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Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of

the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed,

going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities:

depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical

predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-

dipole-moment apparatus installed at the Paul Scherrer Institute.

DOI: 10.1103/PhysRevA.99.042112

I. INTRODUCTION

Discovering a nonzero electric dipole moment (EDM) of

the neutron would have far-reaching implications. Indeed, the

existence of an EDM for a simple spin-1/2 particle implies the

violation of time-reversal invariance and therefore the viola-

tion of CP symmetry. So far, the observed T and CP violation

in nature is entirely accounted for by the Kobayashi-Maskawa

mechanism. This mechanism predicts an unmeasurably small

value for the EDMs of all subatomic particles. Therefore,

electric dipole moments are sensitive probes of new physics

beyond the standard model of particle physics. In fact, new CP

violating interactions are needed to explain the generation of

the matter-antimatter asymmetry in the early Universe. Thus,

the motivation to search for the neutron EDM (nEDM) lies

at the interface between particle physics and cosmology. The

subject is treated in the classic book [1]. The connections

*Corresponding author: guillaume.pignol@lpsc.in2p3.fr

between fundamental neutron physics and cosmology are

treated in [2–4]. See also [5–12] for recent reviews on EDMs.

Since the first experiment by Smith, Purcell, and Ramsey

in 1951 [13], the precision on the neutron EDM has been

improved by six orders of magnitude, and yet the most recent

measurement [14] is still compatible with zero:

dn = (−0.21 ± 1.82) × 10−26 e cm. (1)

This result was obtained with an apparatus operated at the

Institut Laue Langevin (ILL) built by the Sussex/RAL/ILL

collaboration [15]. As with almost all other contemporary

or future nEDM projects, this experiment used ultracold

neutrons (UCNs) stored for several minutes in a material

bottle. The bottle, a cylindrical chamber of height 12 cm

and diameter 47 cm, sits in a stable and uniform vertical

magnetic field with a magnitude of B0 = 1 μT. In addi-

tion, a strong (E ≈ 10 kV/cm) electric field is applied,

either parallel or antiparallel to the magnetic field. One

precisely measures the Larmor precession frequency fn of

neutron spins in the chamber with Ramsey’s method of
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separated oscillatory fields. By comparing the neutron preces-

sion frequency in parallel and antiparallel fields, one extracts

dn = π h̄( fn,↑↓ − fn,↑↑)/2E .

In these experiments, besides maximizing the number of

stored ultracold neutrons, the control of the magnetic field is

the most important experimental challenge. The time fluctua-

tions of the magnetic field must be minimized and monitored,

and the magnetic field should be sufficiently uniform. Even

if external perturbations of the magnetic field are attenuated

by several layers of shielding, residual time variations of

the B0 field still need to be monitored in real time. To this

aim, the experiment [14,15] uses a comagnetometer: Spin-

polarized 199Hg atoms fill the chamber, colocated with the

stored ultracold neutrons [16,17]. The time-averaged preces-

sion frequency of the mercury spins fHg over each measure-

ment cycle is used to correct for the drifts of the magnetic

field through the relation fHg = γHg/(2π )B0, where γHg is the

gyromagnetic ratio.

Not only must the field be stable, with its time variations

precisely monitored, it also needs to be extremely uniform

over a large volume. As will be explained later, a field uni-

formity at a level better than 1 nT must be achieved inside

the chamber. For the purpose of tuning and characterizing the

field uniformity, the comagnetometer alone is not sufficient.

One must therefore rely upon offline mapping of the magnetic

field in the inner part of the apparatus, and/or upon an array

of magnetometers around the chamber measuring the field in

real time.

In this paper, we discuss the effects of magnetic-field

nonuniformities in experiments measuring the neutron EDM

with stored ultracold neutrons. Specific concerns associated

with the use of an atomic comagnetometer are also dealt with

in detail. In particular, the formalism described in the paper

is adequate to discuss the systematic effects in the experiment

that was in operation at the Paul Scherrer Institute (PSI) during

the period 2009–2017. The apparatus was an upgraded version

of the one previously installed at the ILL that produced the

current lowest experimental limit. However, we aim at a

general treatment of the subject—whenever possible—so that

the results are of interest for other past experiments such

as [18] as well as for the future experiments currently in

development at the U.S. Spallation Neutron Source (SNS)

[19], FRMII/ILL [20], TRIUMF [21], PNPI [22], LANL, and

PSI [23].

In the first part we present a general parametrization of the

field in terms of a polynomial expansion. It goes beyond the

usual description in terms of linear gradients, a refinement

that becomes necessary to quantify the systematic effects

at the current level of sensitivity. In the second and third

parts, we discuss the effects of field nonuniformities on the

statistical and systematic precision, respectively. Dedicated

measurements were performed to corroborate the theoretical

predictions for these effects.

This paper has two companion papers and should be read

as the first part of a trilogy. The second part will describe the

array of atomic cesium magnetometers developed for the PSI

nEDM experiment and the methods to optimize in situ the

field uniformity. The third part will present the offline char-

acterization of the magnetic-field uniformity in the apparatus

with an automated field-mapping device.

II. HARMONIC POLYNOMIAL EXPANSION

OF THE MAGNETIC FIELD

In modern nEDM experiments a weak magnetic field B0 ≈
1 μT is applied in a volume of about a cubic meter or more.

In the context of this paper the field can be considered to be

purely static. The field �B(x, y, z) ≈ B0�ez is very uniform, but

the remaining nonuniformities have paramount consequences.

An adequate description of the nonuniformities is needed to

discuss these consequences.

We construct a polynomial expansion (in terms of the

Cartesian coordinates x, y, z) of the magnetic-field compo-

nents, in the form

�B(�r) =
∑

l,m

Gl,m

⎛

⎝

�x,l,m(�r)

�y,l,m(�r)

�z,l,m(�r)

⎞

⎠ (2)

where the functions (or modes) ��l,m are harmonic poly-

nomials in x, y, z of degree l and Gl,m are the expansion

coefficients.

The polynomials, however, cannot be chosen arbitrarily,

since the magnetic field must satisfy Maxwell’s equations:
�∇ · �B = 0 and �∇ × �B = 0, in a region with neither currents

nor magnetization. This requirement is equivalent to enforcing

that the field is the gradient of a magnetic potential, �B(�r) =
�∇�(�r), with the potential satisfying Laplace’s equation �� =
0. Solutions of Laplace’s equation are called harmonic func-

tions. Therefore, all possible polynomial field components of

degree l − 1 are exactly obtained by taking the gradient of

all possible harmonic polynomials of degree l . The so-called

solid harmonics, expressed in spherical coordinates as

rlYl,m(θ, φ) =
√

2l + 1

4π

(l − m)!

(l + m)!
rlPm

l (cos θ )eimφ, (3)

form a basis of complex homogeneous polynomials, with l

the degree of the polynomial and m an integer in the range

−l � m � l . In this formula Yl,m are the standard spherical

harmonics and Pm
l are the associated Legendre polynomials

(listed in Table I).

To construct our basis, we need to take the real and imag-

inary parts of the complex polynomials. In addition, we use

a different and convenient normalization of the polynomials

and define

�l,m = Cl,m(φ)rlP
|m|
l

(cos θ ), (4)

with

Cl,m(φ) = (l − 1)!(−2)|m|

(l + |m|)! cos(mφ) for m � 0,

Cl,m(φ) = (l − 1)!(−2)|m|

(l + |m|)! sin(|m|φ) for m < 0. (5)

Finally, the modes are obtained by calculating the gradient of

the magnetic potential:

�x,l,m = ∂x�l+1,m, �y,l,m = ∂y�l+1,m, �z,l,m = ∂z�l+1,m.

(6)

Note that l always refers to the degree of the polynomial, and

therefore ��l,m is obtained from the magnetic potential �l+1,m

with l differing by one unit.

042112-2
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TABLE I. Associated Legendre polynomials up to l = 5.

l m Pm
l (cos θ )

1 0 cos θ

1 1 − sin θ

2 0 1

2
(3 cos2 θ − 1)

2 1 −3 cos θ sin θ

2 2 3 sin2 θ

3 0 1

2
cos θ (5 cos2 θ − 3)

3 1 − 3

2
(5 cos2 θ − 1) sin θ

3 2 15 cos θ sin2 θ

3 3 −15 sin3 θ

4 0 1

8
(35 cos4 θ − 30 cos2 θ + 3)

4 1 − 5

2
cos θ (7 cos2 θ − 3) sin θ

4 2 15

2
(7 cos2 θ − 1) sin2 θ

4 3 −105 cos θ sin3 θ

4 4 105 sin4 θ

5 0 1

8
(63 cos5 θ − 70 cos3 θ + 15 cos θ )

5 1 − 15

8
(21 cos4 θ − 14 cos2 θ + 1) sin θ

5 2 105

2
(3 cos3 θ − cos θ ) sin2 θ

5 3 − 105

2
(9 cos2 θ − 1) sin3 θ

5 4 945 cos θ sin4 θ

5 5 −945 sin5 θ

An explicit calculation of the first-order modes in Cartesian

coordinates, up to l = 3, is shown in Table II. For the expres-

sion of the modes in cylindrical coordinates, see Table IV in

Appendix A. A similar parametrization has been proposed in

the context of the SNS nEDM project [24,25]. See also [26]

for the application of the scalar magnetic potential method in

other precision experiments with polarized neutrons. In fact

the use of spherical harmonics to describe a near-uniform field

appeared first in the context of nuclear magnetic resonance

[27] and then in magnetic resonance imaging [28,29], where

field uniformity is also of great importance.

When dealing with a perfectly uniform magnetic field, that

field is described by the l = 0 terms only and we simply have

G0,−1 = Bx, (7)

G0,0 = Bz, (8)

G0,1 = By. (9)

In the case of a field with uniform gradients, that field is

described by the l = 0 and 1 terms and we have

G1,−2 = ∂yBx = ∂xBy, (10)

G1,−1 = ∂yBz = ∂zBy, (11)

G1,0 = ∂zBz = −∂xBx − ∂yBy, (12)

G1,1 = ∂xBz = ∂zBx, (13)

G1,2 = 1
2
(∂xBx − ∂yBy). (14)

TABLE II. The basis of harmonic polynomials sorted by degree.

l m �x �y �z

0 −1 0 1 0

0 0 0 0 1

0 1 1 0 0

1 −2 y x 0

1 −1 0 z y

1 0 − 1

2
x − 1

2
y z

1 1 z 0 x

1 2 x −y 0

2 −3 2xy x2 − y2 0

2 −2 2yz 2xz 2xy

2 −1 − 1

2
xy − 1

4
(x2 + 3y2 − 4z2) 2yz

2 0 −xz −yz z2 − 1

2
(x2 + y2)

2 1 − 1

4
(3x2 + y2 − 4z2) − 1

2
xy 2xz

2 2 2xz −2yz x2 − y2

2 3 x2 − y2 −2xy 0

3 −4 3x2y − y3 x3 − 3xy2 0

3 −3 6xyz 3(x2z − y2z) 3x2y − y3

3 −2 − 1

2
(3x2y + y3 − 6yz2) − 1

2
(x3 + 3xy2 − 6xz2) 6xyz

3 −1 − 3

2
xyz − 1

4
(3x2z + 9y2z − 4z3) 3yz2 − 3

4
(x2y + y3)

3 0 3

8
(x3 + xy2 − 4xz2) 3

8
(x2y + y3 − 4yz2) z3 − 3

2
z(x2 + y2)

3 1 − 1

4
(9x2z + 3y2z − 4z3) − 3

2
xyz 3xz2 − 3

4
(x3 + xy2)

3 2 −x3 + 3xz2 −3yz2 + y3 3(x2z − y2z)

3 3 3(x2z − y2z) −6xyz x3 − 3xy2

3 4 x3 − 3xy2 −3x2y + y3 0
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The harmonic polynomial expansion of the field nonuniformi-

ties given by Eq. (2) is a natural generalization of the descrip-

tion in terms of uniform gradients. The coefficients Gl,m are

the generalized gradients for the modes of degree l . Given the

degree of maturity of nEDM experiments, this generalization

is necessary to discuss the phenomena associated with field

nonuniformity at the appropriate level of accuracy.

III. FIELD UNIFORMITY AND STATISTICAL PRECISION:

NEUTRON DEPOLARIZATION

We now discuss the effects of a nonuniform magnetic field

on the statistical uncertainty, which is limited by the precision

of the determination of the neutron precession frequency fn.

The measurement of fn uses Ramsey’s method of separated

oscillatory fields. In short, a chamber is first filled with polar-

ized ultracold neutrons, and then a π/2 pulse is applied to the

neutron spins using a transverse oscillating field. The neutron

spins then precess in the transverse plane for a precession time

T . Finally a second π/2 pulse is applied, and the chamber is

then opened to count the number of spin-up and spin-down

neutrons. The asymmetry in the counting depends on the

difference between the applied frequency (used to generate the

pulses) and the Larmor frequency fn (to be measured). With

this method the statistical uncertainty on the neutron EDM,

due to Poisson fluctuations of the neutron counts, is

σdn = h̄

2αET
√

N
, (15)

where E is the electric-field strength, N is the total number of

neutrons measured during the measurement sequence, and α is

the visibility—or contrast—of the Ramsey resonance, which

refers to the polarization of the ultracold neutrons at the end

of the precession period multiplied by the analyzing power

of the spin analyzer system. In order to keep the visibility

α as high as possible, all the depolarization mechanisms

at play during the precession time must be understood and

minimized. Typically, in the current experiment at PSI with a

single chamber, we achieved α ≈ 0.75 after a precession time

of T = 180 s.

In previous works [30–32], we have identified the main

mechanisms responsible for the decay of the neutron polar-

ization while they are stored in the chamber. The variation of

α with respect to the precession duration can be written as a

sum of three contributions:

dα

dT
= − α

T2,wall

− α

T2,mag

+ α̇grav, (16)

where T2,wall is the transverse spin-relaxation time due to

wall collisions (see Sec. III A), T2,mag is the transverse spin-

relaxation time due to intrinsic depolarization in a nonuniform

field (see Sec. III C), and α̇grav is the contribution from grav-

itationally enhanced depolarization (see Sec. III B). Note that

Eq. (16) applies to spins that are precessing in the magnetic

field; this process is called transverse depolarization. The

corresponding situation for when spins are aligned along the

holding field is called longitudinal depolarization. In this case

the depolarization rate 1/T1 also receives contributions from

wall collisions and field nonuniformities as

1

T1

= 1

T1,wall

+ 1

T1,mag

, (17)

and it is in general different from the transverse depolarization

rate. We will now review all of these mechanisms in more

detail.

A. Wall depolarization

When colliding with the wall of the precession chamber,

a neutron can have its spin affected by magnetic impurities

contained within the wall. Given that the interaction time with

the wall is much shorter than the Larmor precession period,

and that any orientation of the spin is equally affected on

average, we can anticipate that the transverse and longitudinal

relaxation rates will be identical:

1

T2,wall

= 1

T1,wall

= βν, (18)

where β is the depolarization probability per wall collision

and ν is the average frequency of wall collisions. Suitable ma-

terials have depolarization probabilities in the range 10−6 �
β � 10−5 (see [33] for a recent work on wall depolarization).

In practice the wall collision frequency is less than 50 s−1, and

T1 is generally measured to be longer than 2000 s. Therefore,

although wall depolarization is not a negligible process, it

does not constitute a serious limitation for maintaining a high

polarization.

B. Gravitationally enhanced depolarization

Ultracold neutrons are neutrons of extremely low kinetic

energy, typically 200 neV or less. They are therefore signifi-

cantly affected by gravity: different energy groups of neutrons

have different mean heights in the chamber. In the presence

of a vertical field gradient, the spins of neutrons in different

energy groups precess at a slightly different rate, resulting

in a phenomenon referred to as gravitationally enhanced

depolarization. This mechanism concerns the transverse de-

polarization only.

For a quantitative description of the effect, we assume that

the field can be described by the polynomial expansion up to

order l = 1. We denote the probability for a neutron to belong

to the energy group ǫ as n(ǫ)dǫ. After the precession time

T , spins belonging to the energy group ǫ have accumulated

a phase difference, with respect to the average phase of all

neutrons, of

ϕ(ǫ, T ) = γnG1,0(z̄(ǫ) − 〈z〉)T, (19)

where z̄(ǫ) is the mean height of neutrons in this group, 〈z〉
is the mean height of the whole ensemble of neutrons, and γn

is the neutron gyromagnetic ratio. Assuming that each group

of neutrons is initially perfectly polarized, and neglecting the

depolarization within a group, the final polarization after the

precession time T is

α(T ) =
∫

cos ϕ(ǫ, T )n(ǫ)dǫ. (20)

For small values of the phase (which is generally the case

for small gradients) the cosine can be approximated using a

042112-4
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second-order Taylor expansion:

α(T ) = 1 − 1

2

∫

ϕ(ǫ, T )2n(ǫ)dǫ. (21)

Finally, the depolarization rate α̇grav is obtained from the

derivative of the previous expression over precession time:

α̇grav = −γ 2
n G2

1,0Var[z̄] T, (22)

with Var[z̄] the variance of the distribution of z̄(ǫ):

Var[z̄] =
∫

(z̄(ǫ) − 〈z〉)2n(ǫ)dǫ. (23)

C. Intrinsic depolarization

The intrinsic depolarization refers to the decay of polariza-

tion within an energy group. It is due to the fact that different

neutrons in a group have different random trajectories in

a nonuniform field and therefore different histories of the

magnetic field �B(t ). This process can be described by spin-

relaxation theory, which is a general approach to calculate

frequency shifts and relaxation rates on a quantum system

in terms of the correlation function of the disturbance, to

second order in the disturbance. In our case the disturbances

are the field components Bi(t ) with i ∈ {x, y, z}, and their

correlation functions 〈Bi(t1)B j (t2)〉 are the ensemble averages

of the quantities Bi(t1)B j (t2) over the neutrons stored in the

chamber. Here we assume that the motion of the neutrons in

the chamber is stationary in the statistical sense and therefore

〈Bi(t1)B j (t2)〉 = 〈Bi(0)B j (t2 − t1)〉. Specifically, it is the devi-

ation from the mean value of the field components, Bc
i (t ) =

Bi(t ) − 〈Bi〉, that induces the relaxation of the spin. In the

language of random processes, Bc
i (t ) is the centered variable

associated with Bi(t ), hence the notation with the exponent c.

Applying the spin-relaxation theory to our problem of spin-

1/2 particles in a bottle [34–36], one finds

1

T1,mag

= γ 2
n

∫ ∞

0

〈

Bc
x(0)Bc

x(t ) + Bc
y(0)Bc

y(t )
〉

cos ωt dt (24)

for the longitudinal relaxation rate and

1

T2,mag

= 1

2T1,mag

+ γ 2
n

∫ ∞

0

〈

Bc
z (0)Bc

z (t )
〉

dt (25)

for the transverse relaxation rate. In these expressions, ω =
γnB0 is the angular Larmor precession frequency, and 〈X 〉
refers to the ensemble average of the quantity X over the

neutrons stored in the chamber.

In fact, the depolarizations induced by the field compo-

nents Bx and By transverse to the holding field B0 are very

small. In the regime where the precession frequency fn is

much higher than the wall collision frequency ν, it has been

shown in [31] that the order of magnitude of the longitudinal

depolarization rate can be estimated by

1

T1,mag

∼ v
3�B2

T

80R3γ 2
n B4

0

, (26)

where v is the neutron speed, R is the radius of the chamber

(assumed to be cylindrical, with the axis aligned along z), and

�BT is the typical value for the transverse field difference in

the chamber. Note that a uniform transverse field has no effect.

Using realistic numbers for the nEDM apparatus installed at

PSI (2R = 47 cm, B0 = 1 μT, v = 3 m/s, and �BT = 2 nT)

we find T1,mag ∼ 1010 s. Therefore we will not give a precise

description of the transverse depolarization in the harmonic

polynomial expansion formalism.

To calculate the intrinsic depolarization rate, it is justified

to neglect transverse fields and keep only the effect of longi-

tudinal nonuniformities. Expressing the field in the basis of

harmonic polynomials, the correlation function becomes

〈

Bc
z (0)Bc

z (t )
〉

=
∑

l,l ′,m,m′

Gl,mGl ′,m′
〈

�c
z,l,m(0)�c

z,l ′,m′ (t )
〉

. (27)

In the case of a cylindrical chamber, the terms with m �= m′

cancel due to rotational symmetry around the cylinder axis.

The intrinsic depolarization rate can then be expressed as

1

T2,mag

= γ 2
n

∑

l,l ′,m

Gl,mGl ′,m

∫ ∞

0

〈

�c
z,l,m(0)�c

z,l ′,m(t )
〉

dt . (28)

At this point we can recognize that the depolarization rate

is a quadratic function of the generalized gradients Gl,m,

and that it depends on how fast a correlation of the type

〈�z,l,m(0)�z,l ′,m(t )〉 decays. In particular, slower neutrons de-

polarize more quickly. Also, for experiments using a mercury

comagnetometer, the mercury atoms depolarize in this fashion

with a much slower rate than the neutrons because the mercury

atoms are much faster.

Now, for a precise calculation of the depolarization rate of

ultracold neutrons in a given magnetic-field gradient a Monte

Carlo simulation of the trajectories of the neutrons can be

used. Such a study, in the case l = 1, has been presented in

[31], together with an intuitive model of the depolarization in

linear gradients. The intuitive model predicts

1

T2,mag

= 8R3γ 2
n

9πv

(

G2
1,−1 + G2

1,1

)

+ H3γ 2
n

16v

G2
1,0, (29)

where v is the speed of the neutrons, R is the radius of the

storage chamber, and H is the maximum height of the neu-

trons of speed v. The intuitive model reproduces the Monte

Carlo results quite well.

D. Experimental verification of the depolarization theory

We have conducted dedicated measurements on gradient-

induced neutron depolarization with the nEDM apparatus

installed at the PSI ultracold neutron source [37,38]. In a first

series of measurements, performed in May 2016, we varied

in a controlled way the vertical gradient G1,0 and measured

the final neutron polarization after a storage time of T =
180 s. In a second series, performed in September 2017, we

measured the final polarization as a function of the horizontal

gradient G1,1.

At each cycle the precession chamber is filled with polar-

ized neutrons. The neutrons are polarized by a 5-T supercon-

ducting magnet installed between the UCN source and the

nEDM apparatus. Only one spin component is transmitted

through the bore of the magnet, thereby polarizing the neu-

trons with an efficiency close to 100%. Three types of runs

were recorded to measure the final polarization, correspond-

ing to three types of storage conditions.
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(1) Longitudinal polarization: Neutrons are stored with

their spin aligned with the holding magnetic field, and no spin-

flip pulse is applied. During storage the polarization decreases

at a rate given by Eq. (17).

(2) Ramsey: A π/2 pulse is applied at the beginning and at

the end of the precession period (with a duration of 2 s each),

so that the neutron spins precess in the holding field during the

storage period. This is the normal mode of operation during

nEDM runs because it allows a precise determination of

the precession frequency. During precession the polarization

decreases at the rate given by Eq. (16).

(3) Spin echo: In addition to the two π/2 pulses applied

at the beginning and at the end of the precession period, a π

pulse is applied exactly halfway through the precession time.

The effect of the π pulse is to cancel the dephasing of different

neutron energy groups [32], and therefore the depolarization

rate is given by dα/dT = −α/T2,wall − α/T2,mag. This mode

allows one to isolate the intrinsic transverse depolarization

from the gravitationally enhanced depolarization.

At the end of the storage period the ultracold neutrons are

released from the precession chamber by opening the UCN

shutter, allowing them to proceed to the spin analyzer [39].

This device simultaneously counts the neutrons in each of

the two spin states: it has two arms, each of which includes

(i) an adiabatic spin flipper, (ii) a magnetized iron foil that

transmits one spin component and reflects the other, and (iii) a

set of 6Li-doped glass scintillators [40] to count the neutrons.

Finally, the asymmetry

A = N↑ − N↓
N↑ + N↓

(30)

is calculated. The efficiency of the spin analyzer is not perfect

due to the finite efficiency (about 90%) of the magnetized

foils.

For measurements in the longitudinal and spin-echo

modes, the polarization is directly given by the asymmetry,

i.e., α = A. In the Ramsey mode, the polarization is given

by the asymmetry at the resonance, i.e., α = A( frf = fn). In

practice one measures the asymmetry as a function of the

applied frequency frf of the π/2 pulses for several (typically

eight) cycles and then fits the Ramsey fringe by a cosine

function. The polarization α is given by the maximum—or

visibility—of the Ramsey curve A versus frf .

The gradients G1,0 or G1,1 are applied by setting

well-defined currents in the set of correcting coils. The

gradients are measured in real time with an array of cesium

magnetometers.

Figure 1 shows the results of a measurement of the final

polarization as a function of an applied vertical gradient G1,0.

Within the range of applied gradients, |G1,0| < 50 pT/cm,

the longitudinal polarization and the spin-echo polarization

are constant. This is consistent with the expectation from

Eq. (29) that the intrinsic magnetic depolarization is too small

to be measured. The fact that the spin-echo polarization is

smaller than the longitudinal polarization could be explained

by possible residual horizontal gradients of the type G1,1.

We observe gravitationally enhanced depolarization in the

Ramsey mode, with the polarization decreasing under the

application of a finite gradient. We fit the model α(G1,0) =
α0 − 1

2
γ 2

n G2
1,0Var[z̄]T 2 to the data with α0 and Var[z̄] as free

FIG. 1. Final polarization of ultracold neutrons after a storage

time of 180 s as a function of an applied vertical gradient G1,0.

Squares, longitudinal polarization; filled circles, polarization after

a spin-echo run; triangles, polarization after a normal Ramsey run.

The dashed line is a fit of the gravitationally enhanced depolarization

model based on Eq. (22) to the data (excluding the two points at large

gradients for which the small phase approximation is not valid).

parameters. We find Var[z̄] = 0.18 ± 0.06 cm2, a plausible

value for stored ultracold neutrons.

Figure 2 shows the result of scanning the horizontal gradi-

ent G1,1. The precession time was kept constant at T = 180 s.

In this case, as expected, the applied gradient affects the

polarization in the same manner as for the spin-echo and

Ramsey runs. We have plotted (dashed line) the expected

FIG. 2. Final polarization of ultracold neutrons after a storage

time of 180 s as a function of an applied horizontal gradient G1,1.

Filled circles, polarization after a spin-echo run; triangles, polariza-

tion after a normal Ramsey run. The dashed line corresponds to the

model Eq. (31) with α0 = 0.75 and v = 3 m/s.
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dependence

α(G1,1) = α0 exp

(

− T

T2,mag(G1,1)

)

, (31)

where T2,mag(G1,1) is given by the intuitive model Eq. (29) and
we have chosen the parameters α0 = 0.75 and v = 3 m/s.

Clearly, the data from the G1,0 and G1,1 scans are in good
qualitative agreement with the expectations. There are two
different mechanisms at play. The horizontal gradient G1,1

induces a truly irreversible depolarization process, since the
polarization cannot be recovered by the spin-echo method. On
the other hand, the vertical gradient G1,0 mainly affects the
polarization through a loss of coherence of different energy
groups separated by gravity; this coherence can be recovered
through the spin-echo technique.

IV. FIELD UNIFORMITY AND SYSTEMATIC EFFECTS:

FREQUENCY SHIFTS

In the present section we will cover the case of Larmor
frequency shifts of particles—ultracold neutrons or atoms—
evolving in a nonuniform magnetic field in conjunction with
an electric field. We first review the linear-in-electric-field fre-
quency shift, which constitutes an important direct systematic
effect. In particular we calculate the false mercury EDM in
terms of the coefficients of the harmonic expansion, and we
discuss the effects of higher-order modes. We will then review
the electric-field-independent frequency shifts.

A. Motional false EDM

When a particle moves with a velocity v through a static
electric field E, it experiences a (relativistic) motional mag-
netic field Bm = E × v/c2. For trapped particles the velocity
averages to zero, and therefore one is naively led to conclude
that the effect vanishes. This is indeed the case if the magnetic
field is perfectly uniform. However, when the particle spins
evolve in a nonuniform magnetic field the motional field Bm

does induce a linear-in-electric-field frequency shift δ f . This
effect has been extensively studied theoretically [36,41–49].
The associated false EDM can be calculated in the framework
of spin-relaxation theory:

d false = h̄γ 2

2c2

∫ ∞

0

〈Bx(0)vx(t ) + By(0)vy(t )〉 cos ωt dt . (32)

Now, the magnitude of this undesirable false EDM criti-
cally depends on whether the particles are moving quickly or
slowly, in a sense that we shall define. With a mean square

velocity vrms =
√

〈v2
x 〉, it typically takes a time τc = 2R/vrms

for a particle to diffuse from one side of the chamber to the
other (2R is the typical transverse size of the chamber, for
example its diameter in the case of a cylindrical chamber).
After this time a correlation function of the type 〈B(0)v(τc)〉
will have decayed to a small value. The adiabaticity parameter
is defined as ωτc. For ultracold neutrons one usually has
ωτc ≫ 1, which means that the Larmor frequency is much
faster than the wall collision rate: This is the adiabatic regime

of slow particles in a high field. On the other hand, for mercury
atoms at room temperature in a B0 = 1 μT field ωτc < 1: This
is the nonadiabatic regime of fast particles in a low field.
In the adiabatic regime, the linear-in-electric-field frequency

shift can be interpreted as originating from a geometric phase,
as first noticed in [50]. In fact the motional false EDM was
called the geometric phase effect in earlier publications.

The general expression for the motional false EDM given
in Eq. (32) takes simplified forms in the adiabatic and nonadi-
abatic approximations:

d false = − h̄v
2
rms

2c2B2
0

〈∂Bz

∂z

〉

(adiabatic), (33)

d false = − h̄γ 2

2c2
〈xBx + yBy〉 (nonadiabatic), (34)

where the brackets now refer to the volume average over
the precession chamber. It should be emphasized that these
expressions are valid for an arbitrary form of the magnetic
nonuniformity.

In the simple case of a uniform gradient, i.e., G1,0 �= 0 and

all other Gl,m modes set to zero, in a cylindrical chamber of

diameter 2R = 47 cm, these expressions can be simplified for

the neutron (adiabatic case) and mercury (nonadiabatic case)

false EDM [59]:

d false
n = − h̄v

2
rms

2c2B2
0

G1,0 (35)

≈ − G1,0

1 pT/cm
× 1.46 × 10−28e cm, (36)

d false
Hg =

h̄γ 2
Hg

8c2
R2G1,0 (37)

≈ G1,0

1 pT/cm
× 1.15 × 10−27e cm, (38)

the neutron case being calculated with vrms = 2 m/s and with

B0 = 1 μT. Because the mercury comagnetometer is used to

correct the neutron frequency for the drifts of the magnetic

field, the false EDM of the mercury atoms translates to a false

neutron EDM with a magnitude of

d false
n←Hg =

∣

∣

∣

∣

γn

γHg

∣

∣

∣

∣

d false
Hg (39)

≈ G1,0

1pT/cm
× 4.42 × 10−27e cm. (40)

It should be noted that the mercury-induced false neutron

EDM is much larger than the directly induced neutron mo-

tional false EDM.
In fact, it can be shown that the false EDM of a trapped

particle is maximum at zero magnetic field, i.e., in the nonadi-
abatic limit. This explains why the mercury comagnetometer
running at B0 = 1 μT is a source of large systematic effects.
It should be said that, despite the existence of such (by now
well understood) effects, the use of a comagnetometer for
these measurements is truly invaluable, and in its absence
the credibility of any results might well be brought into
question. Some compensation can be achieved through use of
a double chamber, with electric fields in opposite directions
and each chamber effectively acting as a magnetometer for
the other, but this still does not truly sample the colocated
field in a precise way. For a large-scale cryogenic experiment,
for example, an alternative that has been proposed to the
room-temperature mercury comagnetometer is the concept of
a helium-3 comagnetometer diluted in superfluid helium-4
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TABLE III. Radial components of the l, m = 0 modes.

l �ρ,l,m=0(ρ, z)

0 0

1 − 1

2
ρ

2 −ρz

3 3

8
ρ3 − 3

2
ρz2

4 3

2
ρ3z − 2ρz3

5 − 5

16
ρ5 + 15

4
ρ3z2 − 5

2
ρz4

6 − 15

8
ρ5z + 15

2
ρ3z3 − 3ρz5

7 35

128
ρ7 − 105

16
ρ5z2 + 105

8
ρ3z4 − 7

2
ρz6

bath, for which the false EDM can be set to zero by adjust-
ing the temperature of the bath [43]. At room temperature,
though, another alternative that has recently been proposed
by one of us is to operate the mercury comagnetometer at
a higher “magic” magnetic field to set the false EDM to
zero [51]. While this is an attractive possibility for a future
experiment, it brings with it significant difficulties in ensuring
the uniformity of the magnetic field to the level required to
avoid depolarization of the neutrons. In the remainder of the
present paper we will consider the nonadiabatic regime for the
mercury comagnetometer.

The mercury false EDM value given by Eq. (38) is in

practice times larger than the dHg experimental upper bound

from direct searches for the Hg atomic EDM, dHg < 7.4 ×
10−30e cm [52], where the presence of a 0.5-bar buffer gas

reduces the size of the motional false EDM to d false
Hg <

10−31e cm [52,53] in this experiment.

We will now give expressions for the mercury-induced

false EDM in the case of more general magnetic nonunifor-

mities described by the harmonic polynomial expansion (2).

From Eqs. (34) and (39) we find

d false
n←Hg = − h̄|γnγHg|

2c2

∑

l,m

Gl,m〈ρ�ρ,l,m〉, (41)

where ρ, z, φ are the cylindrical coordinates and

�ρ,l,m = cos φ �x,l,m + sin φ �y,l,m = ∂ρ�l+1,m (42)

is the radial component of the mode l, m. In Table III we

give expressions for the radial components of the first m = 0

modes (see Appendix A for more information on the harmonic

polynomials in cylindrical coordinates).

Next, we specify the formula (41) in the case of a cylin-

drical chamber of radius R and height H . The origin of the

coordinate system is at the center of the cylinder. All m �= 0

modes satisfy 〈ρ�ρ,l,m〉 = 0 due to the average over φ. All

even l modes satisfy 〈ρ�ρ,l,0〉 = 0 due to the average over z.

Therefore, only the modes �ρ,l,0 with l odd contribute to the

mercury-induced false EDM:

d false
n←Hg = − h̄|γnγHg|

2c2

∑

l odd

Gl,0〈ρ�ρ,l,0〉 (43)

= h̄|γnγHg|
8c2

R2

[

G1,0 − G3,0

(

R2

2
− H2

4

)

+ G5,0

(

5R4

16
− 5R2H2

12
+ H4

16

)

+ · · ·
]

. (44)

The motional false EDM of mercury induced by the linear

gradient G1,0 has been experimentally confirmed in [54],

by applying an artificially large gradient. More recently we

have also verified the effect induced by the cubic term G3,0

with a dedicated measurement as reported in Sec. IV B. The

motional false EDM is a dominant systematic effect that must

be compensated for, and in order to determine the true EDM

from experimental values one must extrapolate the measured

EDM to zero gradient. An effective strategy for that extrapola-

tion, used in the previous measurement [14], takes advantage

of neutron frequency shifts which are also sensitive to the

gradients. We will review these frequency shifts in Sec. IV C

and explain the correction strategy using the gravitational shift

in Sec. IV E.

B. Experimental verification of the false EDM induced

by the cubic mode

In order to verify the accuracy of the predicted false EDM

d false, a dedicated measurement was performed in the neu-

tron EDM experiment at PSI using different magnetic-field

gradients. In a previous work [54] we verified that a linear

gradient G1,0 produces a motional false EDM on the mercury

as predicted by the theory. Here we extend this verification to

the false EDM produced by the cubic mode G3,0.

In this measurement no neutrons were used, and the 199Hg

precession frequency fHg was monitored while the applied

electric field was periodically reversed: E = ±120 kV/12 cm.

The measurements were performed in a series of standard

cycles for which the sequence begins with the filling of the

precession chamber with spin-polarized Hg atoms. The Hg

spin is then flipped to a transverse direction (with respect to

B0) using a π/2 magnetic resonance pulse of 2-s duration.

A weak circularly polarized light beam is used to monitor

the precessing transverse Hg spins by measuring the light

power transmitted though the Hg medium. Due to the spin-

dependent part of the absorption coefficient, the transmitted

power is modulated synchronously with the spin precession.

After recording the free-spin precession for 72 s, the cycle

ends with the emptying of the precession chamber. Cycles

were repeated every 100 s, and the E field was reversed in

a + − −+ pattern where every entry in the pattern consists of

ten cycles.

The change in Hg precession frequency � fHg correlated

with the change in electric field �E was analyzed by aver-

aging over many electric-field changes. The pattern + − −+
suppresses the effect of linear drifts in the Hg precession

frequency due to slow changes of the magnetic field in the

apparatus. Periods during which the magnetic field changed

rapidly (e.g., because of ramping superconducting magnets in

neighboring experiments) were cut from the data analysis.

We took data in a number of different magnetic-field

configurations. To change the cubic mode G3,0 we applied ap-

propriate currents in trim coils mounted around the precession

volume. For each magnetic-field configuration we calculate

the false EDM as

d false = π h̄

2|E | ( fHg,↑↑ − fHg,↑↓). (45)
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FIG. 3. Experimental verification of motional false EDM of

mercury induced by a change of the cubic gradient G3,0. The fre-

quency shift correlated with electric-field reversals was measured at

±120 kV. Red triangles pointing upwards (blue downwards) corre-

spond to runs for which the B0 field points upwards (downwards).

The dashed line corresponds to the theoretical expectation given by

Eq. (46).

We selected pairs of runs that only differ by the value of the

cubic mode. We report in Fig. 3 the difference �d false between

each pair as a function of the cubic mode difference �G3,0.

The value �G3,0 is inferred by analyzing field maps. We plan

to describe the field mapping device and the analysis of the

recorded maps in a later publication.

Figure 3 also shows the theoretical expectation

�d false = −
h̄γ 2

Hg

8c2
R2

(

R2

2
− H2

4

)

�G3,0. (46)

The measurement is in good agreement with the theory. More

details about this measurement can be found in the Ph.D.

thesis of Komposch [55].

C. Electric-field-independent frequency shifts

We will now discuss the frequency shifts unrelated to the

electric field in situations where the Larmor frequencies of the

neutrons fn and mercury atoms fHg are measured in a weak

magnetic field B0 = 1 μT.

There are several known effects that could significantly

shift the ratio R = fn/ fHg from its unperturbed value

|γn/γHg|. For the purpose of the present discussion we write

the combination of these effects as

R = fn

fHg

=
∣

∣

∣

∣

γn

γHg

∣

∣

∣

∣

(1 + δGrav + δT + δother ). (47)

The term δGrav is called the gravitational shift and δT is the

shift due to transverse magnetic fields. The last term, δother,

accounts for shifts unrelated to the field uniformity. It includes

the effect of Earth rotation [56], Ramsey-Bloch-Siegert shifts

due to imperfect π/2 pulses, and light shifts induced by the

UV light probing the mercury precession. A discussion of

these effects, which in practice are subdominant, is beyond

the scope of this paper; they were briefly discussed in [57].

The first two terms δGrav and δT are of interest here because

they are induced by the magnetic-field nonuniformity.

The gravitational shift δGrav is the dominating shift in

Eq. (47). As we already have mentioned when discussing

gravitational depolarization, ultracold neutrons “sag” towards

the bottom of the chamber quite significantly due to gravity.

In contrast, the mercury atoms form a gas at room temperature

that fills the precession chamber uniformly. This results in

slightly different average magnetic fields for the neutrons and

the atoms in the presence of a vertical field gradient. In the

framework of the harmonic expansion of the field, the volume

average of the vertical component is

〈Bz〉 =
∑

l,m

Gl,m〈�z,l,m〉. (48)

For a cylindrical chamber all the terms with m �= 0 vanish.

Limiting the expansion to l = 3, we have

〈Bz〉 = G0,0 + G1,0〈z〉
+ G2,0〈−ρ2/2 + z2〉 + G3,0

〈

z3 − 3
2
ρ2z

〉

. (49)

For both mercury atoms and neutrons we have

〈ρ2〉 = R2

2
. (50)

For the mercury atoms we have

〈z〉Hg = 0, (51)

〈z2〉Hg = H2

12
, (52)

〈z3〉Hg = 0. (53)

Therefore, the averaged field, which we call the B0 field, is

B0 := 〈Bz〉Hg = G0,0 + G2,0

(

H2

12
− R2

4

)

. (54)

Now, for neutrons, the main difference when compared to

atoms is that the center of mass 〈z〉n—which we denote simply

as 〈z〉—is significantly nonzero and negative. To calculate the

ensemble average of higher powers of z, we approximate the

neutron density n(z) to be a linear function of z. We find

〈z2〉n ≈ H2

12
, (55)

〈z3〉n ≈ 3H2

20
〈z〉. (56)

In reality the neutron density is not precisely a linear function

of z. However, these expressions have been numerically veri-

fied to be accurate to better than a few percent for typical UCN

spectra in storage vessels similar to those used. Therefore, the

expression of the field averaged by the neutrons is

〈Bz〉n = G0,0 + G1,0〈z〉 + G2,0

(

H2

12
− R2

4

)

+ G3,0

(

3H2

20
− 3R2

4

)

〈z〉. (57)
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From Eqs. (54) and (57) we deduce the gravitational shift

δGrav = 〈Bz〉n

〈Bz〉Hg

− 1 = ±Ggrav〈z〉
|B0|

, (58)

where the ± sign refers to the direction of the magnetic field

and the term Ggrav is given by the following combination:

Ggrav = G1,0 + G3,0

(

3H2

20
− 3R2

4

)

. (59)

The second shift in Eq. (47), δT , arises from residual

transverse field components BT . As mentioned above, the

neutrons fall into the adiabatic regime of slow particles in a

high field, and therefore the spins precess at a rate given by

the volume average of the modulus of the field:

fn = |γn|
2π

〈|B|〉n ≈ |γn|
2π

(

|〈Bz〉n| +
〈

B2
T

〉

2|B0|

)

. (60)

The mercury atoms on the other hand fall into the nonadi-

abatic regime of fast particles in a low field, as a result of

which the spins precess at a rate given by the vectorial volume

average of the field:

fHg = γHg

2π
|〈�B〉Hg| = γHg

2π
|B0|. (61)

Due to the fact that 〈Bz〉n �= B0 is already accounted for by

the gravitational shift, the expression for the transverse shift

is simply

δT =
〈

B2
T

〉

2B2
0

. (62)

The expression for 〈B2
T 〉 in terms of the coefficients Gl,m is

given in Appendix B.

D. Experimental verification of the gravitational

and transverse shifts

In Fig. 4 we show a measurement of the ratio R = fn/ fHg

as a function of an applied vertical field gradient G1,0. The

underlying data are the same as those used to produce Fig. 1.

We observe that the dependence of R versus the gradient is

not quite linear. Fitting only the linear part we find 〈z〉 =
−0.36(3) cm. The nonlinear behavior is primarily due to the

phenomenon of Ramsey wrapping [30,31]. Under the influ-

ence of gravity and in the presence of a vertical field gradient,

the distribution of spin phases evolves in an asymmetric

manner. Ramsey’s technique measures phase modulo 2π , so

a dominant tail on one side of the distribution can “wrap

around” and effectively contribute to pulling the measured

phase in the opposite direction to that which one would

naively expect. (This effect is also very slightly enhanced by a

subtle interplay between depolarization and frequency shift:

the depolarization at large gradients acts differently upon

the different energy groups, depolarizing the lowest-energy

neutrons more quickly so that they contribute less to the

frequency shift, thus effectively modifying 〈z〉; but the latter is

a very minor addition.) These complications, which are only

relevant for large field gradients, have been neglected in the

previous discussion.

FIG. 4. Experimental verification of the gravitational shift:

neutron-to-mercury frequency ratio R as a function of an applied

vertical gradient G1,0. A linear fit to the data is performed (excluding

the two points at large gradients) to extract 〈z〉.

Next we report on a dedicated experiment to verify the fre-

quency shift due to a transverse field. The measurements were

performed at PSI in October 2017. We varied the transverse

field component using a combination of trim coils optimized

to induce only the G1,2 mode. Since the G1,2 mode is purely

transverse, the scalar Cs magnetometers could not be used

to measure it; instead we used offline fluxgate maps of the

trim coils to determine the value of G1,2 as a function of the

currents in the coils. Figure 5 shows the R ratio as a function

of G1,2. We also carried out a similar test for the G1,−2 mode,

FIG. 5. Experimental verification of the transverse-gradient

shift: neutron-to-mercury frequency ratio R as a function of applied

transverse gradient G1,2. The dashed line is a symmetric parabola

with the constant term fitted to the data and the quadratic term fixed

to the theoretical value.
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and that measurement is also in good agreement with the

expected shift.

E. Correction strategy using the gravitational shift

We now suggest a strategy to correct for the motional false

EDM through use of the gravitational shift. We extend the

method used in [14], which neglected possible l > 1 terms

for the nonuniformity. Here we assume that the magnetic field

can be described by the harmonic expansion up to l = 4 and

we neglect for the time being all terms l > 4.

For a given sequence of measurements with a fixed

magnetic-field configuration, the measured EDM is the sum

of the true EDM and the false EDM, which can be written as

dmeas
n = d true

n + h̄|γnγHg|
8c2

R2

[

Ggrav + G3,0

(

R2

4
+ H2

10

)]

.

(63)

On the other hand, the R ratio measured for that magnetic-

field configuration is given by

R =
∣

∣

∣

∣

γn

γHg

∣

∣

∣

∣

(

1 ± Ggrav〈z〉
|B0|

+ δT + δother

)

, (64)

where the +(−) sign refers to B0 pointing upwards

(downwards). We define the corrected quantities dcorr
n and

Rcorr to be

dcorr
n = dmeas

n − h̄|γnγHg|
8c2

R2

(

R2

4
+ H2

10

)

G3,0 (65)

and

R
corr = R/(1 + δT + δother ). (66)

To calculate these, the magnetic-field related quantities G3,0

and 〈B2
T 〉 are required. They can be measured offline by

field mapping, if the reproducibility of the magnetic-field

configuration is sufficient.

Then, we have

dcorr
n = d true

n + h̄|γnγHg|
8c2

R2Ggrav (67)

and

R
corr =

∣

∣

∣

∣

γn

γHg

∣

∣

∣

∣

(

1 ± Ggrav〈z〉
|B0|

)

. (68)

Therefore,

dcorr
n = d true

n + B0

h̄γ 2
Hg

8c2〈z〉R2

(

R
corr −

∣

∣

∣

∣

γn

γHg

∣

∣

∣

∣

)

. (69)

Now, we have a set of “points” (dcorr
n ,Rcorr ), where each

point corresponds to a different field configuration. It is im-

portant to get a set of points for both polarities of B0. The so-

called crossing-point analysis simply consists of fitting these

two series of points with two linear functions with opposite

slope. It gives direct access to d true
n , since at the crossing point

dn = d true
n and Rcorr = | γn

γHg
|. This technique was extended in

[14] to include the nonlinearity arising from Ramsey wrap-

ping, resulting in a far more satisfactory fit to the data.

Let us now make a few remarks.

(1) In principle, one could extract Ggrav from offline field

mapping or with real-time magnetometers around the preces-

sion chamber, and correct the false EDM on a point-by-point

basis without using the crossing-point analysis. However, this

requires an accuracy better than 1 pT/cm for Ggrav (corre-

sponding to an error of 4.4 × 10−27 e cm), which is beyond the

reach of the current experimental setup. The accuracy of the

determination of the gradients will be discussed quantitatively

in the two aforementioned forthcoming papers.

(2) An experiment with a vertical stack of two chambers,

rather than just one, could simply measure the gradient by tak-

ing the field difference between the top and bottom chambers.

This would be an alternative to the gradient extracted via the

gravitational shift.

(3) The crossing-point condition Rcorr = | γn

γHg
| allows an

important cross-check of the analysis: Rcorr should agree

with | γn

γHg
| calculated from independent measurements of γn

and γHg.

F. The special case of a localized magnetic dipole

The correction strategy presented in the previous paragraph

compensates for the false EDM produced by a nonuniform

field for all modes up to l = 4. However, it does not perfectly

compensate for the systematic effect generated by a localized

magnetic dipole situated close to the precession chamber, as

pointed out in [58]. Indeed, the residual false EDM, after the

correction procedure, is given by

d res
n = − h̄|γnγHg|

2c2

(

〈

xBdip
x + yBdip

y

〉

+ R2

4

〈

∂B
dip
z

∂z

〉)

, (70)

where (B
dip
x , B

dip
y , B

dip
z ) is the magnetic field generated by the

magnetic dipole. The first term corresponds to the systematic

effect induced by the horizontal components of the dipole, and

the second term arises from the correction procedure.

When the dipole is situated on the axis below or above the

cylindrical chamber, an analytical expression for Eq. (70) can

be derived [45]. In general, however, for an arbitrary position

of the magnetic dipole, Eq. (70) has to be calculated numer-

ically. Most critical are dipoles located on the circumference

of the chamber.

We show in Fig. 6 a numerical calculation of the false

EDM generated by a dipole oriented along z, with a magnetic

moment mz = 10 nA m2. This dipole corresponds to a speck

of spherical iron dust with diameter 20 μm magnetized to

saturation.

V. SUMMARY AND DISCUSSION

In this paper we have discussed how magnetic-field

nonuniformities affect the statistical and systematic errors in

the measurement of the neutron electric dipole moment.

Concerning the statistical precision, the field uniformity

must be sufficient to prevent the depolarization of ultracold

neutrons during the precession time, which is as long as

a few minutes. We have reviewed the main mechanisms

of magnetic—gravitational and intrinsic—depolarization. We

have reported upon dedicated measurements of these effects,

in particular using the UCN spin-echo technique to sepa-

rate the intrinsic and gravitationally enhanced depolarization

components.
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FIG. 6. Absolute residual false EDM created by a dipole located

in the vertical plane y = 0, with a magnetic moment aligned with z

and with mz = 10 nA m2, as a function of the position (x, z) of the

dipole. The white area corresponds to the volume of the chamber

(diameter 47 cm and height 12 cm).

As far as systematic effects are concerned, we have focused

the discussion on those related to the mercury comagnetome-

ter. In the previous literature, discussion about the false EDM

effect in mercury was limited to linear gradients, although

the case of localized dipoles was treated in [44,45,58]. In

this paper we have extended the discussion to higher-order

gradients. The theory for the motional false EDM is given

in terms of a harmonic expansion. We have performed a

dedicated measurement to verify the effect of the cubic mode

in this expansion.

We have in preparation two companion papers on the

subject of magnetic-field uniformity in the PSI nEDM ex-

periment. The second part of this trilogy will present the

procedure to produce a uniform field in situ with the help of

an array of cesium magnetometers. The third part will present

the offline characterization of the field uniformity through use

of an automated mapping device.
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APPENDIX A: HARMONIC POLYNOMIALS

IN CYLINDRICAL COORDINATES

It is useful to derive the expressions of the harmonic modes

in cylindrical coordinates (ρ, φ, z) with x = ρ cos φ and y =
ρ sin φ. The radial, azimuthal, and vertical components, re-

spectively, of the mode l, m are given by

�ρ,l,m = cos φ �x,l,m + sin φ �y,l,m (A1)

= ∂ρ�l+1,m, (A2)

�φ,l,m = − sin φ �x,l,m + cos φ �y,l,m (A3)

= 1

ρ
∂φ�l+1,m, (A4)

�z,l,m = ∂z�l+1,m. (A5)

It is possible to write a simplified expression for the vertical

component. Starting from Eq. (4), we have

�z,l,m = Cl+1,m(φ) ∂z

[

rl+1Pm
l+1(c)

]

= Cl+1,m(φ)rl
[

(l + 1)cPm
l+1(c) + (1 − c2)∂cPm

l+1(c)
]

,

(A6)

where c = cos θ . Using the following known property of the

associated Legendre polynomials,

(c2 − 1)∂cPm
l+1(c) = (l + 1)cPm

l+1(c) − (l + 1 + m)Pm
l (c),

(A7)

we arrive at

�z,l,m = Cl+1,m(φ)(l + m + 1)rlPm
l (cos θ ). (A8)

It is also possible to write a simplified expression for the

radial component, but only for the m = 0 modes. In that case,

�ρ,l,0 = 1

l + 1
∂ρ

[

rl+1P0
l+1(c)

]

= rl

l + 1
sin θ

[

(l + 1)P0
l+1(c) − c∂cP0

l+1(c)
]

. (A9)

We use the following property of the Legendre polynomials,

(l + 1)P0
l+1(c) − c∂cP0

l+1(c) = −∂cP0
l (c), (A10)

to find

�ρ,l,0 = rl

l + 1

d

dθ
P0

l (cos θ ). (A11)

An explicit calculation of the modes in cylindrical coordinates

up to l = 3 is shown in Table IV.
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TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.

l m �ρ �φ �z

0 −1 sin φ cos φ 0

0 0 0 0 1

0 1 cos φ − sin φ 0

1 −2 ρ sin 2φ ρ cos 2φ 0

1 −1 z sin φ z cos φ ρ sin φ

1 0 − 1

2
ρ 0 z

1 1 z cos φ −z sin φ ρ cos φ

1 2 ρ cos 2φ −ρ sin 2φ 0

2 −3 ρ2 sin 3φ ρ2 cos 3φ 0

2 −2 2ρz sin 2φ 2ρz cos 2φ ρ2 sin 2φ

2 −1 1

4
(4z2 − 3ρ2) sin φ 1

4
(4z2 − ρ2) cos φ 2ρz sin φ

2 0 −ρz 0 − 1

2
ρ2 + z2

2 1 1

4
(4z2 − 3ρ2) cos φ 1

4
(ρ2 − 4z2) sin φ 2ρz cos φ

2 2 2ρz cos 2φ −2ρz sin 2φ ρ2 cos 2φ

2 3 ρ2 cos 3φ −ρ2 sin 3φ 0

3 −4 ρ3 sin 4φ ρ3 cos 4φ 0

3 −3 3ρ2z sin 3φ 3ρ2z cos 3φ ρ3 sin 3φ

3 −2 ρ(3z2 − ρ2) sin 2φ 1

2
ρ(6z2 − ρ2) cos 2φ 3ρ2z sin 2φ

3 −1 1

4
z(4z2 − 9ρ2) sin φ 1

4
z(4z2 − 3ρ2) cos φ ρ(3z2 − 3

4
ρ2) sin φ

3 0 3

8
ρ(ρ2 − 4z2) 0 1

2
z(2z2 − 3ρ2)

3 1 1

4
z(4z2 − 9ρ2) cos φ 1

4
z(3ρ2 − 4z2) sin φ ρ(3z2 − 3

4
ρ2) cos φ

3 2 ρ(3z2 − ρ2) cos 2φ 1

2
ρ(ρ2 − 6z2) sin 2φ 3ρ2z cos 2φ

3 3 3ρ2z cos 3φ −3ρ2z sin 3φ ρ3 cos 3φ

3 4 ρ3 cos 4φ −ρ3 sin 4φ 0

APPENDIX B: TRANSVERSE FIELD COMPONENTS

In this Appendix we give the expression for the mean

squared transverse field,
〈

B2
T

〉

= 〈(Bx − 〈Bx〉)2 + (By − 〈By〉)2〉, (B1)

in terms of the generalized gradients Gl,m up to order l = 3 for

a cylindrical precession chamber of radius R and height H .

It can be expressed as a sum of four contributions:
〈

B2
T

〉

=
〈

B2
T

〉

LO
+

〈

B2
T

〉

2O
+

〈

B2
T

〉

3O
+

〈

B2
T

〉

3I1
. (B2)

The linear-order contribution is

〈

B2
T

〉

LO
= R2

2

(

G2
1,−2 + G2

1,2 + 1

4
G2

1,0

)

+ H2

12

(

G2
1,−1 + G2

1,1

)

. (B3)

The quadratic-order contribution is

〈

B2
T

〉

2O
= R4

3

(

G2
2,−3 + G2

2,3

)

+ R2H2

12

(

2G2
2,−2 + 2G2

2,2 + 1

2
G2

2,0

)

+
(

R4

24
+ H4

180

)

(

G2
2,−1 + G2

2,1

)

. (B4)

The cubic-order contribution is

〈

B2
T

〉

3O
= R6

4

(

G2
3,−4 + G2

3,4

)

+ R4H2

4

(

G2
3,−3 + G2

3,3

)

+
(

5R6

32
− R4H2

8
+ 9R2H4

160

)

(

G2
3,−2 + G2

3,2

)

+
(

5R4H2

64
− 3R2H4

160
+ H6

448

)

(

G2
3,−1 + G2

3,1

)

+
(

9R6

256
− R4H2

32
+ 9R2H4

640

)

G2
3,0. (B5)

Finally, there is the interference term between the linear and

cubic modes:

〈

B2
T

〉

3I1
=

(

−R4

2
+ R2H2

4

)

×
(

G1,−2G3,−2 + G1,2G3,2 + 1

4
G1,0G3,0

)

+
(

−R2H2

8
+ H4

40

)

(G1,−1G3,−1 + G1,1G3,1).

(B6)

Note that the quadratic modes do not interfere with the linear

and cubic modes.
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