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ABSTRACT

Context. To understand the star formation process, it is important to study the collapse of a prestellar dense core.
Aims. We investigate the effect of the magnetic field during the first collapse up to the formation of the first core, focusing particularly
on the magnetic braking and the launching of outflows.
Methods. We perform 3D AMR high resolution numerical simulations of a magnetically supercritical collapsing dense core using the
RAMSES MHD code and develop semi-analytical models that we compare with the numerical results.
Results. We study in detail the various profiles within the envelope of the collapsing core for various magnetic field strengths. Even
modest values of magnetic field strength modify the collapse significantly. This is largely due to the amplification of the radial and
toroidal components of the magnetic field by the differential motions within the collapsing core. For a weak magnetic intensity
corresponding to an initial mass-to-flux over critical mass-to-flux ratio, µ equals 20 a centrifugally supported disk forms. The strong
differential rotation triggers the growth of a slowly expanding magnetic tower. For higher magnetic field strengths corresponding to
µ = 2, the collapse occurs primarily along the field lines, therefore delivering weaker angular momentum into the inner part whereas at
the same time, strong magnetic braking occurs. As a consequence no centrifugally supported disk forms. An outflow is launched from
the central thermally supported core. Detailed comparisons with existing analytical predictions indicate that it is magneto-centrifugally
driven.
Conclusions. For cores having a mass-to-flux over critical mass-to-flux radio µ < 5, the magnetic field appears to have a significant
impact. The collapsing envelope is denser and flatter than in the hydrodynamical case and no centrifugally supported disk forms. For
values µ < 20, the magnetic field drastically modifies the disk evolution. In a companion paper, the influence of the magnetic field on
the dense core fragmentation is studied.
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1. Introduction

Studying the collapse and the fragmentation of a protostellar
molecular dense core is of great relevance for our understand-
ing of the star formation process. While the importance of the
magnetic field has long been suspected (e.g. Shu et al. 1987), it
is still under debate.

The first calculations of a magnetized collapsing dense core
were monodimensional and treated ambipolar diffusion (e.g.
Mouschovias et al. 1985; Ciolek & Mouschovias 1994; Basu &
Mouschovias 1995). Their main goal was to investigate the role
of the magnetic support in delaying the protostar formation. At
about the same time, a few attempts were made to calculate the
collapse in 2 or even 3D (Phillips & Monaghan 1985; Fiedler
& Mouschovias 1992). In parallel to the numerical efforts, vari-
ous authors have looked for analytical solutions to this problem
(Galli & Shu 1993a,b; Nakamura et al. 1995; Li & Shu 1996;
Basu 1997; Krasnopolsky & Königl 2002; Hennebelle 2003;
Tilley & Pudritz 2003).

With the increasing computing power and improvement of
numerical schemes, advances have been made and various 2D
(Nakamura et al. 1995; Tomisaka 1998; Allen et al. 2003)
as well as 3D numerical calculations have been performed

(Hosking & Whitworth 2004; Machida et al. 2005, 2007; Ziegler
2005; Banerjee & Pudritz 2006; Fromang et al. 2006; Price &
Bate 2007).

In these calculations, it has been found that the magnetic
field plays a crucial role in the evolution of the collapsing dense
core, in particular in the context of fragmentation in multiple sys-
tems. It has also been found that outflows can be spontaneously
launched during the collapse. These outflows have strong sim-
ilarities with the ones studied in many papers either numeri-
cally (e.g. Uchida & Shibata 1985; Casse & Keppens 2003;
Pudritz et al. 2007) or analytically (e.g. Blandford & Payne
1982; Pelletier & Pudritz 1992; Contopoulos & Lovelace 1994;
Ferreira 1997).

Here, we present further 3D numerical calculations of a col-
lapsing magnetised dense core. Our main goals are to investigate
the influence of the magnetic field strength on the collapsing en-
velope, the disk and the outflows. The fragmentation is studied
in a companion paper (Hennebelle & Teyssier 2007, hereafter
Paper II). In order to identify the physical mechanisms at play,
we develop various analytical approaches that we then compare
to the numerical solutions. The outline of the paper is as fol-
lows. In the second section, the numerical setup and the initial
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conditions are presented. The third section studies the evolution
of the envelope. For this purpose, semi-analytical solutions are
obtained and compared with the numerical results. The fourth
section presents the results for the outflows. Comparisons with
classical analytical results are made. In the fifth section, we qual-
itatively compare our results with various observations, focusing
particularly on the young class 0 source, IRAM 04191 (André
et al. 1999; Belloche et al. 2002) The sixth section concludes the
paper.

2. Numerical setup and initial conditions

We perform 3D numerical simulations using the AMR code
RAMSES (Teyssier 2002; Fromang et al. 2006). RAMSES is
based on shock capturing schemes and can handle ideal MHD,
self-gravity and cooling. It uses the constraint transport method
to update the magnetic field and therefore is preserving the nul-
lity of the divergence of the magnetic field. RAMSES has been
widely tested and gives results comparable to other MHD codes
for a large set of benchmarks. The AMR scheme offers access to
the high resolution needed to treat the problem. All the calcula-
tions performed in the following use the Roe solver.

The calculations start with 643 grid cells. As the collapse
proceeds, new cells are introduced in order to ensure that the
Jeans length is described everywhere with at least 10 cells. Nine
levels of AMR are used for a total of about 106 grid cells and an
equivalent numerical resolution of 16 384 3.

Here, we consider simple initial conditions, namely an ini-
tially uniform sphere in solid body rotation. The magnetic field
is initially uniform and parallel to the rotation axis. The sphere
is embedded in a diffuse medium a hundred times less dense.
This makes the surface of the cloud initially out of pressure equi-
librium and therefore expanding. However, since the cloud as a
whole is strongly self-gravitating, the collapse is not affected.
The motivation to start with such simple conditions, sometimes
considered as the standard test case for gravitational collapse of
dense cores, instead of, for example, with a quasi-equilibrium
configuration, is twofold. First, the magnetised collapse has not
been widely explored yet and we feel it is important at this stage
to choose conditions that can be easily reproduced by others.
Second, unlike in the hydrodynamical case, when the magnetic
field and rotation are considered, the age of the structure influ-
ences the angular momentum distribution and the structure of the
field lines. This makes the choice of starting with such a struc-
ture in near equilibrium also questionable.

Initially, the ratio of the thermal over gravitational energy, α,
is about 0.37 whereas the ratio of rotational over gravitational
energy, β, is equal to 0.045. These values are comparable to
standard values quoted in various studies of dense cores and
are not too far from typical values inferred from observations.
The cloud temperature is equal to 11 K. The cloud has a mass
of one solar mass, a radius of about R0 ≃ 0.016 pc, a density
≃5 × 10−18 g cm−3 giving a freefall time, τff ≃ 3 × 104 years. In
the companion paper (Paper II), an m = 2 perturbation of various
amplitudes is added.

The strength of the magnetic field is expressed in
terms of mass-to-flux over critical mass-to-flux ratio,
µ = (M/Φ)/(M/Φ)c, where (M/Φ)c = c1/3π × (5/G)1/2

(Mouschovias & Spitzer 1976) and Φ is the magnetic flux.
c1 has been estimated to be about 0.53. The case µ = 1
corresponds to a cloud just magnetically supported, i.e. mag-
netic forces balance gravitational forces. Various magnetic
strengths are considered in the following, namely, µ = 1000

(quasi-hydrodynamical case), µ = 20 (very supercritical cloud),
µ = 5 and µ = 2 (highly magnetised supercritical cloud).

In order to avoid the formation of a singularity and to mimic
the fact that at very high density, the dust becomes opaque and
therefore the gas becomes nearly adiabatic, we use a barotropic
equation of state: C2

s = (C0
s )2 × (1 + (ρ/ρc)4/3)1/2, where Cs ≃

0.2 km s−1 is the sound speed and ρc = 10−13 g cm−3. Note that
Masunaga & Inutsuka (2000) demonstrate that this is a good ap-
proximation for a one solar mass core.

However, with such an equation of state, the timestep in the
central part of the cloud becomes so small that it is difficult to
follow the collapse over a long period of time. In order to avoid
that problem, we have also performed complementary simula-
tions with a critical density ρc/10 = 10−14 g cm−3.

3. Envelope evolution

In this section, we study the properties of the various fields in the
collapsing envelope. We first present our notations and a simple
semi-analytical approach that will be useful to understand the
simulation results.

3.1. Analytical model

Here, we develop a phenomenological model for the profiles of
the various fields near the equatorial plane. We stress that the
main motivation in carrying out such analysis is to have mod-
els to interpret more accurately the complex numerical results.
More elaborate models have been developed (e.g. Galli & Shu
1993a,b; Li & Shu 1996; Krasnopolsky & Königl 2002) assum-
ing mainly self-similarity or equilibrium. Since both are restric-
tive assumptions and given the complexity of the numerical re-
sults obtained in the following, it is unclear to what extent these
models could be used for the purpose of comparison although
they undoubtedly provide a hint to the physical processes.

3.1.1. Notation and assumptions

We consider an initially uniform cloud of mass M0, initial ra-
dius R0, in solid body rotation with angular velocity ω0 and
threaded by a uniform magnetic field B0

z parallel to the z-axis.
In the following, we use standard Cartesian coordi-

nates (x, y, z) and cylindrical coordinates (r, θ, z) therefore r =√
x2 + y2.

Let h be the scale height of the cloud near the equator, we
write (see e.g. Li & Shu 1996):

h(r) = a × r,

ρ(r) =
dC2

s

2πGr2
, (1)

Bz(r) =
HzC

2
s√

Gr
,

where ρ and Bz are the density and z-component of the magnetic
field near the equator respectively. In the following, it will be
assumed that a, d and Hz depend weakly on r. It is well known
that such scaling is a reasonable approximation in the envelope
during the class-0 phase in particular before the rarefaction wave
launched at the formation of the protostar has propagated signif-
icantly (Shu 1977).

The structures of the radial and azimuthal components of the
magnetic field are a little more complex. It is well known that
for symmetry reasons, Br and Bθ vanish in the equatorial plane,
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z = 0. Their values increase with z until they reach their max-
imum, after which they decrease with z. Since here we are in-
terested only in the value near the equatorial plane, we write as
Krasnopolsky & Königl (2002)

Br(r, z, t) = Hr(r, t) ×
z

h(r)

C2
s√

Gr
, (2)

Bθ(r, z, t) = Hθ(r, t) ×
z

h(r)

C2
s√

Gr
·

These two expressions are valid until z ≃ h. At higher altitude,
Br and Bθ decrease and tend toward their value outside the core
which in the present simulations is zero. Therefore, it is expected
that the values of |Br| and |Bθ| at a given radius, r, are maxi-
mum at the altitude, z ≃ h(r), max(Br(r, z)) ≃ HrC

2
s /
√

Gr and
max(Bθ(r, z)) ≃ HθC

2
s /
√

Gr.
Thus, in the following, it seems appropriate to dis-

play the quantities max(Br(r, z))/Bz(r, 0) = Hr/Hz and
max(Bθ(r, z))/Bz(r, 0) = Hθ/Hz.

3.1.2. Axial and radial components of the magnetic field

Since throughout this work, field freezing is assumed, the mag-
netic flux, Φ, is conserved within the cloud. Therefore:

Φ =

∫
Bz × 2πrdr = B0

z × πR2
0 = 2πHz(C

2
s /
√

G)Rc, (3)

where Rc is the cloud radius at the current time whereas R0 is the
initial cloud radius. Thus we have:

Hz = (
√

G/C2
s ) × B0

z R2
0/(2Rc). (4)

Note that in this expression the cloud radius Rc is not known.
With our choice of initial conditions, Rc does not evolve much
during the class-0 phase and we will assume Rc ≃ R0 in the
following. This leads to

Bz(r) =
B0

z

2
R0

r
· (5)

The r-component is less straightforward to obtain. Its growth is
due to the stretching of the field lines by the differential mo-
tions within the cloud. In the case of a thin and isopedic disk,
Li & Shu (1997) demonstrated that the magnetic flux and grav-
itational potential are proportional through the cloud allowing
one to compute all components of the magnetic field once the
gravitational potential is known. Krasnopolsky & Königl (2002)
have assumed that Br is simply proportional to the magnetic
flux. Since the Br component appears difficult to predict quanti-
tatively, we simply write

Hr = ηHz, (6)

and the value of η will be estimated from the simulation.

3.1.3. Density field

In order to estimate the density, we write axial and radial equi-
librium conditions. Although the cloud is not exactly in equilib-
rium since it is collapsing, such assumptions lead nevertheless
to reasonable estimates of the density as long as the collapse is
not strongly triggered (Shu 1977; Hennebelle et al. 2003).

The equilibrium along the z-axis, neglecting the azimuthal
component of the magnetic field and the tension term B z∂rBr, is:

−C2
s ∂zρ + ρ∂zψ − ∂z

(
B2

r

8π

)
= 0, (7)

where ψ is the gravitational potential. Integrating once, we
obtain (using ∂2

zψ ≃ −4πGρ):

C2
s ρ +

1
8πG

(∂zψ)2 +
B2

r

8π
= K(r), (8)

where K(r) is a function of r. Evaluating K at z = 0 and at z = h,
and using the expressions stated by Eqs. (1) and (4), we get

d ≃ d2a2 +
η2

4
H2

z , (9)

where we have also used the approximation ∂ zψ ≃ −4πGρh.
The equilibrium along the radial direction is (neglecting

again the influence of Bθ)

−C2
s ∂rρ +

1
4π

(−Bz∂rBz + Bz∂zBr) + ρ∂rψ ≃ 0. (10)

Thus we obtain, with Eqs. (1) and (2)

d +
H2

z

4
(1 + η/a) ≃ ad2, (11)

where the gravitational force ∂rψ has been assumed to be ∂rψ ≃
−GM/r2 with M ≃

∫
2πr × 2h(r)ρdr.

Hz being known from Eq. (4), Eqs. (9) and (11) can be solved
numerically once η is estimated from the simulation, to provide
the values of d and a. For the case Hz = 0, we have a = d = 1, i.e.
the structure of the cloud is not modified by the magnetic field
and therefore the density is the Singular Isothermal Sphere (SIS)
density (since the analytical model does not consider the effect
of rotation).

3.1.4. Azimuthal magnetic field and rotation

The azimuthal component of the magnetic field, as well as the
rotation are more difficult to obtain. In order to do so, we adopt a
Lagrangian approach, i.e. we follow the fluid particle and com-
pute its momentum and azimuthal magnetic field over time. For
this purpose, we simply use the fluid equations with density and
poloidal field given as described above. To use dimensionless
quantities, we define

r̃ = r/R0, M̃ = M(r)/M0, t̃ = t ×
√

GM0/R
3
0. (12)

To compute the position of the fluid particle, we simply write
(neglecting the thermal pressure)

dtVr ≃ −
GeffM(r0)

r2
+

V2
θ

r
, (13)

with Vr = dr/dt. In this expression, M(r0) is the mass of the
cloud within a radius r0 and Geff is the effective gravitational
constant Geff = G × (1 − 1/µ). It will be assumed that M re-
mains constant during the collapse, i.e. we do not consider any
accretion which may arise along the pole. Thus, we obtain

dt̃Ṽr ≃ −
M̃(r0)

r̃(̃t)2
+

L(̃t)2

r̃(̃t)3
, (14)

where L = r̃Ṽθ is the momentum of the fluid particle.
The momentum equation is

dt(rVθ) =
1

4πρ
(Br∂r(rBθ) + rBz∂zBθ). (15)
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Gathering Eqs. (1), (2) and (12), we obtain

dt̃L ≃ K ×
HzHθ(t)

ad
, (16)

where K = C2
s R0/(2GM0).

Finally, the induction equation together with Eqs. (1) and (2)
leads to

dt̃Hθ ≃ −η
L(̃t)Hz

r̃(̃t)2
· (17)

Once a and d are known, Eqs. (14), (16) and (17) can be inte-
grated with time to obtain the particle momentum. In the follow-
ing, we use these equations to directly compare with the numer-
ical results.

3.2. Cloud radial profiles

Figures 1–4 show the density, radial velocity, rotation velocity
and z-component of the magnetic field in the equatorial plane
(variations along the z-axis are shown in Sect. 4) as a function
of radius for various magnetic field strengths. They also display
the largest value of radial and azimuthal components of the mag-
netic field at a given radius. These values are obtained by taking
the largest values along the z-axis at each radius. Note that as
recalled in the previous section, Br and Bθ vanish in the equa-
torial plane z = 0. The maximum value of B r(r, z)/Bz(r, 0) at a
given r is plotted. Four snapshots are displayed. The first one is
representative of the prestellar phase and is about 0.06–0.08×τ ff
before density reaches the critical density, ρc, the second one
is near the time at which the density reaches ρc whereas the
third and fourth ones show later evolution. The two straight solid
lines in the density plots show the density of the singular isother-
mal sphere (lower lines) and the density of the analytical model
stated by Eq. (1) (upper lines). Note that in the hydrodynamical
case, the two straight lines are indistinguishable. Table 1 gives
the values of the parameters, µ, Hz, η, a and d. The straight solid
lines in the Bz plots show the analytical estimate of Bz stated by
Eqs. (1) and (4).

3.2.1. Quasi-hydrodynamical case

Figure 1 shows results for µ = 1000, i.e. the quasi-
hydrodynamical case. The density is slightly stiffer than r−2 in
the outer part where it is a little denser than the SIS. This is due
to the rotation and to the fact that the cloud is collapsing and
therefore not in equilibrium (Shu 1977; Hennebelle et al. 2003,
2004a). In the inner part of the envelope the ratio of density over
SIS density increases even more with radius. This is due to the
rotation velocity which increases with r (Ulrich 1976). Note that
a better agreement between analytical and numerical estimates
can be obtained by taking into account the influence of rotation
in the former (see e.g. Hennebelle et al. 2004a). Two accretion
shocks are visible in the radial velocity plot. The first one which
is located at r = 10−3 pc shows the edge of the centrifugally sup-
ported disk. The second one, located at r = 10−4 pc, shows the
edge of the thermally supported core. Although for this case, the
magnetic field has almost no influence on the gas dynamics, it is
worth studying the spatial dependence of the three components.
The Bz component in the envelope appears to be reasonably close
to the analytical estimate stated by Eq. (1), the discrepancy being
due to the fact that ρ is stiffer than r−2 because of rotation. The Br

and Bθ components which vanish initially have slightly different
behaviour. They grow with time and reach values of the order

Fig. 1. Case µ = 1000. Density (left-top), radial (left-middle) and az-
imuthal velocity (left-bottom) and z-component of magnetic field (right-
top) in the equatorial plane at different times. Largest values of the radial
(right-middle) and azimuthal (right-bottom) magnetic components at a
given radius are also given. For convenience, max(Br(r, z))/Bz(r, 0) and
max(Bθ(r, z))/Bz(r, 0) are given as a function of r. The various straight
lines show analytical values (see text).

of Bz in the outer part of the envelope down to values roughly
10–100 times larger than Bz at the edge of the disk. Inside the
centrifugally supported disk these values increase further up to
values as high as about 103. It should be noted however that here
we are plotting the maximum values of B r and Bθ at a given ra-
dius. Since in the case µ = 1000, the disk quickly fragments
(see Paper II), Br and Bθ fluctuate significantly and therefore the
high values reached in the inner parts are higher than the mean
values of Br and Bθ (see Paper II for an estimate of their mean
values in the disk). Note also that the largest values of B r/Bz and
Bθ/Bz are obtained when Bz reaches small values. In the same
way, the increase of max(Br)/Bz and max(Bθ)/Bz at large radius
(r > 10−2 pc) is simply due to the decrease of Bz in the external
medium surrounding the cloud.
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Fig. 2. Same as Fig. 1 for case µ = 20.

Table 1. Values for the parameters. η is estimated from the numerical
simulation. Hz, a and d are obtained from the analytical model.

µ Hz η a d

20 0.41 5 0.48 2.48
5 1.64 3 0.2 10.29
2 4.10 2 0.12 29.37

3.2.2. Weak field case

Figure 2 shows results for µ = 20, i.e. weakly magnetised case.
As expected, since the magnetic field is weak, the density, radial
and azimuthal velocity fields are very close to those obtained
in the previous case. Bz is much larger than in the case µ =
1000. As for the previous case, the values of max(B r)/Bz and
max(Bθ)/Bz increase gradually in the envelope. They reach val-
ues of roughly 10 at the edge of the disk. This indicates that
the differential motions within the cloud are less important in
this case because of the influence of the Lorentz force. As in the
hydrodynamical case, a centrifugally supported disk formed as

Fig. 3. Same as Fig. 1 for case µ = 5.

well as two accretion shocks. Note again that the large fluctu-
ations of Br/Bz and Bθ/Bz within the disk are due to the value
of Bz being low.

3.2.3. Intermediate field cases

Figures 3 and 4 respectively show results for µ = 5 and µ = 2, i.e.
intermediate and strongly magnetised supercritical cases. The
density and velocity fields are significantly different from the
two preceding cases. The equatorial density is roughly 10 to
30 times the density of the SIS and is in good agreement with
the analytical estimate stated by Eq. (1). This is mainly due to
the magnetic pressure (due to Br) which compresses the gas
along the z-axis. In the outer part, the radial velocities are smaller
than in the weak field cases. This is due to the influence of the
Lorentz force which supports the cloud. On the contrary, in the
inner part, the radial velocities are larger than in the weak field
cases. This is because, since the rotation is much smaller than in
the weak field case, the centrifugal support is much weaker. In
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Fig. 4. Same as Fig. 1 for case µ = 2.

the case µ = 5, a weak local maximum, due to the centrifugal
force is nevertheless still present at r ≃ 2–3× 10−4 pc. However,
unlike in the cases µ = 1000 and 20, the radial velocity does
not vanish except in the center. This indicates that there is no
real centrifugally supported disk in this case. For µ = 2, there
is even no local maximum and only the shock on the thermally
supported core remains, indicating that the centrifugal force is
not able to stop the gas. The reason for lower angular momen-
tum will be analyzed in the next section. We note that similar
conclusions have recently been reached by Mellon & Li (2007).
It is also apparent that the shape of the rotation velocity is flatter
when µ is smaller: the rotation curve stays roughly constant until
much smaller radii.

The z-component of the magnetic field is very close to the
analytical estimate in the envelope of the core. The value of
max(Br)/Bz is about 2 at the edge of the core for µ = 5 and
about 1 for µ = 2. It gradually increases inwards and reaches
values about 2–3 times larger in the inner part. The values of

max(Bθ)/Bz are typically 1.5 to 2 times smaller than max(B r)/Bz

for µ = 5 and about 3 times for µ = 2.
Altogether these results illustrate that even for low to inter-

mediate values of the magnetic strength, the magnetic field can
have a drastic influence on the cloud evolution as well as on
the disk formation. This is due to the fact that the radial and
toroidal components of the magnetic field, which vanish initially,
are strongly amplified during the collapse by the differential mo-
tions. This makes the radial component B r does not increase lin-
early with the initial magnetic field strength since the field is
easier to stretch when it is initially weaker.

Such values of µ in the range 5–2 are compatible with the
more pessimistic estimates derived from measurements of the
magnetic intensity in the dense cores (Crutcher 1999; Crutcher
& Troland 2000; Crutcher et al. 2004). Since we find that dense
cores having µ smaller than ≃5 are qualitatively different from
the hydrodynamical cores, we conclude that magnetic fields are
playing an important role in the collapse of dense cores and
therefore in the star formation process.

3.3. Angular momentum evolution

Here, we further study the radial distribution of angular momen-
tum. In particular, we investigate the physical origin of smaller
rotation velocities in the intermediate and strong field cases.

3.3.1. Mass and angular momentum distribution

For this purpose, we plot the fraction of mass, fm, enclosed in-
side cylinders of various radii for the cases µ = 20 and µ = 2 in
Fig. 5. Note that the first two times correspond to a critical den-
sity equal to ρc, whereas for the three others, the critical density
is ρc/10. As can be seen, a good agreement is obtained between
the second and the third times which are close in time, showing
that varying the critical density does not significantly affect the
envelope evolution. We define the radius r f of the cylinder con-
taining a constant mass fraction fm. rf decreases with time as the
collapse proceeds.

Comparison between the 2 panels of Fig. 5 reveals that the
mass distribution as a function of radius is significantly different
in the two cases µ = 20 and µ = 2. In particular, the mass fraction
enclosed within a cylinder of radius ≃3 ×10−3 pc is roughly fifty
percent higher for µ = 20 than for µ = 2. This indicates that the
collapse arises in different ways for these two cases. In fact, the
collapse is more spherical for µ = 20 than for µ = 2. In the latter,
since the field is strong, the collapse first proceeds along the field
lines implying that the material that constitutes the central core
and the disk was originally located closer to the rotation axis
than for the case µ = 20. Since material close to the rotation
axis has a lower angular momentum than the gas located further
away, we believe that this is one of the reasons for lower angular
momentum in the cloud inner parts in the case µ = 2 than in the
case µ = 20.

Figure 6 displays the distribution of mean specific angular
momentum within a cylinder enclosing a mass fraction f m as a
function of fm. It shows that the specific angular momentum for
the first two times are both proportional to the mass fraction and
that the cloud with µ = 20 has a specific angular momentum
which is only 20% higher than for the case µ = 2. This differ-
ence, which is attributable to the magnetic braking, shows that
magnetic braking plays only a minor role during the early phase
of the collapse. Figure 6 together with Fig. 5 also demonstrates
that the total angular momentum in the case µ = 20 is higher
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Fig. 5. Fraction of cloud mass, fm, enclosed within a cylinder of radius,
rf , as a function of rf . Upper panel is case µ = 20. Lower panel is
case µ = 2.

Fig. 6. Mean specific angular momentum enclosed within a cylinder
of radius, rf , containing a cloud mass fraction fm, as a function of fm.
Upper panel is case µ = 20. Lower panel is case µ = 2.

in the internal part of the cloud than in the case µ = 2. The
subsequent times shown in these figures reveal that the specific
angular momentum stays roughly constant for f > 0.25–0.3, in-
dicating that magnetic braking remains weak in the case µ = 20
except maybe in the inner part of the cloud. Note that since
part of the angular momentum transfer is due to the gravita-
tional torque, (which appears once symmetry breaking occurs,
see Figs. 1–3 of Paper II) which is known to transfer angular mo-
mentum efficiently, it is not possible at this stage to quantify the
exact amount of momentum transfer which is due to magnetic
braking. On the contrary, the subsequent times displayed in the
second panel of Fig. 5 show that the specific angular momentum
decreases drastically even for f ≃ 0.4 in the cloud. This is most
likely due to the magnetic braking (since there is no disk in that

case there is no axisymmetry breaking if the initial conditions
are axisymmetric). We stress however, that at time t = 1.53τff,
the angular momentum has decreased significantly only in the
very inner part corresponding to fm < 0.15. With Fig. 6, we see
that this corresponds to radii smaller than 10−3 pc. Therefore,
the small rotation velocities seen in Fig. 4 are largely due to the
collapse proceeding first along the field lines. At this time, mag-
netic braking has efficiently reduced the gas angular momentum
in the very inner parts only.

3.3.2. Comparison between analytical and numerical results

In order to compare the numerical results with the analytical
model and to confirm that the decrease of angular momentum
seen for µ = 2 is due to magnetic braking, we have calculated
the specific angular momentum of the fluid particle located at
the radius, rf , where rf is the radius of the cylinder that con-
tains a cloud mass fraction fm. Indeed, Fig. 6 shows that the
mean angular momentum enclosed within a cylinder of radius r f
does not vary much along time (except for the 2 last times dis-
played for µ = 2). This implies that the mass enclosed within ra-
dius rf , does not vary significantly along time. Therefore, the se-
lected fluid particle located at rf should remain nearly the same.
Consequently, any angular momentum variation is attributable
to magnetic braking. Figures 7 and 8 show, for different values
of fm, the specific angular momentum of the fluid particle as a
function of radius at ten different times. It also displays analyti-
cal curves performed with the model presented in Sect. 3.1.4. To
obtain these curves, we start with values of r(t) and L(t) corre-
sponding to the first point shown in each panel of Figs. 7 and 8,
and we integrate Eqs. (14), (16) and (17) using the values of a
and d provided by Eqs. (9) and (11). Note that in order to mimic
the growth of Br and the fact that it is initially zero, we use
η = η0 × (1 − r(t)/r(0)) in Eq. (17). Since as shown in Fig. 2
the value of η0 varies through the cloud, we run three models
for η0 = 1, 1.5 and 2. The top curves of Fig. 8 correspond to
η0 = 1 whereas the bottom curves correspond to η0 = 2.

The ten times represented in the case µ = 20 correspond
to 1, 1.15, 1.19, 1.2, 1.26, 1.35, 1.46, 1.54, 1.6, 1.63τ ff, whereas
for µ = 2, they correspond to 1.21, 1.41, 1.53, 1.52, 1.55,
1.57, 1.60, 1.62, 1.64, 1.68τff. Note that for both cases the first
three times have been obtained with the standard critical density
whereas the seven others have been obtained with the critical
density ρc/10. The good continuity shows that the results are not
affected by the thermally supported core (except perhaps for the
last times).

In the case µ = 20, there is, as expected, hardly any variation
of angular momentum. The only variation occurs for f m = 0.1
at a radius smaller than r = 3 × 10−4 pc, i.e. after the fluid
particle has reached the central thermally supported core. In the
case µ = 2, magnetic braking is much more effective. A sig-
nificant loss of angular momentum is observed for f m = 0.1,
fm = 0.2 and fm = 0.3. In each case, the analytical fit is in
reasonable agreement with the numerical value until the fluid
particle reaches a strongly magnetised area surrounding the ther-
mally supported core where the analytical solution becomes in-
appropriate. This agreement shows that the analytical model is
reasonably accurate and that magnetic braking is responsible for
the angular momentum decrease. Depending on the value of f m,
the angular momentum decrease during the collapsing phase can
be larger, comparable to or smaller than the angular momentum
decrease once the fluid particle has reached the magnetised area
which surrounds the thermally supported core. Note that the size
of this area increases with time due to accumulation of magnetic
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Fig. 7. Case µ = 20. Specific angular momentum of the fluid particle
located at cloud radius, rf , where rf is the radius of the cylinder enclos-
ing a constant mass fraction fm. Each point corresponding to a given
time, the diagram shows the time evolution of the angular momentum
of the fluid particle as the collapse proceeds. The solid lines correspond
to the analytical model presented in Sect. 3 (see text). The dashed lines
show the radius of the magnetized area which surrounds the thermally
supported core, below which the analytical model is not appropriate.

Fig. 8. Same as Fig. 7 for case µ = 2.

flux. This is why fluid particles corresponding to higher f m reach
it at larger radii.

To summarize, we can say that for low magnetic strengths,
magnetic braking is too small to play a significant role in the en-
velope. In the case of strong fields, the collapse first occurs along
the field lines therefore delivering a low angular momentum in
the inner region. At the same time, magnetic braking reduces the
angular momentum of the collapsing envelope. Finally, strong
magnetic braking occurs in the highly magnetized area surround-
ing the thermally supported core.

4. Outflows

It is now well known that accretion is often, perhaps always,
associated with ejection processes. In the context of star forma-
tion, molecular outflows as well as jets have been extensively ob-
served (see e.g. Bally et al. 2007, for a recent review). While jets
may have velocities as large as several hundred km s−1, the bulk
of the millimeter wavelength CO emission tends to have veloci-
ties of only a few to ten km s−1. In the following, we call outflows
those outward motions with velocities larger than 1 km s−1.

In this section, we study the various outflow motions ob-
tained in these simulations. We first give a basic description of
the weak and strong field cases. Then, a more detailed analy-
sis is presented for each of these two cases. Finally, we show
for both cases mass and angular momentum fluxes for long time
evolution.

4.1. Weak field

Here we describe results for the case µ = 20.

4.1.1. Basic description

Figure 9 shows the density and velocity fields in the xz plane
for µ = 20 at three times. A complex expanding structure forms
around the center. As will be seen later, it is roughly similar to
the magnetic tower investigated by Lynden-Bell (1996) and in
the following we use this terminology. The first snapshot shows
that this structure encompasses the centrifugally supported disk.
As a consequence the accretion shock, which occurs near the
equatorial plane in the hydrodynamical case, is located further
away at the edge of the tower. At this stage, the tower is uni-
formly slowly expanding (see next section for quantitative esti-
mates). The second snapshot shows that a faster outflow appears
along the pole. It is clearly starting from the central thermally
supported core. The velocity is almost parallel to the z-axis all
the way. Since this outflow is faster than the surrounding slowly
expanding tower, the shape of the structure gradually becomes
more complex and mainly composed of two distinct regions,
the faster flow and a slower magnetic tower. The third snap-
shot shows that this structure is maintained at later times without
much change for the central flow whereas the tower keeps ex-
panding. At the edges of the structure, near the equatorial plane,
slow recirculation flows develop.

Note however that the thermal structure of the protostar is not
correctly treated in this paper. In particular the second collapse is
not considered here (Masunaga & Inutsuka 2000; Machida et al.
2007). Thus the central outflow may have a different structure in
a more realistic simulation. Indeed, Banerjee & Pudritz (2006)
and Machida et al. (2006, 2007) found that a slow jet or a fast
outflow having velocities around 30 km s−1 develops during the
formation of the protostar.

Figure 10 shows the structure of the magnetic field at time
t = 1.2287τff. The magnetic field is decomposed into its toroidal
and poloidal parts, Bθ and Bp = (Br, 0, Bz). The strength of
the former is shown using the colorscale snapshots while the
poloidal magnetic field lines are represented using the solid
white lines. The structure of the magnetic field appears to be
complex. The field lines are strongly bent and twisted in the in-
ner central regions (x/Rc < 0.1, |z/Rc| < 0.1) whereas they are
almost straight in the outer part. In the same way, the toroidal
component is 2 to 3 orders of magnitude higher in the inner part
than in the external part. This strongly suggests that the growth
of the tower as well as the outflow are associated with strong
wrapping of the field lines. This effect is quantified in the fol-
lowing section. The field lines near the z-axis, |z/Rc| < 0.03,
have a very peculiar shape. It seems that the magnetic field has
been strongly stretched, in this region. We speculate that this is
due to the growth of the magnetic tower which put the gas in ex-
pansion and therefore triggers field lines stretching. We further
speculate, that in this process, the poloidal field is amplified until
magnetic forces prevent further stretching. At this point the gas
is probably channeled along the field lines. Although we do not
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Fig. 9. Case µ = 20. Density and velocity fields in the xz plane.

address this issue specifically in this paper, it seems possible that
the origin of the outflow is due to these processes.

4.1.2. Quantitative estimates

Figure 11 shows the density, axial velocity, rotation velocity and
toroidal component of the magnetic field along the z-axis for four
times at x/R0 = 0.02 and y = 0. The first and second times (re-
spectively solid and dotted lines) show that the central density
is increasing due to the rapid accretion. Similarly, the angular
momentum increases. The toroidal component of the magnetic
field grows rapidly and is about 5 times larger at the second
time than at the first. This induces a slow expansion at about
0.3–0.5 km s−1.

The third time shows that the tower keeps expanding with
about the same velocity and that the toroidal component of the
magnetic field does not grow in intensity and saturates, forming
a plateau (except close to z = 0) with slowing decreasing values
at high z. The total toroidal magnetic flux inside the structure
increases since the size of this plateau increases.

Fig. 10. Structure of the azimuthally averaged magnetic field in the
model having µ = 20 at time t = 1.2287τff . The solid lines displays
the poloidal magnetic field lines. They are overplotted on a snapshot of
the toroidal magnetic field strength.

To characterize the dynamical state of the tower, we esti-
mate the thermal and magnetic pressure as well as the gravita-
tional potential at z ≃ 3 × 10−3 pc, i.e. close to the edge of the
tower at time, t = 1.15τff. The density is about 10−15 g cm−3, giv-
ing a thermal pressure of about 5 × 10−7 erg cm−3. The toroidal
component of the magnetic field is about 104µG giving a mag-
netic pressure of about B2

θ/8π ≃ 4 × 10−6 erg cm−3. The grav-
itational force is less straightforward to estimate. By the time
we are considering, the mass denser than ≃10−15 g cm−3 is of
the order of ≃0.1 Ms. Thus, the potential energy is of the order
of ≃ρGM/z ≃ 10−5 erg cm−3. Therefore, we conclude that by
the time t = 1.15τff, the magnetic tower is largely dominated
by the magnetic and the gravitational energies. At later times, as
the expansion proceeds, the gravitational energy will eventually
become negligible.

To assess that the expansion of the tower is indeed due to
the growth of the toroidal magnetic field, we consider pressure
equilibrium at the edge of the tower where we have

B2
θ/8π = ρinfV

2
inf , (18)

since the external pressure is dominated by the ram pressure,
ρinfV

2
inf , exerted at the accretion shock.
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Fig. 11. Cut along the z-axis at x/Rc = 0.02 and y = 0 at four different
times. Density, vertical component of the velocity, rotation velocity and
toroidal component of the magnetic field are shown.

The flux per unit length of the toroidal magnetic field, Φ θ, is
given by

Φθ =

∫
Bθdz ≃ Bθ × l, (19)

l being the height of the magnetic tower.
Integrating the induction equation along z, Φ θ is also

given by

Φθ ≃ BzVθ × t, (20)

where Bz and Vθ are to be taken in the equatorial plane.
Therefore, we obtain:

Vtower ≃
Bz√

8πρinf

×
Vθ

Vinf
· (21)

This expression is similar to some of the expressions obtained
by Lynden-Bell (1996, 2003) although his analysis is more so-
phisticated since the explicit value of the tower radius is taken
into account. With Bz ≃ 3 × 103 µG (obtained from Fig. 2),
Vθ ≃ 0.9 km s−1, Vinf ≃ 1.3 km s−1 and ρinf ≃ 3 × 10−17 g cm−3

(obtained from Fig. 11 either at z = 0 or at z = 9 × 10−4 pc),
we obtain: Vtower ≃ 0.58 km s−1. This value is comparable to the

value of Vz ≃ 0.45 km s−1 at time t = 1.15τff and z = 8× 10−4 pc
within about 25%. The difference is probably due to the assump-
tion of constant Bθ in the tower. Note that this simple estimate
does not take into account gravity. In order to investigate its in-
fluence, an analytical model for the expansion of the magnetic
tower is developed in the Appendix. Indeed, the model shows
that the growth of the transverse magnetic field which is induced
by the gradient of transverse velocity along the z-axis triggers
the expansion of a self-gravitating layer in a very similar way to
what is observed in the simulation.

The last time in Fig. 11 shows that the z-velocity increases
significantly and reaches values of about 1.2 km s−1. This is due
to the central outflow which presents higher velocities. At this
stage the velocities of the tower and the flow are difficult to dis-
tinguish. The fourth time also reveals that angular momentum as
well as mass have been removed, probably by the outflow be-
tween z = 3 × 10−4 and z = 3 × 10−3 pc.

4.2. Strong field: magneto-centrifugal ejection

Here we describe results for the case µ = 2.

4.2.1. Basic features

In the case µ = 2, a collimated outflow developed quickly, as
seen in Fig. 12. The first time displays the density and veloc-
ity fields just before the outflow is launched. The second time
shows the early phase of the flow whereas the third time shows a
more advanced phase after which the flow characteristics do not
evolve much (see next section).

The morphology of the flow is quite different to what is ob-
tained in the previous case. In particular, there is no slow mag-
netic tower as in the previous case. This is because, as discussed
in Sect. 3, there is no centrifugally supported disk, instead a
collapsing magnetic pseudo-disk forms. The outflows seem to
emerge from the central thermally supported core with an angle
of about 40–45 degrees with respect to the z-axis and quickly
recollimates. Figure 13 shows the structure of the magnetic field
lines and strength of the toroidal magnetic field. The poloidal
magnetic field is seen to be mostly vertical, particularly away
from the equatorial plane. Close to the equatorial plane, the mag-
netic field lines are significantly inclined because of the inflow-
ing fluid motions.

This is qualitatively in good agreement with the now clas-
sical model of the magneto-centrifugal ejection first described
by Blandford & Payne (1982) and obtained in many simulations
of magnetised disks (e.g. Pudritz et al. 2007). In the following
section, a more quantitative analysis is presented.

4.2.2. Detailed analysis

The flow features described above tend to suggest that the out-
flows we found in this model are magneto–centrifugally driven.
This type of outflow motion has been studied by many au-
thors using self–similar techniques (Blandford & Payne 1982;
Pelletier & Pudritz 1992) and assuming stationarity and axisym-
metry. Therefore, in order to obtain the late phase evolution of
the outflow for which it is expected that stationarity has been
reached, we again use the model with a reduced critical density,
as its dynamical evolution is faster (larger timesteps in the ther-
mally supported core), therefore allowing to reach more easily
the stationary regime. All figures were obtained after making an
azimuthal average of the variables around the vertical axis.
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Fig. 12. Case µ = 2. Density and velocity fields in the xz plane.

The density and velocity fields are shown in the upper panel
of Fig. 14. The flow is similar to that obtained with a critical den-
sity equal to ρc. To study quantitatively various outflows quanti-
ties, we focus on the parts of the outflow which are close to the
equatorial plane (z/R0 ≤ 0.32). Further away from the disk mid-
plane, the outflow hits the inflowing material and its structure is
perturbed. The poloidal magnetic field lines in this inner region
are represented in Fig. 14 with dotted lines. The outflow prop-
erties are computed along one such field line, represented using
the thick solid line in Fig. 14. One of the predictions of the theo-
ries mentioned above is that poloidal velocities u p and magnetic
field Bp are aligned when the outflow is in steady state. We plot
in the upper panel of Fig. 15 the variation of the angle θ they
make as one moves along that selected field line. Apart from
the very inner part of the outflow (z ≤ 0.08, which corresponds
to the outflow launching region), θ is everywhere smaller than
10 degrees, indicating a good alignment between the velocity
and the magnetic field. In general, over the entire outflow region,
we found that this angle is always smaller than 25 degrees. This
is a good indication that the outflow has come close to reaching
steady state, which is in agreement with visual inspections of

Fig. 13. Structure of the azimuthally averaged magnetic field in the
model having µ = 2 at time t = 1.5304τff . The solid lines display the
poloidal magnetic field lines. They are overplotted on a snapshot of
the toroidal magnetic field strength.

animations of this simulation. The middle panel of Fig. 15 gives
an insight into the launching mechanism, by plotting the profile
of the forces acting on the fluid along the same field line. The
solid line shows the variation of the Lorentz force along that field
line. It is compared to the pressure force. The former is clearly
larger than the latter, by one or two orders of magnitude: the out-
flow is magnetically (as opposed to thermally) driven. Finally,
we also give the profile of the outflowing velocity along the mag-
netic field line (bottom plot of Fig. 15). Because of the magnetic
force, it increases steadily in the outflow to reach values of the
order of 1.5 km s−1.

Another important prediction of the analytical self-similar
model (Blandford & Payne 1982) is that the angle between the
magnetic field lines close to the disk and the z-axis should be
larger than 30 degrees. In Fig. 16, we show this angle as a func-
tion of the radius. It has been measured at the disk surface, de-
fined at each radius as being the altitude at which the radial fluid
velocity vanishes. It is seen that this angle is indeed always larger
than 30 degrees except in the very center and in the outer part. In
these two regions, no outflow occurs as can be seen in Fig. 14.

4.3. Mass and angular momentum fluxes

We now present quantities that characterize globally the evolu-
tion of the whole accretion-ejection structure with time. For this
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Fig. 14. Upper panel: density and velocity field in the model hav-
ing µ = 2 and a critical density ρc/10 at time t = 1.67τff . Lower
panel: structure of the azimuthally averaged poloidal magnetic field
lines (dashed line) in the region of the outflow. The dashed lines show
the global structure of those lines, while the thick line marks the se-
lected magnetic field line along which some quantities will be plotted
in Fig. 15. Note the different scale of the plot compared to Fig. 13.

purpose we again use the simulations with the critical density,
ρc/10, since they allow us to follow the cloud evolution further.

Figures 17 and 18 display the ratio of ejected over accreted
mass and angular momentum fluxes. They are estimated on
spheres of various radius Rs, namely Rs/R0 = 0.2 (solid lines),
Rs/R0 = 0.4 (dotted lines) and Rs/R0 = 0.6 (dashed lines). Note
that for µ = 20, the first value of Rs is inside the magnetic tower
whereas the 2 other values correspond to a radius higher than the
equatorial radius of the magnetic tower.

For µ = 20 and Rs/R0 = 0.2, the ratio of ejection over ac-
cretion mass rate vanishes before t = 1.3τff, then increases until
a value of about 3–4. At this point quasi-stationarity is reached.

Fig. 15. First panel: angle θ (in degrees) between the poloidal fluid ve-
locity and the poloidal magnetic field along the particular poloidal field
line shown in Fig. 14. Note that θ is smaller than 10 degrees, showing
a good alignment between both vectors. Second panel: Lorentz force
(solid line) and pressure force (dashed line) exerted on the fluid ele-
ment along the same magnetic field line. At all positions, the former
exceeds the latter by one or two orders of magnitude, indicating that the
outflow is largely magnetically driven. Third panel: fluid velocity along
the magnetic field line shown in Fig. 14. The gas is seen to be constantly
accelerated because of the action of the Lorentz force (see Fig. 15). It
reaches a maximum outflow velocity of the order of 1.5 km s−1.

Fig. 16. Angle between the poloidal magnetic field lines and the z-axis
close to the disk surface. The analytical theory predicts that this angle
should be larger than 30 degrees in the outflow launching region.
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Fig. 17. Ratio of ejection over accretion mass rate as a function of time.
Upper panel is µ = 20 and lower panel µ = 2. Accretion and ejec-
tion mass rates are estimated on a sphere of radius Rs. Solid lines are
for Rs/R0 = 0.2, dotted lines for Rs/R0 = 0.4 whereas dashed lines are
for Rs/R0 = 0.6.

This indicates that because of the centrifugal barrier, the gas first
piles up in the inner region. Then the magnetic tower and the out-
flow described previously extract efficiently the mass at a rate
higher than the accretion mass rate. For the two larger values
of Rs, the ratio of ejection over accretion mass rate is smaller
by a factor of about 3. This is due to higher accretion rates in
the collapsing envelope than in the inner centrifugally supported
structure.

The behaviour for µ = 2 is very different. The ratio of ejected
over accreted mass rate varies between 0.1 and 0.6 and is there-
fore always smaller than 1. It increases with Rs. In that case, the
gas falls directly in the centre without piling up in a centrifu-
gally supported structure. The saturated ratios obtained for the
two smallest Rs are similar to typical values quoted in the litera-
ture.

The ratio of ejection over accretion angular momentum rates
have a similar behaviour than the ratio of ejection over accre-
tion mass rates. However, we note that for µ = 20, the former is
smaller than the latter by a factor 1 to 2 whereas for µ = 2, the
contrary is true (the ratio being as high as 3). These differences
are due to the fact that in case µ = 20, the transportation of the
angular momentum is weak since the magnetic tension is weak.
Therefore the angular momentum is not transferred efficiently
and is mostly advected with the gas. Since the gas which is ac-
creted comes from larger radius than the gas which is ejected,
the latter has on average a larger angular momentum than the
former. On the contrary, in case µ = 2, the gas is efficiently
braked near the equatorial plane whereas it is azimuthally
accelerated at higher altitude therefore carrying with it a higher
angular momentum.

Fig. 18. Ratio of ejection over accretion angular momentum rate as a
function of time. Upper panel is µ = 20 and lower panel µ = 2.
Accretion and ejection angular momentum rates are estimated on a
sphere of radius Rs. Solid lines are for Rs/R0 = 0.2, dotted lines for
Rs/R0 = 0.4 whereas dashed lines are for Rs/R0 = 0.6.

5. Comparison with observations

Here we qualitatively discuss comparisons between the models
presented in the previous sections and various observations. One
of the difficulties in carrying out detailed comparisons between
observations and models of the protostellar dense core is the
need for sources sufficiently constrained observationally.

5.1. The case of IRAM 04191

In this respect, the 1.5 solar mass, young class 0 source
IRAM 04191 (André et al. 1999; Belloche et al. 2002) located
in the Taurus molecular cloud, is a useful example. In this elon-
gated source, an outflow perpendicular to the major axis of the
source has been observed, suggesting that the rotation axis is
also perpendicular to the major axis. With these assumptions,
the rotation velocity has been measured. Moreover, the radial
velocities and the column density profiles are known as well
from radiative modeling of the line profiles. A dynamical age
of ≃2 × 104 years has been estimated from the characteristics of
the flow. Finally, no disk has been detected in this source, the
upper limit for the disk radius being around 15 AU.

Various attempts have been made to compare these pro-
files with hydrodynamical models, starting initially with a criti-
cal Bonnor-Ebert sphere in rotation (Belloche 2002; Hennebelle
et al. 2004b; Lesaffre et al. 2005). These models fail to repro-
duce IRAM 04191 for the following reasons. First, the infall
velocity (≃0.15 km s−1) is too high at r ≃ 2000 AU in the model
(0.2–0.3 km s−1). Second, the column density in the inner part
(r < 1000 AU) is too high in the model. In the model, the high
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column density in the inner region is due to the influence of ro-
tation (see Fig. 1) which provides a support for the infalling gas.
Self-consistently, the rotation curve cannot be reproduced under
simple assumptions on the initial angular momentum distribu-
tion. In particular, the rotation velocity of the hydrodynamical
model tends to be too high in the inner part. Another important
related disagreement is the absence of a large massive disk in
IRAM 04191 like the one produced in the hydrodynamical sim-
ulation.

Although no detailed comparison has been carried out, we
qualitatively compare with the magnetized models presented in
this paper. The first interesting aspect is the infall velocity which
is smaller in the outer part than in the hydrodynamical case be-
cause of magnetic support. Although in the models presented
here, it is still too large to reproduce the infall of IRAM 04191,
starting with near equilibrium configuration will help to reduce it
further. However, running specific models dedicated to this par-
ticular case is beyond the scope of this paper. The second aspect
is the rotation curve, which is much flatter in the µ = 2–5 cases
than in the hydrodynamical case. This is also in better agree-
ment with the rotation curve inferred for IRAM 04191. Finally,
the models with µ < 5 do not show the presence of a hun-
dred AU size disk, unlike the hydrodynamical model. It is in-
deed, extremely difficult to reconcile the absence of a disk and
the presence of rotation within the framework of hydrodynami-
cal models.

Another interesting aspect is the outflow which is ob-
served in IRAM 04191 (André et al. 1999). Its velocity is
about 5–10 km s−1. This is qualitatively in good agreement
with the outflows spontaneously launched in the MHD mod-
els. Quantitatively, however, this is 2 to 4 times larger than the
values obtained in this paper (the fastest outflow velocities are
around 3 km s−1). Nevertheless, as recalled previously, the speed
of the outflow is related to the rotation velocity achieved by the
fluid particles. Since the physics of the first Larson core and the
second collapse are not treated in this work, further contraction
of the gas is prevented and therefore the velocity of the outflow
is reduced. It seems therefore reasonable to assume that a bet-
ter treatment of the first Larson core will yield to faster outflows
(see Banerjee & Pudritz 2006; Machida et al. 2007).

5.2. Observations of class 0 sources with a disk

While disks are commonly observed during the late stage of star
formation, i.e. class I, class II or T Taury phase (e.g. Watson
et al. 2007), disks are more difficult to observe during the class 0
phase and therefore much less constrained (Mundy et al. 2000).
Nevertheless, various studies report class 0 protostars having
disks of masses between 1 and 10 percents of their envelope
masses (Looney et al. 2003; Jorgensen et al. 2007) giving a typ-
ical mass of about 0.1 solar mass.

Since the age of these sources is not well known and the
density and velocity profiles are not available, it appears difficult
to reach solid conclusions. This may nevertheless indicate that
in these sources, the magnetic field is not too strong, with typ-
ically µ > 5. Another possibility is that the structures observed
are not centrifugally supported disks but magnetized pseudo-
disks. In this case, µ could be smaller than 5.

In order to distinguish between centrifugally supported disks
and magnetized pseudo-disks, rotation velocity within the flat-
tened structure should be measured with sufficient accuracy to
determine whether it is sufficient to support it. Another impor-
tant difference is that while the centrifugally supported disk is

not collapsing, the magnetized pseudo-disk is infalling. Detailed
kinematic studies would certainly be extremely useful here.

6. Conclusion

Using RAMSES, we performed 3D simulations of a magnetised
collapsing dense core. We explored the effect of the initial mag-
netic field strength varying the value of the mass-to-flux over
critical mass-to-flux ratio, µ, from 1000 to 2. The cloud evolution
is significantly modified for values as large as µ = 20. This is
due to the strong amplification of the radial and azimuthal com-
ponents of the magnetic field induced by the differential motions
arising in the collapsing cloud.

We also developed semi-analytical models that predict some
of the core envelope properties and compared them with the sim-
ulation results showing reasonable agreements.

For µ = 20, we find that magnetic braking is negligible and
that consequently a centrifugally supported disk forms. A mag-
netic tower, generated by the twisting of the field lines, forms
and expands reducing the mass of the centrifugally supported
structures. A faster outflow is then triggered from the thermally
supported central core.

For µ smaller than 5, no centrifugally supported disk forms
for two reasons. First the collapse occurs primarily along the
field lines which means that less angular momentum is delivered
to the inner parts. Second, strong magnetic braking extracts the
angular momentum from the disk. The question as to whether a
disk will form at a later stage remains nevertheless open. In ad-
dition, an outflow is triggered from the thermally supported core
in that case. Detailed investigations have been performed in the
case µ = 2. They reveal that the outflow reaches a quasi-steady
state regime and features many characteristics of the magneto-
centrifugally driven outflow models studied analytically in the
literature (e.g. Blandford & Payne 1982; Pudritz et al. 2007).

In a companion paper, we study the fragmentation of the col-
lapsing dense core paying particular attention to the strength of
the magnetic field. The analysis developed in the present paper
is then used to interpret the numerical results obtained in the
context of fragmentation.
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Appendix A: An analytical model

for the expansion of the magnetic tower

with self-gravity

We present an analytical model to investigate the mechanism re-
sponsible for the expansion of the self-gravitating disk.

In the simulation, the problem appears to be axisymmetric
making it bidimentional. It is also evidently time dependent.
For the purpose of reducing the complexity, we consider a self-
gravitating layer which varies along the z-axis only, instead of
an axisymmetric structure. We therefore replace the azimuthal
fields Bθ and Vθ by the plane-parallel transverse fields B x(z) and
Vx(z). It is initially threaded by a vertical and uniform mag-
netic field, B0

z . The transverse velocity, Vx(z), initially generates
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a transverse magnetic field, Bx(z) which modifies the vertical
equilibrium. By doing so, we ignore the effect of the curvature
inherent to the axisymmetric structure.

For simplicity, we make the approximation that the layer is in
mechanical equilibrium and use Eq. (9) written previously. Let
σ = 2

∫
ρdz be the column density. With the Poisson equation,

we get

∂zψ = −2πGσ· (A.1)

Thus, defining

ρ̃ = ρ/ρ0 , σ̃ = σ/

√
2ρ0c2

s/πG , B̃x = Bx/B0, (A.2)

where B0 =
√

4πρ0c2
s , we get, since σ(0) = 0 and Bx(0) = 0,

ρ̃ + σ̃2 +
B̃x

2

2
= 1, (A.3)

where ρ0 is the density at z = 0.
In order to compute B x, we write the transverse momentum

and induction equations using the Lagrangian coordinates (Shu
1983). With t̃ = t/t0 where t0 = 1/

√
2πρ0G, and z̃ = z/z0 where

z0 = σ0/2ρ0 we have

dt̃Ṽx = B̃0
z∂σ̃B̃x, (A.4)

and

dt̃


B̃x

ρ̃

 = B̃0
z∂σ̃Ṽx. (A.5)

This equation shows that, in the model, the growth of the toroidal
field is triggered only by the vertical gradient of V x, the trans-
verse velocity. Note however that this equation does not include
all the physically relevant terms in the problem. In particular, in
the simulation the growth of the toroidal field is largely due to
the twisting of the radial component of the magnetic field by the
differential rotation which cannot be included in a plane parallel
geometry. We note however that Fig. 11 clearly shows vertical
gradients of Vθ (z > 10−4 pc at time 1.116 and 1.125 τff).

Equations (A.3)–(A.5) are to be solved. Despite the simpli-
fications, i.e. dependence on z only and mechanical equilibrium
in the vertical direction, they are still complex two variable non-
linear equations. Since the disk is symmetric with respect to the
equatorial plane, the boundary conditions are B x(0) = 0 and
∂σVx(0) = 0.

In order to illustrate the origin of the expansion due to the
growth of the toroidal magnetic component, we consider as ini-
tial conditions a self-gravitating layer with a vanishing B x at time
t̃ = 0. In that case the solution is simply ρ̃ = 1 − σ̃2. In term of
the z̃ variable, this writes ρ̃(̃z) = 1/ch(2̃z)2 (Spitzer 1942; Ledoux
1951; Curry 2000).

Since obtaining exact solutions of Eqs. (A.3)–(A.5) seems
to be difficult, we seek approximated solutions of the equations
written above. To this purpose, we replace Eq. (A.5) by

dt̃ B̃x =
(
1 − σ̃2

)
∂σ̃Ṽx, (A.6)

that is to say, we assume that the density in Eq. (A.5) is the den-
sity of the unmagnetised solution. Strictly speaking, this approx-
imation holds as long as the density has not been modified sig-
nificantly by the magnetic field. With this assumption, the time
and space variables separate, making it easy to find solutions as

Ṽx (̃t, σ̃) = Ṽ0 cos(
√

6B0
z t̃) × (1 − 3σ̃2), (A.7)

Fig. A.1. Density and transverse component of the magnetic field as
given by Eqs. (A.8) and (A.9) for four times as a function of z.

B̃x(̃t, σ̃) = −
√

6Ṽ0 sin(
√

6B̃0
z t̃) × (σ̃ − σ̃3). (A.8)

Using Eq. (A.3), we obtain the density as a function of σ̃ and t̃

ρ̃ = 1 − σ̃2 − 3Ṽ0
2

sin2(
√

6B̃0
z t̃)(σ̃ − σ̃3)2. (A.9)

Using the relation dσ = 2ρdz, it is possible to obtain z as a
function of σ and ρ.

Figure A.1 shows ρ̃ and B̃x as given by Eqs. (A.8) and (A.9)
at four times for Ṽ0 = 2 and B̃0

z = 1. The behaviour is very
similar to the evolution displayed in Fig. 11. As B̃x grows, the
layer expands because of the magnetic pressure.
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