
PHYSICAL REVIEW D, VOLUME 61, 025005
Magnetic oscillations in dense cold quark matter with four-fermion interactions

D. Ebert*
Theory Division, CERN, CH 1211 Geneva 23, Switzerland

and Institut für Physik, Humboldt-Universita¨t, D-10115 Berlin, Germany

K. G. Klimenko†

Institute for High Energy Physics, 142284 Protvino, Moscow Region, Russia

M. A. Vdovichenko and A. S. Vshivtsev‡

Moscow Institute of Radio-Engineering, Electronics and Automatic Systems, 117454 Moscow, Russia
~Received 11 May 1999; published 16 December 1999!

The phase structures of Nambu–Jona-Lasinio models with one or two flavors are investigated at nonzero
values ofm andH, whereH is an external magnetic field andm is the chemical potential. In the phase portraits
of both models there arise infinitely many massless chirally symmetric phases, as well as massive ones with
spontaneously broken chiral invariance, reflecting the existence of infinitely many Landau levels. Phase tran-
sitions of first and second orders and a lot of tricritical points have been shown to exist in phase diagrams. In
the massless case, such a phase structure leads unavoidably to the standard van Alphen–de Haas magnetic
oscillations of some thermodynamical quantities, including magnetization, pressure and particle density. In the
massive case we find an oscillating behavior not only for thermodynamical quantities, but also for a dynamical
quantity as the quark mass. In addition, in this case we have nonstandard, i.e., nonperiodic, magnetic oscilla-
tions, since the frequency of oscillations is anH-dependent quantity.

PACS number~s!: 11.30.Qc, 12.38.Mh, 21.65.1f, 71.27.1a
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I. INTRODUCTION

The exploration of strongly interacting matter at high de
sity and in the presence of external electromagnetic field
of fundamental interest and has potential applications to
quark-gluon plasma and heavy-ion collisions, to cosmolo
and astrophysics of neutron stars. Recently, some aspec
this problem were considered in@1#, where it was pointed ou
that in QCD at high density a new phase with color sup
conductivity might exist. The influence of external magne
fields on the QCD vacuum was, for example, studied in@2#.

Our goal is to investigate the properties of the stron
interacting cold quark matter in the presence of both
external magnetic fieldH and the nonzero chemical potenti
m. The subject is closely related to magnetic oscillations
different physical quantities. In this connection we shou
remember that the van Alphen–de Haas effect~oscillations
of the magnetization! was predicted for the first time by Lan
dau and then experimentally observed in some nonrelativ
systems~in metals! more than 60 years ago@3,4#. At present,
a lot of the attention of researchers dealing with magn
oscillations is focused on relativistic condensed matter s
tems~mainly on QED atm,HÞ0), since the results of thes
studies may be applied to cosmology, astrophysics, and h
energy physics@5,6#.

It is well known that up to now the consideration of QC
at m,HÞ0 is a difficult problem. This is partly due to th
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fact that numerical lattice simulations atmÞ0 have not been
able to overcome problems associated with the complex
of the fermionic determinant. Moreover, the incorporation
a magnetic field into lattice gauge calculations is not ela
rated sufficiently, either. For these reasons, when conside
quark matter atm,HÞ0, many authors prefer to deal wit
adequate models~e.g., with the MIT bag model@7#!, rather
than with QCD.

In the present paper we shall study the above problem
the framework of some specific QCD-like quark mode
Namely, we shall investigate the influence of an exter
magnetic field and chemical potential on the vacuum str
ture of Nambu–Jona-Lasinio~NJL! models containing four-
fermion interactions@8,9#. The simplest one, denoted a
model I, refers to the one-flavor case and is presented by
Lagrangian

L15q̄ki ]̂qk1
G

2Nc
@~ q̄kqk!

21~ q̄kig5qk!
2#, ~1!

where all quark fields belong to the fundamental multiplet
the color SU(Nc) group ~here the summation over the colo
index k51, . . . ,Nc is implied!. Obviously, L1 is invariant
under~global! SU(Nc) and U(1)V transformations as well a
continuous U(1)A chiral transformations

qk→eiug5qk ~k51, . . . ,Nc!. ~2!

The second, more realistic case considered here and
ferred to as model II is a two-flavor NJL model whose L
grangian has the form
©1999 The American Physical Society05-1
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L25q̄i ]̂q1
G

2Nc
@~ q̄q!21~ q̄ig5tWq!2#, ~3!

whereq is a flavor isodoublet and color-Nc-plet quark field
andtW are isospin Pauli matrices@in Eq. ~3! and below, flavor
and color indices of the quark fieldq are now suppressed#.
The Lagrangian L2 is invariant under ~global! U(2) f
3SU(Nc) as well as under chiral U(2)L3U(2)R groups.

NJL models were proposed as a good laboratory for
vestigating the nonperturbative phenomenon of dynam
chiral symmetry breaking~DCSB!, which occurs in the phys
ics of strong interactions, as well as for describing the lo
energy sector of QCD~see, e.g., papers@10–12# and refer-
ences therein!. Since there are no closed physical systems
nature, the influence of different external factors on
DCSB mechanism is of great interest. In this relation, spe
attention has been paid to the analysis of the vacu
structure of NJL-type models at nonzero temperature
chemical potential@13,14#, in the presence of externa
~chromo-!magnetic fields@15–17#, with allowance for curva-
ture and nontrivial space-time topology@18,19#. The com-
bined influence of external electromagnetic and gravitatio
fields on the DCSB effect in four-fermion field theories w
investigated in@20,21#.

In the present paper the phase structures and related
cillating effects of the above-mentioned NJL models are c
sidered at m,HÞ0 in the leading order of the larg
Nc-approximation. We will show that, here, the set of osc
lating physical parameters in NJL models is richer than
QED atm,HÞ0. Besides, in the NJL models, in contrast
QED and similar to some condensed-matter materials, th
exist nonperiodic magnetic oscillations.

II. NJL MODELS AT µÞ0 AND H 50

First of all let us prepare the basis for the investigations
the following sections and consider in detail the phase st
ture of the model I at nonzero chemical potentialmÞ0 and
H50.

Recall some well-known vacuum properties of the the
~1! at m50. The introduction of an intermediate quar
meson Lagrangian

L̃15q̄i ]̂q2q̄~s11 is2g5!q2
Nc

2G
~s1

21s2
2! ~4!

greatly facilitates the problem under consideration.@In Eq.
~4! and other formulas below we have omitted the fermio
index k for simplicity.# Clearly, using the equations of mo
tion for the bosonic fieldss1,2, the theory in Eq.~4! is
equivalent to that in Eq.~1!. From Eq. ~4! we obtain the
one-loop expression for the effective action

exp@ iNcSe f f~s1,2!#5E Dq̄Dq expS i E L̃1d4xD ,

where
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Se f f~s1,2!52E d4x
s1

21s2
2

2G
2 i ln det~ i ]̂2s12 ig5s2!.

Assuming that in this formulas1,2 are independent of space
time points, we have by definition

Se f f~s1,2!52V0~s1,2!E d4x,

V0~s1,2!5
S2

2G
12i E d4p

~2p!4
ln~S22p2![V0~S!, ~5!

whereS5As1
21s2

2. Next, by introducing in Eq.~5! the Eu-
clidean metric (p0→ ip0) and cutting off the range of inte
gration (p2<L2), we obtain

V0~S!5
S2

2G
2

1

16p2 FL4 lnS 11
S2

L2D
1L2S22S4 lnS 11

L2

S2D G . ~6!

The stationarity equation for the effective potential~6! has
the form

]V0~S!

]S
505

S

4p2

3F4p2

G
2L21S2 lnS 11

L2

S2D G[
S

4p2
F~S!. ~7!

Now one can easily see that atG,Gc54p2/L2, Eq. ~7! has
no solutions apart fromS50. Hence, in this case fermion
are massless, and chiral invariance~2! is not broken.

FIG. 1. Phase portrait of the NJL model at nonzerom and for
arbitrary values of the fermion massM. PhasesB andC are massive
and nonsymmetric,A is a chirally symmetric phase. Herem2c(M )

5M , m1c(M )5A 1
2 M2 ln(11L2/M2), m3c(M ) is the solution of

the equationVm(0)5Vm(M ), M2c5L/(2.21 . . . ), M1c is the so-
lution of the equationm1c

2 (M1c)5L2/(4e). In phaseB the particle
density in the ground state is equal to zero, whereas in phaseC it is
nonzero. Solid and dashed lines represent critical curves of sec
and first-order phase transitions, respectively;a andb denote tric-
ritical points.
5-2
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If G.Gc , then Eq. ~7! has one nontrivial solution
S0(G,L)Þ0, such thatF(S0)50. In this caseS0 is a point
of global minimum for the potentialV0(S). This means that
spontaneous breaking of the symmetry~2! takes place, since
S0 is proportional to the chiral symmetry breaking ord
parameter̂ qq̄&, which atS0Þ0 is not equal to zero. More
over, fermions acquire a massM[S0(G,L).

Let us now consider the case wherem.0 and the tem-
peratureTÞ0. In this case, the effective potentialVmT(S)
can be found if the measure of integration in Eq.~5! is trans-
formed in the standard way according to the rule@22#

E dp0

2p
→ iT (

n52`

`

, p0→ ipT~2n11!1m.

Summing there overn and letting the temperature in th
obtained expression tend to zero, we obtain

Vm~S!5V0~S!22E d3p

~2p!3

3u~m2AS21p2!~m2AS21p2!,

whereu(x) is the step function. Finally, by performing th
momentum integration, we find

Vm~S!5V0~S!2
u~m2S!

16p2
$ 10

3 m~m22S2!3/2

22m3Am22S21S4 ln@~m1Am22S2!2/S2#%.

~8!

It follows from Eq. ~8! that, in the caseG,Gc and at arbi-
trary values of the chemical potential, the chiral symme
~2! is not broken. However, atG.Gc the model has a rich
phase structure, which is presented in Fig. 1 in terms om
andM. @At G.Gc one can use the fermionic massM as an
independent parameter of the theory. The three quantitieG,

FIG. 2. The behavior of the dynamical quark massS0(m) as a
function ofm for the caseM,M1c andH50 within the framework
of model I.
02500
y

M, andL are connected by Eq.~7!.# In this figure the solid
and dashed lines represent the critical curves of the sec
and first-order phase transitions, respectively. Furtherm
there are two tricritical points,1 a andb, two massive phase
B andC with spontaneously broken chiral invariance as w
as the symmetric massless phaseA in the phase portrait of
the NJL model I~detailed calculations of the vacuum stru
ture of this NJL model can be found in@14#!. In the present
model the dynamical quark massS0(m), given by the global
minimum of the potentialVm(S) as a function ofm, behaves
as depicted in Fig. 2.

We should note that the phase transition fromB to C is
the quark-matter analogue of the so-called insulator-m
phase transition in condensed-matter physics. This is du
the fact that, in the vacuum of phaseB, the particle density
~the analogue of conductivity electron density in conden
materials! is zero, while in the vacuum of phaseC there
arises a nonzero density of charged particles, so that it lo
like a Fermi-liquid ground state of metals.

To investigate the vacuum properties of the two-flav
NJL model~model II! it is again convenient to employ, in
stead of the quark Lagrangian~3!, the equivalent quark-
meson Lagrangian

L̃25q̄igm]mq2q̄~s1 ig5tWpW !q2
Nc

2G
~s21pW 2!. ~9!

Using calculations similar to the case with model I, one c
find the effective potentials form50 andmÞ0 expressed in
terms of meson fieldss,pW . These potentials have the form o
the potentials~6! and ~8! for model I, respectively, with the
exception that the factor (16p2)21 in Eqs.~6! and~8! has to
be replaced by (8p2)21. Moreover,2 in the case under con
siderationS25s21pW 2. It follows from this similarity that
the phase structure and the phase portrait of model II
qualitatively the same as those of model I~see Fig. 1!.

Note that our investigation here is based on ‘‘standar
NJL models containing only color-singlet (qq̄) interactions.
Their path-integral bosonization leads to a single order
rameter given by the quark condensate. In the recent lit
ture, one has further considered QCD-motivated exten
NJL models as arising from the Fierz transformation
current-current interactions mediated by~nonperturbative!
gluon exchange. Such enlarged NJL models, which inclu
besides usual (qq̄) interactions, additional (qq)-interaction
channels, contain then two order parameters: the usual q

1A point of the phase diagram is called a tricritical one if, in a
arbitrarily small vicinity of it, there are first- as well as second-ord
phase transitions.

2Chiral symmetry of the two-flavor NJL model~3! is realized in

the space of meson fields (s,pW ) as the rotation groupO(4), which

leaves the ‘‘length’’ of the particle vector (s,pW ) invariant. Hence,
all effective potentials of this model depend on the single varia

S5As21pW 2. In the following we choosepW 50, assuming the ab-
sence of a pion condensate.
5-3
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condensatê qq̄& and, in addition, the diquark condensa
^qq& of quark Cooper pairs@for early work on extended
NJL-type of models including additional (qq)-interaction
channels see, e.g., Ref.@23##. For such models one has,
particular, shown that at sufficiently large values of t
chemical potential there might arise a new phase of co
superconductivity signaled by a nonvanishing diquark c
densatê qq&. This fact was, e.g., established in@24# for an
extended version of the one-flavor model I and in@25# for an
extended model II. Since in the present paper we are in
ested in the consideration of the chiral symmetry break
alone, we have restricted our study to the above form
standard NJL models, leaving aside the possibility of ad
tional (qq) interactions and of Cooper pairing of quarks.

III. PHASE STRUCTURE OF MODEL I
AT µÞ0 AND HÞ0

In the present section we shall study vacuum magn
properties of NJL systems. For model I atm50, this prob-
lem was considered in@15,17#. It was shown in@15# that at
G.Gc the chiral symmetry is spontaneously broken for
bitrary values of the external magnetic fieldH, including the
caseH50. At G,Gc the NJL model I has a symmetri
vacuum atH50. However, if an external~arbitrarily small!
magnetic field is switched on, then for allGP(0,Gc) there is
a spontaneous breaking of the initial U(1)A symmetry ~2!
@17#. This is the so-called effect of dynamical chiral symm
try breaking~DCSB! catalysis by an external magnetic fiel
@This effect was observed for the first time in the framewo
of a (211)-dimensional Gross–Neveu model in@26# and
was then explained in@27#. Now this effect is under intensive
investigations since it has a wide range of possible appl
tions in physics.3#

Let us recall some aspects of the problem atm50,HÞ0.
In order to find in this case the effective potentialVH(S) of
the NJL model I, gauged by an external magnetic field
cording to]m→Dm5]m2 ieAm , Am5dm2x1H, one can use
the well-known proper-time method@29# or momentum
space calculations@30#, which in the leading order of the
1/Nc expansion gives the following expression:

VH~S!5
H2

2
1

S2

2G
1

eH

8p2E0

`ds

s2
exp~2sS2! coth~eHs!.

In this formulae has a positive value. It is useful to rearran
this expression in the form

VH~S!5V0~S!1Z~S!1ṼH~S!, ~10!

where

V0~S!5
S2

2G
1

1

8p2E0

`ds

s3
exp~2sS2!,

3Some recent references on this subject are presented in@28#.
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Z~S!5
H2

2
1

~eH!2

24p2 E0

`ds

s
exp~2sS2!,

ṼH~S!5
1

8p2E0

`ds

s3
exp~2sS2!

3S ~eHs!coth~eHs!212
~eHs!2

3 D , ~11!

thereby isolating the contributions of the matter, the fie
and the electromagnetic interaction energy densities exp
itly. The potentialV0(S) in Eq. ~11! is up to an unimportant
~infinite! additive constant not depending onS, equal to ex-
pression~5!. Hence, the ultraviolet~UV! regularized expres-
sion for it looks like Eq.~6!.

The integral of the functionZ(S) is also UV divergent, so
we need to regularize it. The simplest possibility is to cu
off at the lower boundary, which yields

Z~S!5
H2

2
2

~eH!2

24p2 S ln
S2

L2
1g D , ~12!

g being the Euler constant. Clearly, the last term in Eq.~12!
contributes to the renormalization of the magnetic field a
electric charge, in a way similar to what occurs in quantu
electrodynamics@29#.

The potentialṼH(S) in Eq. ~11! has no UV divergences
so it is easily calculated with the help of integral tables@31#.
The final expression forVH(S) in terms of renormalized
quantities is then given by

VH~S!5
H2

2
1V0~S!2

~eH!2

2p2

3S z8~21,x!2
1

2
@x22x# ln x1

x2

4 D , ~13!

where x5S2/(2eH), z(n,x) is the generalized Rieman
zeta function andz8(21,x)5dz(n,x)/dnun521. The global
minimum point of this function is the solution of the statio
arity equation

]

]S
VH~S!5

S

4p2
$F~S!2I ~S!%50, ~14!

whereF(S) is given in ~7!, and

I ~S!52eH$ ln G~x!2 1
2 ln~2p!1x2 1

2 ~2x21!ln x%

5E
0

`ds

s2
exp~2sS2!@eHscoth~eHs!21#. ~15!

One can easily see that there exists, for arbitrary fixed va
of H,G, only one nontrivial solutionS0(H) of Eq. ~14!,
which is the global minimum point ofVH(S). There,S0(H)
is a monotonically increasing function ofH, and atH→`
5-4
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S0~H !'
eH

p
AG

12
. ~16!

However, atH→0

S0
2~H !'H eH

p
expH 2

1

eH S 4p2

G
2L2D J if G,Gc ,

M2 if G.Gc .
~17!

So, atG,Gc andH50 the NJL vacuum is chirally sym
metric, but an arbitrarily small value of the external magne
field H induces DCSB, and fermions acquire a nonzero m
S0(H) ~the magnetic catalysis effect of DCSB!.

Now let us consider the more general case, whenHÞ0
and mÞ0. In one of our previous papers@32# an effective
potential of a 3D Gross–Neveu model at nonzeroH, m, and
T was obtained. Similarly, one can find the effective pote
tial in the NJL model I atH,T,mÞ0:

VHmT~S!5VH~S!2
TeH

4p2 (
k50

`

ak

3E
2`

`

dp ln$@11e2b(«k1m)#@11e2b(«k2m)#%,

~18!
e
e
f

e

s.
he

l
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where b51/T, ak522d0k , «k5AS21p212eHk, with
k50,1,2, . . . denoting Landau levels, and the functio
VH(S) is given in Eq.~13!. If we let the temperature in Eq
~18! tend to zero, we obtain the effective potential of the N
model I atH,mÞ0:

VHm~S!5VH~S!2
eH

4p2 (
k50

`

akE
2`

`

dp~m2«k!u~m2«k!,

~19!

which, by performing the integration, can easily be cast i
the form

VHm~S!5VH~S!2
eH

4p2 (
k50

`

aku~m2sk!

3S mAm22sk
22sk

2 lnFm1Am22sk
2

sk
G D , ~20!

wheresk5AS212eHk. Finally, let us present the stationa
ity equation for the potential~20!:
]

]S
VHm~S![

S

4p2
f~S!5

S

4p2 S F~S!2I ~S!12eH(
k50

`

aku~m2sk!lnFm1Am22sk
2

sk
G D 50. ~21!
In order to get a phase portrait of the model under consid
ation we should find a one-to-one correspondence betw
points of the (m,H) plane and the global minimum points o
the function~20!, i.e., by solving Eq.~21! we should find the
global minimum S(m,H) of the potential~20! and then
study its properties as a function of (m,H).

A. The caseG<Gc . Magnetic catalysis and chemical potential

In order to greatly simplify this problem, let us divide th
(m,H) plane into a set of regionsvk :

~m,H !5 ø
k50

`

vk ,

vk5$~m,H !:2eHk<m2<2eH~k11!%. ~22!

In the v0 region only the first term from the series in Eq
~20! and ~21! is nonvanishing. So, one can find that, for t
points (m,H)Pv0, which are above the linel 5$(m,H):m
5S0(H)%, the global minimum is at the pointS50. Just
under the curvel the pointS5S0(H) is a local minimum of
the potential~20!, whereasS5S0(H) becomes a globa
r-
en
minimum, when (m,H) lies under the curvem5mc(H),
which is defined by the following equation:

VHm~0!5VHm„S0~H !…. ~23!

Evidently, the linem5mc(H) is the critical curve of first-
order phase transitions. In thev0 region Eq.~23! is easily
solved as

mc~H !5
2p

AeH
@VH~0!2VH„S0~H !…#1/2. ~24!

Using the asymptotics~17! of the solutionS0(H) at H→0,
we find the following behavior ofmc(H) at H→0:

mc~H !'AeH

2p
expH 2

1

2eH S 4p2

G
2L2D J .

Hence, we have shown that atm.mc(H) (G,Gc) there
exists a massless symmetric phase of the NJL model@nu-
merical investigations of Eqs.~20! and ~21! give us a zero
global minimum point for the potentialVHm(S) in other re-
gions v1 ,v2 , . . . as well#. The external magnetic field
5-5
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ceases to induce the DCSB atm.mc(H) @or at sufficiently
small values of the magnetic fieldH,Hc(m), whereHc(m)
is the inverse function ofmc(H)]. However, under the criti-
cal curve~24! @or atH.Hc(m)], owing to the presence of a
external magnetic field, the chiral symmetry is spontaneou
broken. Here the magnetic field induces a dynamical ferm
massS0(H), which has am-independent value.

Lastly, we should also remark that in the NJL model~1!
the magnetic catalysis effect takes place only in the ph
with zero particle density, i.e., atm,mc(H). If m.mc(H),
we have the symmetric phase with nonzero particle dens
but here the magnetic field cannot induce DCSB.

B. The caseG<Gc . Infinite cascade of massless phases

In the previous subsection we have shown that the po
(m,H), lying above the critical curvem5mc(H), correspond
to the chirally symmetric ground state of the NJL mod
Fermionic excitations of this vacuum have zero masses
first sight, it might seem that the properties of this symme
vacuum are slightly varied, when parametersm and H are
changed. However, this is not the case, and in the regiom
.mc(H) we have infinitely many massless symmet
phases of the theory corresponding to infinitely many L
dau levels, as well as a variety of critical curves of seco
order phase transitions. We will now prove this.

It is well known that the state of thermodynamic equili
rium ~the ground state! of an arbitrary quantum system
described by the thermodynamic potential~TDP! V, which is
just the value of the effective potential at its global minimu
point. In the case under consideration, the TDPV(m,H) at
m.mc(H) has the form

V~m,H ![VHm~0!

5VH~0!2
eH

4p2 (
k50

`

aku~m2ek!

3$mAm22ek
22ek

2 ln@~Am22ek
21m!/ek#%,

~25!

whereek5A2eHk. We shall use the following criterion o
phase transitions: if at least one first~second! partial deriva-
tive of V(m,H) is a discontinuous function at some poin
then this is a point of a first-~second-! order phase transition

Using this criterion, let us show that boundaries ofvk

regions ~22!, i.e., lines l k5$(m,H):m5A2eHk% (k
51,2, . . . ), arecritical lines of second-order phase tran
tions. In an arbitraryvk region the TDP~25! has the form:

V~m,H !uvk
[Vk5VH~0!2

eH

4p2 (
i 50

k

a iu~m2e i !

3S mAm22e i
22e i

2 lnF ~Am22e i
21m!

e i
G D .

~26!

From Eq.~26! one easily finds
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]Vk

]m U (m,H)→ l k1
2

]Vk21

]m U
(m,H)→ l k2

50, ~27!

as well as

]2Vk

~]m!2U
(m,H)→ l k1

2
]2Vk21

~]m!2 U
(m,H)→ l k2

52
eHm

2p2Am22ek
2U

m→ek1

→2`. ~28!

Equation ~27! means that the first derivative]V/]m is a
continuous function on all linesl k . However, the second
derivative ]2V/(]m)2 has an infinite jump on each linel k
@see~28!#, so these lines are critical curves of second-or
phase transitions.@Similarly, we can prove the discontinuit
of ]2V/(]H)2 and]2V/]m]H on all linesl n .]

The results of the above investigations are presente
Fig. 3, where the phase portrait of the NJL model I atG
,Gc in the (m,H) plane is displayed.

C. The caseG>Gc

Concerning supercritical values of the coupling consta
we shall consider here only the caseGc,G
,(1.225 . . . )Gc , where the phase portrait of model I
qualitatively represented in Fig. 4. In this figure one can
infinite sets of symmetric masslessA0 ,A1 , . . . phases, as
well as massive phasesC0 ,C1 , . . . with DCSB. In addition,
there is another massive phaseB. Dashed and solid lines in
Fig. 4 are critical curves of first- and second-order pha
transitions, respectively. One can also see on this por
infinitely many tricritical pointstk ,sk (k50,1,2, . . . ). For a
fixed value ofk the pointtk lies inside, but the pointsk is on
the left boundary of the correspondingvk region~22!. Each
critical line l k coincides with a part of thevk boundary. In

FIG. 3. Phase portrait of the gauged model I atG,Gc . Solid
lines l k are given byl k5$(m,H):m5A2eHk%. They are critical
curves of second-order phase transitions. The dashed line of
order phase transitions is defined by Eq.~23!.
5-6
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Table I, we give the values of the external magnetic fi
corresponding to tricritical pointst0 ands0.

The presence of an infinite cascade of masslessAk phases
in the caseG.Gc may be proved in a way similar to wha
was done in the previous subsection. However, now an
nite set of massive chirally nonsymmetric phases is availa
thanks to the particular structure of the functionf(S) in Eq.
~21!. A detailed numerical investigation of this functio
shows that, for some values of (m,H) inside theCk region
~see Fig. 4!, f(S) as a function ofS qualitatively behaves
like the curve, drawn in Fig. 5. At these values of (m,H)
there is only one nontrivial solutionSk(m,H) of the station-
arity Eq. ~21!, which is the global minimum point of the
effective potential~20! and at the same time is the qua
mass in the phaseCk of the theory. Remark that in eac
phaseCk the quark mass is am-dependent function. In con
trast, in the phaseB, the global minimum point is equal to
S0(H) @see Eqs.~16! and ~17!#, which is am-independent
quantity. Hence, the particle densityn[2]V/]m in the
ground state of phaseB is identically equal to zero, wherea
in each phaseCk this quantity differs from zero. This con
clusion follows from the definition of the thermodynam
potentialV given in the previous subsection, as well as fro

FIG. 4. Phase portrait of the gauged model I atGc,G
,(1.225 . . . )Gc . HereM is the quark mass atm50,H50, and the

quantity m1c(M ) is presented in Fig. 1. The dashed line
is defined by Eq.~23!. In this case one has infinite sets of symmet
massless phasesA0 ,A1 , . . . as well as massive phasesC0 ,C1 , . . .
with DCSB. In addition there exists another massive phaseB.

TABLE I. Values of the external magnetic field correspondi
to tricritical points t0 and s0 ~see Fig. 4! for different ratios of
coupling constantsG/Gc .

G/Gc 1.01 1.1 1.15 1.2

eHt0
/L2 0.0129 . . . 0.08119 . . . 0.10769 . . . 0.12987 . . .

eHs0
/L2 0.00614 . . . 0.05639 . . . 0.08088 . . . 0.10338 . . .
02500
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the fact thatV has nom dependence in the phaseB.4

If m increases, the curve of Fig. 5 moves up and to
right-hand side of this figure. So, for some values ofm the
functionf(S) in Eq. ~21! will have three zeros~see Fig. 6!:
the one on the left-hand side in this figure,Sk11, is a local
minimum of the functionVHm(S) , the one on the right-hand
side,Sk (Sk.Sk11), a global minimum of that function. If
the chemical potential persists to grow, then at some crit
value of m the global minimum jumps fromSk(m,H) to
Sk11(m,H). At this moment we have a first-order pha
transition from the massive phaseCk to the massiveCk11
one. In Fig. 4 the point of this phase transition lies on t
curve

which is the boundary between regionsCk andCk11. Hence,
all lines

in Fig. 4 (k50,1,2, . . . ) are first-order phase-transition
curves. Here we should also remark that all points of the l

in this figure are described by Eq.~23!. Since the phase
structure of model I is so complicated, the dynamical qu
massS(m,H), which is given by the global minimum of the
potentialVHm(S), also has a rather complicatedm,H depen-
dence. For illustration, in Fig. 7 the schematic behavior
S(m,H) versusm is presented at some fixed value of th
external magnetic fieldH.

From standard textbooks on statistical physics~see, e.g.,
@4#! we know that more than three curves of first-order ph
transitions ~1OPT! should not intersect at one point of
phase diagram; thus, not more than three phases are allo

4Since for all points of regionB we havem,S0(H), it follows
from Eq. ~20! that V5VHm„S0(H)…5VH„S0(H)…, i.e., V has in-
deed nom dependence.

FIG. 5. Typical behavior off(S) ~21! for some points (m,H)
PCk . Heresn5Am222eHn.
5-7
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to coexist in nature. However, in Fig. 4 one can see tha
infinite number of curves of 1OPT cross at the one pointM.
Indeed, this visible contradiction with the above-mention
statement is only fictitious, because at the pointM we have a
second-order phase transition@14#. Hence,M does not be-
long to any of the critical curves of 1OPT

and is therefore not a point of phase coexistence.

IV. MAGNETIC OSCILLATIONS IN MODEL I

Now we want to show that there arise, from the prese
of infinite sets of masslessAk phases as well as of massiv
Ck ones, magnetic oscillations~the so-called van Alphen–d
Haas-type effect! of some physical parameters in model
gauged by an external magnetic field.

A. The caseG<Gc

Let the chemical potential be fixed, i.e.,m5const
.mc(H). Then on the plane (m,H) ~see Fig. 3! we have a
line that crosses critical linesl 1 ,l 2 , . . . at points
H1 ,H2 , . . . . The particle densityn and the magnetizationm
of any thermodynamic system are defined by the TDP in
following way: n52]V/]m, m52]V/]H. At m 5 const
these quantities are continuous functions of the exte
magnetic field only, i.e.,n[n(H), m[m(H). We know
that all the second derivatives ofV(m,H) are discontinuous
on every critical linel n . The functionsn(H) and m(H),
being continuous in the intervalHP(0,̀ ), therefore have
first derivatives that are discontinuous on an infinite set
pointsH1 , . . . ,Hk , . . . . Such a behavior manifests itself
a phenomenon usually called oscillation.

In condensed-matter physics@3,4# it is a conventional rule
to separate the expression for a physical quantity with os

FIG. 6. For increasingm, there arise three zeroes of the functio
f(S) ~21! defining two local minimaSk andSk11(Sk11,Sk) of
the effective potential, respectively. The global minimum
VHm(S) lies in one of them and passes by a jump from one lo
minimum to another one depending on the values ofm.
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lations into two parts; the first one is called monotonic a
does not contain any oscillations, whereas the second
which is of particular interest here, contains all the oscil
tions. Following this rule, we can write down, say, the TD
~25! of the NJL model I in the form

V~m,H !5Vmon~m,H !1Vosc~m,H !. ~29!

In order to present the oscillating partVosc(m,H) as well as
the monotonic oneVmon(m,H) in an analytical form, we
shall use the technique elaborated in@6#, where manifestly
analytical expressions for these quantities were found in
case of a perfectly relativistic electron-positron gas. T
technique can be used without any difficulties in our ca
too. So, by applying the Poisson summation formula@4# in
Eq. ~25!,

(
n50

`

anF~n!52(
k50

`

akE
0

`

F~x!cos~2pkx!dx, ~30!

one can get forVmon(m,H) and Vosc(m,H) the following
expressions:

Vmon5VH~0!2
m4

12p2
2

~eH!2

4p3 E
0

n

dy(
k51

`
1

k
P~pky!,

~31!

Vosc5
m

4p3/2 (
k51

` S eH

pkD 3/2

@Q~pkn!cos~pkn1p/4!

1P~pkn!cos~pkn2p/4!#, ~32!

l

FIG. 7. Schematic representation of the dynamical quark m
S(m,H) as a function ofm for the fixed magnetic field qualitatively
reflecting the structure of the phase portrait in Fig. 4. Here
magnetic field is fixed in the interval (Hs2

,Ht2
), wheres2 ,t2 are

tricritical points ~see Fig. 4!. The mk ,m̃c(H) (k50,1,2) are the
values of the chemical potential at which the lineH5const crosses

in Fig. 4 the critical curves and respectively.
5-8
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wheren5m2/(eH). @To find Eqs.~31! and ~32! it is suffi-
cient to let the electron mass pass to zero in formula~19! of
@6#.# FunctionsP(x) and Q(x) in Eqs. ~31! and ~32! are
connected with Fresnel integralsC(x) andS(x) @33#

C~x!5
1

2
1A x

2p
@P~x!sinx1Q~x!cosx#

S~x!5
1

2
2A x

2p
@P~x!cosx2Q~x!sinx#.

They have, atx→`, the following asymptotics@33#:

P~x!5x212
3

4
x231•••, Q~x!52

1

2
x221

15

8
x241•••.

Formula ~32! presents, in a manifestly analytical form, th
oscillating part of the TDP~25! for the NJL model atG
,Gc . In the case under consideration, since the TDP is p
portional to the pressure of the system, one can conclude
the pressure in the NJL model oscillates whenH→0, too. It
follows from Eq.~32! that the frequency of oscillations ove
the parameter (eH)21 equalsm2/2. Then, starting from Eq
~32!, one can easily find the corresponding expressions
the oscillating parts ofn(H) and m(H). These quantities
oscillate atH→0 with the same frequencym2/2 and have a
rather involved form, so we do not present them here.

Finally, we should note that the character of magne
oscillations in the NJL model atG,Gc resembles the mag
netic oscillations in massless quantum electrodynamics@5,6#.
This circumstance is conditioned by the resemblance of
vacuum properties in the two models. Indeed, both in
NJL model and in QED, for fixedm and varying values ofH,
there are infinitely many second-order phase transitions~see
the Appendix, where the vacuum structure of QED atm,H
Þ0 is considered!.

B. The caseGc<G<„1.225 . . .…Gc

Here at m.m1c(M ) ~see Fig. 4! the TDP of the NJL
model as well as all thermodynamical parameters of the
tem oscillate with the frequencym2/2. This can be shown in
a way similar to what was done in the previous section.

However, atM,m,m1c(M ), the character of magneti
oscillations is changed. We will prove this next. First of a
in this case we have another expression for the TDP of
system,

V~m,H !5VHm„S~m,H !…, ~33!

whereVHm(S) is given in Eq.~20! andS(m,H) is the non-
trivial solution of the stationarity equation~21!. In each of
the massive phasesCk the m- and H-dependent function
S(m,H) coincides with the corresponding fermionic ma
Sk(m,H) ~see Sec. III C!. By using the Poisson summatio
formula ~30! again in Eq.~20!, one can easily select th
oscillating part of the TDP~33! in a manifestly analytical
form
02500
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Vosc~m,H !5
mu„m2S~m,H !…

4p3/2 (
k51

` S eH

pkD 3/2

3@Q~pkn!cos~2pkv1p/4!

1P~pkn!cos~2pkv2p/4!#, ~34!

wheren5m2/(eH), v5@m22S2(m,H)#/(2eH). From Eq.
~34! one can see that as a function of the variable (eH)21,
the TDP~33! oscillates with frequency@m22S2(m,H)#/2 if
this variable tends to infinity. SinceV(m,H) is equal, up to
a sign, to the pressure in the ground state of the system
pressure in the NJL model in the present case is also
oscillating quantity. Moreover, taking into account the s
tionarity Eq.~21!, one can easily derive manifest expressio
for oscillating parts of other thermodynamic quantities su
as particle densityn52]V/]m and magnetizationm5
2]V/]H from Eqs.~33! and ~34!,

mosc52
@m22S2~m,H !#3/2

4A2p3mv1/2

3 (
k51

`
sin~2pkv2p/4!

k3/2
1oS 1

v1/2D ,

nosc5
@m22S2~m,H !#3/2

4A2p3mv3/2 (
k51

`
sin~2pkv2p/4!

k3/2
.

~35!

It is clear from Eq.~35! that particle density and magnetiza
tion in the ground state of the NJL model oscillate with t
same frequency asV.

Comparing magnetic oscillations in the NJL model I a
in QED, we see three main differences. Let us remark tha
QED the frequency of magnetic oscillations@over the vari-
able (eH)21] is equal to (m22M2)/2, whereM is the elec-
tron mass@6#. In the NJL model, in contrast to QED, th
magnetic oscillation frequency is anH-dependent quantity
So, strictly speaking, in the NJL model magnetic oscillatio
are not periodic ones. Similar peculiarities of magnetic os
lations are observed in some ferromagnetic semiconduc
materials such as HgCr2Se4 @34#, where nonperiodic mag
netic oscillations over the variable (eH)21 were found to
exist for electric conductivity5 as well as magnetization. Thi
is the first distinction.

A second difference is the character of the oscillations
the two models: in QED, magnetic oscillations are accom
nied by second-order phase transitions~see the Appendix!,
while in the NJL model they occur as a result of an infin
cascade of first-order phase transitions.

Third, we should remark that in the NJL model not on
thermodynamic quantities oscillate, but some dynamical
rameters of the system do as well. This concerns, in part

5Magnetic oscillations of the electric conductivity, which is pr
portional to the particle density, are known as the Shubnikov–
Haas effect@3#.
5-9
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lar, oscillations of the dynamical quark mass. In fact,
applying the Poisson summation formula~30! in the station-
arity Eq. ~21! and searching for the solutionS(m,H) of this
equation in the formS(m,H)5Smon1Sosc, one can easily
find the following expressions forH→0:

Sosc5
~m22M̃2!3/2

A2pmṽ3/2f 8~M̃ !
(
k51

`
sin~2pkṽ2p/4!

k3/2
1oS 1

v3/2D ,

Smon5M̃1
m~m22M̃2!3/2

12M̃2f 8~M̃ !ṽ2
F11

Am22M̃2

m
G1oS 1

v3/2D ,

~36!

whereṽ5(m22M̃2)/2(eH), M̃[S0(m) is the quark mass
at H50, mÞ0 ~see Fig. 2! and

f ~x!5F~x!12mAm22x222x2 ln
m1Am22x2

x

@F(S) is defined in~7!#. Hence, in the framework of the NJ
model I the quark massS(m,H), as well as other dynamica
quantities composed from it, oscillate in the presence of
external magnetic field.

V. MAGNETIC OSCILLATIONS IN MODEL II

Next, let us consider magnetic oscillations in the mo
realistic NJL model II containing two kinds of quarks:u and
d quarks with electric chargese1 and e2, respectively. The
effective potentialvHm in the case under consideration is
trivial generalization ofVHm derived in the one-flavor case

vHm~S!52
H2

2
2

S2

2G
1(

i 51

2

VeiHm~S!, ~37!

whereS5As21pW 2, andVeiHm(S) is equal toVHm(S) ~20!,

with e replaced byuei u.
Qualitatively, the phase structure of the NJL model II

the same as that of model I. So, atG,Gc we have an infinite
set of massless phases~similar to the phase portrait of mode
I in Fig. 3! reflecting the infinite set of Landau levels that
the basis for magnetic oscillations. Using the analyti
methods of Sec. IV, one can easily select in the present
the oscillating part of the thermodynamic potential:

Vosc5
m

4p3/2 (
i 51

2

(
k51

` S uei uH
pk D 3/2

3@Q~pkn i !cos~pkn i1p/4!

1P~pkn i !cos~pkn i2p/4!#, ~38!

where n i5m2/(uei uH). Hence, in model II, in contrast to
model I and QED, we have a superposition of two oscillat
modes. At growing values of the parameter (eH)21, the fre-
quency of oscillations in each of the modes is equal
em2/(2uei u).
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At Gc,G there is a finite vicinity ofGc in which the
phase portrait of model II in the (m,H) plane is similar to the
one in model I~see Fig. 4!. So, in the case under conside
ation we have infinite sets of massless and massive phas
well. The cascade of massive phases is the foundation
nonperiodic magnetic oscillations. Indeed, from Eq.~37! it
follows that the oscillating part of TDP has the form

Vosc~m,H !5
mu„m2S~m,H !…

4p3/2 (
i 51

2

(
k51

` S uei uH
pk D 3/2

3@Q~pkn i !cos~2pkv i1p/4!

1P~pkn i !cos~2pkv i2p/4!#, ~39!

wheren i5m2/(uei uH), v i5@m22S2(m,H)#/(2uei uH), and
S(m,H) is the global minimum point of the effective poten
tial ~37!. As in the previous model,S(m,H) in the present
case is anH-dependent function. This means that magne
oscillations in the NJL model II are composed of two no
periodic harmonics, because each of them has, as a fun
of the variable (eH)21, the H-dependent frequencye@m2

2S2(m,H)#/(2uei u).

VI. SUMMARY AND CONCLUSIONS

In the present paper we have studied the magnetic p
erties of a many-body system of cold and dense quark ma
with four-fermion interactions. In particular, we have inve
tigated the ground-state~vacuum! structure of two simple
NJL models with one or two quark flavors, respective
which are taken at nonzero chemical potentialm and mag-
netic fieldH.

As it turns out, in both types of models there exists
phaseB ~see Figs. 3 and 4! in which the quark mass is equa
to S0(H), i.e., it is a m-independent quantity. Since thi
phase is achieved in the regionm,S0(H), the resulting par-
ticle density is expected to be zero, which is supported
our calculation. Clearly, this is in agreement with the phy
cal interpretation of the chemical potential as the energy
quired to create one particle in the system. Indeed, the en
m, which in the phaseB is smaller than the quark mass, is n
sufficient to create a particle, so that in the ground state
this phase the particle density must vanish.

Most interestingly, we have shown that in NJL mode
there exist an infinite set of massless chirally invaria
phases~phasesA0 ,A1 , . . . in Figs. 3 and 4!, which lead to
periodic magnetic oscillations of some thermodynamic qu
tities of the system~so-called van Alphen–de Haas effec!.
In NJL models, this effect is observed at weak couplin
(G,Gc , whereGc54p2/L2) or at sufficiently high values
of the chemical potential and resembles magnetic oscillati
in massless QED.

Furthermore, for some finite interval of the coupling co
stantGc,G,G1, where in the framework of model IG1
5(1.225 . . . )Gc , the phase structure of NJL models I and
contains an infinite set of massive chirally noninvaria
phases~phasesC0 ,C1 , . . . in Fig. 4!. This is the basis for
nonperiodic magnetic oscillations of some thermodynam
5-10
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parameters, since the dynamical quark mass in each o
phasesCk is now itself anH-dependent quantity.~Notice that
analogous nonperiodic magnetic oscillations were rece
found to exist in some condensed-matter materials@34#, too.!
We should also remark that, atGc,G,G1, some dynamical
parameters in NJL systems, such as quark masses, osc
over (eH)21 as well. This is an unknown fact in the standa
condensed-matter theory of the van Alphen–de Haas eff

Moreover, our numerical analysis shows that for values
the coupling constantGP(G1 ,G2), whereG2'40Gc , we
have in both models a finite number of massive phasesCk
~the number of massless phases is infinite as before!. At
larger values of the coupling constant, i.e., atG.G2, there
exist no massive phases in the phase structure of NJL mo
at all, except the trivial phaseB.

It is further interesting to note that for fixed magnetic fie
H the dynamical quark massS(m,H) of NJL models discon-
tinuously jumps as a function ofm, at pointsm0 ,m1 ,m2 , . . .
~see Fig. 7!, thus reflecting the structure of the underlyin
phase portrait shown in Fig. 4.

In conclusion, we have shown that NJL models atm,H
Þ0 exhibit an interesting phase structure and a set of os
lating quantities, which are richer than in the correspond
QED case. Finally, it is worth mentioning that extended N
models, which allow for the generation of a nonvanishi
^qq&-condensate for larger values of the chemical poten
present the exciting new possibility of a spontaneous bre
ing of color SU~3! and electromagnetic U~1! symmetry with
the arising Meissner effects and with the emergence of a
modified unbroken U~1! symmetry. Note that our approac
can be employed for a combined study of quark and diqu
condensates of extended NJL models taken atm,HÞ0.
Work in this direction is under way.
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APPENDIX: THE QED VACUUM STRUCTURE IN THE
PRESENCE OF µ AND H.

In the framework of QED and in a one-loop approxim
tion, the effective Lagrangian in the presence of an exte
homogeneous magnetic field has the following form@5,6#:

Le f f~m,H !5L1~H !2VQED~m,H !, ~A1!

whereL1(H) is the Lagrangian atm50,HÞ0. Since it does
not influence the phase structure of QED, we do not pres
its explicit form here, but refer to@5,6#. The second part o
Le f f(m,H) is exactly the thermodynamic potential of a pe
fect electron-positron gas
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VQED~m,H !52
eH

4p2 (
n50

`

anu~m2en!

3$mAm22en
22en

2 ln@~Am22en
21m!/en#%.

~A2!

In ~A2! we have introduced the notationen5AM212eHn,
where M is the electron mass atH50,m50, and an52
2d0n .

Using the results and methods of Sec. III B one can n
easily show that, on each line l n5$(m,H):m
5AM212eHn% of the (m,H) plane, all second derivative
of Le f f(m,H) ~A1! are discontinuous. So, the linesl n (n
50,1, . . . ) in Fig. 8 are the curves of second-order pha
transitions. They divide the (m,H) plane into an infinite set
of regionsCn (n50,1, . . . )corresponding to different mas
sive phases of QED~associated with Landau levels! with the
same electron massM. Nevertheless, each phaseCn is char-
acterized by such physical quantities as particle den
n(m,H) and magnetizationm(m,H). On each phase bound
ary l n these quantities are continuous functions. Howev
their first derivatives are discontinuous functions on ea
line l n , so the derivative jump ofn or m is the signal of a
second-order phase transition.

As in the previously considered case~see Sec. III C and
Fig. 4! the pointM in Fig. 8, where all linesl n intersect, is a
special point differing from other points of the linesl n . In-
deed, atH50 we have@6#

VQED~m,0!52
u~m2M !

6p2 E
M

m xdx

Ax22M2
~m2x!2~m12x!.

~A3!

It follows from ~A3! that only the third derivative

FIG. 8. Phase portrait of QED atm,HÞ0. All the lines l n are
the curves of second-order phase transitions.
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]3VQED(m,0)/(]m)3 is a discontinuous function at the poin
m5M . At the same time, in other points of critical curve
l n , already the second derivative]2VQED(m,H)/(]m)2 is
discontinuous.

Here we have considered only the relativistic case,
tt
.
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4
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02500
t

one can easily show that the nonrelativistic electron ga
m,HÞ0 has an infinite cascade of massive phases, too.
at the basis of the van Alphen–de Haas and Shubnikov
Haas effects lies an infinite set of second-order phase tra
tions.
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