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Magnetic ground state of FeSe
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Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for

establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide

superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the

structurally simplest iron-based superconductor, shows nematic order (Ts¼ 90K), but not

magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here

we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin

fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial

amount of spectral weight is transferred from the Néel to the stripe spin fluctuations.

Moreover, the total fluctuating magnetic moment of FeSe is B60% larger than that in

the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S¼ 1 nematic

quantum-disordered paramagnet interpolating between the Néel and stripe magnetic

instabilities.
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R
ecently, FeSe has attracted considerable interest because of
its atypical magnetism1–6 and fascinating superconducting
properties7–10. Although the superconducting transition

temperature Tc of bulk FeSe (TcE8K) is low, it increases
drastically under pressure (TcE37K; ref. 7), by carrier doping
(TcE40–48K; refs 8,9), or in the mono layer limit (TcB65-109K,
ref. 10). The unique superconducting properties of FeSe are
presumably related to its magnetism, which has also been shown
to be uncommon. FeSe displays nematic, but not stripe magnetic
order1,11 that is unexpected because nematic order has been
argued to be the consequence of stripe magnetic order, and both
break the C4 lattice symmetry11. In iron pnictides, the stripe
magnetic order invariably occurs at or immediately below the

nematic-(tetragonal-to-orthorhombic) ordering temperature11.
Although previous works have shown that the nematic order
could be driven by spin fluctuations without the requirement of
magnetic order2–4,12, the microscopic origin of the absence of the
long-range stripe magnetic order in FeSe remains elusive.

Theoretical studies have suggested that the stripe magnetic
order in FeSe is absent due to the development of other
competing instabilities2–6. Several ground states have been
proposed, including Néel order2, staggered dimer/trimers/
tetramers magnetic order3, pair-checkerboard order5, spin
antiferroquadrupolar order4 and charge current-density wave
order6. In experimental studies, neutron-scattering measurements
showed substantial low-energy stripe spin fluctuations in single
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Figure 1 | Momentum dependence of the spin fluctuations in FeSe at 4 and 110K. (a) Schematic representation of the stripe and Néel spin fluctuations in

the (H, K) plane. (b–j) Constant-energy images acquired at 110 K at indicated energies. (k–s) Constant-energy images obtained at 4K at the same intensity

scale as those acquired at 110 K. The measurements in (b–d,k–m) and (e–j,n–s) were carried out on ARCS with the incident neutron energy of 79

and 294meV, respectively. The sample has two equally populated orthogonal twin domains in the ab plane at 4K and the intensities near (1, 0) and

(0, 1) are roughly the same. Symmetry equivalent data were pooled to enhance statistical accuracy. The |Q|-dependent background is subtracted for the

data (b–d,k–m) below the aluminium phonon cutoff energy of B 40meV. Above 40meV, raw data are presented (e–j,n–s). The colour bars indicate

intensity in unit of mbar sr� 1meV� 1 f.u.� 1. The dashed ellipses and circles mark the stripe and Néel wavevectors, respectively.
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crystal12 and powder samples13. However, because of the
limitations of the q-space information that can be obtained for
powder measurements and the relatively narrow energy range
probed previously, the precise nature of the magnetic ground
state remains undetermined; this elucidation requires
measurements of the momentum structure of the spin-
fluctuation spectrum from low energy to the zone boundary
over the entire Brillouin zone.

In this paper, we used inelastic neutron scattering to map out
the spin-fluctuation spectra over the entire Brillouin zone in
single-crystalline FeSe (Methods). Our data reveal the coexistence
of the stripe and Néel spin fluctuations, both of which are coupled
with nematicity. In addition, although the spin-fluctuation
bandwidth is lower, the total fluctuating magnetic moment
( m2h i¼ 5.19 m

2
B/Fe) of FeSe is B60% larger than that in the iron

pnictide BaFe2As2 (ref. 14). These findings suggest that FeSe is an
S¼ 1 nematic quantum-disordered paramagnet, interpolating
between the Néel and stripe magnetic instabilities2.

Results
Momentum and energy dependence of spin fluctuations.
Figure 1 shows the constant-energy images of spin fluctuations
in the (H, K) plane. Here, in the high-temperature tetragonal
phase (110 K), the spin response is strongest at Q¼ (1, 0)
(marked by dashed ellipse) at 15meV (Fig. 1b), which is con-
sistent with previous low-energy measurements12,13. With an
increase in energy (Fig. 1c–j), the spin fluctuations show
anisotropic dispersion and counter-propagate mainly along the
K direction. This is analogous to the stripe spin fluctuations
detected in other iron-based superconductors11,14,15. Most
notably, in addition to the stripe spin fluctuations,
comparatively weaker, but clear scattering appears near (1, 1)
(Fig. 1b, dashed circle), which implies the presence of spin
fluctuations associated with the Néel magnetic instability
(Methods); different from the anisotropic stripe spin
fluctuations, the Néel spin fluctuations are nearly isotropic in
the transverse and longitudinal directions (Fig. 1b–g). With an
increase in the energy up to B150meV, the Néel and stripe spin
fluctuations overlap and cover a broad area centred at (1, 1)
(Fig. 1j). On cooling to within the nematic phase (T¼ 4 K), the
Néel spin-fluctuation signal weakens considerably and is almost

undetectable o35meV (Fig. 1k,l). On the other hand, the
momentum structure of the stripe spin fluctuation is essentially
unchanged above and below Ts (Fig. 1k–s).

To further elucidate the spin fluctuations in E–Q space, we
projected the spin fluctuations along the K direction near (1, 0)
and (1, 1) (Fig. 2). Because the incident neutron beam was parallel
to the c axis, the energy transfer was coupled with L. No L
modulations were observed from the scattering near (1, 0, L) and
(1, 1, L), which indicates a two-dimensional nature of the
magnetism. As shown in Fig. 2a, the stripe spin fluctuations
stem from (1, 0), split into two branches at B35meV and extend
up to above B150meV at 110K. The steeply dispersive Néel
spin fluctuations are also visible (green arrowheads). As the
temperature is lowered to 4K, the Néel spin fluctuation exhibits a
B30meV gap, while the stripe spin fluctuations o70meV are
clearly enhanced (Fig. 2b).

To quantify the dispersions and intensities of the stripe and Néel
spin fluctuations, we made constant-energy cuts at distinct energies
(Fig. 3). As Fig. 3d–i show, at T¼ 110K, the single peak centred at
(1, 0) at 15meV evolves into a pair of peaks along the K direction
at EZ35meV. By contrast, the peak position of the Néel spin
fluctuation (see green arrowheads) shows little change; it only
broadens gradually in wavevector with increasing energy. The Néel
spin fluctuation is more clearly visible along the transverse
direction (Fig. 3m–r) because of the comparatively weaker
influence of the stripe spin fluctuations. Here, double peaks formed
due to the dispersion are not seeno68meV, because the Néel spin
fluctuations are commensurate and steeply dispersive (Fig. 3m–r).
At higher energies, the Néel and stripe spin-fluctuation spectra
merge with each other, and their dispersions cannot be determined
unambiguously (Fig. 3a–c,j–l). The Néel spin fluctuation becomes
featureless at low energies (Fig. 3i,r) at 4K, which agrees with the
results shown in the constant-energy and E–Q images (Figs 1k and
2b). We attempted to fit both types of spectra concurrently using a
linear spin-wave theory for the two-neighbour (J1(a/b)–J2) or three-
neighbour (J1(a/b)–J2–J3) Heisenberg model, where J1(a/b), J2 and J3
are nearest neighbour (in the a/b direction), next-nearest neighbour
and next next-nearest neighbour exchange coupling constants,
respectively; but this was unsuccessful mainly because this theory
cannot account for the observed strong low-energy spin excitations
at both (1, 0) and (1, 1).
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Figure 2 | Dispersions of the stripe and Néel spin fluctuations in FeSe at 4 and 110K. Background-subtracted E–K slice of the spin fluctuations at various

incident energies: (a) T¼ 110K; (b) T¼4K. The data at EZ40 and Er40meV were collected on ARCS by using incident energy of 294 and 79meV,

respectively. The isotropic Fe2þ magnetic form factor is corrected for both sets of the data. The spectral weight transfer from the Néel (1, 1) to stripe (1, 0)

wavevector below B70meV on cooling to 4K can be clearly seen. The open circles are dispersions obtained from the constant-energy cuts o68meV in

Fig. 3. The colour bar indicates intensity in unit of mbar sr� 1meV� 1 f.u.� 1. The vertical bars indicate the energy integration range. The horizontal bars at

15meV indicate the full-width at half-maximum of the Gaussian fittings in Fig. 3i. The horizontal bars at other energies are the errors derived by least-

square fittings. The dashed lines are a guide to the eye.
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Momentum integrated local susceptibility above and below Ts.
More insight into the nature of the underlying magnetic ground
state and its interaction with the nematicity could be acquired by
calculating in absolute units the energy dependence of the
momentum integrated local susceptibility w00(o) above and below
Ts; as Fig. 4a,b show, at T¼ 110K, the Néel spin-fluctuation
spectral weight is roughly 26% of that of the stripe spin fluctua-
tion o52meV, where the two signals are well separated in q-
space. Upon cooling to T¼ 4K, the spectral weight loss for the
Néel spin fluctuations is approximately recovered by the
enhanced stripe spin fluctuations (red shaded areas), and thus the
total local susceptibility w

00(o) does not show a marked change
across Ts (Fig. 4c). Moreover, the detailed temperature
dependence of the stripe and Néel spin fluctuations show that the
spectral weight transfer is clearly coupled with the development
of the nematic phase (Fig. 4d). At both 4 and 110K, the total
w
00(o) exhibits a high maximum at B105meV and extends up to
220meV (Figs 2a,b and 4c). This bandwidth is considerably lower
than that (B340meV) of the stripe ordered BaFe2As2 (ref. 14),
which is very likely due to the competition between the Néel
and stripe magnetic instabilities. Clearly, this type of competition

also prevents the long-range magnetic order in FeSe. By
integrating the spectral weight from low energy to the zone
boundary, we determined that the total fluctuating moment at 4
and 110K are m2h i¼ gmBð Þ2S Sþ 1ð Þ¼ 5.19±0.32 and 5.12±0.27
m
2
B/Fe, respectively, which are larger than those in the

superconducting BaFe1.9Ni0.1As2 ( m2h i¼ 3.2 m
2
B/Fe) and stripe-

ordered BaFe2As2 ( m
2h i¼ 3.17 m

2
B/Fe) (ref. 14). Accordingly, this

yields an effective spin of SE0.74 in FeSe, which likely
corresponds to an S¼ 1 ground state in the presence of
itinerant electrons.

Discussion
The coexistence of the Néel and stripe spin fluctuations is
unexpected because FeSe contains only one type of magnetic ions.
This differs from the Mn-doped nonsuperconducting iron-
pnictide compound BaFe2� xMnxAs2, where the Néel magnetic
correlation is induced by the local moments of Mn, while the
stripe magnetic correlation is induced by Fe, given that pure
BaMn2As2 is a local-moment Néel type antiferromagnet16.
Although density functional theory and dynamical mean-field
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Figure 3 | Constant-energy cuts of the stripe and Néel spin fluctuations in FeSe at 4 and 110K. (a–i) Constant-energy cuts through the stripe and Néel
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theory failed to reproduce the observed band structure of
FeSe (refs 17,18), a random-phase approximation calculation
with an engineered tight-binding band structure19 predicted
the spin fluctuations near (1, 0) and (1, q). However, in this
phenomenological model19, the (1, q) spin fluctuation is
incommensurate and gapless below Ts, which is inconsistent
with our data. The relatively small spin-fluctuation bandwidth
and large fluctuating moment together with the low-carrier
density17,18 indicate that the magnetic moments in FeSe are more
localized than in iron pnictides.

In the more localized case, we can exclude the previously
proposed competing staggered dimer/trimers/tetramers magnetic
order3 and pair-checkerboard order5. Here, the competition
between the Néel and stripe magnetic instabilities could be
instead understood within the framework of a frustrated J1–J2
model. In this model, for an S¼ 1 system, the Néel order is stable
for J2/J1t0.525, whereas the stripe order is the ground state for
0.555tJ2/J1 (refs 20,21). It was predicted that FeSe would be an
S¼ 1 nematic quantum paramagnet in the intermediate coupling
region (0.525tJ2/J1t0.555), which is characterized by gapped
stripe and Néel spin fluctuations2,21. This agrees with our data
that the majority of the spectral weight is concentrated at
relatively high energies (B100meV) even in the presence of
itinerant electrons (Figs 2a,b and 4c). Furthermore, in this

scenario, the nematic order is viewed as a vestigial order that is
retained when the static stripe order is suppressed by quantum
fluctuations2. The finding that the stripe spin fluctuation carries
considerably more spectral weight than the Néel spin fluctuation
suggests that the system is indeed closer to stripe rather than to
Néel order. On this basis, the temperature evolution of the spin
fluctuations that we observed can be explained. As the stripe
magnetic order breaks the C4 lattice symmetry, while the Néel
order preserves it, the orthorhombic-/nematic-phase transition
might partially lift the magnetic frustration and drive the
system towards the stripe-ordered phase. Thus, the stripe
spin fluctuations are enhanced, while the Néel spin fluctuations
are suppressed and gapped in the nematic phase. These
considerations lead to a natural understanding of the
paramagnetic nematic phase in FeSe.

We now discuss the evolution of the magnetism, nematicity
and superconductivity in FeSe, and its derivatives. Since the Néel
spin fluctuation is gapped in the nematic phase, it is unlikely
responsible for the electron pairing in bulk FeSe at ambient
pressure. However, the competition between the Néel and stripe
magnetic instabilities across Ts suggests that the magnetic ground
state and superconductivity could be highly tunable. Indeed, it
has been shown that high pressure not only enhances
superconductivity, but also induces static magnetic order in FeSe
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(refs 22,23). This is surprising as superconductivity always
competes with the static magnetic order in iron pnictides.
Further neutron diffraction measurements under pressure are
required to clarify the nature of this magnetic order. In addition,
the proximity of the Néel magnetic instability of FeSe might also
have implications for our understanding of the magnetism in the
K dosed9,24, molecule intercalated25 and mono layer10,26 FeSe,
because in these heavily electron-doped compounds, the nematic
order and the hole pockets are absent, and the electron pockets at
two adjacent zone edges are connected by the Néel wavevector
Q¼ (1, 1). Interestingly, this would be in analogy with the
cuprate superconductors in terms of the magnetism and Fermi
surface topology27. To further elucidate the role of the Néel spin
fluctuations in iron-based superconductivity, a detailed study of
the pressure-/electron-doping dependence of the spin correlations
in FeSe would be desirable.

To conclude, we have reported the observation of the Néel spin
fluctuations over a wide energy range in an iron-based super-
conductor. We show that the absence of the long-range magnetic
order in FeSe is due to the competition between the Néel and stripe
magnetic instabilities. This differs from the parent compounds of
the cuprate and iron pnictide high-temperature superconductors,
where only one type of magnetic order is observed. Our findings
agree with a theoretical prediction that FeSe is a novel S¼ 1
nematic quantum-disordered paramagnet interpolating between
the Néel and stripe magnetic instabilities2, which indicates a
connection between the magnetism of the cuprate- and iron-based
superconductors. The experimental determination of the nematic
magnetic ground state of FeSe will be extremely valuable in
identifying the microscopic mechanism of superconductivity in
FeSe-based materials8–10,24–26.

Methods
Sample growth and characterizations. Our FeSe single crystals were grown under
a permanent gradient of temperature (B400–330 �C) in the KCl–AlCl3 flux

28. The
single-crystal X-ray and neutron diffraction refinements on our samples indicated a
stoichiometric chemical composition to within the error bars, and no interstitial
atoms or impurity phases were observed (Supplementary Note 1; Supplementary
Figs 1–3; Supplementary Table 1). The specific heat, magnetic susceptibility and
resistivity measurements performed on randomly selected FeSe single crystals further
demonstrate that our sample is a bulk superconductor without detectable impurities.
(Supplementary Note 1; Supplementary Figs 4 and 5).

Neutron-scattering experiments. Our inelastic neutron-scattering measurements
were carried out on the ARCS time-of-flight chopper spectrometer at the Spallation
Neutron Source of Oak Ridge National Laboratory, USA, 4SEASONS chopper
spectrometer at the Japan Proton Accelerator Research Complex and MERLIN
chopper spectrometer at the Rutherford Appleton Laboratory, Didcot, UK. The
large detector arrays on these instruments allowed us to measure spin excitations
over a wide range of energy and momentum. The |Q|-dependent background is
subtracted for the data below the aluminium phonon cutoff energy of B40meV
(Supplementary Note 2; Supplementary Fig. 7). To facilitate comparison with
theory and previous measurements, our data were normalized into absolute units
by using the elastic incoherent scattering of a standard vanadium sample. The
absolute intensity of the resonance mode is consistent with previous low-energy
data12 normalized with acoustic phonons (Supplementary Fig. 6). The incident
neutron beam was aligned parallel to the c axis. The wavevector Q at (qx, qy, qz) is
defined as (H, K, L)¼ (qxa/2p, qyb/2p, qzc/2p) in the reciprocal lattice units in the
orthorhombic unit cell. In this unit cell, the magnetic wavevectors associated with
the stripe and Néel magnetic order are Q¼ (1, 0) and Q¼ (1, 1), which correspond
to the ordering wavevectors of the parent compounds of the iron pnictides and the
cuprates, respectively.

Data availability. All relevant data that support the findings of this study are
available from the corresponding author on request.
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