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Magnetic levels in quasiperiodic superlattices
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With numerical calculations it is shown that in a Fibonacci superlattice, in a magnetic field paral-
lel to the layers, the self-similarity in the length scale is reproduced in the energy-level structure. In
particular, the cyclotron-orbit-center dispersion of the energy levels shows a field-dependent struc-
ture which is the same at values of the magnetic field, which are related by integer powers of ~, the
golden mean [(&5+I ) /2]. The conditions for which this etfect can be observed are discussed.

The one-dimensional Schrodinger equation with a
quasiperiodic (incommensurate) potential has been stud-
ied theoretically quite intensively, because it is a
mathematically accessible model to describe systems with
properties that are between periodic and amorphous
ones. A particular type of quasiperiodic potential, the Fi-
bonacci potential, has been studied with various theoreti-
cal techniques, ' ' because this particular sequence
shows self-similarity, i.e., the properties of the system at
different length scales are similar. Further stimulus for
such studies arises because with modern crystal-growth
techniques, layered materials with sequences of layer
thicknesses arranged according to a Fibonacci series can
indeed be realized. X-ray studies and optical measure-
ments' ' of such quasicrystals have been reported and
have revealed peculiar properties.

In this paper we will study theoretically the energy-
level structure of a Fibonacci superlattice in a magnetic
field, applied parallel to the layers. In such a superlattice
the potential consists of barriers in one type of layers and
valleys in the other type of layers, whereas the layer
thicknesses are arranged according to a Fibonacci se-
quence. In a parallel magnetic field B the electrons orbit
in a plane perpendicular to the layers of the superlattice,
with a field-dependent orbit radius l = t/fi/eB. If the
barriers are sufficiently thin or shallow, the carriers may
tunnel through them and the number of barriers within
an orbit depends on the field. Therefore the length scale
on which the nonperiodicity is "seen" by the electrons
can be varied with an external parameter, i.e., the mag-
netic field. The magnetic levels under these conditions
are broadened because their energy depends on the posi-
tion of cyclotron orbit with respect to the potential. We
will show that this orbit center dispersion, and thereby
the density of states, can be self-similar at all values of
the magnetic field which are related by a certain factor.
It is important to note that the system studied here is
completely different from the two-dimensional quasi-
periodic networks in which the quantization of the mag-
netic flux is studied experimentally. ' In that case the
size of the Ineshes determines particular sets of fields
where similarity may be observed. In the one-
dimensional potential studied here, there is no closed
loop in which the magnetic flux can be quantized, and
therefore there are no special values of the field related to

the geometry. Furthermore the properties studied here
are basically due to the tunneling through the barriers
and are the result of the cooperative effect of the whole
structure, as opposed to the confinement in individual
elements of the structure. Therefore our work introduces
a new type of system with fractal properties.

The Schrodinger equation which describes the motion
of the electrons in a potential and a magnetic field B in
the x direction can be written as

d2
+(u —uo) +v(u) %'(u —uo)

d(u —uo)

=EV(u —uo) .

In this equation the gauge is chosen as A=(0, zB,O), —
the wave functions in the x and y direction are plane
waves with wave vector k~ and k~, respectively. The en-
ergy dispersion in the direction of the field (k„) is
unaffected by the potential, and in the following we will
discuss the properties only at zero k„wave vector.
Furthermore the potential U and the eigenvalues E are
normalized to the cyclotron energy fieB /m and the
length u =zll to the magnetic length; luo =fik /eB, the
center coordinate of the cyclotron orbit. Note that this
Schrodinger equation has become dimensionless in these
units and that it therefore possesses a "trivial" scaling
property, namely, that different samples in different fields
will have the same properties, provided that the normal-
ized units are the same. In the following we wish to dis-
cuss a "nontrivial" scaling in which self-similarity is
found in the same sample but at different fields.

In the absence of the potential Eq. (I) is the well-
known harmonic-oscillator equation with degenerate ei-
genvalues F&=N+ —,

' for all orbit centers uo, with X the
Landau-level quantum number. This degeneracy will be
broken when vAO and eigenvalues will in general depend
on uo leading to broadened Landau levels. En the follow-
ing we will concentrate on the shape of this cyclotron-
orbit-center dispersion.

We consider a quasiperiodic (quasi-one-dimensional)
superlattice which is constructed in the following way.
We generate a "Fibonacci (string) sequence" [ w„ I, with a
and b as elementary building blocks, following the
prescription
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and

w, =a,
wp =b

z~w„, if n is odd and n ~3

w„ t~w„z if n is even and n ~3,

(2a)

(2b)

(2c)

(2d)

abb~b
abaca,

(3a)

(3b)

one obtains from w„ the reduced pattern w„z. Similar-
ly, the concurrent (first-order) reduction-reversal trans-
formation

(4a)

(4b)b~a
transfers w„ into the reverse pattern of w„, (i.e., the
pattern w„, read from right to left). To translate the
pattern w„ into a one-dimensional potential, we take a as
a barrier with width d, and height Vo and b as a well

thus leading to . . ababbabb, where the nonassocia-
tive binary operation "~" represents (string) concatena-
tion. It is easy to see that the length, L (w„), of the pat-
tern w„(i.e., the total number of elementary building
blocks a and b) is given by the nth Fibonacci number F„,
where F„=F„&+F„z,for n ~ 3, with F, = 1 and
F~ =1. Therefore the length ratio L (w„)/L (w„, ) tends
to r=(&5+I)/2, the golden mean, for increasing n, as
this is a property of the Fibonacci numbers. Under this
generation procedure, one can also see the self-similarity
of the sequence, namely by the concurrent

with width db. Two successive b s in the pattern combine
to give a well 2db in width. This "comblike" potential,
with irregularly spaced "teeth, " is shown in Fig. 1 in the
bottom half. In order to obtain self-similarity in the
length scale, we must require that at a given magnetic
field corresponding to a magnetic length I the potential
seen by the carriers be the same as the potential
transformed according to Eqs. (3) or Eqs. (4), at another
field corresponding to another magnetic length I'. This
must be true down to the smallest building blocks of the
sequence, and using Eqs. (3) one finds

dt's +db da +2db
l' d, db

Using the identity 1+~=~, one then finds that db =~d,
and I'=r I. Since I =B, scaling of r in the length im-
plies a scaling of I lr in the field, and thereby a scaling of
1/r in the energy.

With the potential constructed in this way we have cal-
culated the energy levels of Eq. (1) numerically, using the
finite-element method. The results are shown in Figs.
l(a) and 1(b). For the sake of illustration we have chosen
parameters corresponding to GaAs/Ga, „Al„As super-
lattices, and reasonable layer thicknesses of 1.12 and 1.68
nm to have d, /db-—~ and at the same time an integer
number of lattice planes per layer. The barrier height in
the calculation was 0.2 eV and the corresponding range
of the fields was up to 20 T. It can be seen from Fig. 1

that the energy levels all show a dispersion as a function
of the cyclotron-orbit-center position. However, the
striking result is, that this dispersion for a given field B
and at ~ B is the same when the reduced units, intro-
duced in Eq. (1), are used for the energies and lengths.

(Q) B=2.92T=20T/z (b) B=7.64T= 20T/r
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FIG. 1. (a) Magnetic energy-level structure of a quasiperiodic superlattice at B =2.92 T=(20 T)/~ as function the cyclotron-
orbit-center coordinate (top) at zero wave vector for motion in the direction of the field. In the lower part, a section of the Fibonacci
potential at the same fields. Energies are all in units of the cyclotron energy and lengths in units of the magnetic length. (b) As in (a),
but for B =7.64 T= (20 T)/H.



BRIEF REPORTS 1957

For Br, the levels are seen to be "anti-self-similar, "with
respect to those of B, which means self-similar if the
coordinate system is inverted. These observations are il-
lustrated more clearly in Fig. 2 which shows the calculat-
ed density of states for several values of the magnetic
field. It can be noted that only scaling with r ", with n an
integer, leads to self-similarity. It can now also be seen
clearly that the r scaling leads to the same density of
states as that at B, because for the density of states the in-
version of the coordinate system has no consequences.
For values of the field with diferent powers of v no simi-
larity is observed. It should be emphasized that, al-
though in this example the levels are calculated for a base
field of 2.92 T and integer powers of ~ times this field, the
choice of this base field is of course arbitrary, because any
set of fields related by even powers of v. would show the
same behavior.

To understand the results discussed above it is most
easy to consider the Fibonacci potential as a perturbation
of the energy levels in a magnetic field. The criterion for
the applicability of perturbation theory is that the unper-
turbed wave function (the solutions for the magnetic field
only) are only slightly altered by the Fibonacci potential.
This criterion implies that I &&d, with d =d, +ed&, the
average periodicity and d, (iii /2m Vo, which means that
the width and the height of the barriers must be
sufficiently small to allow coupling between neighboring
wells (easy tunneling). In first order the energy levels are

given by

(N+ —,')+(%' (u uo)l~(u)l~p~(u —uo) &

and if U is a rapidly varying function with respect to 4
the correction, (v(uo)) is a strong function of uo in a
nonperiodic system' and leads to the dispersion of the
Landau levels. Conversely if u is constant everywhere,
this leads only to a rigid shift in all I andau levels and
does not contribute to the dispersion. To prove the self-
similarity in the dispersion we have to show that spatially
varying part of (u (uo) ) remains the same at B and v "B
We therefore calculate this matrix element for the trans-
formation (3) which corresponds to scaling with n =2 [an
analogous calculation can also be performed for the
transformation (4)].

Assuming that at a given field corresponding to a given
length scale the barrier and well have widths d, and db
with an actual (=not in reduced units) barrier height Vo
giving rise to some (U(uo)) (expressed in the cyclotron
energy corresponding to that field). At r times lower
field (r longer magnetic length or r larger extension of
the wave function) it may be assumed that the wave func-
tion does not change substantially during the variation of
the potential between a barrier and a well. Therefore we
may replace a barrier of width d, followed by a single
well of width di, (ah~a) by a new single barrier with
width d,"' given by

—d +d b

with a new average barrier height

a. B=2.92T= 20T/r Vod,
0 barrier

a b

(6)

C.

B=5T=20T/z

B=7.64T=20T/z

Similarly, every barrier of width db followed by a well of
width 2d& (abb~b) may be replaced by a new well with
width db'" given by

=d +2db a b

with a new average barrier height

Vod„
well (7)

d, B= 1 2T= 20T/T '

e. 8=20T

E/Fl Q)c

FIG. 2. Calculated density of states at zero wave vector for
motion in the direction of the field. The energy scale is in units
of the cyclotron energy for all curves. The zero of the energy
scale for all but the lower curve is linearly shifted and aligned
with the first peak. For comparison the dashed curves, all
representing the results at 20 T, are drawn on the other results.
Note that only for even powers of v. is self-similarity observed.

In the length scale this new potential is self-similar to the
previous one, because this is a property of the Fibonacci
sequence. The amplitude of this new potential has a part
which does not vary throughout the sample ( Vo/r ) and
a spatially varying part which is just the difFerence be-
tween (6) and (7) and, using the identity r—1=1/r,
equals Vo/v . This spatially varying part gives rises to
the dispersion (U (uo) ). Therefore the new eff'ective po-
tential for a scaling in the length of ~ is just smaller by a
factor of ~ . Thus, the spatially varying part of the ma-
trix element (U(uo)) has not changed, and thus the
dispersion is self-similar, both in amplitude as in the
length scale.

In Figs. 1(a) and 1(b) we have drawn, in the lower part,
the potential in reduced units of energy and lengths. The
previous reasoning shows that the averaged value of the
drawn potential in Fig. 1(a) is the same as the dashed po-
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tential. The remarkable property of this Fibonacci po-
tential is therefore that a scaling in the length by ~" leads
to a scaling of 1/r " in the spatially varying part of the
average potential. This is exactly the same scaling prop-
erty that is required by the magnetic Hamiltonian (1),
and it is this identical scaling behavior that is responsible
for the self-similarity in the energy-level structure as
shown in Figs. 1 and 2.

The scaling property that we have derived is quite gen-
eral, because the argument in the previous paragraph
makes clear that the self-similar properties in a field will
be observed as long as it is possible to obtain the eigenval-
ues of (1) with perturbation theory and to replace the po-
tential by its average value. The observed behavior will
therefore break down at very high fields, for very high or
very thick barriers. It should be realized that the self-
similarity of the energy-level structure in a magnetic field
is a direct consequence of the fractal character of the se-
quence of Fibonacci patterns; therefore the properties
that we have derived are not general for all quasiperiodic
systems. However, some aspects of our results have a
more general significance; as an example it is worthwhile
mentioning that, as can be seen from Fig. 2, the width of
the peaks in the reduced units of the energy are the same
at different magnetic fields. This implies that in absolute

units of the energy in a nonperiodic superlattice (SL) the
width will increase proportional with the field, contrary
to that in a periodic superlattice, ' ' where Aat Landau
levels were seen with a field-independent width.

In summary, we have shown that quasiperiodic Fi-
bonacci superlattices can exhibit a self-similar behavior in
their energy-level structure as a function of the parallel
magnetic field. %e have also derived criteria on the pa-
rameters for which this behavior occurs, and have shown
that the fractal property is a consequence of the identical
scaling behavior of the Hamiltonian and the Fibonacci
potential. Our calculations constitute a new example of a
system showing self-similar behavior. Of special
significance is the fact that the scaling property in this ex-
ample varies with an external parameter (the magnetic
field) in contrast to many other cases where basically the
scattering of light with a variable frequency or scattering
angle is observed. %'e believe that our results may also
contribute to the understanding of the magnetic levels in
a perturbed potential.
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