions to the magnetic field
strength at second order. The toroidal and poloidal plasma currents
near the axis, Iy and G,, respectively, the plasma pressure gradient
near the axis, p,, the torsion of the axis, z(2), the curvature of the
axis, k(2), the rotatioal transform on axis, 1y, and products of these
terms all contribute to the magnetic field strength at second order.
This result is obtained by examination of the general formula for the
magnetic field strength of Eq. (4.97). Due to our inability to make
any insightful simplifications, we did not explicitlly give the field

strength through second order within this dissertation.

IV-H-4. Third Order

At third order in the expansion, the flux surface shape can
exhibit a contribution due to bean-shapedness, in addition to an
enhancement of the ellipticity. The bean-shapedness arises from
M=4 poloidal harmonics within the magnetic field strengh, just as

triangularity arises from poloidal harmonics with M=3. The shape of

103Friedberg, J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York,
p. 73.
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the flux surfaces is discerned via {r(y.e.9)}? of Eq. (4.123), using
X(y,8,9) and Y(y,6,9) evaluated through third order. The magnetic
field strength of Eq. (4.97) through third order contains
contributions due to the global shear, 19/13, and higher order plasma
current and pressure quantities, such as Gy, I4, and p4.

A toroidal plasma equilibrium can possess a net toroidal
electric current that is driven by a non-zero pressure gradient!04,
Since the pressure gradient must vanish at the magnetic axis for
analytic magnetic fields, this electric current must also vanish on
axis. The lowest order value of this so-called “bootstrap current”
is given by l4 within our analysis.

The dependence of the bootstrap current on the geometric
properties of the magnetic configuration can be extracted using the
rotational transform, 1(y), and the Fourier harmonics within the
magnetic field strength, B(y,8,9), as outlined by Boozer and
Gardner19%, The details of their results are beyond the scope of this
dissertation and will thus not be given. However, the relevant point
is that approximations permit the computation of a self-consistent
value for the bootstrap current near the magnetic axis of any

toroidal plasma equilibrium.

104Njishkawa, K., and Wakatani, M. (1990). Plasma Physics: Basic Theory with Fusion
Applications, Springer-Verlag Berlin Heidelberg, Germany, p. 266.

105g00zer, A. H., and Gardner, H. (1991). Phys Fluids B: Plasma Physics 2, 2408.




CHAPTER V
RESTRICTIONS ON THE MAGNETIC FIELD STRENGTH

We are able to elicit several generic restrictions'9€ on the
form of the magnetic field strength corresponding to general
toroidal plasma equilibria. For equilibria in which the magnetic
field strength never vanishes within the toroidal region, (1) the
first order curvature term in the magnetic field strength cannot be
made to completely vanish, and (2) the magnetic field strength is
not arbitrary through third order in the expansion parameter, €.
However, we also clarify the specific freedoms in the form of the
magnetic field stength. These freedoms are that: (1) the magnetic
field strength is arbitrary through second order in €, provided that
the first order curvature term does not entirely vanish, and (2) the
magnetic field strength on one particular magnetic flux surface is
fully arbitrary, again with the provision that the first order

curvature term is non-zero.

A. Non-Vanishing of the First Order Curvature Term
The magnetic field strength through &' order for toroidal,
scalar-pressure equilibria is given by Eq. (4.71). The first order

term in this expression is € k(9)X,(8,9). The function x(¢) is the

108Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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reciprocal of the magnitude of the local radius of curvature of the
magnetic axis. Clearly, k(§) cannot be identically zero, since the
magnetic axis is required to bend for some values of ¢ for it to be a
closed curve. Hence, the function X,(8,) must be exactly zero in
order that the first order curvature term in the field strength vanish
identically.

The product €Xi(8,9) is the first order term in the power
series expansion of X(y,0,9) (see Fig. 5), defined in Egs. (4.30) and
(4.31). This lowest order expression for X(y,8,9) corresponds to
x(y,0,9) of Eq. (1.4). The form of the function X4(8,9) given in Eq.
(4.81) is exactly zero if and only if the function n{(¢P) completely
vanishes, assuming non-zero axis field strength, Bg(9). However,
the lowest-order flux surfaces collapse to ribbons that are both
infinitely thin and and infinitely tall in the singular limit that
n(P)-0, with B4(P) =20, as revealed in Sec. IV-E-2. Therefore, the
first order variation in the magnetic field strength cannot be made
to perfectly vanish197 for all values of the toroidat angle, §. This
result applies to any toroidal plasma equilibrium with non-trivial

magnetic flux surfaces and non-vanishing magnetic field strength.

B. Non-Arbitrariness through Third Order

The magnetic field strength of toroidal plasma equilibria has
the general form of Eq. (1.3). We will demonstrate that the ¢-
periodic functions Bg(9), p1{P), X1(P), Wo(P), Fo(P), §2(P), C1(9),
¥1(9), C3(9), and 73(P) of Egs. (1.3)-(1.8) cannot all be chosen

197Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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freely. That is, the magnetic field strength of Eq. (1.3) is not
arbitrary through third order in the expansion!®8, even if the first
order curvature term, x(¢9)x(y.8,9), is guaranteed to be non-zero, in
accord with the previous subsection. We now present the explicit
procedure for extracting this result.

The magnetic field strength corresponding to a general

toroidal plasma equilibrium can be expressed as

B(Y.6,9) = Bo(P){1 + €{by,15(P)sin(8) + by,1.(P)cos(B)}
+ €2{by,o(P) + by,a5(P) 5in(26) + by, 5.(P) cos(28)}
+ €3{b3,15(P) sin(8) + b3,1.(P) cos(8)
+ b3,35(P) sin(36) + b3,3.(P) cos(36)}
+} (5.1)
using the form of analytic expansions presented within Sec. IV-C.
Suppose that we would like to construct a toroidal plasma

equilibrium with a particular form of the magnetic field strength

through some order, say el.  That is, we seek a magnetic
configuration corresponding to some arbitrary choice of the ¢-
periodic functions within the magnetic field strength of Eq. (S5.1)
through aj order. The free selection of each of these functions of ¢
is equivalent to imposing one independent constraint on the
functions of ¢ which determine the actual magnetic configuration.
These constraints arising from the choice of the magnetic field

strength must be applied in addition to those which guarantee the

108Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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existence of equilibria through arbitrarily high order, which were
developed within Chapter IV.

In Secs. IV-(E-G)-2, we showed that the first order set of
matching constraints uniquely determine the magnetic field strength
through €l order. Similarly, the first through the ji sets of
matching constraints determine the field strength through s.-:j order.
This result follows since the highest order function that enters into
the magnetic field strength of Eq. (4.97) through ¢! order is the
Xj(e,tp) function of the 2(dl/dlp)21<((,0)xj(e.tp) term. The X;(8.9)

function is determined by the ji set of matching constraints. All

other functions that enter the magnetic field strength through g

order are determined by lower order sets of matching constraints.
Hence, the jill and lower order sets of matching constraints uniquely
determine the magnetic field strength through gl order. This result
is not as transparent if some form of the magnetic field strength
other than that of Eq. (4.17) is implemented.

Assume that a magnetic configuration has been constructed
through ej'l order. Correspondingly, the magnetic field strength is
also determined through .~3j'1 order. Eq. (5.1) clearly shows that an
arbitrary choice of the s] order term of the magnetic field strength
involves j+1 functions of ¢. Thus, j+1 independent constraints must
be satisfied by the funétions of ¢ that first enter the configuration
at sj order. Using the methodolgy of constructing toroidal plasma
equilibria given within Secs. IV-(E-G), the 3j+2 independent §-

equations of the jib order set of matching constraints must also




126

hold. Hence, a grand total of 4j+3 independent (-constraints must
be satisfied in constructing torodial equilibria with arbitrary forms
of the magnetic field strength at ej order, assuming these equilibria
already exist through t-:j'l order. The functions that are available to
fulfill these constraints are the 3j+4 functions of ¢ within the
poloidal expansions of X(y.8,9), Y({¥,8,9), and Z(\.8,9), given within
Egs. (4.31)-(4.34). Obviously, the leading order of the new
constraints that enter at a particular order, which scales as 4j, will
eventually overtake the 3j scaling of the new functions of ¢ that
enter. Therefore, the generic freedom in the expansion of the
magnetic field strength will be broken at some particular order in
the expansion. We prove that this loss of freedom occurs at third
order.

The functions of ¢ available to satisfy the various constraint
equations are not all contained within the functions X(y.,8,9),
Y(y.8.9), and 2(y,8,0). The arbitrariness of the magnetic axis
implies that the curvature, x(¢), and torsion, z({), functions
introduce additional freedom into the system of equations. The only
constraint on these two functions is that they must be consistent
with a smooth, closed curve. Only two Fourier harmonics within a
set of X(2) and z(2) need be varied in computational optimizations
to obtain a smooth, closed curve, as was shown in Sec. llI-C.

We show the breakdown in the freedom of the magnetic field
strength by an eventual loss of free functions of ¢ as the expansion

is taken to higher order. Thus, we will assume, incorrectly in a
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strict sense, that k(9) and z({) are entirely free functions of ¢.
This presumed freedom of the curvature and torsion functions can be
used to help satisfy the ¢-constraints in constructing toroidal
equilibria with desired magnetic field strengths. In addition, this
assumed freedom of k(P) and z(¢) does not affect the 3j scaling of

| order.

the functions of ¢ available to satisfy the ¢-constraints at €
We now examine the specific constraints and functions of ¢ involved

at each order in the expansion.

V-B-1. Zeroth Order

Only one constraint is implemented in the specification of the
magnetic field strength at €0 order. This sole constraint arises
from the freedom of the magnetic field strength on axis, Bo({P) of Eq.
(5.1). The ¥ dependent configuration functions available to satisfy
this constraint are 2(¢), k[2(P)], and z[2(P)], which completely
determine the magnetic axis. Eq. (4.51) shows that the axis length,
£(9), and the poloidal coil current, Gy, uniquely give the magnetic
field strength of the axis, Bg(9). Thus, the functions k() and =(¢)
remain entirely arbitrary in the choice of the magnetic field
strength of the axis. The presumed freedom of these two functions
can be used to assist in the constraints of arbitrarily selecting the

first order term of the magnetic field stréngth.

V-B-2. First Order

Two new constraints arise in the specification of the magnetic
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field strength at first order in €, which result from the freedom of
the functions by, 4(9) and by,1.(P) of Eq. (5.1). The ¢ dependent
configuration functions within the magnetic field strength of Eq.
(4.97) are required to yield this desired form. In addition, these
configuration functions must also satisfy the first order set of
matching constraints that were defined within Secs. IV-(E-G). Thus,
the entire set of constraints is given by: a) the two constraints that
arise form the arbitrary specification of the functions bj,;5(9) and
bq.1c(P) of the field strength in Eq. (5.1), b) the two K¢ matching
constraints at €! order, c) the two 'EU matching constraints at el
order, and d) the ane b, matching constraint at €% order. The nine
functions of ¢ that are available to satisfy these seven constraints
are specifically given by Xi,15(9), X1,1c(9), Y1.15(9), Y1.1c(P),
Z2,0(9), Z2,25(9), and Z;,5.(P) of Egs. (4.31) and (4.32), and the
residual zeroth order functions k(@) and z(Q). Therefore, a
maximum of two functions of ¢ remain free after the magnetic field
strength has been chosen through first order. The freedom of these

two functions can be used within the analysis at second order.

V-B-3. Second Order

In choosing the second order term of the magnetic field
strength, we must satisfy a) the three' constraints that arise from
the specification of the functions by,g(9), ba,25(§), and by,s.(P) of
the field strength of £q. (5.1). Furthermore, we must also fulfill the

second order matching constraints of Secs. IV-(E-G), which are
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explicitly given by: b) the three 120 matching constraints at €2 order,
c) the three €, matching constraints at €2 order, and d) the two by
matching constraints at €! order. The functions of ¢ available to
satisfy these constraints are Xg,o(9), X2,25(P), X2,2c(9), Y2,0(9),
Y2.25(P), Ya,20(P), Z3,15(P), Z3,10(9), 23,35(9), and Z3,3.(P) of Egs.
(4.32) and (4.33), in addition to the two functions of ¢ that remain
free after specification of the field strength through first order.
This result yields a grand total of twelve free functions of ¢ that
are available for eleven independent constraints. Thus, after
construction of the desired magnetic field strength through second
order, a maximum of one free function of ¢ is accessible to the

constraints of third order.

'V-B-4. Third Order

The constraints that enter in specifying the third order term
of the magnetic field strength are: a) the four constraints arising
from the choice of the functions bz,;(9), bs,1.(9), b3,35(¢), and
b3,3c(P) of Eq. (5.1), b) the four K¢ matching constraints at €% order,
b) the four 50 matching constraints at €% order, and c) the three 50
matching constraints at €2 order. These fifteen independent
constraints must be satisfied by the thirteen functions Xj,15(9),
X3.1c(9), X3,35(P), X3,3:(P), Y3,15(0), Y3,16(9), Y3,35(P), Y3,5.(9),
24,0(P), Z4,25(P), 24,20(9), Z4,45(P), and Z4,4.(P), plus a maximum of
one additional function of ¢ not constrained through second order.

Thus, a maximum of fourteen functions of § are accessible to the
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fifteen independent constraints, yielding an overdetermined system
of equations. Therefore, we do not have generalized freedom in the
specification of the magnetic field strength through third order in

the expansion.

IV-C. Field Strength Freedom Through Second Order

In the previous section, we proved that the magnetic field
strength corresponding to toroidal plasma equilibria is not arbitrary
through third order. In this section, we show that there exists
sufficient freedom to permit arbitrary forms of the magnetic field
strength through second order'%9. The only provision is the non-
vanishing of the zeroth and first order terms of the magnetic field
strength.  More specifically, torodial plasma equilibria can be
constructed with desired forms for the functions Bg(9), p1(P), A(®),
Wo(P), Fo(9), and §,(9) of the magnetic field strength of Eqgs. (1.3)-
(1.5), provided that neither Bqo(®), nor p;(P), vanish for any value of
Q.

The demonstration of the freedom in the magnetic field
strength through second order follows in a manner similar to that of
the restriction in the field strength through third order. However,
this result regarding the field strength freedom is different from
that of the previous section in one major respect. To prove the
restriction in the magnetic field strength through third order, we
assumed the maximal freedom of the magnetic axis. That is, the

curvature, x(¢), and torsion, z(¢), functions were taken to be

109Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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completely free functions of . This presumption followed from the
analysis of Sec. IlI-D, which proved that only two Fourier harmonics
within a set of k(%) and (%) need be varied in optimizations to
obtain a smooth, closed magnetic axis.

To show the freedom in the magnetic field strength through
second order, we must assume the minimal possible freedom of the
magnetic axis functions, k() and ¥(%). Clearly, we can presume
that one these two functions is completely arbitrary, since only two
Fourier harmonics within the set of k(%) and z(2) are required to
serve as variable parameters in obtaining smooth, closed axes. The
detailed analysis of the previous section for satisfying the matching
constraints and the desired form of the magnetic field strength can
then be refashioned to give the result of this section, using only one
free function of ¢ within k[2(¢P)] and z[2(Q)], instead of two. The
uniqueness of the Frenet representation of the spatial position for a
given toroidal equilibrium implies that the ¢ dependent
configuration functions within this analysis contain no trivial
freedoms resulting from only trivial translations and rotations of
the coordinate system, as shown in Sec. IV-B. Furthermore, since
non-zero plasma current and pressure do not affect the basic
methodology of satisfying the matching constraints, as revealed
within Secs. IV-(F-G), this result of the freedom in the magnetic
field strength through second order holds for general toroidal
plasma equilibria.

Detailed analysis also shows that only one of the two poloidal




132

harmonics in the magnetic field strength at third order is freel19,
given arbitary forms of the field strength through second order.
That is, either the M=1 poloidal harmonic functions Ci(®) and &;(¢®)
of Eq. (1.6) or the M=3 poloidal harmonic functions C3({) and Z3(¢)
are arbitrary, in addition to the lower order functions By(9), p{(9),
A(9P), Wo(9), Fa(9), and §,{P) within the field strength of Eqs. (1.3)-
(1.5). This result follows since two new functions of  remain free
after the matching constraints at each particular order have been
applied, as demonstrated in Sec. IV-(E-G)-3. In a related fashion,
one poloidal harmonic within the magnetic field strength at any
order can be chosen at whim. However, the other poloidal harmonics
within the field strength at this particular order would not be

arbitrary.

V-D. Freedom on One Particular Flux Surface

We have shown that the magnetic field strength corresponding
to a toroidal plasma equilibrium cannot be chosen freely throughout
the three-dimensional volume in the vicinity of the magnetic axis.
This result is merely a reiteration of the non-arbitrariness of the
magnetic field strength through third order, which was proven in
Sec. V-B. However, the magnetic field strength is not prohibited
from being specified freely on a two-dimensional flux surface. In
fact, we find that the magnetic field strength on one particular

magnetic flux surface is completely free!!!, provided that the first

110Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
111 pid.
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order curvature term does not entirely vanish.
To comprehend the freedom of the magnetic field strength on
one flux surface, consider the general form of the field strength

within any flux surface,

(o]

B(.,8.9) = By(P) + L™ {bm s(P) sin(me) + by c(P)cos(me)}. (5.2)
m=1

This equation is consistent with the form of analytic functions
derived within IV-C. The particular magnetic flux surface depends
on the value of €, which now takes the role of a parameter rather
than a variable. Recall from Secs. IV-(E-G)-3 that each order in the
general equilibrium constraints introduces two functions of ¢ that
can be used to give some freedom in the specification of the
configuration. Arbitrariness of these two functions of ¢ at jfb order

permits one to choose the functions bj s(9) and bj c(¢) of Eq. (5.2) to

! order term of the magnetic field

give a desired form for the €
strength. Since this selection applies for all orders in g, the
magnetic field strength on one flux surface can be chosen entirely
freely. The only restriction is that the zeroth and first order terms
must not completely vanish, in accord with Sec. V-A. This result is
fully general for any toroidal, scalar-pressure plasma equilibrium.
Hence, the confinement properties can be optimized more freely near
one particular magnetic flux surface than throughout a three-

dimensional volume.



CHAPTER Vi
QUASI-HELICALLY SYMMETRIC EQUILIBRIA

The expression for the magnetic field strength in terms of
Boozer coordinates largely determines112 the confinement and
stability properties of a toroidal plasma equilibrium, as
demonstrated within Chapter Il.  Furthermore, widely differing
configurations with similar forms for the magnetic field strength in
terms of Boozer coordinates were shown to have related plasma
transport properties!13. However, toroidal equilibria corresponding
to desirable forms of the magnetic field. strength may not always
exist.  Specifically, the Taylor-Fourier series expansion of the
magnetic field strength has restrictions??4 that arise from the
toroidicity of the configuration and the divergence-free property of
the magnetic field, as proven within the previous chapter.

In this chapter, we will implement the generic restrictions
and freedoms of the magnetic field strength to investigate
particularly significant types of toroidal plasma equilibria. The
most desirable class of toroidal plasma equilibria exhibits constant
magnetic field strength within the plasma pressure surfaces, as

first proposed by Palumbol1S. However, such toroidal "isodynamic”

1128g0zer, A. H. (1984). Phys. Fluids 27, 2441,
113Boozer, A. H. (1983). Phys. Fluids 26, 496.
114Garren, D. A., and Boozer, A. H. (1891). Phys. Fluids B: Plasma Physics 3, 2805.
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equilibria can exist only in limits in which magnetic field strength
on axis vanishes or the magnetic flux surfaces become open, as
proven by Bernardin, Moses, and Tataronis116, Thus, these
investigators conclude that toroidal isodynamic equilibria are not
practical for applications of constructing a fusion reactor. In the
first section of this chapter, we will demonstrate the first order
symmetry breaking of toroidal isodynamic equilibria within the
framework of our analysis.

The next most desirable class of toroidal plasma equilibria is
characterized by a magnetic field strength which depends on only
one angular coordinate within the constant pressure surfaces. Such
toroidal equilibria are said to be "quasi-helically symmetric®117. In
the second section of this chapter, we show that quasi-helical
symmetry is always broken at third order!18, i.e., (AB)/B = €.
Nevertheless, good approximations of quasi-helical symmetry exist
for practical values of € =1/10, since the symmetry breaking occurs
at third order, rather than some lower order. The remaining sections
of this chapter are devoted to developing generic properties and
sample configurations of toroidal plasma equilibria which highly

approximate quasi-helical symmetry.

115palumbo, D. (1968). Il Nuovo Cimento X538, 507.

116ggrnardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,
2605.

117Ndhrenberg, J., and Zille, R. (1988). Phys. Left. A.129, 113
11€Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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Vi-A. Breaking of Torcidal Isodynamic Egquilibria

The magnetic field strength of isodynamic plasma equilibria is
defined to be uniform within surfaces of constant pressure. Hence,
the magnetic field strength has the generic form B(Y) in terms of
Boozer coordinates. As first noted by Palumbol1?, such equilibria
are highly desirable, since their guiding-center particle trajectories
remain within the pressure surfaces for all time. These favorable
particle trajectories arise from the conservation of the canonical
momenta pg and py using Eq. (2.30), which follows from the absence
of the coordinates 8 and ¢ from the magnetic field strength of the
drift Hamiltonian in Eq. (2.26). Because the guiding-center
trajectories do not cross the pressure surfaces, plasma transport
across the pressure surfaces due to guiding-center drift motion does
not exist. However, transport due to classical diffusion remains,
although it is weaker than gquiding-center transport by the ratio of
the particle gyro-radius to the radius of curvature of the magnstic
field lines. This ratio is approximately 1/500 for plasmas of fusion
interest.

Bernardin, Moses, and Tataronis120 have performed a detailed
investigation of isodynamic equilibria. They have proven that
toroidal isodynamic equilibria exist only in two limits: 1) the
magnetic flux surfaces become open, and 2) the magnetic field

strength of the magnetic axis vanishes. We will now use the

119pajumbo, D. (1968). I Nuovo Cimento X53B, 507.

120Bernardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,
2605.
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formalism developed within this dissertation to demonstrate these

two limits through first order in an expansion about a magnetic axis.

VI-A-1. First Limit: Collapsing Magnetic Flux Surfaces

The magnetic field strength corresponding to toroidal MHD
equilibria through first order is given by Eq. (4.71)." This form of the
field strength applies regardless of the plasma current and pressure
profiles, as shown within Secs. IV-(F-G). The expression for the
magnetic field strength in terms of Boozer coordinates, Eq. (4.71),
must have the form B(y) in order to be consistent with torodial
isodynamic equilibria.

The magnetic field strength on axis, Bg(9) of Eq. (4.71), can
obviously be made to be independent of . Thus, toroidal isodynamic
equilibria trivially exist through €9 order. However, obstacles arise
in constructing toroidal isodynamic equilibria through first order.

The first order term in the magnetic field strength of Eq.
(4.71) is given by Bgor(P)Xq(8.0), with By constant Assuming non-
vanishing axis field strength, the product k(P)X(8,9) is required to
be independent of the angles © and ¢ in order to give toroidal
isodynamic eqilibria. The function X(8.) always exhibits non-
trivial 8 dependence, presuming the function T(¢) of Eq. (4.81) is
non-zero. In the singular limit in which the function M(9) does
vanish, the lowest order flux surfaces collapse to ribbons that are
both infinitely thin and infinitely tall, as developed within Sec. V-
E-2-b. Since the axis curvature, x({), cannot completely vanish for

toroidal configurations, the first order term of the magnetic field
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strength is compelled to have non-trivial 8 dependence, assuming
the magnetic field strength of the axis is non-zero.

One obvious limit in which toroidal isodynamic equilibria exist
corresponds to the vanishing of the function n(®) of Eq. (4.81). For
this case, the magnetic flux surfaces collapse to ribbons that are
both infinitely thin and infinitely tall near the magnetic axis. That
is, the flux surfaces are flattened along the local curvature vector
of the magnetic axis, Kq(2) of Fig. 5. This limit of toroidal
isodynamic equiibria corresponds to the magnetic flux surfaces
becoming open, as first demonstrated by Bernardin, Moses, and

Tataronis121,

VI-A-2. Second Limit: Vanishing Axis Field Strength

Palumbo122 apalytically constructed a particular class of
axisymmetric isodynamic equilibria. These toroidal plasma
equilibria are characterized by zero magnetic field strength on the
magnetic axis. Thus, the local plasma beta, which is defined to be
the ratio of the plasma energy density to that of the magnetic field,
i.e., 8=2Myp/B2, is infinite on the magnetic axis. As expected, he
found that this class of toroidal isodynamic equilibria was highly
unstable to pressure-driven perturbations.

The near-axis results of Palumbo equilibrié can be obtained

through observation of Eq. (4.80) for the magnetic field strength of

121ggrnardin, M. P., Moses, R. W., and Tetaronis, J. A. {1986). Phys. Fluids 29,
2605.

122palumbo, D. (1968). #f Nuovo Cimento X53B, 507.
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general MHD equilibria through first order. The vanishing of the axis
field strength, By(9) in Eq. (4.80), clearly eliminates the zeroth and
first order terms within the magnetic field strength. This result
can be achieved using non-trivial values for the curvature, x(¢), and
ellipticity along the curvature, n(¢), of Eq. (4.80). Since the
explicit 8 and ¢ dependence has been entirely vanquished from the
field strength through first order, toroida! isodynamic equilibria
exist at least through first order, in this limit.

The vanishing of the magnetic field strength on axis implies
that zero net poloidal electric current flows through the closed
curve comprising the magnetic axis. Thus, the poloidal diamagnetic
current within the plasma must totally offset the poloidal current in
the field coils, in order that the axis field strength completely
vanish. An extremely large volume-averaged, plasma beta {8> =1 is
required to make the magnetic field strength of the axis approach
zero. Hence, this class of toroidal isodynamic equilibria is expected
to be exceedingly unstable to pressure-driven perturbations.

These two limits for attaining toroidal isodynamic equilibria,
i.e., the flattening of the magnetic flux surfaces and the vanishing of
the axis field strength, are independent. One can obviously construct
fow beta equilibria in which the flux surfaces are highly flattened
along the curvature vector. One can also construct high beta

equilibria with near-circular magnetic flux surfaces.
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VI-B. Breaking of Quasi-Helical Symmetry

In the previous section, terms of first order in € were shown
to preclude the existence of exact toroidal isodynamic equilibria.
Because the symmetry breaking occurs at first order, rather than
some higher order, good approximations of toroidal isodynamic
equilibria do not exist. Therefore, we attempt to find toroidal
equilibria with the second most desirable plasma transport
properties, which are those exhibiting quasi-helically symmetry.

The magnetic field strength corresponding to quasi-helically
symmetric equilibria has the general form B(y, o), with ct=8-N¢ a
helical coordinate and N an integer, in terms of Boozer coordinates.
This form of the magnetic field strength obviously exists for
configurations which are perfectly axisymmetric, i.e. ¢ independent,
giving the trivial N=0 case. Non-axisymmetic toroidal equilibria
in which the magnetic field strength depends on only one angular
coordinate within the flux surfaces were called "quasi-helically
symmetric,” by Niihrenberg and Zille123. They computaionally found
large aspect ratio stellarator equilibria which closely approximate
quasi-helical symmetry.

The particle drift trajectories of quasi-helically symmetric
stellarator equilibria would be similar'24 to those of axisymmetric
tokamak equilibria. For example, the tips of a trapped banana orbit
for both quasi-helically symmetric stellarators and axisymmetric

tokamaks remain within one magnetic flux surface. That is, quasi-

123N hrenberg, J., and Zille, R. (1988). Phys. Lelt. A.129, 113.
124pgozer, A. H. (1983). Phys. Fluids 26, 496.
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helically symmetric stellarators would have a negligible number of
super-bananal25 orbits that lead to the enhanced transport of
conventional stellarators.

The favorable drift trajectories of quasi-helically symmetric
equilibria arise from the existence of a canonically conserved
momentum, py of Eq. (2.48), that is analogous to the py invariant of
axisymmetric tokamak equilibria. The invariance of p, was proven
in Sec. 1I-D.

The magnetic field strength corresponding to quasi-helically

symmetric plasma equilibria must satisfy the constraint
|Bty.6.9)] = Bly.o0), (6.1)

with ot=68-N¢ the helical coordinate and N any integer. Such a
constraint of forcing a general function of three variables to be a
function of only two is obviously independent of the general
equilibrium constraints developed within Sec. IV-(E-G). In addition,
the quasi-helical constraint of Eq. (6.1) does not introduce any free
functions of position into the system of equations.

. We attempt to find quasi-helically symmetric equilibria
through all orders in the expansion about a magnetic axis. The
magnetic field strength of a quasi-helically symmetric stellarator

has the general form

125ggidler, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear
Society 17, 148.
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B(Y.ot) = Bg{1 + €{hy,3g5in(c) + hy,1ccOS(eX) }
+ £2{hy,g + hy,25 SiN(2ax) + hy, 5. COS(2e) }
+ €3{h3,15 5in(o) + h3,1ccOs(ct)
+ h3,35 SiN(3ax) + h3,3,c05(300) }
+ -} (6.2)

with the Fourier coefficients Bg, hq,15 hq,1c/ N2.0, 2,25, ©tC., all
constant. We apply the results of Sec. V-B regarding the generic
restriction in the expansion of the magnetic field strength through
third order. This analysis implies that-one or more of the Fourier
coefficients Bo, hy,1s, N1.1c: N2,00 N2.26 N2.2¢: P3ts N3s1er N3.3s and
h3,sc of Eq. (6.2) must exhibit non-trivial ¢ dependence. Hence,
quasi-helically symmetric plasma equilibria do not exist126 through
through third order in €.

We also deduce that quasi-helical symmetry is broken by
terms of second order in € for toroidal plasma equilibria constrained
to have circular magnetic axes!27. This result is obtained in a
manner similar to that for the third order symmetry breaking of
toroidal equilibria with unconstrained magnetic axes. The only
modification of the analysis for the circular axis case is that the
axis curvature, x({), must be constant, and the axis torsion, z(9),
must be zero. Thus, these two magnetic axis functions are no longer
available to assist in satisfying the various (D-constraiﬁts involved

in constructing quasi-helically symmetric equilibria.

128Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
127 biq.
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VI-C. Properties of Approximate Quasi-Helical Symmetry
Good approximations to quasi-helical symmetry can be
constructed, since the symmetry breaking scales as third order in
the expansion parameter, €. We obtain the following characteristics
of plasma equilibria that accurately approximate quasi-helical

symmetry128:

1. Non-Zero Curvature of the Magnetic Axis

The curvature of the magnetic axis, k(9), must never vanish
for plasma equilibria which are quasi-helically symmetric through
first order in €. A demonstration of this result will be derived

within the Sec. VI-D.

2. Non-Zero Torsion of the Magnetic Axis

The torsion of the magnetic axis, T({P), must be non-zero, since
quasi-helical symmetry is broken at second order for circular-axis
configurations, but only at third order for configurations with non-
zero torsion. In addition, circular-axis equilibria which
approximate quasi-helical symmetry and have zero net toroidal
current are constrained to have zero rotational transform on axis,
g, as we will demonstrate in Sec. VI-D. An equilibrium which
approximates quasi-helical symmetry and has a helical-like axis
and vanishing net toroidal current is not required to have a

vanishing axis transform. A non-zero rotational transform on axis

128Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822
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is beneficial since it stabilizes a plasma equilibrium against certain

pressure-driven perturbations?29,

3. Small Toroidal Variation of the Magnetic Flux Surface Shape
Quasi-helically symmetric equilibria are obtained in the limit
in which the functions X(y,8,9), Y(y.8.,9), and Z(y,8,9) of the spatial
position of Eq. (4.18) all become independent of the toroidal angle, ¢.
This resuit follows from the fact that a given number of independent
¢-equations can be satisfied by a fewer number of functions of ¢ if
all of the functions of ¢ are chosen to be constants. The expansion
coefficients within the flux functions G(y), I(y¥), W(¥), and p(y)
provide the additional constants necessary to satisfy this system of
quasi-helical equilibrium equations. However, if the functions
X(y.8,0), Y(y.8,9), and Z(y,8,P) are all required to be independent of
¢, then the axis curvature, x(§), and torsion, z({¥), must be
constants. Integration of the Frenet equations of Egs. (3.1)-(3.4)
reveals that any curve with constant, non-vanishing torsion and
curvature forms a straight helix, and thus cannot form a closed
curve. The choice of zero torsion and constant, non-zero curvature
mei-ely reduces the equilibium to the trivial axisymmetric case.
Small fractional ¢-variation of the curvature and torsion of
the magnetic axis gives a better approximation to quasi-helical
symmetry. The beating of ¢@-harmonics within the non-linear

equations involved is not conducive to accidental proximity of

1298ateman, G. (1978). MHD Instabilities, MIT Press, Cambridge, Massachusetts, and
London, England, p. 64.
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quasi-helical symmetry for large fractional ¢-variation. Th'us. if
f(P) is some appropriate measure of the fractional toroidal variation
of the magnetic flux surfaces, then quasi-helical symmetry is
broken by terms of order f({)e2 for circular axis configurations, and
by terms of order f(Q)e’ for configurations with unconstrained axes.
Quasi-helical symmetry is most accurately approximated by
configurations with a large number of magnetic field periods N, so
that the magnetic axis can approximate a straight helix locally.
This result follows from the smaller fractional ¢-variation of the
curvature and torsion of the magnetic axis as the number of field
periods is increased. Hence, the factor f(¢) within the third order
symmetry breaking term can be made to be relatively small for
configurations with many field periods. Sample configurations that

demonstrate these results will be presented in Sec. VI-D.

4. Small Local Inverse Aspect Ratio

The expansion parameter, €, is roughly the quotient of the
plasma minor radius, r, and the minimum local radius of curvature
of phe magnetic axis, R.. Keeping this expansion parameter small,
i.e.,, €=1/10 corresponding to the maximum pressure gradient, aiso
minimizes the asymmetries in the magnetic field strength for

configurations that highly approximate quasi-hélical symmetry.

5) Quasi-Helical Symmetry on One Flux Surface

We have demonstrated that quasi-helical symmetry cannot be
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made exact within the three-dimensional volume in the vicinity of
the magnetic axis for non-axisymmetric, toroidal plasma equilibria.
However, this proof does not prohibit the existence of quasi-helical
symmetry within one particular magnetic flux surface. In fact, the
analysis of Sec. V-D permits the existence of plasma equilibria in
which the magnetic field strength is a function of only one angular
coordinate within one particular flux surface!39, but not within its
three dimensional interior. Such toroidal equilibria would have no
plasma transport across this particular flux surface, to lowest
order in the guiding-center analysis.

The magnetic field strength within a quasi-helically

symmetric flux surface has the general form

o0

B(oti€) = Bg + & € {hy s Sin(mat) + hpccos(med)l,  (6.3)
m=1

in terms of the helical angle ot=98-N@, with the axis field strength,
Bo, and the Fourier coefficients hy, s and hy ¢ all constants. The
relevant magnetic flux surface is determined by the particular
choice of the parameter, €. The analysis in Sec. V-D demonstrates
that the magnetic field strength within one particular flux surface,
Eq. (5.2), can be expresssed in the quasi-helical form of Eq. (6.3).
The only requirement is that the first order term must be non-zero,

so that {{hy,g}2+{hy c}2}1/2 is compelled to be a positive constant.

130Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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We have shown that the magnetic field strength can be made to
depend on only one angular 'coordinate within -one particular
magnetic flux surface, corresponding to quasi-helical symmetry on
that flux surface. However, the three dimensional interior of this
flux surface could be only approximately quasi-helically symmetric.
In fact, the breaking of quasi-helical symmetry near the magnetic
axis of such an equilibrium would scale'3! as {(e,)2-¢2}¢, rather
than €% This result follows since an additional first order term in
the magnetic field strength that scales as (ea)’-a must be used to
offset the €% order symmetry-breaking term at the magnetic surface
corresponding to €=z€, Hence, imposing quasi-helical symmstry on
one particular flux surface worsens the approximation of quasi-

helical symmetry within its interior.

VI-D. Examples of Approximate Quasi-Helical Symmetry
Quasi-helical symmetry through zeroth order is characterized
entirely by the magnetic axis itself. The shape of this magnetic
field line is completely arbitrary, provided that it is a smooth,
closed curve. The only additional constraint for quasi-helical
symmetry through zeroth order is that the magnetic field strength
of the axis must be independent of the toroidal angle, ¢. Since
samples of quasi-helical symmetry through zeroth order can be
found trivially, we begin by constructing configurations which are

quasi-helically symmetric through first order.

131Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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VI-D-1. Examples of Quasi-Helical Symmetry through First Order
Quasi-helically symmetric equilibria through first order are
determined by the magnetic flux surfaces through first order. In
order to generate these lowest order flux surfaces, an appropriate
magnetic axis must first be chosen. The axis curvature, k({), of a
configuration which is quasi-helically symmetric through first
order must never vanish, as we will demonstrate later in this
section. We implement the parametric analysis of Sec. IlI-B to
construct magnetic axes compatible with quasi-helical symmetry
through first order. This procedure entails choosing the paramsters
N, M, and { within rg[2($)] of Eq. (3.9), so that the curvature
function, k(%) of Eq. (3.10), never vanishes along the axis length.
Given an axis with non-vanishing curvature, the results of Sec.
IV-E-2-b can be used to construct the lowest order, quasi-helical
flux surfaces about the axis. The magnetic field strength
corresponding to quasi-helical symmetry through first order has the
form of Eq. (4.79), with Bo(P) and §(¢) positive constants and
A(P)=N¢@. Use of Eq. (4.88) for §(¢) implies that the function n(¢)

must have the form
n(P) = |/ x(P), (6.4)

with | a positive constant. However, the function m(¢) is required
to be non-zero and non-infinite for ail ¢ in order that the lowest

order flux surfaces not collapse to ribbons that are infinitely thin
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and infinitely tall, as revealed within Sec. IV-E-2-b. Hence, Eq. (6.4)
demonstrates that the axis curvature, x({), can never vanish for
configurations which are quasi-helically symmetric through first
order'32,  This result was the first generic condition given within
Sec. VI-C for approximating quasi-helical symmetry.

In summary, given an axis with non-vanishing curvature, the
flux surfaces corresponding to quasi-helical symmetry through first
order can be obtained using By(P)=1, N(P) =T /x(P), and o(P) =N
within Eqs. (4.79)-(4.83) of Sec. IV-E-2-b. Integration of do/d¢ in
Eq. (4.83) from zero to 2rn reveals that the constant 14-N is bound

between zero and

2r
26y [P {=(P)+ (1/2)15}dY
0

U= , (6.5)
27T
J{1+{n(¢)}}do
0

for quasi-helical symmetry through first order. This restriction
shows that the true transform on axis, 1¢-N, vanishes for quasi-
helically symmetric equilibria with a circular magnetic axis and
zero net toroidal current on axis, 1. Higher order effects can give a
global shear, 15/1,, to guarantee the existence of such equilibria
with vanishing axis transform. However, toroidal equilibria with a

vanishing rotational transform on axis are usually unstable to

132Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2832,
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certain pressure-driven perturbations133,

We implement Egs. (6.4) and (4.80)-(4.83) to graph quasi-
helically symmetric flux surfaces through first order about any
magnetic axis with non-vanishing curvature. The magnetic axis of
our first example is given by Eq. (3.9) with N=5,M=1, and {=1/15,
which is the five-period helical curve of Figs. 1 and 6. The constant
T of Eq. (6.4) is determined by T = 1.25/,/2, so that the function
§(¢) within the field strength of Eq. (4.79) is §({)=1.25. This
choice yields elliptical flux surfaces which are rather flattened
perpendicular to the curvature vector, resulting in a somewhat
minimized first order variation of the magnetic field strength. A
sample magnetic flux surface for this fiv'e-period helical
configuration is given in Fig. 12. The rotational transform is
determined by 14 = 3.673, so that the largest value of ld(CP)|, which
gives a contribution to the ellipticity of the flux surfaces via Eq.
(4.85), is minimized. |

The rotational transform utilized within this dissertation is
not the conventional rotational transform. Within this analysis, the
8 = 0 position rotates with the curvature vector, Ky(@), whereas,
customarily, it does not. Our choice of the transform is transparent
through observation of "knotted" configuration of Fig. 13. The
conventional rotational transform 1., is determined by IL-N|,
with 1 the transform of this analysis.

A ten period helical toroid exhibiting quasi-helical symmetry

133gateman, G. (1978). MHD Instabilities, MIT Press, Cambridge, Massachusetts, and
London, England, p. 64.
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through first order is introduced within Fig. 14. The parameters
corresponding to this configuration are specified by N=10, M=1, and
C=1/15 within Eq. (3.9) for rg[2(®$)]. The constant | was chosen to
be 1.25//2" in order to yield the same first order variation of the
magnetic field strength for this ten-period helical toroid as for the
one of five periods given in Fig. 12. The minimization of IO(tP)|
leads to a transform on axis of 15 = 7.631.

The normalized values for the axis curvature, k(), and
torsion, z(2), corresponding to these helical toroids is computed
using Egs. (3.10) and (3.11). These axis functions for the five and
ten period cases are giveni by Figs. 6 and 15, respectively. These
graphs demonstrate the smaller variation of the curvature and
torsion with a larger number of field periods. However, these
figures also indicate that the mean curvature increases with the
number of field periods. Hence, there exists a compromise between
the variation of the curvature and torsion functions, which
determines the flattening of the quasi-helical flux surfaces, and the
mean curvature, which dominates the gquiding-center drift
trajectories within the equilibrium.

Configurations other than those of conventional stellarators
can yield quasi-helical symmetry through first order. One sample is
the three-period knotted configuration of Fig. 13. The magnetic axis
of this configuration is determined by {N=3, M=2, {=1/2} within
Eq. (3.9), as in Figs. 7 and 8. The corresponding magnetic field

strength exhibits the same first order variation as that of the
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FIGURE 14

TEN PERIOD HELICAL CONFIGURATION

The lowest order flux surfaces of a ten-period helical configuration
satisfying quasi-helical symmetry through first order. The
magnetic axis is given by Eq. (3.9) with N=10,M=1,and {=1/15.
The magnetic field strength has the form of Eq. (4.79) with
§(P) = 1.25, and the rotational transform on axis is 15= 7.631.
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FIGURE 15
CURVATURE AND TORSION OF TEN PERIOD HELICAL AXIS

151
z(R)
101
S 1 K(L)
0.2 0.4 0.6 080 /297 1.0

The curvature and torsion corresponding to the ten-period helical
configuration of Fig. 14, assuming the magnetic axis has length
L=27C
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helical configurations of Figs. 12 and 14. The value for 14 is 0.991,
again chosen to minimize the maximum of ld(lp)l.

Another sample of a three-period knot exhibiting quasi-helical
symmetry through first order is shown in Figs. 16 and 17. The axis
corresponding to this configuration is obtained using {N=3, M=z2,
( =3/4} within Eq. (3.9). The value of the constant T of Eq. (6.4) is
again chosen to be 1.25/,/2, giving the same first order field
strength variation as in the previous examples. Minimization of the
largest value of |o(¢)| gives 19=0.565. Unfortunately, the
smoother curvature and torsion functions, which yield a smaller
toroidal variation of the magnetic flux surface shape, correspond to
the less practical, "tightly" knotted configuration of Fig. 16.

A five-period knot with quasi-helical symmetry through first
order is presented in Figs. 18 and 19. Its configuration parameters
are given by {N=5, M=2, (=1/2, T =1.25//2. 14=1.671}. The
curvature and torsion corresponding to the magnetic axis of this
example are relatively smooth, as seen in Fig. 19, giving the
somewhat minimized toroidal variation in the shape of the magnetic

flux surfaces of Fig. 18.

VI-D-2. Examples of Quasi-Helical Symmetry through Second Order
In Sec. VI-B, we showed that quasi-helical symmetry does not

exist through second order for circular axis configurations. The

shape of the axis, via the curvature, k[2(9}] , and torsion, z[2(¢)]

functions, must be optimized in order to obtain quasi-helical
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FIGURE 16

"TIGHTER" THREE PERIOD KNOTTED CONFIGURATION

A “tighter" three-period knotted configuration in which the quasi-
helically symmetric flux surfaces are less flattened than those of
Fig. 13. The parameters for this configuration are given by {N= 3,

M=2, {=3/4, 8(¢)=1.25, 14=0.565} within Egs. (3.9) and (4.79).




CURVATURE AND TORSION OF TIGHTER KNOTTED AXIS

15¢

FIGURE 17
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The curvature and torsion corresponding to the "tighter® knot of Fig.

16, with axis length L = 27T,

!
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FIGURE 18

FIVE PERIOD KNOTTED CONFIGURATION

A flux surface corresponding to a five-period knotted configuration
which is quasi-helically symmetric through first order. Its
parameters are given by {N=5, M=2, (=172, §&§()=1.25,
19 = 1.671} within Egs. (3.9) and (4.79).
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FIGURE 19
CURVATURE AND TORSION OF FIVE PERIOD KNOTTED AXIS

157

The curvature and torsion corresponding to the five-period knotted
configuration of Fig. 18, with axis length L =2Tt.
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symmetry through second order. Hence, we cannot apply the
simplistic procedure that was used for first order to obtain quasi-
helical symmetry through second order. Axis optimizations, which
tend to be rather difficult computationally, must be applied.

The equations governing quasi-helical symmetry through
second order are presented within the Appendix. Nineteen first-
order, coupled, linear differential equations must be simultaneously
integrated134, using an optimization of eight independent
parameters to insure that the nineteen integrated variables are all
periodic in ¢. The task of constructing computational solutions of
quasi-helical symmetry through second order is beyond the scope of
this dissertation. All of the equations involved are clearly given

within the Appendix.

VI-D-3. Quasi-Helically Symmetric Bounding Flux Surface
Nihrenberg and Zille135 optimized the boundary of stellarator
configurations to minimize all but one Fourier harmonic within the
magnetic field strength. They referred to such stellarators as
possessing "quasi-helically symmetry." The bounding magnetic flux
surfaces approximate quasi-helical symmetry to an accuracy of
better than one percent. For example, one optimization gave a six-
period configuration with boundary ripple perturbing quasi-helical
symmetry on the order of one half of a percent for an aspect ratio of

twenty. However, only five poloidal and five toroidal harmonics

134Garran, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822,
135Nghrenberg, J., and Zille, R. (1988). Phys. Lett. A.129, 113.
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were used within their optimization. Some of the resuiting fifth
order Fourier harmonics were non-zero. If Nihrenberg and Zille had
been able to implement an infinite number of harmonics, then exact
quasi-helical symmetry on the bounding surface would have been
achieved, but its three dimensional interior would have been only
approximately quasi-helically symmetric. In fact, if €; corresponds
to the flux surface on which quasi-helical symmetry is imposed,
then the breaking of quasi-helical symmetry within the interior

scales as {(g,)2-€2}e, rather than €3, as explained within Sec. VI-C.




CHAPTER VI
DISCUSSION

We investigate toroidal plasma equilibria in which the regions
of constant plasma pressure form perfectly nested toroidal
surfaces. The magnetic field corresponding to such an equilibrium is
forced to have both its contravariant and covariant representations
in terms of Boozer coordinates?36, with the additional requirement
that a scalar force balance equation hold!37. These constraints are
equivalent to specifying a toroidal, scalar-pressure, MHD
equilibrium in terms of Boozer coordinates. The application of
Boozer coordinates offers the advantage of giving guiding-center
drift trajectories and associated plasma transport which are
determined138 by the magnetic field strength as a function of these
coordinates. The spatial position is defined in terms of these
coordinates, i.e., x(\Jl;G.(P), which permits easy evaluation of the
coordinate surfaces and facilitates the expansion about the
maQnetic axis.

We construct toroidal plasma equilibria by performing a
Taylor-Fourier expansion about a general magnetic axis using Boozer

coordinates. The magnetic field is assumed to be analytic, so that

186Bgozer, A. H. (1981). Phys Fluids 24, 1999,
137Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
138g40zer, A. H. (1984)., Phys. Fluids 27, 2441.
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the relevant functions of position are Taylor expanded in terms of
the square root of the toroidal flux, Y1/2, and Fourier expanded in
terms of the poloidal angle, ©, and the toroidal angle, ¢. The Taylor
series expansion in Y1/2 is equivalent to a power series expansion in
terms of a generalized inverse aspect ratio, €, which is
approximately the minor plasma radius, r, over the maximum radius
of curvature of the axis, R.. We find a specific methodology that
must be implemented in constructing toroidal, scalar-pressure, MHD
equilibria for each order in the expansion.

The radius of convergence for the expansions that we haye
considered has not been found, although these expansions well
represent the known toroidal equilibria. Even if the expansions
converge, it is not obvious that they converge to a true equilibrium.
Faor example, if the equilibrium contained terms of the form
f(x) =exp(-1/x), then the expansions would converge, but not to the
equilibrium. {The Taylor series of exp(-1/x) about Xx=0 converges to
zero, even though this function is not identically zero.}

Within this analysis, we have also assumed that the plasma
pressure forms perfectly nested- toroidal surfaces. In practice,
sméll errors in the magnetic field coils can lead to significant
stochastic regions within the magnetic field. Except in cases of
symmetry, there also remains the difficulty that the plasma
pressure gradient must vanish for values of the toroidal flux, ¥, that
correspond to rational values of the rotational transform, 1(y). This

result is obvious through examination of Eq. (4.7) for B,(¥.8.9),
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whicﬁ becomes singular if L(¥)=n/m and dp/dy=0. However, for
practical fusion devices, only the low order rational numbers need
be avioded.

We show that the constraints of constructing toroidal plasma
equilibria with perfect surfaces prevent arbitrary specification of
the magnetic field strength139 within a three-dimensional volume
through third order in the expansion about the axis. {in addition, we
prove that the first order curvature term in the magnetic field
strength cannot be made to completely vanish for ail toroidal
configurations with non-vanishing axis field strength. However, the
magnetic field strength on one particular flux surface is arbitrary,
provided that the curvature term does not completely vanish.

The expansion method developed within this dissertation can
be used to clarify the types of toroidal plasma equilibria which are
most promising for plasma confinement. These techniques can be
used tol construct the entire spectrum of three-dimensional
equilibria in the vicinity of a magnetic axis. The lowest order terms
in the expansion largely determine the stability and transport
properties for any equilibrium with aspect ratio on the order of
E=1/10. This approximation is generaily quite valid since the
maximum pressure gradient of most existing stellarator devices
corresponds to €<1/10. Thus, the first three orders in the
expansion about the axis provide a very accurate description of

possible toroidal plasma equilibria, since only terms of order 10-9

139Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2805.
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are neglected. In addition, the accuracy of the drift approximation
for most fusion plasmas is only on the order 10-% or worse.

The most useful product of this dissertation is not the
particular expansion method used to construct toroidal plasma
equilibria.  The most valuable outcome is the analytic results
concerning the posssible forms for the magnetic field strength
corresponding to toroidal plasma equilibria. Existing computer
codes which construct toroidal equilibria can be modified to take
advantage of these analytic results.

We apply the techniques of this dissertation to investigate
particularly advantageous plasma configurations. The most
desirable class of toroidal equilibria would be isodynamic
equilibria40, which would exhibit a magnetic field strength which
is strictly uniform within the magnetic flux surfaces. However,
these equilibria can exist'4! only in limits in which the magnetic
field strength on axis vanishes or the magnetic flux surfaces become
open. This result implies that the magnetic field strength of non-
trivial toroidal equilibria must have some dependence on the
poloidal angle, 8. Hence, the guiding-center drifts corresponding to
any toroidal plasma equilibrium must always traverse the magnetic
flux surfaces.

The next most advantageous class of toridal equilibria are

quasi-helically symmetric stellarator equilibria'42, in which the

140palumbo, D. (1968). It Nuovo Cimento X538, 507.

141Bemardin, M. P., Moses, R. W., and Tetaronis, J. A. (1986). Phys. Fluids 29,
2605.

142N (hrenberg, J., and Zille, R. (1988). Phys. Left. A.129, 113.
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magnetic field strength depends on only one Fourier harmonic within
the magnetic flux surfaces. Such toroidal equilibria have strictly
confined guiding-center drift trajectories'43, just as axisymmetric
tokamak equilibria. However, diffusive transport on the order of the
gyro-radius to the sytem size would remain, leading to a relatively
slow loss of the plasma out of the confinement region.

The restrictions in the magnetic field strength show that
quasi-helical symmetry is always broken by terms of third order in
e, and thus exact quasi-helically symmetric equilibria do not
exist144, However, configurations exist with quasi-helical
symmetry on one particular magnetic flux surface, but not within its
three-dimensional interior. The breaking of quasi-helical symmetry
within the interior of such an equilibrium scales as {(g,)2-g2}e,
since a term of order (e,)2e must be added to the first order field
strength in order to offset the €% order symmetry breaking term at
the flux surface €=€,. Such quasi-helically bounding equilibrial45
offer many of the favorable transport properties typical of
axisymmetric tokamak equilibria.

The third order term in the magnetic field strength breaking
quasi-helical symmetry is either an M=1 poloidal harmonic,
n1(Pcos(8+L41(P)), or an M=3 harmonic, nz(P)cos(3e+3(P)), or
some linear combination of the two. The actual form of the

functions M 1(9), C1(9), n3(P), and {3(9) depends upon the details of

143p0ozer, A. H. (1983). Phys. Fiuids 26, 496,
144Garren, D. A., and Boozer, A. H. {1991). Phys. Fluids B: Plasma Physics 3, 2822.

145ggidier, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear
Society 17, 148.
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the configuration. However, we can conclude that the magnitudes of
the functions T () and n3(9) is on the order of the fractional
toroidal variation in the shape of the magnetic flux surfaces.
Quasi-helical symmetry is most accurately approximated!48
by a torocidal "helical-like" configuration with a relatively large
number of twists and a relatively small plasma radius, as one might
naively expect. More exotic "knotted" configurations can also be
used to approximate quasi-helical symmetry. The breaking of quasi-
helical symmetry can made of order 10-9 for an inverse aspect ratio
of order, € =1/10. In comparison, tokamaks with discrete field coils
typically exhibit a magnetic field ripple on the order of 2x10-9,
Analytic'47 and computational'48 evidence suggests that
quasi-helical stellarator equilibria exist which have symmetry
breaking on the order of that corresponding to tokamak equilibria.
However, a contiuous toroidal electric current within the plasma is
needed to sustain a tokamak equilibrium14®, whereas, such a
toroidal current is not essential for the existence of non-
axisymmetric stellarator equilibria. Therefore, stellarator
equilibria which highly approximate quasi-helical symmetry might
~ provide a solution to the dilemma of constructing a fusion device
which exhibits good plasma confinement properties and requires ne

net toroidal plasma current.

148Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.

147 bid.

148ggidier, C., et. al. (1990). Fusion Technology: A Journal of the American Nuclear
Society 17, 148,

‘49Friedberg% J. P. (1987). Ideal Magneto-Hydrodynamics, Plenum Press, New York,
p. 107.




APPENDIX
QUASI-HELICAL SYMMETRY THROUGH SECOND ORDER

We will present the equations that yield quasi-helically
symmetric configurations through second order in €. Quasi-helically
symmetry is most relevant to stellarator equilibria, which exhibit
vanishing net toroidal electric current near the axis. Hence, we set
the constant [,, which is a measure of the net toroidal current on
axis, to zero in the following analysis.

We will demonstrate that the equations governing quasi-
helical symmetry through first and second orders must be solved
concurrently’50,  To generate quasi-helical configurations through
second order in a convenient manner, we should employ the
reciprocal of the square of the magnetic field strength, 1/B%(y,8,9),
in lieu of the field strength itself, B(y,8,9). Thus, we first
reiterate the equations of quasi-helical symmetry through first
order using 1/B2(y,8,9).

The first order set of constraint equations is given by the By
constraint at € order and the Kg and €, constraints at €' order, as
explained within Sec. IV-(E-G). -These equations permit the magnetic

field strength to be expressed in the quasi-helical form

150Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822,
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1/B2Y,o0) = {1/B4}2{1 - /8 e cos(et)} + =, (A1)

through first order in €, with the helical coordinate ot=8-N¢, in
terms of Boozer coordinates. The configuration through first order
is determined by the spatial position of Eq. (4.18). The functions
{X(y,0.9), Y(¥.8,9), 2(y,8,9)} of the spatial position are assumed to
have the form given within Eqgs. (4.30)-(4.34), with the poloidal
angle, ©, replaced by the helical angle, o For a configuration
exhibiting a magnetic field strength of the form of Eq. (A.1), the
coefficients of Eqgs. (4.30)-(4.34) are

X1,1s(9) = O, (A.2)

X11c(9) = /2 T /%(9), (A.3)
Y11s(®) = /2 x(9)/ T, (A.4)
Y1,10(9) = /2 o(9)(P)/T. (A.5)

The function o(9) of Eq. (A.5) is determined by the differential

equation

' 46/d9 = 26 T(ONT/K(PI2 - {Lg-NH1 + /() + [6(9)12},
(A.6)
with the periodicity condition (=0} = 6(P=2T1), as in Eq. (4.83).
The first order set of matching constraints also determines
the function Z(y,8,9) through second order in €. Recall that its first

order term, Z(8,9), vanishes exactly for general toroidal MHD
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equilibria, as derived within Sec. IV-E. The second order term,

Z2(8.9), is given by

Z5,0(P) = -{1/[8GylHdV4/d®), (A.7)
Z2,25(9) = -{1/(8GglH{(dV3/dP) - 2[15-NIV3(P)}, (A.8)
Z2,2c(P) = -{1/18GolH{(dV3/dP) + 2[1o-NIVa(P)}, (A.9)

with

Vi(9) = {X1,1c((.0)}2 + {Y1,1s(‘~p)}2 + {Yj,{c(‘m}z. (A.10)
Va(P) = 2Y1,15(9)Y1,1(9), (A.11)
Va(9) = {X7.16(0 « (Y1102 - {Y1,15(PF2,  (A.12)

which are analogous to Egs. (4.65)-(4.70). Investigation of Egs.
(4.117) and (4.118) reveals that the zeroth order term within the

8..(y,8,9) function, i.e., ,8,,0(41), vanishes exactly for quasi-helically

symmetry through first order, so that it is absent from these first
order equations.

- The second order set of constraint equations are determined by
the By matching constraint at €! order and the K¢ and £ matching
constraints at €2 order. These equations give eight independent
constraints on functions of ¢. Sufficientlfreedom exists within
these constraints to yield quasi-helically symmetric equilibria
through €2 order, as explained in Sec. VI-B.

The magnetic field strength of an equilibrium which is quasi-
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helically symmetric through second order has the explicit form!S?

1/B2(y,o0) = {1/Bg}2{1 - /8 €T cos(a)
+ E2{W+Csin(2ct) + Fcos(2at)} + =}, (A.13)

with W, C, and F constant, in terms of Boozer coordinates. The
quasi-helical form of the magnetic field strength in Eq. (A.13)

constrains the functions of ¢ within X5(8,9) to have the form

X2,0(9) = {hg(P) - WH/ {2k ()}, (A.14)
X2,25(9) = {hag(P)-Cl/ {2K(P)}, (A.15)
X2,26(9) = {hae(@)-F}/7{2x(P)}, (A.16)

with

ho(P) = 2py + {2/GgH(d2Z,,4/dP)
+ Hao (PR + {re(@)2 + {s ()2 « {qg(P)}2 + {rs(P)}2 }/{2{Go}2,
(A7)
has(9) = {2/GoH(d2Z3,95/dP) - 2{14-N}Z3,2c(P)}
+ {a5(9) (@) + rg(PIro(D)}17{Gy})2, (A.18)

hgc(‘p) = {2/Go}{(d22,éc/d‘p) + 2{10--N}22,2s(‘,0)}
+ {{ao(@)2 + {ro ()12 + {s (P2 - {qg (P12 - {rg (P12} /{2{Ge}23},
(A.19)

and

151Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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Q5(9) = -{1o-N1X1,1c(9) + Goz(9)Yq,15(9), (A.20)
0e(P) = (dX1,16/49) + G z(P)Yq,1(9), (A.21)

rs(P) = (dY4,15/dP) - {1g-N1Yy,1.(9), (A.22)

re(P) = (dYq,107d9) + {Lg=N}Yq,15(P) - Goz(P)Xq,1:(9), (A.23)
S¢(P) = /2 GoT. (A.24)

Four of the eight equations of the second order set of matching
constraints determine the form of the function Z3(8,) via the
functions Z3,15(9), Z3,1(9), Z3,35(P), and Z3,5.(P). These functions
of ¢ partially determine the configuration through third order. We
are only concerned with the form of the configuration through
second order, so that these functions of @ within Z3(8,9) will not be
explicitly given.

Two of the four remaining second order ¢{-constraints can be

expressed as relations for Ya,25(9) and Y,,5.(9) via

Ya.25(P) = -k(P) - {k(P) /T 12 {Xq,0(P) + X3,25(P) - S(P)Xg,25(P},
(A.25)

Yz,zc(‘p) = Yo,0(0) + {K('P)/-TT}Z{Xz,zs(‘P) - O'((P){Xz,o(‘;o)-)(z,zc((?)}}.
(A.26)

The two remaining equations of the second order set of maiching

constraints are given by

X],]c((p) fx'ZS(‘p) + Y‘[ ,1c(‘~p) fyﬂs(‘,p) - Y],]s((p){fg.zc((p)"' fg.o(tp)} = ol
| (A.27)
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X1.1clPH Ty 2c(P) - fx,o(‘p)} + Y1,15(9) fg.gs(tp)
+ Y1,16(9M 1y 2c(9) - fy o{P)} = O, (A.28)

with

fy.o(9) = (dX2.0/d9)
+ Go{z(P)Ya,0(P) + X(P)Z3,0(9P)
- 225,25(0) Y2,20(0) + 2Z5.5c(9) Yp,25(®)
- {/2 paGoT /{rg-N}1Yy 1P} (A.29)

fr.25(P) = (dX3,25/d9P) - {L1-N}Xg,55(9)
+ Golz(9)Y3,25(P) + K(PI2Z5,25(9)
= 222,0(9)Y3,2:(9) + 2 23,0(P) Ya,0(P)
+ (/2 PaGg T/ {Lo-NH Yq.15(P)1, (A.30)

fr.2c(P) = (dX3,20/d9) + {14-N1Xg,25(P)
+ Go{2(P)Ya,5c(9) + k() Z5,20(P)
= 229,25(0)Y2,0(P) + 225,0(P) Y3,25(9)
+{/2 paGoM /{to-NHYq,1c(D)}, (A.31)

fy.0(9) = (dY3,0/d9)
- Go{z(P)X2,0(P) - 2Z5,05(P)X2,25(P) + 2Z5,20(P) X2,25(P)
- {ﬁ'Pzeo-ﬁ/{lo-N”x1.1,;(‘?)}. (A.32)
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fy.2s(P) = (dY2,05/dP) - {1o-N}HY3,50(9)
-Gy {'C(‘P)Xg,zs(’m - 222,0(‘P)X2,gc(@) + 222,2c((p)X2,0(‘p)
+ {/2 paGgM /{1 g-N}HXq,15(0)}, (A.33)

fx,ZC(So) = (dY2.2c/d‘m + {lu“N}Yg,zs(‘P)
- Golz(PIX2,25(P)) - 22Z5,05(P)X9,0(P) + 2Z5,o(P) X3,25(P)
* {ﬁ'Pzeo_ﬁ-/{lo'N}}X1,1c(¢)}. (A.34)

In summary, toroidal plasma equilibria which are quasi-
helically symmetric through second order in € must satisfy!52 the
three non-linear differential equations of Egs. (A.8), (A.27), and
(A.28). All ¥-dependence within these three equations can be
expressed in terms of the four P-functions z(¢), k(P), o(¥), and
Ys,0(®), and their derivatives of various orders. Herein lies the
difficulty in constructing quasi-helically symmetric equilibria
through second order.

Finding general toroidal equilibria through second order is
quite manageable. First, one must choose a magnetic axis about
which to perform the expansion. First-order flux surfaces are
obtained by integrating one non-linear, first-order differetial
equation similar to that of Eq. (A.6). A computational optimization
in one dimension must be performed to insure that the integrated
function of ¢ is periodic. Second order corrections to these first
order flux surfaces are then obtained by integrating two non-linear,

first-order differential equations similar to those of Egs. (A.27) and

152Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
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(A.28). An optimization in two dimensions is required to insure that
both integrated functions of ¢ are also periodic.

Obtajning quasi-helically symmetric equilibria through
second order is considerably more difficult. First, three of the four
functions, k(Q), (), o(P), and Y, o(P) must be used to solve the set
of differential equations given by Egs. (A.B), (A.27), and (A.28).
Thus, at least one of the functions k(¢) or z(¢), which determine the
shape of magnetic axis, must be optimized in order to satisfy this
set of differential equations. If one of these two functions, x(¢) or
z(P), is given, then the other can obviously be varied to satisfy the
three differential equations of Egs. (A.6), (A.27), and (A.28).
However, the probablity that the resulting set of k(@) and =(¢) is
consistent with a closed curve occupies a set of measure zero.
Hence, a simultaneous optimization193 of the curve to "bite its own
tail," in addition to an optimization of Egs. (A.5), (A.27), and (A.28),
is required in order to find quasi-helical symmetric configurations
through second order in the expansion.

Optimizing an arbitrary curve to close on itself requires
integration of the Frenet equations of Egs. (3.1)-(3.4), with the
periodicity condition that all components of the vectors rg(9),
Ko(P), To(P), and by(Y) be periodic in §. We can write these vectors
in terms of the toroidal angle, ¢, instead of the axis length, 2, since
these two variables are directly proportional for uniform magnetic
field strength on axis. Axis optimizations yielding a closed curve

can be obtained by varying only two- Fourier harmonics within a set

153Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Fhysics 3, 2822.
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of k() and =(¢), as developed within Sec. II-C.

A second complication154 of computationally constructing
quasi-helically symmetric equilibria through second order is that
Egs. (A.27) and (A.28) involve third derivatives of the functions x(¢)
and o(¢). Implementing standard techniques for integrating
differential equations, the three differential equations of Egs. (A.6),
(A.27), and (A.28) are equivalent to seven independent, non-linear,
first-order differential equations. An optimization in six
dimensions is required in order to find initial conditions which solve
these seven first-order equations, assuming one parameter can be
eliminated as an arbitrary phase of integration. This optimization
of six independent parameters to solve seven first-order
differential equations must be coupled with the optimization of two
independent parameters used to satisfy the twelve first-order
differential equations of the Frenet equations. Thus, an integration
of nineteen first order differential equations using an optimization
of eight independent parameters is required in order to construct
quasi-helically symmetric equilibria through second order in the
expansion parameter, €.

" We do not intend to present the methods developed within this
dissertation as a practical means for constructing toroidal
equilibria through second and higher orders. Many computational
codes which find equilibria with desirable stability and transport

properties already exist. For example, Nithrenberg and Zille155

154Garren, D. A., and Boozer, A. H. (1991). Phys. Fluids B: Plasma Physics 3, 2822.
155Nuhrenberg, J., and Zille, R. (1988). Phys. Lett. A.129, 113.
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construct equilibria which highly approximate quasi-helical
symmetry using a minimization of all but one Fourier harmonic of
the magnetic field strength on a barticular magnetic surface. The
primary application of this dissertation is the insight received from
such an analytic investigation. Computaional codes developed in the

future can exploit the analytic results that we have obtained.
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