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Magnetic-propelled carriers comprising magnetic Fe3O4–chitosan nanoparticles were immobilized with L-

asparaginase (L-ASNase). The enzyme displayed enhanced catalytic activity in a weak magnetic field, and

thermal and pH stabilities. The conjugated L-ASNase presented higher thermostability and wider range of

pH stability in comparison with those of free L-ASNase. Moreover, the reusability of conjugated L-ASNase

significantly improved after immobilization and it retained 60.5% of its initial activity after undergoing 16

cycles. The conjugated L-ASNase maintained more than 50% and 48% initial activity after 4 weeks of

storage at 4 �C and room temperature, respectively. Furthermore, we reveal that the activity of

conjugated L-ASNase onto magnetic Fe3O4–chitosan particles increased by about 3-fold in the weak

magnetic field at certain frequencies and flux density compared with that of free L-ASNase. Considering

these excellent attributes, the magnetic-propelled mechanism in the transporting and activation of L-

ASNase can be used by enhancing the catalytic activity, stability, and efficiency in vital implications for

medicinal biotechnology.

1. Introduction

L-Asparagine (L-Asn) is an essential amino acid for the growth of

tumor cells. Cancer cells must absorb this amino acid from the

bloodstream in order to synthesize protein and grow. L-ASNase

(asparagine amidohydrolase, EC 3.5.1.1) catalyzes the hydro-

lysis of L-Asn to aspartic acid and ammonia.1 At the end of this

enzymatic hydrolysis, the cancer cells grow slowly and they die.

L-ASNase is one of the most widely used chemotherapeutic

agent in the treatment of many cancer types.2,3 It is also an

important enzyme in the food industry since it reduces the

formation of acrylamide, a carcinogenic compound. Since this

enzyme is commonly used in two important industries, it is

essential to enhance its half-life, reusability and catalytic

activity. To date, to the best of our knowledge, a few studies have

been reported to evaluate the catalytic efficiency of enzymes

aer exposure to magnetic elds. For instance, Mizuki et al.

reported the activity of immobilized a-amylase, lipase and chi-

tinase activity increases in a rotational magnetic eld and rea-

ches maximum at a certain frequency.4 According to Prando

et al.,5 since the increase in activity due to magnetic treatment

may be related to an increase in the average particle size and

a reduction of 25% in a-helix content, the substrate facilitates

access to the active site of lysozyme. Based on these results, the

activities of some enzymes can be efficiently improved owing to

exposure to magnetic eld, which may make a great contribu-

tion to nanoscience and biotechnology.

In recent years, magnetic nanoparticles have received

considerable interest and attention due to their versatile char-

acteristics such as high surface area, superparamagnetism,

stability, low toxicity, small and regular shape, inexpensiveness,

and ease of synthesis.6,7 Therefore, they have been used for

a broad range of applications including drug delivery,8 biosen-

sors,9 catalysis,10 and magnetic resonance imaging.11 Among

them, enzyme immobilization is probably one of the most

widely used applications. In particular, the separation of

magnetic particles with an external magnet contributes to

enhanced reusability of enzyme. However, magnetic nano-

particles tend to aggregate in aqueous medium due to the

strong magnetic dipole–dipole attractions between particles. In

addition, there are not many functional reactive groups, except

a small amount of hydroxyl groups located on its surface, which

will react with other molecules such as enzymes and proteins.12

Perhaps, these drawbacks may hinder the applications of

enzymes in industrial areas.13,14 To overcome these drawbacks,

modication of Fe3O4 nanoparticles is an efficient strategy

using different molecules such as precious metals,15 carbon,16

SiO2,
17 MCM-41,18 and polymers.19 At this point, biocompatible

and biodegradable polymers are generally preferred because
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they diminish unwanted toxicity of nanoparticles and offer

active groups.14 Chitosan, a natural polymer derived from

chitin, is found in the membrane of many organisms including

lobsters, crabs, and shrimp. It is widely used as a biomaterial

due to its features such as inexpensiveness, stability, biocom-

patibility, hydrophilicity, biodegradability, exibility, versatility,

and environment friendliness.20–22 Additionally, the amino

groups in chitosan are very useful for the covalent attachment of

enzyme onto the surface of chitosan.14 Therefore, chitosan can

be considered as a promising support because of the afore-

mentioned properties. Thus far, there are many reports about

immobilization of enzyme on Fe3O4–chitosan particles.23–27

The main novelty of this study is that for the rst time, we

determined the effect of magnetic excitation caused by a weak

magnetic eld on the catalytic activity of the conjugated L-

ASNase. Therefore, L-ASNAse activity improved with magnetic-

propelled mechanism in a weak magnetic eld, and may be

used with improved efficiency in treatment of leukemia. In

addition, for the rst time, L-ASNase was immobilized on

Fe3O4–chitosan particles via covalent attachment and the

optimum parameters of the conjugated enzyme were

investigated.

For this purpose, magnetic Fe3O4 nanoparticles were

synthesized via co-precipitation technique. The Fe3O4 core was

coated with chitosan to obtain core–shell structure magnetic

nanoparticles. The thermal behavior, morphology and chemical

composition of Fe3O4–chitosan magnetic nanoparticles were

characterized by FTIR, TGA, DTA, DSC, SEM and EDX analysis.

In addition, the hydrodynamic particle size, surface charge,

structure and magnetic property of Fe3O4–chitosan nano-

particles were characterized by DLS, Zetasizer Nano ZS, XRD

and VSM, respectively. L-ASNase was covalently immobilized

onto the Fe3O4–chitosan magnetic particles using glutaralde-

hyde as an activating reagent (Fig. 1). The characterization of

conjugated L-ASNase was performed through several technics

including FTIR, SEM and XRD. In addition, the optimum pH

and temperature, pH and thermal stability, kinetic parameters,

reusability and storage capability of the conjugated enzyme

were investigated and were compared with those of free enzyme.

Moreover, we examined and discussed the activity of conjugated

L-ASNase exposed to an external weak magnetic eld using

different frequency or ux density.

2. Experimental
2.1 Materials

Iron(II) chloride tetrahydrate (FeCl2$4H2O) and iron(III) chloride

hexahydrate (FeCl3$6H2O) were purchased from Merck (Darm-

stadt, Germany). L-Asn, chitosan (medium molecular weight,

deacetylation: 75-85%), acetic acid, glutaraldehyde (GDA, 25%,

v/v), sodium hydroxide (NaOH), and ammonium hydroxide

(NH4OH, 26 wt%) were supplied by Sigma-Aldrich (St. Louis,

MO). L-ASNase from Escherichia coli was purchased from

ProSpec-Tany TechnoGene Ltd. Trichloroacetic acid (TCA) was

obtained from Riedel de Haen (Deelze, Germany). Unless

otherwise noted, all reagents and chemicals were of analytical

or biological grade. Ultra-pure water (Milli Q, Millipore) was

used to prepare all aqueous solutions used in this study.

Fig. 1 Immobilization of L-ASNase onto the magnetic Fe3O4–chitosan core–shell particles.
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2.2 Preparation of Fe3O4 and Fe3O4–chitosan carriers

Magnetic Fe3O4 nanoparticles were synthesized by a co-

precipitation method using ferric and ferrous salts.24 FeCl2-

$4H2O (1.99 g) and FeCl3$6H2O (5.4 g) were dissolved in 50 mL

of deionized water. The pH of this mixture was adjusted by

adding ammonia solution (26 wt%). The reaction was allowed to

continue for 2 h at 80 �C under the protection of nitrogen. The

obtained Fe3O4 nanoparticles were separated by using an

external magnet and washed with distilled water to remove

excess ammonia. Finally, the precipitate was dried at 60 �C for

6 h. In order to prepare Fe3O4–chitosan carrier, chitosan (0.3 g)

was completely dissolved in 2% (v/v) acetic acid solution. Then,

dry Fe3O4 nanoparticles (0.15 g) were added to chitosan solu-

tion. The solution was dispersed homogeneously by ultra-

sonication for 20 min. Subsequently, 50 mL of 1 M NaOH

solution was added to the mixture and the Fe3O4–chitosan

particles were obtained. The obtained particles were washed

with deionized water until neutral pH was obtained. Finally, the

particles were dried again in the vacuum oven at 50 �C for 12 h

and stored at 4 �C for immobilization.

2.3 Characterization of magnetic Fe3O4–chitosan carriers

The structural characterization of magnetic Fe3O4–chitosan

particles was performed by FTIR spectroscopy (Perkin Elmer).

Thermogravimetric analysis (TGA) and differential thermal

analysis (DTA) studies were performed using a Shimadzu

Thermal Analyzer at room temperature to 700 �C a rate of

10 �C min�1 in air atmosphere. Differential Scanning Calo-

rimetry (DSC) was performed on a Shimadzu DSC-60 at a heat-

ing rate of 20 �C min�1 from 0 to 450 �C. Crystalline phases of

the samples were veried using powder X-ray diffraction (XRD,

Rigaku RadB X-ray diffractometer). Morphology of the as-

synthesized nanomaterial was determined using by scanning

electron microscope (SEM, LEO Evo-40 VPX). Magnetization of

the as-prepared nanoparticles was measured on a VSM (PPMS)

at room temperature. EDX analysis was performed using

a Ronteck Xash detector analyzer equipped with Leo-Evo

40xVP. The average hydrodynamic particle size was measured

using dynamic light scattering (DLS). Zeta potential

measurements were performed using Malvern Zetasizer Nano

ZS. L-ASNase activity was observed by an ELISA plate reader

(BioTek) at 480 nm.

2.4 Immobilization of L-ASNase onto Fe3O4–chitosan

carriers

L-ASNase was covalently immobilized onto Fe3O4–chitosan

carriers by the following procedure. First, 1.0 g support was

reacted with 30 mL of 2.5% (v/v) GDA solution with stirring at

25 �C for 2 h to activate the support by offering aldehyde

groups.24 Then, the modied support was rinsed with deionized

water three times to remove excess unreacted GDA. L-ASNase

was dissolved in Tris–HCl buffer and mixed with an appropriate

amount of Fe3O4–chitosan particles. The mixture was shaken in

Eppendorf tube for immobilization by chemical bonding at 4 �C

for 24 h. Subsequently, the particles were collected by an

external magnet and then washed with 2 times Tris–HCl buffer

to remove unconjugated L-ASNase. The solid particles were

dried at room temperature and stored in the refrigerator at 4 �C

until further use. In addition, the supernatant and washing

solutions were stored at 4 �C to calculate immobilization

Fig. 2 Schematic of magnetic field experiments(VSM).

Fig. 3 FTIR spectra of (a) Fe3O4, (b) chitosan, (c) Fe3O4–chitosan
particles, (d) Fe3O4–chitosan–GDA, and (e) Fe3O4–chitosan–L-
ASNase.
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efficiency (IE). The protein concentration of the reaction

mixture was measured by the Bradford method using bovine

serum albumin (BSA) as standard.28 The following formula was

used to determine immobilization efficiency:

IE ¼

�

ðA0 � B1 � B2Þ

A0

�

� 100 (1)

where A0 is the total protein content of the free enzyme prepa-

ration and B1 and B2 are the protein content of supernatant and

wash solution aer immobilization, respectively.

2.5 Assay of L-ASNase activity

The assay of free and conjugated enzyme activity was deter-

mined by the Nesslerization method, as previously reported.29

The method is based on colorimetric measurement of the

amount of ammonia released during the hydrolysis of L-Asn.

The reaction mixture contains 1.0 mL of 0.01 M L-Asn (prepared

in 0.05 M Tris–HCl buffer at pH 8.6) and free (20 mL) or conju-

gated enzyme (5 mg). The mixture was incubated at 37 �C for 15

minutes. The enzymatic reaction was terminated by adding

0.1 mL of 1.5 M TCA. The conjugated enzyme was removed by

centrifugation at 5000 rpm for 5 min. The supernatant (100 mL)

was added into the well containing Nessler's reagent (100 mL).

The well-plate was incubated at room temperature for 10 min.

The observed yellow color was read using an ELISA microplate

reader (Biotek, EON) at 480 nm. One unit (U) of L-ASNase is

dened as the amount of enzyme that catalyzed the formation

of 1 mmol of ammonia from L-Asn per minute under the stan-

dard assay conditions.30 All the experiments were repeated three

or more times. The highest L-ASNase activity was considered

100% while calculating the relative activities.

2.6 Characterization of the conjugated L-ASNase

2.6.1 Effect of pH and temperature. The effect of pH on the

activities of free and conjugated L-ASNase was investigated by

performing the enzyme assay in the pH range of 4–10 at 37 �C.

The buffers used were citrate (0.05 M, pH 4–6), phosphate

(0.05 M, pH 7–8), and Tris–HCl (0.05 M, pH, 8.5–10).

The inuence of the temperature on the activities of free and

conjugated L-ASNase was studied from 25 to 70 �C with interval

of 5 �C at pH 8.0 and 8.5.

2.6.2 pH and thermal stability. In order to evaluate the pH

stability of the free and conjugated L-ASNase, the relevant

enzymes were incubated at acidic (pH: 5.0) and alkaline (pH:

9.0) pH values, and the activity measurements were performed

for 180 min. Aer every 30 min, the residual activity of free and

conjugated L-ASNase was measured. The relative activity was

calculated from the ratio of residual activity to the initial activity

of each sample.

For thermal stability experiments, free and conjugated

enzymes were incubated in a water bath at 55 �C for different

durations ranging from 30 to 180 min. Aer incubation, the

residual activities were determined using the abovementioned

assay.

2.6.3 Kinetic experiments. The kinetic parameters (Km and

Vmax) of the free and conjugated L-ASNase were calculated from

the Lineweaver–Burk plot at the substrate concentrations

ranging from 0.01 to 50 mM.

2.6.4 Reusability and storage stability. To investigate the

reusability, the conjugated L-ASNase was reused 16 times at

optimal assay conditions. Aer each activity assay, the support

was removed from the reaction system by using an external

magnet and washed thoroughly with deionized water. Then,

fresh substrate solution was added to the conjugated enzyme

and the residual activity was calculated according to the stan-

dard L-ASNase assay.

Fig. 4 TGA curves of (a) Fe3O4, (b) chitosan, and (c) Fe3O4–chitosan particles.
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Storage stability was measured by determining the activity of

free and conjugated L-ASNase every two days for a period of 30

days at 4 �C and 25 �C. The activity at the rst day was taken to

be 100%.

2.6.5 Magnetic-propelled experiments. To determine the

effect of magnetic eld on enzyme activity, the system shown in

Fig. 2 was designed and used. The as-synthesized magnetic

Fe3O4–chitosan–L-ASNase particles (5 mg) were transferred to

test tubes. The test tubes were placed at the center of the

magnetic eld at 1, 3, 5, 10 and 30 Hz, respectively. The ux

density of the magnetic eld was set at 10 mT. Then, 1000 mL of

substrate solution was immediately added and the enzymatic

reaction was started at 25 �C for 10 minutes. The reaction was

terminated by adding 100 mL of 1.5 M TCA, and activity

measurements were assayed according to the description in the

section “Assay of L-ASNase”. Control assays were performed

keeping the free enzyme at same conditions in absence of

magnetic eld.

Fig. 5 DTA curves of (a) Fe3O4, (b) chitosan, and (c) Fe3O4–chitosan particles.

Fig. 6 DSC curves of (a) Fe3O4, (b) chitosan, and (c) Fe3O4–chitosan particles.
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In addition, the inuence of magnetic ux density on

enzyme activity was examined at different ux densities (10, 20,

30, 40, 50 and 100 mT) with constant frequency (3 Hz). For this

experiment, we repeated the above enzyme assay.

3. Result and discussion
3.1 Characterization of magnetic Fe3O4–chitosan carriers

In order to characterize the functional groups on the surface of

the samples, FTIR analyses were performed, as shown in Fig. 3.

The characteristic peak of pristine Fe3O4, ascribed to the

stretching vibration of Fe–O bonds, appeared at 560 cm�1

(Fig. 3a).31 The other peaks at around 3400 cm�1 and 1630 cm�1

correspond to the adsorbed water in the sample.32 For chitosan

(Fig. 3b), the FTIR spectra shows bands arising from stretching

of –NH and –OH groups (3400 cm�1), C–H (2871 and 2929 cm�1)

stretching vibrations, and from amide II bending (1569 cm�1).33

In addition, the bands at 1060, 1368 and 1400 cm�1 were

assigned to the stretching vibrations of –C–O–C, –C–O and

–COO groups, respectively.34–36 As expected, the FTIR spectrum

of Fe3O4–chitosan showed characteristic bands of both Fe3O4

and chitosan. However, in the spectrum of Fe3O4–chitosan

particles (Fig. 3c), the peak of Fe–O vibration at 560 cm�1

shied to 440 cm�1 due to the interaction between Fe3O4 and

chitosan compared with that observed in the spectrum of

pristine Fe3O4.
37,38 These results indicated that the Fe3O4

magnetic nanoparticles were coated by the chitosan. For Fe3O4–

chitosan–GDA, the new absorption peaks at 1645 cm�1 (C]N,

imine bond) and 1587 cm�1 (C]C bond) conrmed that cross-

linking occurred between chitosan and GDA (Fig. 3d). Similar

absorption peaks were observed in some reports of chitosan

cross-linked with GDA.39,40 The FTIR spectrum of Fe3O4–chito-

san–L-ASNase is presented in Fig. 3e. In this spectrum, intense

OH stretching band in the range of 3400–3600 cm�1 is attrib-

uted to the presence of enzyme.41 In addition, the increase in

the intensity of two peaks at 1654 cm�1 (amide I bending) and

1553 cm�1 (amide II bending) is further evidence of the

successful immobilization of L-ASNase.42

TGA analysis of pure Fe3O4, chitosan and magnetic Fe3O4–

chitosan carriers were performed between 0 �C and 700 �C for

quantitative analysis. These thermograms are given in Fig. 4. In

the thermogram of pure Fe3O4, weight loss is not observed up to

700 �C. Three weight losses are observed in the TGA thermo-

gram of pure chitosan. The rst thermal degradation of chito-

san structure resulted from the loss of moisture from 60 to

110 �C. The second thermal decomposition was observed

between 220 and 310 �C due to the decomposition of polymer

with low molecular weight. The third thermal decomposition

presented 40% weight loss between 310 �C and 590 �C. This

weight loss stems from the decomposition of cyclic moiety

(saccharide rings). The magnetic Fe3O4–chitosan particles show

a similar thermal decomposition prole to that of chitosan i.e.,

there are three different weight losses in the TGA thermogram

of the magnetic Fe3O4–chitosan carriers. These weight losses

are due to the loss of physiosorbed water between 50–110 �C,

the degradation of the chitosan polymeric structure between

200 �C and 320 �C and the saccharide ring breaking peak 320 �C

and 550 �C. However, the weight loss of Fe3O4–chitosan is very

different from that of chitosan. Fe3O4 and chitosan were con-

nected together through the chelation between Fe3+ and chito-

san in the course of the reaction. The conformational changes

of chitosan and the additional bridging between Fe3O4 and

chitosan enhanced the thermal stability of chitosan in Fe3O4–

chitosan. Therefore, the nal decomposition temperature of

Fe3O4–chitosan was higher than that for pure chitosan. Similar

Fig. 7 XRD patterns of the Fe3O4, Fe3O4–chitosan particles, and
Fe3O4–chitosan–L-ASNase.

Fig. 8 (a) Hydrodynamic particle size distribution and (b) zeta potential values of Fe3O4 nanoparticles and Fe3O4–chitosan particles.
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TGA thermograms have also been reported previously.43,44 The

TGA thermogram results of Fe3O4–chitosan structure indicate

that Fe3O4 nanoparticles are successfully functionalized with

chitosan groups. In addition, these thermal analysis results

were conrmed by DTA and DSC techniques.

DTA thermograms of Fe3O4, chitosan and magnetic Fe3O4–

chitosan carriers are shown in Fig. 5; the thermogram of the

magnetic Fe3O4–chitosan carriers shows three exothermic

peaks. The rst exothermic peak at about 100 �C is due to loss of

water and second peak at about 320 �C is related to the

decomposition of polymeric structure of chitosan structure. The

last exothermic peak at about 400 �C is due to the degradation

of saccharide ring groups. Moreover, DSC thermograms of the

Fe3O4, chitosan and magnetic Fe3O4–chitosan carriers are

shown in Fig. 6. No signicant peaks were detected in the DSC

thermogram of Fe3O4 nanoparticles. However, the Tg was

observed at 30 �C in the DSC thermogram of chitosan.45 In

addition, this DSC thermogram shows that the decomposition

Fig. 9 SEM analysis of magnetic (a and c) Fe3O4, (b and d) Fe3O4–chitosan particles and (e and f) Fe3O4–chitosan–L-ASNase at different
magnifications.
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of chitosan started at 220 �C.46,47 In the DSC thermogram of

Fe3O4–chitosan, the exothermic peaks between 220 �C and

380 �C corresponds to the oxidative decomposition of organic

group onto the Fe3O4 nanoparticle surface.

To verify the presence of crystalline Fe3O4 and Fe3O4–chito-

san particles, the structure of the magnetic nanoparticles was

characterized by XRD and the diffractogram is shown in Fig. 7.

In both samples, six characteristic peaks were observed ((220),

(311), (400), (422), (511), and (440)).48 These peaks are consistent

with the database in JCPDS le (PDF No. 65-3107) and reveal

that the resultant nanoparticles are pure Fe3O4 with a spinel

structure.25 The weaker diffraction lines of magnetic Fe3O4–

chitosan particles conrm that the Fe3O4 nanoparticles were

coated by amorphous chitosan polymer.49 In addition, chitosan

did not result in phase change of Fe3O4 nanoparticles. The

conjugation of L-ASNase leads to a decrease in the intensity of

Fig. 10 EDX result of (a) Fe3O4, and (b) Fe3O4–chitosan particles.
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all the characteristic peaks, which may be due to the interaction

of the Fe3O4–chitosan particles with enzyme. XRD measure-

ments further conrmed the abovementioned FTIR results.

The average hydrodynamic particle sizes of Fe3O4 and Fe3O4–

chitosan are 100 nm and >200 nm, respectively (Fig. 8a). The

increase in the hydrodynamic size of functionalized Fe3O4

nanoparticles is due to the interaction between amino groups of

chitosan with hydroxyl groups onto the surface of the Fe3O4. It

has also been reported in previous studies that the particle size

increases aer nanoparticles are coated with chitosan.35,36,50

It is well known that zeta potential measurements might

provide some additional insights into the magnitude of the

repulsion or attraction between particles.51 Therefore, the

successful coating of chitosan was conrmed by the zeta

potential analysis of the resulting composite. The zeta potential

results are shown in Fig. 8b. The zeta potential of unmodied

magnetic Fe3O4 is 5.74� 0.22mV. However, as shown in Fig. 8b,

aer coating of chitosan molecule, the zeta potential value of

the Fe3O4–chitosan composite increased to 26.8 � 0.87 mV.

Chitosan can adsorb onto Fe3O4 nanoparticles easily by elec-

trostatic attraction, and the amino groups generate positive

charge on the Fe3O4 nanoparticles surface, which is similar to

that reported previously.52,53

The surface morphology of Fe3O4, Fe3O4–chitosan particles

and Fe3O4–chitosan–L-ASNase were conrmed by SEM (Fig. 9).

The Fe3O4 nanoparticles were rough, nearly spherical in shape

and aggregated (Fig. 9a–c). Aer the coating with chitosan, the

surface morphology of Fe3O4 nanoparticles evidently changed.

In Fig. 9(b–d), the SEM images conrm the coating process of

Fe3O4 with increasing of the particles size. The results of this

experiment were similar to those in previously published

papers.54 Fig. 9(e and f) represents the image of Fe3O4–chitosan

particles aer bioconjugation. The SEM images revealed that

there are differences in the surface micromorphology of Fe3O4–

chitosan particles. As expected, the size of particles increased

aer the immobilization procedure.

The surface composition of unmodied Fe3O4, and Fe3O4–

chitosan particles was investigated by EDX, as shown in Fig. 10.

The EDX map of Fe3O4 nanoparticles is mainly composed of

only iron (Fe) and oxygen (O) elements (Fig. 10a). In addition, no

peaks related to other elements were detected, which revealed

the high purity of the sample. However, the new signals corre-

sponding to carbon (C) and nitrogen (N) appeared for Fe3O4–

chitosan (Fig. 10b). Therefore, it can be assumed that chitosan

is coated onto the surface of Fe3O4 nanoparticles.

The magnetic properties of the Fe3O4 and Fe3O4–chitosan

particles were investigated by VSM analysis at room tempera-

ture. As shown in Fig. 11, there is no hysteresis in the magne-

tization for the two nanoparticles. The saturation

magnetization of the bare Fe3O4 nanoparticles was about 67

emu g�1, while that for Fe3O4–chitosan particles was about 37

emu g�1 in this experiment. The existence of chitosan on the

surface of Fe3O4 nanoparticles gave rise to the decrease in the

uniformity due to quenching of surface moments, resulting in

the reduction of magnetic moment in the nanoparticles.55 A

similar decrease in saturation magnetization values were re-

ported by other researchers. In addition, neither coercivity nor

remanence was observed, implying that the nanoparticles are

almost superparamagnetic. The inset of Fig. 11 shows the

photographs of an aqueous solution of Fe3O4–chitosan particles

in the absence of magnetic eld and in the presence of exter-

nally applied magnetic eld.

3.2 Optimization of conditions on the conjugated L-ASNase

The efficiency of L-ASNase immobilized on Fe3O4–chitosan was

calculated as 73.2%. This high immobilization efficiency

revealed that Fe3O4–chitosan particles can be a prominent

carrier matrix for immobilization of L-ASNase. Moreover, the

specic activity of free L-ASNase was 289 � 8.4 U mg�1 protein,

while the specic activity of conjugated L-ASNase was 179 � 4.6

U mg�1 protein. This decrease in the specic activity aer

immobilization may be due to diffusion limitation. Addition-

ally, immobilization of the enzyme by covalent binding would

lead to a decrease in the exibility of the enzyme molecule,

which is commonly reected by a decrease in catalytic activity.56

3.2.1 Effect of pH and temperature. The effect of pH on L-

ASNase immobilization was studied between pH values of 4.0

and 10.0. As depicted in Fig. 12a, the maximum enzyme activity

of free L-ASNase is observed at pH 8.0. However, the conjugated

L-ASNase displayed maximum enzyme activity at pH 8.5.

Moreover, conjugated enzyme exhibited better pH tolerance

than the free enzyme in acidic or alkaline medium. For

instance, the residual activities at pH 4.0 and 10.0 were 43.3%

and 76.14% for conjugated enzyme, respectively, which were

higher than that of free L-ASNase (12.3% and 40.6%, respec-

tively) at the same pH values. In short, the conjugated L-ASNase

demonstrated good adaptability to acidic or alkaline environ-

ment owing to the Fe3O4–chitosan carrier surrounding it.

The effect of temperature on the enzyme activity is shown in

Fig. 12b. While the optimum temperature for free enzyme was

45 �C, the conjugated enzyme showed maximum activity at

60 �C. The activity of the free enzyme decreased more sharply

than that of the conjugated enzyme at higher temperature.

Although the free enzyme was readily inactivated at 60 �C, the

conjugated L-ASNase maintains more than 60% of the initial

Fig. 11 VSM measurements of the obtained Fe3O4 and Fe3O4–chi-
tosan particles. The photographic image of Fe3O4–chitosan particles
(a) without magnet and (b) with magnet.
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activity even at 70 �C. This occurs probably because the

immobilization of L-ASNase on the support limited the confor-

mational mobility of the enzyme molecules at high tempera-

ture, preventing it from inactivation.57 Similar results of

improved pH and temperature adaptability could be observed

in other immobilization studies of L-ASNase.58,59

3.2.2 pH and thermal stability. The pH stability of free and

conjugated L-ASNase was investigated at acidic (5.0) and alka-

line (9.0) pH values for 180 min with 30 min intervals. As shown

in Fig. 13a, the conjugated L-ASNase could retain a high degree

of activity (more than 62%) aer 180 min incubation at pH 5.0.

Furthermore, it still displayed promising enzymatic activity of

about 83% aer 180 min incubation at pH 9.0. However, free L-

ASNase exhibited 53.2% and 73.8% its initial activity aer

180 min incubation at pH 5.0 and pH 9.0, respectively. These

results revealed that L-ASNase exhibits high activity at alkali

medium. The conjugated L-ASNase possessed remarkably high

stability towards alkali pH, which was benecial for improving

the reaction efficiency.

Thermal stability of the conjugated enzyme is one of the

most important criteria with respect to applications. Fig. 13b

plots residual activity for the free and conjugated L-ASNase

during 180 min test at 55 �C. The relative activity of conjugated

L-ASNase remained higher than that of free L-ASNase at each

time interval. The conjugated L-ASNase still retained 84% of its

initial activity aer 120 min incubation, whereas free L-ASNase

retained 64% activity at the same conditions. When the incu-

bation time is 180min, conjugated enzyme holds approximately

54% of initial activity, while free enzyme lost almost all of its

activity. Thus, the thermal stability of L-ASNase signicantly

improved aer conjugation. Considering the results described

above, the enzymatic activity of the conjugated L-ASNase was

improved signicantly, and it was more stable than the free L-

ASNase, particularly under harsh conditions, as described

above.

3.2.3 Kinetic studies. In the present study, the kinetic

parameters were measured by using Lineweaver–Burk equation

for free and conjugated L-ASNase and reported in Table 1. The

Km value gives an idea about the affinity of an enzyme to its

substrate; a decrease in Km indicates the increase in affinity and

Fig. 13 (a) pH and (b) thermal stability of the free and conjugated enzyme at different time intervals (30–180 min).

Fig. 12 Relative activity of free and conjugated L-ASNase: (a) at
different pH values and (b) at different temperature.

Table 1 Kinetic parameters of the free and conjugated L-ASNase

Km (mM) Vmax (U mg protein�1)

Free L-ASNase 0.65 � 0.078 578.3 � 38.0

Conjugated L-ASNase 0.14 � 0.007 284.7 � 12.5
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consequently the enzyme activity.60 The calculated Km values of

free and conjugated L-ASNase were 0.65 and 0.14 for L-Asn,

respectively. The observed decrease in Km aer immobilization

implies that the affinity of the conjugate enzyme to the

substrate increased 4.64-fold compared with that of the free

enzyme. The values of Vmax for free and conjugated L-ASNase

were found to be 578.3 and 284.7 U mg�1 protein, respectively.

The cause of the decline in Vmax may be the restricted diffusion

of the substrate and uniform orientation of the enzyme.58,61

3.2.4 Reusability and storage stability. To the best of our

knowledge, while the free enzymes cannot be easily removed

from the reaction medium without being denatured, immobi-

lized enzymes can be easily separated and used as repeatedly.

Therefore, the reusability of the immobilized enzyme is a very

important advantage in bio-based applications and plays a key

role in its economic signicance.57 In this study, the conjugated

enzyme is highly reusable since the magnetic nanoparticles are

easily removed from the reaction medium via an external

magnet. The reusability of the conjugated L-ASNase was evalu-

ated through repetitive experiments. As shown in Fig. 14a, the

conjugated enzyme retained 100% of its original enzymatic

activity aer rst 5 cycles and it maintained 60.5% of its initial

activity even aer 16 consecutive cycles of reuse. This high

reusability of conjugated enzyme indicated that the immobili-

zation method based on functionalized magnetic nanoparticles

is successful and will guide future applications.

Similar to reusability, long-time storage of L-ASNase is also

a signicant parameter to reduce the cost of the enzyme in the

industrial applications since free enzyme denatures aer

a certain period of time. To test the long-term storage stability of

enzymes, both the free and conjugated L-ASNase were preserved

at 4 �C and room temperature for 4 weeks. The residual activi-

ties were measured as described in the assay section. As

exhibited in Fig. 14b, the storage stability of conjugated L-

ASNase was much higher than that of free L-ASNase at 4 �C and

r.t. It could be observed that free L-ASNase retained 39.2% of the

initial activity aer 4 weeks, while the conjugated L-ASNase still

maintained more than half (53.3%) of the initial activity aer

the same period. Moreover, it was found that the conjugated L-

ASNase retained 48.4% of its initial activity at r.t. However, the

free enzyme only retained 16% of the initial activity aer 4

weeks at the same storage condition. These outcomes illus-

trated that the storage stability of L-ASNase fairly improved aer

immobilization with Fe3O4–chitosan magnetic particles due to

increased stabilization of its active conformation by formation

of a covalent bond between Fe3O4–chitosan and L-ASNase

molecule.

3.2.5 The effect of magnetic-propelled on conjugated L-

ASNase. The effect of frequency on conjugated enzyme's activity

is shown in Fig. 15a. Results showed that the activity of conju-

gated L-ASNase increased with the increase in the frequency of

the applied magnetic eld. At 3 Hz, the activity of conjugated L-

ASNase reached maximum (175%) when compared with that

obtained in control experiments without magnetic eld. More-

over, application of the magnetic eld at high magnetic ux

density (30 mT) resulted in an increase of more than 300% in

the enzymatic activity of L-ASNase when compared with that if

Fig. 14 (a) Profile of reusability test for conjugated enzyme and (b)
storage stability of free and conjugated L-ASNase on Fe3O4–chitosan
at 4 �C and r.t. in dried state.

Fig. 15 The effect of frequency at 10 mT (a) and (b) magnetic flux density at 3 Hz on the enzymes activity conjugated on magnetic particles.
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the control sample that was not exposed to the magnetic eld

(Fig. 15b). The activity of the free L-ASNase was also determined

under the same conditions, but the results are not shown

because there were no any changes observed.

It has been reported that a relative increase in the interaction

between enzymes and substrate molecules is associated with an

increase in activity. In our study, we think that there are two

important reasons for the increase in enzyme activity at certain

frequency and ux density in the weak magnetic eld. First is

the effective prevention of the aggregation of L-ASNase-

immobilized particles during the reaction with weak magnetic

eld. Second, magnetic-propelled enzymes more likely show

enzyme–substrate interaction. We also believe that the enzymes

are more stable in the covalent modication on the magnetic

particle during these processes and this promotes the increase

in activity of the immobilized L-ASNase.

4. Conclusions

L-ASNase is a unique enzyme for the enzymatic hydrolysis of L-

Asn in medicine and food industry. Nevertheless, its instability,

toxicity and poor reusability signicantly limit the long-term

applications. In order to overcome these disadvantages, for

the rst time, in this study, chitosan-modied magnetic parti-

cles were synthesized and employed for covalent immobiliza-

tion of L-ASNase to improve its stability and reusability

performance. Additionally, we developed a magnetic eld plat-

form and successfully studied the effect of magnetic eld on

conjugated L-ASNase activity. To demonstrate the superiority of

the conjugated L-ASNase, we also compared the immobilization

parameters when free enzyme was used as a control. The

conjugated L-ASNase prepared in this study displayed excellent

long-term storage and incubation stability, thermal stability,

and reusability as compared with those of the free enzyme.

More importantly, the magnetic eld experiment results indi-

cated that there was a considerable effect of magnetic exposure

on the conjugated L-ASNase. Taking the abovementioned results

into consideration, magnetic Fe3O4–chitosan particles formed

with the combination of the inorganic material and natural

polymer material could be used as an ideal carrier matrix for L-

ASNase immobilization. Moreover, the application of a static

magnetic eld can be a promising strategy to increase the

enzyme activity, particularly the activity of industrially impor-

tant enzymes and their broad applications.
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