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The frequency shift and broadening of long-wavelength optical phonons due to interactions
with electrons are calculated in a monolayer graphene in magnetic fields. The broadening is
resonantly enhanced and the frequency shift exhibits a rapid change when the phonon energy
becomes the energy separation of Landau levels between which optical transitions are allowed.
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§1. Introduction

In a monolayer graphene, the phonon spectrum can
be modified directly by the change in the electron or
hole concentration by a gate voltage. In particular the
phonon frequencies near the Γ point can be measured di-
rectly by the Raman scattering.1,2) In a previous work,3)

this electron-concentration dependence of the frequency
and the broadening of optical phonons were investigated
in the absence of a magnetic field. In this paper we shall
study effects of magnetic field.

In an effective-mass approximation, an electron in
a graphite monolayer is described by Weyl’s equation
for a massless neutrino.4,5) Transport properties in such
an exotic electronic structure are quite intriguing, and
the conductivity with/without a magnetic field including
the Hall effect6,7) and the dynamical transport8) were
investigated theoretically. The results show that the
system exhibits various characteristic behaviors differ-
ent from conventional two-dimensional systems.9) Quite
recently, this single layer graphite was fabricated,10)

and the magnetotransport was measured including the
integer quantum Hall effect, demonstrating the validity
of the neutrino description of the electronic states.11,12)

Since then, the graphene became the subject of extensive
theoretical13−20) and experimental study.21,22)

For graphene and carbon nanotubes, a continu-
um model suitable for a correct description of long-
wavelength acoustic phonons was constructed,23) and
a similar continuum model was developed for optical
phonons and the Hamiltonian for electron-phonon inter-
actions was derived also.24) We shall use this continuum
model to calculate the self-energy of phonon Green’s
function in graphene in magnetic fields. The real part of
the self-energy gives an energy shift and the imaginary
part provides a lifetime.

The paper is organized as follows: In §2, electronic
states in a magnetic field and a continuum model of
optical phonons are reviewed very briefly. The phonon
Green’s function is calculated and shifts and broadening
of phonon modes are discussed in §3. Some examples of
numerical results are presented and discussed in §4 and
a short summary is given in §5.

§2. Formulation

2.1 Effective-mass description

In a graphite sheet the conduction and valence

bands consisting of π orbitals cross at K and K’ points of

the Brillouin zone, where the Fermi level is located.25,26)

Electronic states of the π-bands near a K point in mag-

netic field B perpendicular to the sheet are described by

the k·p equation:4−5)

H0F (r) = εF (r), (2.1)

with

H0 = γ

(

0 k̂x−ik̂y

k̂x+ik̂y 0

)

= γ(σ·k), (2.2)

where γ is a band parameter, σ = (σx, σy) is the Pauli

spin matrix, and k̂ = (k̂x, k̂y) =−i∇+eA/h̄c is a wave-

vector operator, with the vector potential A=(Bx, 0) in

magnetic field B perpendicular to the system.

The wave function is written as

FnX(r) =
Cn√

L
exp

(

− i
Xy

l2

)

(

sgn(n)h|n|−1(x−X)
h|n|(x−X)

)

,

(2.3)

with

Cn =

⎧

⎨

⎩

1 (n=0) ,

1√
2

(n �=0) ,
(2.4)

sgn(n) =

⎧

⎨

⎩

1 (n>0) ,
0 (n=0) ,
−1 (n<0) ,

(2.5)

h|n|(x) =
i|n|

√

2|n||n|!√πl
exp

[

− 1

2

(x

l

)2]

H|n|

(x

l

)

, (2.6)

where L is the linear dimension of the system, X is

a center coordinate, Hn(t) is the Hermite polynomial,

l =
√

ch̄/eB, and n = 0, ±1, . . .. The corresponding

energy is given by

εn = sgn(n)h̄ωB

√

|n|, (2.7)

with effective magnetic energy given by

h̄ωB =

√
2γ

l
. (2.8)

States are specified by a set of quantum numbers α =

(n, X). We shall neglect a small spin-Zeeman splitting
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in this paper.

For the K’ point, the Hamiltonian is given by

H0 = γ

(

0 k̂x+ik̂y

k̂x−ik̂y 0

)

= γ(σ∗ ·k̂), (2.9)

and the corresponding wave function is given by

FnX(r) =
Cn√

L
exp

(

− i
Xy

l2

)

(

h|n|(x−X)
sgn(n)h|n|−1(x−X)

)

.

(2.10)
The presence of the Landau level ε0 =0 is attributed to
Berry’s phase due to a rotation in the k space around
the origin.

2.2 Long Wavelength Optical Phonon

The long-wavelength optical phonons in the two-
dimensional graphite was discussed previously based on
a valence-force-field model,23,24) and in the following we
shall limit ourselves to the long-wavelength limit. Opti-
cal phonons are represented by the relative displacement
of two sub-lattice atoms A and B,

u(r) =
∑

q,µ

√

h̄

2NMω0
(bqµ + b†−qµ)eµ(q)eiq·r, (2.11)

where N is the number of unit cells, M is the mass of a
carbon atom, ω0 is the phonon frequency at the Γ point,
q = (qx, qy) is the wave vector, µ denotes the modes (t
for transverse and l for longitudinal), and b†

qµ and bqµ

are the creation and destruction operators, respectively.
Define

qx = q cos ϕ(q), qy = q sin ϕ(q), (2.12)

with q= |q|. Then, we have

el(q) = i(cosϕ(q), sin ϕ(q)),

et(q) = i(− sinϕ(q), cos ϕ(q)).
(2.13)

The corresponding phonon Hamiltonian is written as

Hph =
∑

q,µ

h̄ω0

(

b†
qµbqµ+

1

2

)

. (2.14)

The interaction between optical phonons and an
electron at the K point is given by24)

HK
int = −

√
2
βγ

b2
σ×u(r), (2.15)

and for the K’ point

HK′

int = −
√

2
βγ

b2
σ∗×u(r), (2.16)

where the vector product for vectors a=(ax, ay) and b=
(bx, by) in two dimension is defined by a×b=axby−aybx

and b = a/
√

3 is the equilibrium bond length. The
dimensionless parameter β is given by

β = −d ln γ0

d ln b
, (2.17)

where γ0 is the resonance integral between nearest neigh-
bor carbon atoms related to γ through γ = (

√
3a/2)γ0.

This means that the lattice distortion gives rise to a shift
in the origin of the wave vector or an effective vector
potential, i.e., ux in the y direction and uy in the x
direction.

Explicitly, we have

Hint = −
√

h̄

2NMω0

∑

q,µ

√
2
βγ

b2
Vµ(q)eiq·r(bqµ + b†−qµ),

(2.18)
where

V K
l (q) =

(

0 −e−iϕ(q)

eiϕ(q) 0

)

, (2.19)

and

V K
t (q) =

(

0 ie−iϕ(q)

ieiϕ(q) 0

)

, (2.20)

for the K point. For the K’ point, the correspond-
ing quantities are obtained by the relation V K′

µ (q) =

V K
µ (−q)∗.

2.3 Phonon Green’s Function

The phonon Green’s function is written as

Dµ(q, ω) =
2h̄ω0

(h̄ω)2−(h̄ω0)2−2h̄ω0Πµ(q, ω)
. (2.21)

In the following, we shall consider retarded Green’s func-
tion obtained by an analytic continuation of a thermal
Green’s function from upper complex plane. The phonon
frequency is determined by the pole of Dµ(q, ω) as

( ω

ω0

)2

−1 =
2

h̄ω0
Re Πµ(q, ω). (2.22)

As will become clear in the following, the phonon self-
energy is small. In this case, the shift of the phonon
frequency is given by

∆ωµ =
1

h̄
ReΠµ(q, ω0), (2.23)

and the broadening is given by

Γµ = − 1

h̄
Im Πµ(q, ω0). (2.24)

§3. Optical-Phonon Self-Energy

In the following we shall consider the phonons at
the Γ point, i.e., |q|→0 and the lowest order self-energy
given by the diagram shown in Fig. 1. The matrix
elements squared are independent of mode µ = t or l
and K or K’ points and given by

|(nX |V (q)|n′X)|2 = |Cn|2|Cn′ |2(δ|n|,|n′|−1+δ|n′|,|n|−1).
(3.1)

The self-energy is given by

Π(q, ω) = −gvgs

(βγ

b2

)2 h̄

NMω0

∑

n,n′

∑

X

|(nX |V (q)|n′X)|2

× f(εn)−f(εn′)

h̄ω−εn+εn′+i0
, (3.2)

where the subscript µ has been omitted, f(ε) is the Fermi
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distribution function,

f(ε) =
1

e(ε−ζ)/kBT +1
, (3.3)

with ζ being the chemical potential, and gv and gs are
the spin and valley degeneracy (gv = gs =2). Define the
dimensionless coupling parameter

λ =
gvgs

4

36
√

3

π

h̄2

2Ma2

1

h̄ω0

(β

2

)2

. (3.4)

For M =1.993×10−23 g, a=2.46 Å, and h̄ω0 =0.196 eV,
we have

λ ≈ 2.9×10−3gvgs

4

(β

2

)2

. (3.5)

Then, we have

Π(q, ω) = −2λ(2πγ2)
1

2πl2

∑

n,n′

|Cn|2|Cn′ |2δ|n|,|n′|−1

× [f(εn)−f(εn′)]
2(εn−εn′)

(h̄ω+i0)2−(εn−εn′)2
. (3.6)

This can be rewritten as

Π(q, ω) = −1

4
λ(h̄ωB)2

∑

s,s′=±1

∞
∑

n=0

[f(sεn)−f(s′εn+1)]

× 2(sεn−s′εn+1)

(h̄ω+i0)2−(sεn−s′εn+1)2
. (3.7)

Consider the case of vanishing Fermi energy at zero
temperature and in the limit of a weak magnetic field.
Then, only inter-band processes contribute to Π(q, ω)
and in the limit of ω→0, the self-energy becomes

Π2D(q, ω) =
1

4
λ(h̄ωB)2

∑

s,s′=±1

∞
∑

n=0

∫ 1

0

dt (1−ss′)

× [f0(sεn+t)−f0(s
′εn+t)]

sεn+t−s′εn+t

=
1

4
λ(h̄ωB)2

∑

s,s′=±1

∞
∑

n=0

1−ss′

εn+1+εn
, (3.8)

with

f0(ε) =

⎧

⎨

⎩

0 (ε>0);
1/2 (ε=0);
1 (ε<0).

(3.9)

The summation over n diverges and should be cutoff at
nc with εn∼εc where εc is the cutoff energy of the order
of the half of the π band width.

We are calculating the self-energy of optical phonons
starting with the known phonon modes in graphene,
which are usually calculated in an adiabatic approxima-
tion corresponding to ω→0. Therefore, this contribution
Π2D(q, ω) is already included in the definition of ω0.
In order to avoid such a double-counting problem, we
have to subtract Π2D(q, ω) from Π(q, ω). Thus, the final
expression of the self-energy becomes

Π(q, ω) = −1

4
λ(h̄ωB)2

∑

s,s′=±1

∞
∑

n=0

(

[f(sεn)−f(s′εn+1)]

× 2(sεn−s′εn+1)

(h̄ω+iδ)2−(sεn−s′εn+1)2
− 1−ss′

εn+1+εn

)

, (3.10)

where we have introduced phenomenological broadening
δ due to scattering of an electron by disorder or acoustic
phonons. Note that this expression is free from the
problem of divergence.

We have the relation

f−ζ(ε) = 1−fζ(−ε), (3.11)

which leads to the conclusion that the self-energy is
symmetric between ζ >0 and ζ <0, i.e., the electron-hole
symmetry. In the following, therefore, we shall confine
ourselves to the case ζ >0.

In the limit of vanishing magnetic field, we can
set εn+1 ≈ εn and replace the summation over n by
an integral. Then, the above expression of the self-
energy is reduced to the zero-field expression obtained
previously.3) At zero temperature, in particular, we have

Π(q, ω) = λεF − 1

4
λ (h̄ω+iδ)

(

ln
h̄ω+2ε0

F+iδ

h̄ω−2ε0
F+iδ

+ πi
)

,

(3.12)
where ε0

F is the Fermi energy in the absence of a magnetic
field. In the clean limit δ → 0, the frequency shift,
i.e., the real part, diverges logarithmically to −∞ at
ε0
F = h̄ω0/2. Apart from this logarithmic singularity,

the phonon frequency increases roughly in proportion
to ε0

F for ε0
F > h̄ω0. The broadening is nonzero and

is independent of ε0
F for ε0

F < h̄ω0/2 and vanishes for
ε0
F >h̄ω0/2.

The self-energy (3.10) shows that a resonance be-
havior appears when h̄ωn±

B = h̄ω0 with

h̄ωn±
B = h̄ωB

(√
n+1±

√
n
)

. (3.13)

The contribution of the resonance is given by

2h̄ωn±
B

(h̄ω0+iδ)2−(h̄ωn±
B )2

≈ 1

h̄ω0−h̄ωn±
B +iδ

, (3.14)

apart from a factor determined by the filling of the
relevant Landau levels. The imaginary part has a
Lorentzian peak and the real part exhibits a singularity
∼ (ω0−ωn±

B )−1.

Such resonances can be classified into inter-band
processes ωn+

B ≈ ω0 and intra-band processes ωn−
B ≈

ω0. The latter appears only in high magnetic fields at
sufficiently high electron concentrations and the former
appears in weak magnetic fields at low electron concen-
trations. Figure 2 shows some Landau levels ±h̄ωB

√
n as

a function of the effective magnetic energy h̄ωB, together
with the Fermi energy for a given electron concentration
specified by zero-field Fermi energy ε0

F . The resonance
fields are specified by arrows connecting initial and final
states.

As shown in Fig. 2(a), resonances due to transitions
from −n to n+1 and from −n−1 to n (n>0) disappear
approximately for ε0

F >(1/2)h̄ω0 and only the resonance
from 0 to +1 and from −1 to 0 remains. As shown in Fig.
2(b), this resonance disappears when the Landau level
n = +1 is fully occupied by electrons. With the use of
the resonance condition ω0±

B =ω0, the resonance appears
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when 0 < ε0
F/h̄ω0 <

√

3/2. In general, the resonance
from n to n+1 (n > 0) can appear in the concentration
range where level n is occupied and level n+1 is not fully
occupied. The condition is written as

√

n−(1/2)(
√

n+√
n+1) < ε0

F/h̄ω0 <
√

n+(3/2)(
√

n+
√

n+1). Figure 3
shows this energy range as a function of n. There is a
certain gap in ε0

F where no resonance occurs, but the
gap decreases rapidly with n. It should be noted that
the same gaps also appear in the cyclotron resonance.

§4. Numerical Results and Discussion

Figure 4 shows calculated frequency shift and broad-
ening in the regime of low electron concentrations. At the
lowest electron concentration ε0

F/h̄ω0 =1/4, all resonant
transitions from −n to n+1 and from −n−1 to n appear
at ωn+

B = h̄ω0. For ε0
F/h̄ω0 = 1/2, contributions of tran-

sitions from −n−1 to n disappear because the Landau
level n is fully occupied by electrons at resonances. For
ε0
F/h̄ω0 = 3/4, only the resonant transition from 0 to 1

remains.
Figure 5 shows the phonon spectral function (−1/π)

ImD(q, ω). At resonances, the phonon spectrum ex-
hibits characteristic behavior and the phonon practically
disappears due to large broadening at a magnetic field
corresponding to the exact resonance.

Figure 6 shows the frequency shift and broadening
of optical phonon in the regime of high electron concen-
trations where intra-band resonances can appear. As
is shown in Fig. 3, no resonance can take place for
ε0
F/h̄ω0 = 1.5 and both shift and broadening do not

exhibit singular structure except for a small cusp and dip
due to sudden jumps of the Fermi level between Landau
levels. For ε0

F/h̄ω0 =2.5 and 4.5, a resonance occurs from
1 to 2 and from 2 to 3, respectively. For ε0

F/h̄ω0 =3.825
lying in the gap shown in Fig. 3, no exact resonance can
occur and both shift and broadening exhibit complicated
dependence on the magnetic field.

In Fig. 6, the frequency shift in the weak field region
h̄ωB ∼ h̄ω0 increases roughly in proportion to ε0

F. This
corresponds to the previous result in the absence of a
magnetic field given in eq. (3.12).3) Similar behavior is
apparent also in Fig. 4. In fact, the frequency shift
at h̄ωB/h̄ω0 ∼ 0.1 is negative and its absolute value
increases with the decrease of δ/h̄ω0 for ε0

F/h̄ω0 = 1/2,
corresponding to the logarithmic singularity. Further,
the broadening in the weak-field region disappears for
ε0
F/h̄ω0 >1/2.

The effective magnetic energy h̄ωB is given by

h̄ωB =

√
2γ

l
= 35.6× γ [eV·Å]

6.46

√

B [T] meV, (4.1)

For the parameter γ =6.46 eV·Å giving γ0 =3.03 eV and
h̄ω0 = 196 meV corresponding to 1583 cm−1, we have
B0 = 30.1 T corresponding to h̄ωB = h̄ω0. The electron
concentration corresponding to the condition ε0

F = h̄ω0/2
becomes 0.73×1012 cm−2. For the mobility of µ ∼ 104

cm2/Vs, the broadening in the absence of a magnetic
field becomes h̄/τ becomes ∼ 6 meV, where use has been
made of µ=ev2τ/εF with v=γ/h̄.16) Actual broadening
is likely to be larger than this estimated value because

the transport relaxation time can be longer than the
conventional relaxation time giving the broadening of the
spectral function. In ref. 6 this factor has been shown to
be two for scatterers with potential range smaller than
the Fermi wavelength.

The broadening of Landau levels was shown to
be given by Γn = h̄ωB

√

(1+δn0)W , where W is the
dimensionless parameter characterizing the strength of
scattering, W ≈ h̄/2πε0

F τ .6,7) By assigning δ ≈ ΓN with
ε0

F = h̄ω0/2, we have W ≈ h̄/2πε0
F τ ∼0.01. It is possible,

therefore, to observe the anomaly of optical phonons due
to inter-band resonances. For the observation of effects
of intra-band resonances, much higher magnetic field
reachable only by pulse magnets is required although the
electron concentration is within accessible range.

§5. Summary and Conclusion

In this paper, the energy shift and broadening of
optical phonons have been calculated in a monolayer
graphene in magnetic fields. Both frequency shift and
broadening exhibits a singular behavior when resonance
occurs between Landau levels. The selection rules for the
resonance are the same as those for optical transitions.
Resonances corresponding to inter-band transitions are
expected to be observed at low electron concentrations
in high-mobility systems.
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Figure Captions

Fig. 1 A Feynman diagram for the self-energy of op-
tical phonons with wave vector q and Matsubara

frequency ωm.

Fig. 2 The Landau levels (thin dotted lines) as a
function of effective magnetic energy h̄ωB ∝

√
B

and the Fermi energy for a given electron concen-
tration characterized by the Fermi energy ε0

F in the
absence of a magnetic field. The vertical arrows
show transitions at a resonance. (a) Low electron
concentrations. (b) High electron concentrations.

Fig. 3 The range of the Fermi energy where the reso-
nance from n to n+1 occurs as a function of n (n>0)
and the gap where no resonance occurs.

Fig. 4 The frequency shift (solid line) and broadening
(dashed line) of optical phonons as a function of
effective magnetic energy h̄ωB at low electron con-
centrations corresponding to inter-band resonances.
Thin vertical lines show resonance magnetic fields.
(a) ε0

F/h̄ω0 =1/4, (b) 1/2, and (c) 3/4. The results
for δ/h̄ω0 =0.1, 0.05, and 0.02 are shown.

Fig. 5 The phonon spectral function (−1/π)ImD(q, ω)
for (a) ε0

F/h̄ω0 =1/4, (b) 1/2, and (c) 3/4. δ/h̄ω0 =
0.05. The dotted line shows the frequency shift, i.e.,
the peak position, as a function of h̄ωB.

Fig. 6 The frequency shift (solid line) and broadening
(dashed line) of optical phonons as a function of
effective magnetic energy h̄ωB at high electron con-
centrations corresponding to intra-band resonances.
The vertical straight lines show the effective mag-
netic field corresponding to resonances +1 → +2,
+2 → +3, and +3 → +4. No resonance occurs for
ε0
F/h̄ω0 =3.825. δ/h̄ω0 =0.05.
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