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ABSTRACT

An analysis of high resolution magnetic field measurements from

the GSPC magnetometer on Explorer 113 showed that low magnetic field

intensities (< 1 y ) in the solar wind at 1 AU occur as distinct depressions

or "holes," in otherwise nearly average conditions. These magnetic holes

are new kinetic-scale phenomena, having a characteristic dimension on

-	 the order of 20,000 km. They occur at a rate of 1.5/day in the 18-day

interval (March 18 to April 6, 1971) that was considered. Most magnetic

holes are characterized by both a depression in IBI and a change in the

magnetic field direction, and some of these are possibly the result of

magnetic merging. However, in other cases the direction does not change;

such holes are not due to merging, but might be a diamagnetic effect due

to localized plasma inhomogeneities.
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INTRODUCTION

Regions of very low intensity magnetic fields can be seen in high

resolution measurements of the interplanetary magnetic field near 1 AU,

We define low intensity by J 'BJ < 1 Y which is to be compared with the

average intensity of 5 Y and the most probable value of 6 Y. Most low

field intensities were found to occur in isolated regions in the form

of discrete "holes°imbedded in a background of otherwise uniform fields

of nearly average intensity. The existence and the characteristics of

these magnetic holes are the subjects of this paper.

Our analysis is based on F^ 18 days of interplanetary data from

Explorer 43 (IMP-I) in the period March 18 to April 9, 1971, the interval

during which the GSFC plasma analyzer was operating. Low field regions

O BI < 1 Y) were initially identified in plots of 15 s magnetic field

averages. The "holes" thus found have a very small radial extent, but

the high sampling rate of the magnetometer (12.5/s) resolved the structure

of every event. The plasma sampling rate was much lower (a spectrum was

measured in approximately one minute and successive spectra were obtained
i

at four-minute intervals) and the structure of holes could not be re-

solved, but the plasma instrument did provide measurements of the pre-

and post-hole states. The magnetic field and plasma experiments are

described in reports by Fairfield (1973) and Ogilvie and Burlaga (1974),

respectively.

RESULTS

We identified 28 magnetic "holes" using the criterion IBI < 1 Y and

the data set discussed above. Typical examples are shown in Figure 1,
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which contains plots of magnetic field intensity for 10-min intervals.

Nearly all holes are essentially isolated depressions in magnetic field

intensity which is otherwise nearly average. They are distinct entities,

not just random fluctuations in low intensity, disturbed field regions.

Thus, the lowest magnetic field intensities in the solar wind near 1 AU,

like the highest field intensities, apparently are the result of special

physical processes distinct from those which produce the most probable

fields.

Given 28 holes in 18 days of data, one obtains an occurrence rate

of 1.5/day. This is intermediate between the rate for shocks ( ; 4̂ .05/day),

(Chao and Lepping, 1974) and that for directional discontinuities

(,z^ 25/day) (Burlaga, 1972). The period used in this study is a represent-

ative solar wind state, in the sense that there were several well-defined

streams (Burlaga and Ogilvie, 1973), 2 shocks (Ogilvie and Burlaga, 19740,

and the types of "Alfven waves" that are often observed (Belcher and

Davis, 1971, Burlaga and Turner, 1976). Thus, the rate of 1.5 holes

per day, or ^ 40 per solar rotation, is probably typical. Figure 2 shows

the relations between the holes and the features just mentioned, and one

can see that they are distributed fairly uniformly with respect to the

streams, with perhaps some preference for the regions of decreasing speed.

This gives us further reason to expect that the occurrence rate of ^ 1.5/day

is representative and not very strongly biased by conditions in our

limited sample of data.

The "widths" of the holes ranged from ^ 2 s to ^; 130 s, with a median

of 50 s. Since they are convected radially past the spacecraft at a

speed on the order of 400 km1s, their thickness along the radial direction
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is on the order of 2 x 10 4 km, and since the proton Larmor radius near

(but not in) the holes, R L , is typically P^% 100 km, the radial thickness

of the holes is on the order of 200 RL . If the holes are field-aligned,

the actual thickness is somewhat smaller, ^ 150 R L . Because of their

small size, magnetic holes are kinetic scale phenomena in the classification

wry..

scheme of Burlaga (1969).

Turning now to the change in direction of the magnetic field across

the holes, we find that it may change abruptly by a large amount, it may

vary irregularly, or it may not change at all. Of the 28 events, 8 had

little or no directional change, 9 were similar to D-sheets and 11 fell

into neither of those categories. In the following, we shall discuss

several examples of such changes. The plots to be presented are based

on the high resolution data obtained at 12.5 samples sec and are displayed

in a coordinate system in which y is the average field direction for 2

seconds before the event, z is the direction of minimum variance for points

in the interval during which the transition takes place, and x is

orthogonal to y and z and forms a right-handed coordinate system. It

should be stressed that the coordinate system varies from event to event.

In any case, however, tangential "discontinuities" in this system are

indicated by B  = 0.

An example in which the magnetic field direction changes abruptly

across the holes is shown in Figure 3. The change in direction is

centered about the time of minimum intensity, and B  is essentially zero

in the transition layer, indicating a tangential "discontinuity." The

width of the March 27 event is 8 s, which is typical for directional

discontinuities in the solar wind. The magnetic field,direction changes
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by 1800 in the March 27 event (Table 1), and the magnetic field intensity

drops to nearly zero, 0.12 y. In this respect, the structure resembles

a D-sheet. Observations of D-sheets have been discussed by Burlaga

(1968) and Burlaga and Scudder (1974) presented evidence that some

D-sheets are the result of Sweet's mechanism, by which magnetic field

is annihilated. The magnetic field intensity depressions in the D-sheets

discussed heretofore are much broader than that in Figure 3 and occur

much more infrequently than holes. For the March 27 event, the annihilation

hypothesis predicts that the minimum intensity in the hole is Bmin = 0.15 7;

this is in very good agreement with the observed value, 0.72 y.

Unfortunately, the orientation is such that we cannot test fox the

subalfvenic streaming toward the current sheet which is predicted by

Sweet's mechanism (see Burlaga and Scudder (1974) and references therein).

Another magnetic hole that resembles a D-sheet is the March 28, 1637

UT event, described in Table 1. In this case one can determine that the

thickness is 20 RL . The observations suggest a subalfvenic streaming

toward the current sheet (Ve /VA = 0.014), where V0 is the flow speed

normal to the current sheet and VA is the Alfven speed outside and	 1

adjacent to the current sheet. The value of Bmin predicted by the

annihilation hypothesis is very close to the measured value (Table I).

Figure 4 shows an event that resembles a thin D-sheet, but which is

not entirely consistent with the annihilation hypothesis. There is

essentially no B  component, indicating that the directional "discontinuity"

is tangential. The "width" is only 8 sec, and the thickness along the
A

normal (z) direction is only 4 RL . The velocity measurements were not

sufficiently accurate to determine whether or not there was a subalfvenic
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flow toward the current sheet. The important feature is that the

observed minimum field is significantly smaller than that predicted by

the merging model using the measured angular separation, cu, between the

fields preceding and following the hole, B1 and B2 , respectively (see

Table I). Thus, either merging can operate in a way that is not under-

stood or there is an entirely different process involved instead of or

in addition to merging. There were other events which had minimum fields

significantly smaller than predicted by the merging model (e.g., April 6,

1638 UT, in Table 1). The events in this category had normals which

were nearly radial. It should be noted that all of the holes discussed

in this paper differ from the D-sheets discussed by Burlaga (1968) in

that here the depression is confined to a region the size of that in

which the direction changes, whereas it is much broader in D-sheets.

A distinctly different type of magnetic hole (which we call a linear

hole) is shown in Figure 5; here is a smooth, symmetrical depression in

magnetic field intensity, but no change in direction. The change is

seen only in the By component, which is the average field direction, and

in the intensity. Four such linear holes were found among the 28 events

(see Table II). Their width along the radial direction is similar to

that of other magnetic holes. Table II indicates that there was possibly

a change in one or more of the plasma parameters across the linear holes,

but more examples are needed before one can draw a general conclusion.

Four other linear holes were identified with the same basic characteristics,

but differed in that the field intensity did not vary smoothly in the hole.

In these cases, the field intensity varied irregularly outside of the

holes as well, and it is likely that the nonuniformity in the holes is

5
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due to external conditions. The occurrence of linear holes relative to

streams is indicated by the 'L's in Figure 2.

Linear magnetic holes are certainly not produced by a merging process,

since a change in the direction of B is a necessary signature for merging.

A possible explanation is that they are diamagnetic responses to localized

plasma inhomogeneities. Indeed, high values of P a nkT/(B2/8n) (where

n, T are the density and temperature, respectively, of the protons, and

B is the magnetic field intensity) were observed adjacent to the holes

(see Table II). One can model linear holes using the theory for diamagnetic

boundary layers developed by Sestero (1964) and Lemaire and Burlaga (1976).

In particular, one can regard a hole as two adjacent boundary layers

across which IBJ changes. In one layer, from z -- to z  where IBI is

a minimum, the magnetic field intensity decreases; in the other layer,

from z  to z -+ +m, the magnetic field intensity increases. The model

implies a localized plasma inhomogeneity (dense and/or hot plasma) which

"excludes" the magnetic field. An electric field is set up along the

"normal" to the current sheet and particles drift in this field and in

the gradient of JBI, thereby providing the current which maintains the

structure in a steady state. This model allows magnetic field enhancements

as well as holes, if the plasma inhomogeneity is due to a decrease in

density and/or temperature. An observation of such an event is shorn

in Figure 6. We did not attempt to study the statistics of such events.

Of course, the application of this model to magnetic holes is only

speculative, and it doesn't explain the origin of the plasma inhomogeneities.

high resolution plasma measurements are needed to understand the true nature

6	
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and origin of magnetic hole.",. Multispacecraft measurements are needed

to determine their spatial structure and to follow their evolution.

SUMMARY AND DISCUSSION

In the high time resolution data from Explorer 43 (IMP-I), we found

that the lowest magnetic field intensities (< l y ) in the solar wind at

1 AU nearly always occur as distinct depressions or "holes" in otherwise

nearly average interplanetary magnetic fields. These magnetic holes are

new kinetic scale phenomena, convecting past a fixed spacecraft in some

tens of seconds and having dimensions on the order of tens of proton

Larmor radii. They occur at a rate of 1.5/day during the 18-day period

which was considered, a rate intermediate between that of shocks and

that of directional discontinuities.

The direction of B changes across most magnetic holes, much as it.

does in the current sheets associated with directional discontinuities

with no change in JBI, i.e., it rotates in a plane and has a thickness

of several proton gyroradii. However, there are some magnetic holes at
H

which there is virtually no change in the direction of B. Some of the

directional holes resemble D-sheets, although there is an important

difference in that the depression in JBI has the same dimension as the

change in direction at holes whereas it is much broader than the change

in direction at D-sheets. In particular, some holes are possibly the

result of magnetic merging. Nowever, the linear holes are certainly

not the result of merging, which requires a change in the di:rection of

B. These linear holes (and perhaps all holes) are possibly diamagnetic

effects due to the presence of localized plasma inhomogeneities, but we
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can neither observe such small inhomogeneities because of the low

plasma data sampling rates nor offer a urexbiguous explanation for

their origin.
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FIGURE CAPTIONS

Figure 1

	

	 Rcpresentative examples of magnetic holes. In each panel,

15 s averages of the magnetic field intensity are plotted

versus time. The events are labeled by decimal day and

universal time. Despite the variety of shapes and widths,

there is a common characteristic, viz., a distinct de-

pression to IBI G 1 Y in an otherwise normal magnetic

field profile.

Figure 2

	

	 Relation between magnetic holes and mesoscale interplanetary

conditions.

Figure 3

	

	 A magnetic hole which might be the site of magnetic merging.

The magnetic field direction rotates through 1800 in a

plane, and.its intensity drops to nearly zero.

Figure 4

	

	 A magnetic hole which resembles a magnetic merging region

but in which the minimum field intensity is lower than

expected from the merging hypothesis.

Figure 5

	

	 A linear magnetic hole. In this case, the hole is certainly

not the result of merging. This, and perhaps all magnetic

holes might be a diamagnetic effect due to a InnRlized

plasma inhomogeneity.

Figure 6	 The antithesis of a magnetic hole. Here the magnetic

field intensity increases in a 7 s. interval while the

direction remains constant. Presumably the plasma

pressure was low during the magnetic field enhancement.
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