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Abstract—A novel optimization algorithm is proposed here

that is inspired by the principles of magnetic field theory. In
the proposed Magnetic Optimization Algorithm (MOA) the
possible solutions are magnetic particles scattered in the search
space. Each magnetic particle has a measure of mass and
magnetic field according to its fitness. The fitter magnetic
particles are those with higher magnetic field and higher mass.
These particles are located in a lattice-like environment and
apply a force of attraction to their neighbors. The proposed
cellular structure allows a better exploitation of local
neighborhoods before they move towards the global best, hence
it increases population diversity. Experimental results on 14
numerical benchmark functions show that MOA in some
benchmark functions can work better than GA and PSO.

I. INTRODUCTION

OPULATION based optimization algorithms like
Genetic Algorithms (GA), Particle Swarm Optimization

(PSO) and Quantum Evolutionary Algorithms (QEA)
promise more robust search due to their parallel nature but
also suffer from slow convergence. The challenge in these
algorithms is how to combine existing knowledge about
optimization landscape to better accelerate their
convergence to true optimal solutions while avoiding locally
optimal solutions.

Particle Swarm Optimization is a stochastic search based
on imitation of particles with a set of simple behaviors. In
this algorithm the objective of all particles in the population
is calculated and each particle tries to imitate the best
particles in the population. Each particle finds the best
particle and changes its velocity to the location of best
particle. There are several works that have tried to improve
the performance of the PSO algorithm. In [1] a cooperative
particle swarm optimizer is proposed, where multiple
swarms are used to optimize different components of
solution cooperatively. A comprehensive learning particle
swarm optimizer is proposed in [2], which uses a novel
learning strategy based on the historical best information of
all particles to update the velocity of the particles. For
learning to play games, reference [3] uses PSO to train
neural networks to predict the desirability of states in the
leaf nodes of a game tree. To solve multimodal optimization
problems and tracking multiple optima in dynamic
environment, [4] proposed a species-based particle swarm
optimizer. In another similar work [5] uses multiswarms
PSO that are specially designed to work in dynamic
environments. Reference [6] proposes a novel parameter
automation strategy for the particle swarm algorithm. They
proposed time-varying acceleration coefficients and inertia
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weight factor to control the convergence of the algorithm.
In PSO, only the best particles affect the motion of other

particles and the inferior particles do not have an influence.
Clearly there is some important information in the particles
with low fitness that is ignored by PSO. Evolutionary
Algorithms on the other hand provide better diversity by
probabilistic based recombination of solutions.
Coevolutionary algorithm is one approach that has emerged
recently for better diversity. Reference [7] uses competitive
and cooperative co-evolution to design a robust flow-path
network and transporter routing for automated guided
vehicles. In order to accelerate the convergence speed of the
genetic algorithms, [8] proposed a novel virus co-
evolutionary genetic algorithm that is based on the theory of
virus evolution. In this scheme, the good genetic
information can be easily transferred between individuals.

Another way to preserve diversity is by structured EAs
such as, distributed [9] and cellular algorithms [10, 11]. In
distributed evolutionary algorithms, the population is
partitioned into a set of islands where an isolated EA is
executed on each island. In Cellular EAs (cEAs) the
individuals are located in a grid structure and each
individual interacts with its neighbors. These types of
decentralized algorithms provide a better sampling of the
search space and improve the performance of EAs [10].
Rudolph and Sprave were the first to propose the cellular
structure for genetic algorithm. In [12] a cellular genetic
algorithm (cGA) is used for training the recurrent neural
networks. In their work a local search algorithm is
combined with the cellular genetic algorithms to improve
the performance of GA. The hybrid of random walk
algorithms and cellular genetic algorithms is used in [13] for
solving the satisfiability problem. Reference [14] studies the
static and dynamic cGA and analyses the
exploration/exploitation tradeoff in dynamic cGA. In [15] a
clustering algorithm is proposed that does not need any
prior knowledge about the number of clusters. They use a
Coevolutionary cGA for optimizing the model.

This paper proposes a new optimization algorithm based
on the principles of the attraction among magnetic particles.
In this algorithm the particles are attracted to their neighbors
in a lattice-like structured population based on their
magnetic field. Each particle in the search space, even the
worst of them, applies an attractive force to the other
neighboring particles. This characteristic makes the
algorithm capable effectively to search the optimization
landscape as will be shown in this paper. The value of this
magnetic force is related to the magnetic field of each
particle and the distance between them. Experimental results
on 14 benchmark functions show that in most of the
problems the proposed algorithm has a better performance
than conventional GA and PSO.

This paper is organized as follows. Section II introduces
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the Magnetic Optimization Algorithms. In Section III the
best parameters for each of the 14 numerical benchmark
functions are separately determined. Section IV analyses the
size of population and its effect on PSO, GA, and MOA
performance. And finally Section V tests the proposed
algorithm on 14 numerical functions and compares it with
PSO and GA.

II. MAGNETIC OPTIMIZATION ALGORITHMS

There are four types of forces in our universe and
electromagnetic force is one of them. This kind of force has
long-range effect; meaning its effect decreases as distance
between two particles increases. This type of force
disappears only when the distance of two particles is
infinity. In the proposed algorithm the possible solutions are
each a magnetic particle with attractive long-range force.

In MOA the magnetic particles operate in a lattice like
interaction environment as shown in Fig. 1.

The pseudo code of the proposed optimization algorithm
is briefly shown below and is described in the following
steps.

Procedure MOA
begin

t=0
1. initialize X0 with a lattice-like 

structure.
2. while not termination condition do

begin
t=t+1

3. evaluate the individuals in Xt and 
store their profits in magnetic 
field Bt

4. normalize Bt according to (1) 
5. evaluate the mass Mt for all 

particles according to (2) 
6. for all particles xt

ij in Xtdo
begin

7. Fij=0
8. find Nij

9. for all xt
uv in Nij do

begin
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end
The pseudo code of MOA is described as below:
1. In this step all of the particles in the population Xt (for

t=0) are initialized randomly. The initialization step is
performed as:

),R(, kk
t

kij ulx � for i,j=1,2,…,S, k=1,2,…,m and t=0

Where i,j indicates the location of the particle in the
lattice, t is the iteration number of MOA, S is the size
of lattice-like environment, m is the dimension of the
search space, lk and uk are the lower bound and the
upper bound of the k-th dimension of search space

respectively, and R(.,.) is a uniform random number
generator.

2. The while loop is terminated when the termination
condition is satisfied. Termination condition here is
when maximum number of iterations is reached.

3. In this step the objective of each particles xt
ij in Xt is

calculated and stored in the magnetic field, Bt
ij. Where

t is the iteration number and i,j (i=1,2,…,S) shows the
location of the particle in the population.

4. Next the normalization is performed on the Bt. The
normalization is performed as:
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5. In this step the mass of all particles is calculated and
stored in Mt:

t
ij

t
ij BM ��� �� (2)

Where � and � are constant values.
6. In this step in the “for” loop, the resultant force of all

forces on each particle is calculated.
7. At first the resultant force which is applied to particle

xt
ij (Fij) is set to zero.

8. In the lattice-like structure of MOA, each particle
interacts only with its neighbors i.e. each particle
applies its force only to its neighbors. In this step the
neighbors of xt

ij is found. The set of neighbors for
particle xij is defined as:
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9. In this step the force which is applied to particle xt
ij

from its neighbor’s xt
uv )( ij

t
uv Nx �� is calculated.

10. The force which is applied from xt
uv to xt

ij is related
to the distance between two particles and is calculated

Fig.1. The proposed cellular lattice with the size of S
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as:
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Where D(.,.) is the distance of two particles and
calculated as:
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Where uk and lk are the upper and lower bounds of the
k-th dimension of the search space respectively, xt

ij and
xt

uv are i,j-th and u,v-th particles of the population in
iteration t respectively and xt

ij,k is the k-th dimension of
i,j-th particle in iteration t.
The distance between each two particles is normalized
here between [0,1] by considering the spread of the
search space. Otherwise, the applied force to each
particle in the problems with smaller domain of search
space would be higher than the problems with larger
domain of search space. For instance, the convergence
speed in problems with small search space, say S=[-1,-
1]m would be faster than the problems with large
search space, say S=[-100,-100].

11. In the “for” loop, the movement for all particles is
calculated as in (7) or (8).

12. The velocity and the movement of each particle is
calculated as:
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Additionally we can also consider acceleration for
particles as follows:
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III. FINDING THE BEST PARAMETERS

For evaluating the proposed algorithm, MOA is compared
with PSO and GA. In MOA, GA and PSO there are some
parameters that must be found. For comparing these
algorithms at first the best parameters for these algorithms
are found. This Section tries to find the best parameters �
and � in (2) and the best distance measure, (4), (5) or (6) for
MOA. In MOA we can use (7) or (8) for updating the
location of the particles. This paper also tries to find the
better updating operator for the location of the particles.
This treatment for finding optimal parameters is similar to
[20] where a systematic way is illustrated to ensure a fair
and true comparison of optimization algorithms on their best
set of parameters.

In this paper the PSO algorithm is considered as [16]:
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Where c1 and c2 are two positive constants, R(.,.) is a
uniform random number generator, w is the inertia weight,
pbestt

i is the best position which the particle i has achieved,
gbestt is the best position which the overall swarm has
achieved and t is the iteration number of the algorithm.

There are some parameters in GA and PSO that must be
tuned (crossover rate and mutation rate in GA and c1, c2 and
w in PSO). In PSO we considered c1= c2. For finding these
parameters we used 14 numerical benchmark functions (see
appendix A). It is obvious that the best parameters for each
algorithm are problem dependent, so we find the best
parameters for each benchmark function independently.

The mutation in GA is considered as: for each allele of
each chromosome, mutate the allele with probability of
mutation. The changing operation is performed as changing
the value of allele to a random number between the lower
bound and the upper bound of the search space. The pseudo
code of mutation operator is considered as:
Procedure mutation
begin
1. for all individuals xt

i in Xtdo
2. for all alleles xt

i,kin xt
ido

3. if R(0,1)<mutation rate
4. xt

i,k=R(lk,uk)
end
Where R(.,.) is a uniform random number generator, xt

i,k

is k-th allele of i-th individual in the population in
generation t and lk , uk are the lower bound and the upper
bound of the search space respectively.

Fig.2. Parameter setting for MOA, GA, PSO for Generalized Rastrigin' s Function. The parameters of MOAis set to �1 … �6=( 0.1,1,4,8,15,30), �1 … �6=
( 0.1,1,4,8,15,30). a0 means using equation (7) and a1 means using equation (8) for updating the location of particles and d1 means using distance1 in

equation (3). The mutation rate and crossover rate of GA is m1 … m6=( 0.001,0.002,0.004,0.008,0.016,0.02), c1 … c6=( 0.1,0.2,0.4,0.6,0.8,1). The parameters
of PSO is set at c1 … c6=( 0.002,0.005,0.01,0.05,0.1,0.4) and w1 … w6=( 0.2,0.5,1,1.2,1.5,2).
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Fig. 2 shows the parameter setting of MOA, GA and PSO
for Generalized Rastrigin' s Function. In this figure the
horizontal axis is the parameters of the algorithm and the
vertical axis is the best fitness averaged over 50 runs. Table
I summarizes the best parameters for MOA, GA and PSO
for the 14 benchmark functions. The method of finding the

best parameters for the algorithms for all benchmark
functions is the same as in Fig 2.

This section finds the best parameters for each problem
independently. This is because we try to compare the
algorithms in their best conditions and does not mean it is
necessary to find the best parameters for each problem
before the process of optimization. On the other hand the
parameters of the algorithm for the different problems is not
much variable and the effect of parameters on the
performance of the algorithm is not considerable. This is
observable in Table I, which the values of the parameters
for various problems are similar. So for a new problem we
can use any parameters of the Table I which is better for
most problems.

IV. SIZE OF POPULATION

In Evolutionary Algorithms the size of population is one
of the main parameters that affect the robustness and
computational efficiency of the algorithm [17]. Naturally
increasing the size of the population increases the
effectiveness of EAs. This is because of two reasons. Firstly
increasing the size of population increases the number of
particles which are searching the search space. Each particle

TABLE I
PARAMETER SETTING FOR 14 NUMERICAL BENCHMARK FUNCTIONS.

0a �  MEANS USING (7) AND 1a � MEANS USING (8) FOR UPDATING THE 

LOCATION OF PARTICLES AND 1D �  MEANS USING 1D  IN (3)

MOA PSO GA

a D � �
21 c,c w m c

Schwefel 1 1 1 0.1 0.1 1 0.004 1

Rastrigin 1 2 4 1 0.01 0.2 0.004 1

Ackley 0 2 1 0.1 0.05 0.2 0.008 1

Griewank 0 3 1 0.1 0.01 0.2 0.004 1

Penalized 1 1 3 1 1 0.005 0.5 0.004 1

Penalized 2 0 3 0.1 0.1 0.01 0.2 0.004 1

Michalewicz 1 1 4 1 0.4 0.5 0.004 1

Goldberg 1 3 1 0.1 0.005 0.5 0.004 1

Sphere Model 1 3 1 0.1 0.01 0.2 0.004 1

Schwefel 2.22 0 3 1 0.1 0.005 0.5 0.004 1

Schwefel 2.21 0 3 0.1 0.1 0.01 0.5 0.008 0.8

Dejong 1 2 1 1 0.005 0.5 0.008 0.1

Rosenbrock 0 2 1 0.1 0.005 0.2 0.004 1

Kennedy 1 3 0.1 0.1 0.005 1 0.008 0.1

Schwefel Rastrigin Ackley Griewank

Penalized 1 Penalized 2 Michalewicz Goldberg

Sphere Model Schwefel 2.22 Schwefel 2.21 Dejong

Rosenbrock Kennedy
Fig 3. The effect of population size on the performance of MOA, PSO and GA. The results are the average of the best solution found over 50 runs.
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searches the search space and tries to find better solutions.
So an evolutionary algorithm with higher numbers of
possible solutions has a higher searching ability. Secondly
this is because of the swarm intelligence emerges as a result
of the cooperation, coordination and competition among
agents. For example in GA, the crossover between two
inferior individuals can sometimes make a superior
offspring. Or crossing over an inferior individual with a
superior individual makes the algorithm able to escape a
local optimum and find the global optimum. Increasing the
size of the population promotes more interaction among the
individuals and thereby more swarm intelligence. This
Section discusses the effects of population size on the
performance of the proposed algorithm and two main
algorithms PSO and GA. Fig. 3 shows the effects of
population size on the performance of PSO, GA and MOA.
The size of problem is set to m=100 and the parameters of
the algorithms (crossover rate and mutation rate in GA, c1

,c2 and w in PSO and �, �, distance measure and update
operator in MOA) are set at the best values which are found
in Section III. As seen, the size of the population can
improve the performance of these algorithms. But the rate of
improving the performance in MOA is higher than PSO and
GA. There are two reasons for effect of population size on
the performance of EAs. The second reason that we
mentioned does not appear in PSO and GA, so increasing of
the population size has a smaller effect on these algorithms.

In PSO each particle tries to change its velocity to the best
position which it has achieved and the best position which
the overall swarm has achieved. It means only the best
particle can affect the other particles and the inferior
particles can not affect each other. On the other hand in
MOA, all of the possible solutions affect each other. In
MOA even the inferior possible solutions affect the other
particles. In MOA the inferior magnetic particles attract the
other particles. This interaction among all of the possible
solutions improves the swarm intelligence of MOA, the
characteristic which does not appear in PSO. Increasing the
size of the population can not improve the performance of
PSO well because in this algorithm only the best possible
solutions guide the algorithm to the optima and increasing
the number of ineffective particles can not improve the
swarm intelligence. The small effect of the population size
on PSO and GA is because of the local search of new
particles. On the other hand in MOA increasing the
population size makes new particles for local search and
also improves the interaction between the particles that
improves the swarm intelligence of the algorithms.

The main idea of the PSO and MOA seems to be similar,
but the main difference of these algorithms is the interaction
of the particles. The interaction between the particles in
MOA is higher than PSO so MOA has a better swarm
intelligence than PSO. There are only two exceptions in the
considered examples. Increasing the size of population only

TABLE II
EXPERIMENTAL RESULTS OF THE FOURTEEN NUMERICAL FUNCTION OPTIMIZATION PROBLEMS. THE NUMBER OF RUNS WAS 50. MEAN AND STD

REPRESENT THE MEAN OF BEST ANSWER AND STANDARD DEVIATION OF BEST ANSWERS FOR 50 RUNS RESPECTIVELY. m  IS THE DIMENSION OF 

PROBLEM.
100�m 250�m

MOA GA PSO MOA GA PSO

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

Schwefel 2.2×104 2.7×103 3.9×104 4.1×102 9.5×103 1.7×103 4.6×104 5.8×103 8.5×104 1.4×103 1.5×104 2.1×103

Rastrigin -82.8 20.4 -136.5 12.9 -830.1 46.7 -5.7×102 6.57×101 -8.4×102 4.5×101 -2.3×103 7.8×101

Ackley -1.3 0.63 -5.2 0.4 -8.5 0.6 -5.2 0.4 -12.5 0.24 -9.1 0.38

Griewank -0.15 0.05 -0.37 0.56 -1.03 0.15 -1.6 0.2 -3.9 0.3 -2.7 0.26

Penalized 1 60.95 5.6 42.55 8.5 -508.1 442.6 -1.5×102 3.1×102 -2.5×104 3.6×103 -2.7×103 1.1×103

Penalized 2 -78.5 43.0 -184.6 31.8 -533.4 132.5 -7.2×102 1.2×102 -2.8×103 2.8×102 -1.6×103 2.4×102

Michalewicz 29.0 2.7 78.3 1.5 14.2 2.1 4.5×101 4.9 1.5×102 3.9 2.2×101 3.5

Goldberg 92.9 1.6 92.5 0.59 57.6 2.2 2.1×102 4.3 2.1×102 1.9 1.3×102 3.7

Sphere Model -3.7×102 2.6×102 -3.8×103 5.9×102 -1.14×104 1.9×103 -1.06×104 1.9×103 -4.3×104 -2.9×103 -3.1×104 2.7×103

Schwefel 2.22 -0.19 0.04 -0.32 0.02 -0.82 0.07 -0.56 0.03 -0.81 0.04 -0.88 0.05

Schwefel 2.21 -13.88 2.67 -53.4 3.3 -26.7 2.8 -24.9 1.87 -76.8 2.09 -30.6 2.3

Dejong -1.4×102 1.4×102 -1.1×104 3.7×103 -1.5×104 4.9×103 -1.5×104 5.1×103 -1.14×106 1.68×105 -1.2×105 2.37×104

Rosenbrock -1.1×102 7.6 -7.2×102 9.2×101 -5.6×102 9.1×101 -5.7×102 5.7×101 -4.1×103 3.9×102 -1.6×103 1.6×102

Kennedy -3.3×10-2 1.6×10-4 -1.3×10-1 1.7×102 -1.4×101 3.1 -9.3 1.2 -1.3 0.14 -61.9 3.4

500�m 1000�m

MOA GA PSO MOA GA PSO

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

Schwefel 7.4×104 8.8×103 1.3×105 1.9×103 2.09×104 3.6×103 1.16×105 1.59×104 1.93×105 3.12×103 2.96×104 4.26×103

Rastrigin -2.1×103 1.9×102 -3.05×103 8.5×101 -4.7×103 1.4×102 -6.0×103 2.27×102 -8.9×103 1.34×102 -9.78×103 1.6×102

Ackley -7.27 0.31 -15.4 0.12 -9.2 0.21 -8.5 0.17 -16.8 0.079 -9.3 0.16

Griewank -4.7 0.3 -23.05 0.89 -5.7 0.35 -11.02 0.54 -87.3 2.47 -11.6 0.4

Penalized 1 -2.3×103 1.02×103 -1.7×105 8.4×103 -7.4×103 1.98×103 -1.14×104 2.3×103 -6.14×105 1.59×104 -1.7×104 2.77×103

Penalized 2 -2.4×103 3.24×102 -2.1×104 1.16×103 -3.6×103 3.5×102 -6.59×103 5.9×102 -9.0×104 2.8×103 -7.7×103 5.0×102

Michalewicz 6.2×101 8.1 2.2×102 5.05 3.17×102 4.7 8.4×10 9.1 3.0×102 6.3 4.4×101 6.9

Goldberg 3.7×102 7.5 3.5×102 3.1 2.6×102 4.5 6.5×102 8.5 5.9×102 5.1 5.0×102 7.7

Sphere Model -4.1×104 3.9×103 -2.4×105 1.0×104 -6.3×104 4.8×103 -1.1×105 7.7×103 -9.4×105 2.5×104 -1.3×105 6.2×103

Schwefel 2.22 -7.6×10-1 3.5×102 -1.5 5.3×10-2 -8.9×10-1 3.0×10-2 -0.86 0.02 -2.25 0.03 -0.91 0.02

Schwefel 2.21 -2.9×101 1.7 -8.7×101 1.3 -3.37×101 2.8 -33.4 1.77 -93.4 0.73 -36.1 2.4

Dejong -2.1×105 5.5×104 -1.9×107 1.6×106 -5.4×105 8.6×104 -1.67×106 2.05×105 -1.92×108 9.18×106 -2.4×106 2.13×105

Rosenbrock -1.9×103 1.39×102 -1.9×104 1.1×103 -3.4×103 2.3×102 -5.55×103 2.34×102 -8.04×104 2.83×103 -7.02×103 2.93×102

Kennedy -5.1×101 2.57 -1.3×101 9.9×10-1 -1.3×102 3.7 -1.61×102 3.87 -76.58 2.89 -2.73×102 5.52
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in Generalized Schwefel' s function 2.26 and Michalewicz
Function does not improve the performance of MOA. This
is because MOA does not work well on these two functions
(see experimental results).

V. EXPRIMENTAL RESULTS

The population size of MOA for all of the experiments is
set to 25 (S=5) and for PSO and GA is 25, and maximum
iteration termination condition is used as maximum
generation equal to 1000. All results were averaged over 50
runs. The parameters of MOA, GA and PSO are set to the
best ones which are found in Section III.

Table II summarizes the experimental results of MOA,
GA and PSO for m=100, 250, 500 and 1000 for 14
benchmark functions. As indicated by all of the benchmark
functions, proposed algorithm consistently has a better
performance than PSO. The proposed algorithm is better
than GA in 12 of the benchmark functions whereas the
performance of GA in Generalized Schwefel' s function2.26
and Michalewicz Function is better than MOA.

VI. CONCLUSION

This paper proposes a novel optimization algorithm called
Magnetic Optimization Algorithms. The cellular structure of
the MOA has two advantages. Firstly the proposed cellular
structure maintains a better diversity for the population,
secondly the applied force between all of the particles is not
calculated and only the force between the neighbors is
calculated so computation is not exceeds. This type of
connectivity can decrease the computational complexity.
Calculating the force between all of the particles in a
population with n particles has a time complexity of O(n2)
on the other hand the time complexity of calculating the
force in cellular structure is O(n). This paper also tries to
find the best parameters for the proposed algorithm.
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APPENDIX A

Global numerical optimization problems arise in many
fields of science, engineering, and business. Since many of
these problems cannot be solved analytically, GAs becomes
one of the popular methods to address them [18]. There are
some benchmark numerical functions for testing the
optimization algorithms. Here we used 14 benchmark
functions for testing the algorithms:

Generalized Schwefel' s Problem 2.26 [18], Generalized
Rastrigin' s Function [18], Ackley' s function [18],
Generalized Griewank Function [18], Generalized Penalized
Function 1 [18], Generalized Penalized Function 2 [18],
Michalewicz Function [19], Goldberg & Richardson
Function [17], Sphere Model [18], Schwefel' s Problem2.22
[18], Schwefel' s Problem 2.21 [18], Dejong Function4 [19],
Rosenbrock Function [17], and Kennedy multimodal
function generator [17].

These functions have several local minima and one global
minimum. Since they are used for maximization process, we
use –f(x) as fitness function.
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