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Magnetic properties and magnetocaloric effect of NdMn2−xTixSi2
compounds

Abstract

The structural and magnetic properties of the intermetallic compounds NdMn2−xTixSi2(x = 0, 0.1, 0.2, and
0.3) have been studied by x-ray and high resolution neutron powder diffraction, specific heat, dc
magnetization, and differential scanning calorimetry measurements over the temperature range 3–450 K. The
Curie temperature and Néel temperature of NdMn2Si2 decrease from TC = 36 K and TN = 380 K to TC = 14
K and TN = 360 K, respectively, on substitution of Ti (x = 0.3) for Mn. The magnetocaloric effect at the first
order ferromagnetic phase transition at TC, has been investigated in detail. Under a change of magnetic field of

0–5 T, the maximum value of the magnetic entropy change is 27 J kg−1 K−1 at x = 0, reducing to 15.3 J kg−1

K−1 at x = 0.1 and 10 J kg−1 K−1 at x = 0.3; importantly, no thermal or field hysteresis losses occur (eliminated

from 0.3 K and 28.5 J kg−1 at x = 0 around TC) with increase in Ti concentration. Combined with the lack of
any hysteresis effects, these findings indicate that NdMn1.9Ti0.1Si2 compound offers potential as a candidate
for magnetic refrigerator applications in the temperature region below 35 K.
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Abstract 

The structural and magnetic properties of the intermetallic compounds NdMn2-xTixSi2 (x = 0, 

0.1, 0.2, and 0.3) have been studied by X-ray and high resolution neutron powder diffraction, 

specific heat, dc magnetization, and differential scanning calorimetry measurements over the 

temperature range 3-450 K. The Curie temperature and Néel temperature of NdMn2Si2 

decrease from TC = 36 K and TN = 380 K to TC = 14 K and TN = 360 K respectively on 

substitution of Ti (x = 0.3) for Mn. The magnetocaloric effect at the first order ferromagnetic 

phase transition at TC, has been investigated in detail. Under a change of magnetic field of 0-5 

T, the maximum value of the magnetic entropy change is 27 J kg-1 K-1 at x = 0, reducing to 

15.3 J kg-1 K-1 at x = 0.1 and 10 J kg-1 K-1 at x = 0.3; importantly no thermal or field 

hysteresis losses occur (eliminated from 0.3 K and 28.5 J kg-1 at x=0 around TC) with increase 

in Ti concentration. Combined with the lack of any hysteresis effects, these findings indicate 

that NdMn1.9Ti0.1Si2 compound offers potential as a candidate for magnetic refrigerator 

applications in the temperature region below 35 K.  

 

 

 

 

 

 

 

 

 



3 

 

1. Introduction  

Application of the magnetocaloric effect (MCE) for magnetic refrigeration offers advantages 

that are well known, with increasing prospects as the basis of magnetic cooling to replace 

conventional refrigeration systems over appropriate temperature regions [1-3]. Given these 

promising developments, magnetic materials which exhibit a large magnetocaloric effect 

have been studied, both experimentally and theoretically, over the past two decades [4, 5]. A 

number of materials which exhibit giant magnetic entropy changes at magnetic transitions 

have been investigated, including Gd5Si2Ge2 [6], (Mn, Fe)2(P, Ge) [7], MnAs1-xSbx [8], and 

La(Fe,Si)13 [9]. All of these materials undergo a first-order magnetic phase transition which, 

given the rapid change in magnetisation, enhances the scope for a large MCE. However such 

behaviour is often accompanied by hysteresis. For example, La0.7Pr0.3Fe11.4Si1.6 exhibits 

thermal hysteresis ~ 1.9 K and magnetic hysteresis ~ 0.2 T around TC ~ 188 K [9]. The 

presence of a hysteresis effect in a material will lead to a decrease in efficiency of the energy 

performance during cooling and heating processes and therefore limit its use in practical 

applications. As such the search for suitable materials that show both a large MCE and are 

free from hysteresis continues. 

The ternary intermetallic compounds of the RT2X2 series (R = rare earth, T = 

transition metal, X = Si or Ge) have attracted considerable attention because of the rich 

variety of interesting phenomena, including superconductivity, magnetism, mixed valence, 

heavy fermions, and Kondo behaviour [10, 11]. RT2X2 compounds form mainly in the 

ThCr2Si2 structure (space group I4/mmm), with the layered nature of this crystal structure 

leading to strong dependence of the magnetic interactions on the interplanar and intraplanar 

interatomic distances [12]. From this point of view, RMn2X2 compounds with X= Si or Ge 

have attracted special attention, due mainly to the interesting interplay between the 

magnetism of the layers of 3d and 4f atoms and the strong dependence of the magnitude of 
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the Mn moment and the magnetic state of the Mn sublattice on the Mn-Mn interatomic 

distances [11, 13-18]. 

As a general guide, for intraplanar distance, dMn-Mn below ~ 2.87 Å, the coupling 

between Mn layers is antiferromagnetic while above this value, the coupling is ferromagnetic 

[19-21]. In NdMn2Si2, below TN ~ 380 K the Mn sublattice orders antiferromagnetically, 

while below TC ~ 36 K the compound is ferromagnetic with ordered moments at both the Nd 

and the Mn sublattices [22, 23]. These magnetic behaviours with different temperature 

dependences reflect different types of exchange interactions with different mechanisms with 

both the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction via conduction 

electrons, and super exchange between magnetic atoms via the Si or Ge atoms contributing. 

Generally, the exchange interactions in RMn2X2 compounds can be divided into four classes: 

Mn–Mn within the Mn layers, Mn–Mn between the Mn layers, and Mn–R and R–R 

interactions [24]. 

Here, we present a detailed investigation of the influence of replacing Mn atoms by Ti 

atoms on the magnetic structure and magnetic phase transition in NdMn2-xTixSi2 compounds. 

The main interest is to explore the effects of replacing Mn atoms of atomic radius r(Mn) = 

1.35 Å and electronic configuration Mn (3d
54s

2) with larger Ti atoms of atomic radius r(Ti) = 

1.45 Å and electron configuration Ti (3d
24s

2).  In the case of NdMn2-xCoxSi2 [25] for 

example, replacement of Mn by the smaller Co atoms, r(Co) = 1.25 Å of electronic 

configuration Co (3d
74s

2), leads to a decrease in magnetic entropy change from ~ 14.4 J kg-1 

K-1 with x=0.2 to 12.4 J kg-1 K-1 with x=0.4 (�B = 0- 5 T) but the Curie temperature TC ~ 45 

K does not change with increasing Co concentration for NdMn2-xCoxSi2 (x=0.2, 0.4, 0.8 and 

1). In this study, we will investigate the effects of Ti substitution for Mn in NdMn2Si2 

compound on the structural and magnetic properties. Given that Ti atoms (r(Ti) = 1.45 Å) are 

significantly larger than Mn atoms (r(Mn) = 1.35 Å) , replacement of Mn by Ti in NdMn2Si2 
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is expected to increase the distance between magnetic atoms, thus modifying the magnetic 

states of both the Nd and the Mn sublattices. 

2. Experimental details 

Polycrystalline samples with nominal compositions NdMn2-xTixSi2 (x = 0, 0.1, 0.2, 0.3) were 

prepared by the arc melting of appropriate amounts of high purity constituent elements under 

a high purity argon atmosphere in a water-cooled copper crucible. The starting materials were 

pure elements (≥ 99.9%), and an excess of 3 at. % Mn was used to compensate for the loss 

during the arc melting and annealing processes. The ingots were turned over and re-melted 

several times to ensure homogeneity. The resulting ingots were wrapped in Ta foil and sealed 

under vacuum in a quartz tube, annealed at 900°C for 7 days to improve crystallization of the 

samples [26], and then quenched into water. The crystal structure of the samples were 

checked by room temperature powder X-ray diffraction (XRD) measurements using CuΚα1 

radiation with the diffraction patterns refined using the Fullprof software package [27]. The 

magnetic properties were investigated over the temperature 10-300 K using the vibrating 

sample magnetometer option of a Quantum Design 14 T physical properties measurement 

system (PPMS) and an MPMS XL magnetic properties measurement system. Differential 

scanning calorimetry (DSC) measurements were carried out using a TA instrument DSC-

Q100 over the range 300-450 K to check for possible phase transitions in the higher 

temperature range and investigate thermal hysteresis changes at the magnetic transitions. The 

crystallographic and magnetic structural behaviors of the set of NdMn1.9Ti0.1Si2 samples were 

investigated over the temperature range 3-450 K by powder neutron diffraction experiments 

using the high resolution powder diffractometer Echidna (wavelength λ = 1.622(1) Å) at the 

Open Pool Australian Light Water Reactor (OPAL), Lucas Heights, Australia. 
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3. Results and Discussion 

3.1. Crystal structure  

Confirmation that all of the NdMn2-xTixSi2 (x = 0, 0.1, 0.2, 0.3) samples crystallize in the 

expected ThCr2Si2 type structure with space group I4/mmm [28] was provided by analysis of 

the X-ray powder diffraction patterns. NdMn2-xTixSi2 compounds have Nd atoms in the 2a 

site (0, 0, 0), while Ti and Mn share the position at the 4d site (0, ��, 
�
� ), and Si atoms occupy 

the 4e site (0, 0, z). The measured data from the diffraction patterns were analysed using the 

Rietveld refinement technique [27], and the distances between neighbouring atoms (Tables 1 

and 3) have been obtained with the BLOKJE program [29], using the structural and positional 

parameters. Compared with pure NdMn2Si2 [22, 28], substitution of Ti for Mn does not 

change the crystal structure but leads to an expansion of the unit cell. The lattice constants a 

and c, and correspondingly the unit cell volumes, were found to increase with the Ti content 

consistent with the larger atomic radius of Ti compared to Mn. As shown in Table 1, dMn-Mn 

increases from 2.8312(6) Å for x=0 to 2.8341(6) Å for x=0.3. However dMn-Mn remains below 

dMn-Mn
crit = 2.87 Å for all compositions. The geometric influence due to the size difference of 

Ti and Mn can be understood in the term of chemical pressure using the Murnaghan equation 

of state (see e.g. the case of PrMn2-xFexGe2 compounds [26]): 

� � � �	
�′	
 �� �

�	


�	 � 1�                                                  (1) 

where B0 is the isothermal bulk modulus, B′0 is its pressure derivative , and V0 and V are the 

volume at ambient pressure and pressure p, respectively. Using the values of B0 = 867 kbar, 

B′0 = 5.1 for CeNi2Ge2 [30], the corresponding pressure can derived to be -3.35 kbar, -5.35 

kbar and -6.05 kbar for the NdMn2-xTixSi2 samples (x=0.1, 0.2 and 0.3) respectively. As 

discussed below these changes in dMn-Mn distances influence the magnetic properties. 
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3.2. Magnetic studies 

The temperature dependence of the magnetization of NdMn2-xTixSi2 (x = 0, 0.1, 0.2, 0.3) 

measured in a magnetic field of B = 0.01 T over the temperature range ~ 10-300 K is shown 

in figure 1 together with the differential scanning calorimetry (DSC) curves over the 

temperature range ~ 300-450 K. The inset shows the values of the Néel temperature TN and 

the Curie temperature TC, for the set of compounds as defined by 1/M versus temperature and 

the maxima of the dM/dT versus temperature graphs respectively. For the DSC 

measurements, the phase transition temperatures were determined by the maxima of the DSC 

signals (see figure 1). Comparison of results obtained under otherwise identical conditions for 

cooling and warming revealed almost no thermal hysteresis across all compositions (∆T = 0.3 

K at x=0 and ∆T = 0 K at x = 0.1, 0.2 and 0.3). Inspection of the insert to figure 1, reveals 

that TN decreases from ~ 380 K to ~ 360 K with increase in Ti concentration from x = 0 to x 

= 0.3 while TC decreases from ~ 36 K to ~ 14 K.. As shown in Table 1 dMn-Mn and dMn-Nd are 

found to increase from dMn-Mn = 2.8312(6) Å, dMn-Nd = 3.3063(6) Å at x = 0 to dMn-Mn = 

2.8341(6) Å, dMn-Nd = 3.3180(6) Å at x = 0.3 and this expansion (size effect) will lead to 

enhancement of the Mn-Mn intralayer exchange interaction. On the other hand, increased Ti 

concentration is also expected to weaken the exchange interactions of Mn-Mn between layers 

and the Mn-Nd due to the magnetic dilution effect. Moreover, the change in electronic 

environment on replacing Mn (3d
54s

2) by Ti (3d
24s

2) is also expected to influence the 

magnetic structures and states of the NdMn2-xTixSi2 compounds. This is supported by Density 

Functional Theory calculations for RMn2Ge2 (R = Y or Ca) compounds [31] which indicate 

that to a large extent, the magnetic moment is determined mainly by the interatomic Mn-Mn 

distances, while the interstitial electron density contributes to the change in magnetic 

structures.  Assuming the expansion of the unit cell volume due to Ti substitution (chemical 

pressure) to be equivalent to the influence of external pressure [26] and using dTC/dp = -0.6 
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K/kbar in NdMn2Ge2 [32] (the same crystal structures), as a guide for the modulus values for 

NdMn2-xTixSi2, the magnetic transition temperatures, TC, expected from the pressure effect 

due to replacement of Mn atoms by the larger Ti atoms have been calculated as shown in 

figure 2. The analysis based on the Murnaghan relationship indicates a slight increase in TC 

with Ti concentration from TC = 36 K for x = 0 to TC = 37 K for x = 1 whereas the 

experimental data reveal a decrease from TC = 36 K for x = 0 to TC = 14 K for x = 0.3. These 

results indicate that for NdMn2-xTixSi2 compounds over the Ti concentration range x = 0.0 to 

1.0, the electronic effects, rather than atomic size effects produce the observed decrease in 

magnetic transition temperature (TC; Fig 2). 

 The magnetization versus field curves (B = 0-5 T) for NdMn2-xTixSi2 (x = 0, 0.1, 0.2, 

0.3) at 10 K are shown in figure 3. The magnetization is not saturated up to 5 T indicating 

large magnetic anisotropy in these samples. This behaviour is supported by the strong 

uniaxial magnetic anisotropy observed for NdMn2Si2 [22] with the moment of 4.16 µB/f.u. 

inhibiting saturation in magnetization up to fields of B = 5 T. The saturation magnetization 

values at 10 K were derived from graphs of magnetisation M versus 1/B by extrapolation and 

applying the law of approach to saturation. The saturation magnetization, MS (at 10 K) is 

found to decrease with increasing Ti concentration in the NdMn2-xTixSi2 compounds (Table 

2). If we assume that the rare earth moment does not change with Ti content, it can be derived 

that the substitution of Ti atoms for Mn leads to a decrease of around -4.6 µB per Ti atom 

(from linear fitting), which is much faster than that expected with a simple dilution model (in 

which the Ti atoms do not carry magnetic moment). This behaviour is similar to that 

observed in NdMn2-xCoxSi2 (-2.1 µB per Co atom decrease of Ms at 5 K) [25], NdMn2-xCrxSi2 

(-2.8 µB per Cr atom decrease of Ms at 4.2 K) [33] and NdMn2-xFexSi2 [34] compounds.   

The magnetization curves obtained for NdMn2Si2 and NdMn1.9Ti0.1Si for fields in the 

range B = 0 - 8 T and B = 0 - 5 T around their ferromagnetic ordering temperatures are 
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shown in figures 4(a) and 4(b), respectively. These data were obtained for increasing and 

decreasing fields at 2 K intervals spanning a range of about 45 K around TC, thus providing 

information about magnetic hysteresis loss effects as discussed below using expression [35]: 

                  Magnetic hysteresis loss � �  !"#$
%&'()*+) ,

-./0.12. $  34.                            (2) 

Magnetic hysteresis effects (as indicated by the area enclosed between the ascending and 

descending branches of the magnetization curves) are also characteristic of first order 

magnetic transitions. As demonstrated in figure 4(c), comparison of the magnetisation curves 

around the ferromagnetic ordering temperatures for NdMn2Si2 (figure 4(a)) with those for 

NdMn1.9Ti0.1Si2 (figure 4(b)) reveal pronounced hysteresis losses of up to ~ 28.5 J kg-1 

(indicated values for B = 0 - 5 T as suitable to comparison) for NdMn2Si2 at TC = 36 K while 

negligible hysteresis losses of ~ 0.8 J kg-1 are observed for NdMn1.9Ti0.1Si2 around TC = 22 K. 

It is demonstrated clearly in figure 4(c) that magnetic hysteresis losses decrease significantly 

on substitution of Ti for Mn. This behaviour indicates that increasing Ti concentration 

contributes to a weakening of the characteristic field induced metamagnetic transition from 

the antiferromagnetic to the ferromagnetic state. As shown in figure 5(a) for NdMn2Si2, with 

the applied field below the critical value field (HC), the magnetization increases linearly with 

increasing field applied expected for an antiferromagnetic state. However for applied field 

greater than HC, the magnetization initially increases rapidly before tending towards 

saturation at higher fields (similar behaviour is observed for La0.5Pr0.5Mn2Si2 [11] of the same 

ThCr2Si2 bct crystal structure) i.e. ferromagnetic behaviour. In the present investigation, as 

shown in figure 5(b) the value of HC is found to increase significantly with increasing the 

temperature and Ti concentration. Welter et al [22] have postulated that the ferromagnetic 

ordering of Nd sublattice below TC drives the change in order of the Mn sublattice from 

antiferromagnetism to ferromagnetism in NdMn2Si2. It can be seen from figures 4(a) and 4(b) 

that the metamagnetic transition occurs at higher temperatures and lower values of HC in 
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NdMn2Si2 compared with NdMn0.9Ti0.1Si2. Therefore the metamagnetic transition is expected 

to produce a larger magnetocaloric effect for x = 0, with a decrease in MCE values for x = 

0.1, 0.2 and 0.3 as described below in the magnetic entropy section. 

As mentioned before, significant MCE values and magnetic entropy changes are 

usually obtained with a first order magnetic transition due to a large rate of change of 

magnetisation. Although such materials have this advantage compared with materials that 

exhibit a second order transition, first order magnetic transitions usually exhibit considerable 

thermal hysteresis and magnetic hysteresis. Here we have established that hysteresis effect 

have effectively been eliminated by substitution of Mn with Ti in NdMn2-xTixSi2 compounds. 

Figures 6(a - d) show the corresponding Arrott plots (M2 versus B/M) for the x = 0, 0.1, 0.2 

and 0.3 samples, respectively. The Arrott plots are found to exhibit features characteristic of a 

first order transition for all of the samples.  In particular the S-shaped nature of the Arrott plot 

near TC denotes a negative order of the sign of the coefficient c2(T) in the Landau expansion 

of the magnetic free energy [36], thereby denoting a first order magnetic transition. The 

present findings demonstrate that the ferromagnetic transition at TC in NdMn2-xTixSi2 remains 

a first order transition on substitution of Ti for Mn to Ti concentration up to x=0.3.   

 

3.3. Magnetic entropy; magnetocaloric effect 

The magnetic entropy change, -∆SM, has been determined for the set of NdMn2-xTixSi2 

compounds (x = 0, 0.1, 0.2 and 0.3) from their magnetization curves for both increasing and 

decreasing field values as functions of temperature and magnetic field (∆B = 0-5 T). The 

magnetic entropy change has been derived by applying the standard Maxwell relation [37]: 

                                   - ∆S7 8, 4# � � �:;
:< 
$

,
=  34.                                               (3) 

As shown by the curves of figure 7(a), the -∆SM peak (closed symbols for increasing field 

values and open symbols for decreasing field values) gradually broadens towards higher 
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temperatures with increasing magnetic field (from �B = 0-5 T), behaviour characteristic of a 

field induced transition from an antiferromagnetic to a ferromagnetic state.  

The changes in magnetic entropy for the set of NdMn2-xTixSi2 compounds (x = 0, 0.1, 

0.2 and 0.3) around their ferromagnetic ordering temperatures are shown in figure 7(b) as 

calculated from decreasing applied fields in order to satisfy the suitability of different 

experimental and related analytical approaches to establish the isothermal entropy change 

[38]. The entropy values at the respective Curie temperatures are (∆B = 0-5 T): -∆SM  ~ 27 J 

kg-1 K-1 at TC = 36 K; -∆SM  ~ 15.3 J kg-1 K-1 at TC = 22 K; -∆SM  ~ 13 J kg-1 K-1 at TC = 16 K 

and -∆SM ~ 10 J kg-1 K-1 at TC = 14 K. The decrease in magnetization on substitution of the 

non-magnetic Ti for Mn, correspondingly reduces the value of -∆SM. Never the less it is 

noted that the MCE values of -∆SM ~ 15.3 J kg-1 K-1 for NdMn1.9Ti0.1Si2 and -∆SM ~ 13 J kg-1 

K-1 for NdMn1.8Ti0.2Si2 are comparable with MCE values for other materials with small 

hysteresis that exhibit transitions in the temperature region below 100 K. These materials 

include: TbCoC2 [39] (-∆SM = 15 J kg-1 K-1 at 28 K), GdCoAl [40] (-∆SM = 10.4 J kg-1 K-1 at 

100 K) and TbCoAl [40] (-∆SM = 10.5 J kg-1 K-1 at 70 K), all of which - in common with 

NdMn1.9Ti0.1Si2 and NdMn1.8Ti0.2Si2 - importantly exhibit no field hysteresis losses.  

 The magnetic entropy change, -∆SM (T, B) has also been derived from heat 

calorimetric measurements of the field dependence of the heat capacity using the expression 

[2, 41, 42]: 

- ∆S7 8, ># � � �? <,�#
? <,=#
< 
@

=  38                                            (4) 

where C(T,B) and C(T,0) are the values of the heat capacity measured in field B and zero 

field, respectively. The corresponding adiabatic temperature change, �Tad can be evaluated 

from -∆SM (T, B) and the zero field heat capacity data as: 

   ∆8AB 8, ># � C <
   ?D,E

D

=
 �:;

:< 
� 3>                                         (5) 
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Figure 8(b) shows the set of heat capacity measurement obtained for NdMn1.9Ti0.1Si2 with B 

= 0, 2, and 5 T. The corresponding -∆SM (T, B) values for NdMn1.9Ti0.1Si2 are shown in figure 

8(a) with the ∆8AB values shown in figure 8(c). The peak value of the adiabatic temperature 

change is ∆81-F1G = 4.7 K for �B = 0-5 T. As shown in figure 8(a), the maximum magnetic 

entropy change for NdMn1.9Ti0.1Si2 as determined from the heat capacity measurements of -

∆SM
max ~ 15 J kg-1 K-1 and 9.3 J kg-1 K-1 for 

�B = 0-5 T and 0-2 T are similar to the maximum 

entropy change -∆SM
max  ~ 15.3 J kg-1 K-1 and 9.8 J kg-1 K-1 as determined from the magnetic 

measurements using the Maxwell relation. The good agreement between the two sets of 

measurements confirms that the -∆SM values derived for NdMn1.9Ti0.1Si2 from the 

magnetization measurements represent the MCE behaviour within experimental errors [6, 17, 

43]. By comparison, Nikitin et al [44] reported that the value of ∆Tad
max in NdMn2Si2 

compound (around TC ~ 32 K) can be up to 8.2 K with a field change of ∆B=0-6 T.  

In general, the relative cooling power (RCP) is an important parameter of the 

magnetocaloric material, providing an accepted criterion to evaluate the refrigeration 

efficiency in practical application. The RCP is used to evaluate the cooling power of 

magnetic refrigerants by measuring how much heat can be transferred between two 

temperatures (low and high in temperature span range) in one ideal refrigeration cycle. The 

RCP is defined by the following expression [45]:  

RCP �  �∆S7KAL
δ8MNO7.     (6) 

-∆S7KAL denotes the maximum entropy change and δT represents the full width at half 

maximum (FWHM) of the temperature dependence of the magnetic entropy change -∆SM. A 

summary of the RCP values and other magnetic characterization parameters for NdMn2-

xTixSi2 (x = 0, 0.1, 0.2, 0.3) compounds is listed in Table 2. The RCP shows the same trend 

with Ti concentration as the magnetic entropy change. It is noted that δT increases with Ti 

content: δT = 9.5 K, δT = 12.0 K, δT = 12.4 K and δT = 12.8 K for x=0, 0.1, 0.2 and 0.3 
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respectively. It was found that the RCP decreases from ~127 J kg-1 for x = 0 to ~70 J kg-1 for 

x = 0.3 for a change in magnetic field �B = 0-5 T.  

 

3.4. Magnetic Structures of NdMn1.9Ti0.1Si2 - Neutron diffraction  

The NdMn1.9Ti0.1Si2 compound was selected for investigation by neutron diffraction 

measurements over the temperature range 3-450 K as representative of the magnetic 

behaviour of the NdMn2-xTixSi2 samples (figure 1). The aims were to determine the magnetic 

structures and to explore structural changes at the transition temperatures. The diffraction 

patterns (λ = 1.622(1) Å) and Rietveld refinements obtained for NdMn1.9Ti0.1Si2 at 450 K, 

150 K and 15 K are shown in figures 9(a), 9(b) and 9(c), respectively. The selected 

temperatures typify the behaviour of NdMn1.9Ti0.1Si2 in the three magnetic regions 

(paramagnetic-antiferromagnetic-ferromagnetic) as indicated from the magnetisation and 

DSC measurements of figure 1. Rietveld refinements of the neutron diffraction pattern at 450 

K (figure 9(a)) confirm that NdMn1.9Ti0.1Si2 has the ThCr2Si2 structure as expected. The 

absence of magnetic scattering above TN ~ 374 K (figure 1) in reflections such as (101), (111) 

and (112) is consistent with a paramagnetic (PM) state. (cf. e.g. the disordered magnetic 

states (PM) observed in PrMn1.6Fe0.4Si2 [26], EuMn2Si2 [46] and LaPrMn2Si2 [47]). Below TN 

~ 374 K, NdMn1.9Ti0.1Si2 is found to exhibit the antiferromagnetic interlayer coupling 

structure (AFil) down to TC ~ 22 K (see e.g. the 150 K pattern of figure 9(b)). The AFil 

structure − a collinear antiferromagnetic structure between adjacent Mn planes in a + - + - 

sequence along the c-axis − is indicated by the magnetic scattering observed at the (111), 

(113) and (201) reflections; (extinction rules h + k = 2n and h + k + l = 2n+1) in agreement 

with Dincer et al [47]. In order to draw out the changes in magnetic structures with 

temperature, the temperature dependence of the peak intensity for selected magnetic peaks is 

shown in figure 9(d). Furthermore, the absence of magnetic scattering from the (111), (113) 
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and (201) reflections at 15 K in figure 9(c), combined with the increase in intensity of the 

(112) and (101) peaks as in figure 9(d), indicate that the interlayer spin components of the 

Mn moments align parallel, thus leading to a canted ferromagnetic structure (Fmc) for the Mn 

sublattice. The presence of the purely magnetic peak (001) below TC indicates the existence 

of antiferromagnetic component of Mn moment in the ab-plane [22]. At lower temperature 

(e.g. 3 K; figure 9(d)), the increase in the intensities of the (112) (contributions from both Nd- 

and Mn-sublattices) and (101) (contribution only from Nd-sublattice [22]) reflections further 

indicates an additional contribution from Nd moments coupled parallel to the Mn moments 

along c-axis thereby leading to the formation of Fmc+F(Nd) magnetic structure as depicted in 

figures 9(e). This behavior agrees well with the results of Welter et al [48] who demonstrated 

that in the RMn2Ge2 compounds with R= Pr and Nd rare earth moments ferromagnetically 

coupled with the Mn sublattice at low temperatures. This behaviour, also applicable to 

NdMn2Si2 [22] and NdMn2Si1.6Ge0.4 [17] compounds, is due to the exchange interaction 

between the light rare earth elements and 3d transition metal as reported by Coey [49].  

Ordering of the Nd sublattice in NdMn2Si2 below TC has also been confirmed by Chatterji et 

al [50] from inelastic neutron scattering. 

The variation in the a and c lattice parameters with temperature are plotted in figure 

10(a). Both the a and c values exhibit a monotonic decrease with temperature in the region of 

the antiferromagnetic transition between TN = 374 K and TC = 22 K, while below TC = 22 K, 

the a lattice parameter expands slightly from 3.998 Å at 35 K to 4.001 Å at 3 K whereas the c 

lattice parameter decreases from 10.536 Å at 35 K to 10.523 Å at 3 K. The variation in lattice 

parameters a and c shown in figure 10(a) for the PM, AFil, and Fmc+F(Nd) states is 

comparable with the behaviour in NdMn2Si2 [22]. The changes in lattice parameter at TC ~ 22 

K when the magnetic state changes from AFil to Fmc+F(Nd) structure, indicates the presence 

of strong magnetostructural coupling around TC. As discussed recently [51, 52], the strong 
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magnetostructural coupling leads to a large structural entropy change around the magnetic 

phase transition, thereby contributing to the total entropy change around TC.  

Figure 10(b) is a plot of the temperature dependence of the Mn magnetic moments as 

derived from the refinements. Within the AFil state region (TN ~ 374 K > T > TC ~ 22 K), the 

Mn moment increases to µMn = 2.1 (1) µB at 50 K with both Nd and Mn ordering 

magnetically below TC ~ 22 K. The magnetic moments for Mn and Nd have been derived to 

be µ total
Mn = 1.56 (4) µB (of basal plane and axial components µab

Mn =0.86(2) µB and µc
Mn 

=1.30(6) µB respectively) and µNd = 2.56(5) µB at 3 K. The Nd moment and the ferromagnetic 

component of the Mn moment along the c-axis for NdMn1.9Ti0.1Si2 are found to be 2.56(1) µB 

and 1.30(1) µB respectively. The resultant total moment is 3.86(1) µB per formula unit at 3 K 

which is slightly higher than that obtained from DC magnetization measurement at 10 K (3.6 

µB per formula unit). We suggest this different value of magnetic moment is related to the 

non-saturation behavior shown by the magnetisation curve from DC measurements at 10 K 

even for a field applied of 5 T. 

4. Conclusions 

A systematic investigation of the structural and magnetic characteristics of NdMn2-xTixSi2 (x 

= 0, 0.1, 0.2 and 0.3) compounds has been carried out. Substitution of Ti for Mn leads to 

decreases in the Curie temperature and the Néel temperature from TC ~ 36 K and TN ~ 380 K 

at x=0 to TC ~ 14 K and TN ~ 360 K at x=0.3. The variation in the value of TC with increasing 

Ti concentration can be understood in terms of changes in the Mn-Mn exchange interaction 

together with the effects of magnetic dilution and chemical pressure. A metamagnetic 

transition from the antiferromagnetic to the ferromagnetic state due to the application of 

magnetic field was observed above TC for NdMn1.9Ti0.1Si2. Substitution of Mn by Ti leads to 

a reduction of the magnetic entropy change from -∆SM  ~ 27 J kg-1 K-1 at x = 0; -∆SM  ~ 15.3 J 

kg-1 K-1 at x = 0.1; -∆SM  ~ 13 J kg-1 K-1 at x=0.2  and -∆SM  ~ 10 J kg-1 K-1 at x = 0.3 
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respectively. However, analysis of the magnetisation data demonstrates that the first order 

magnetic transition of NdMn2Si2 around TC remains unchanged on replacement of Mn by Ti, 

and this substitution leads to significant reduction in magnetic hysteresis losses from 28.5 J 

kg-1 for NdMn2Si2 to 0.8 J kg-1 for NdMn1.9Ti0.1Si2 with �B = 0-5 T and eliminates thermal 

hysteresis from �T = 0.3 K at x = 0 to �T = 0 K at x = 0.1. Neutron diffraction studies 

demonstrate that NdMn1.9Ti0.1Si2 has the AFil antiferromagnetic structure in the temperature 

range TN ~ 374 K > T > TC ~ 22 K and the combined Fmc+F(Nd) ferromagnetic state below 

TC ~ 22 K. Ti substitution in NdMn2-xTixSi2 compounds result in material with useful 

magnetocaloric effect behaviour and free of magnetic and thermal hysteresis loss.  
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Tables 

 

Table 1. Lattice parameters, unit cell volume, and Mn-Mn distance of the NdMn2-xTixSi2 compounds 
with x = 0, 0.1, 0.2 and 0.3 as determined from refinement of the room temperature X-ray diffraction 
patterns. The errors are shown for NdMn2Si2 as a typical example. 

NdMn2-xTixSi2      a (Å)   c (Å)    V (Å3) c/a dMn-Mn (Å) dMn-Nd (Å) 

        x=0 4.0039(5) 10.5251(6) 168.73(4) 2.6287(3) 2.8312(6) 3.3063(6) 
x=0.1 4.0067 10.5515 169.39 2.6335 2.8332 3.3124 
x=0.2 4.0073 10.5743 169.81 2.6388 2.8336 3.3171 
x=0.3 4.008 10.5779 169.92 2.6392 2.8341 3.318 

 

 

 

 

Table 2. Results of the magnetic characterization of NdMn2-xTixSi2 compounds with x = 0, 0.1, 0.2 
and 0.3. The magnetic features listed are: Curie temperature (TC; determined by graphs of dM/dT 
versus T) and the order of the magnetic transition around TC; Néel temperature (TN; determined by 
graphs of 1/M versus T) and the saturation magnetization, MS, as determined at 10 K. The magnetic 
entropy change (-�SM) and the relative cooling power (RCP) are given for a field change of 0-5 T. 
The errors are shown for NdMn2Si2 as a typical example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Composition TC (K) Nature of  TN (K) MS (µB/f.u.)  -�SM (J kg-1 K-1) RCP (J kg-1)  

  Transition at TC  (T=10 K) (B=0-5 T) (B=0-5 T) 

NdMn2Si2 36(3) First 380(3) 4.4(4) 27(3) 127(3) 
NdMn1.9Ti0.1Si2 22 First 374 3.6 15.3 99 
NdMn1.8Ti0.2Si2 16 First 365 3.2 13 89 
NdMn1.7Ti0.3Si2 14 First 360 3 10 70 
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Table 3. Structural and magnetic parameters of NdMn1.9Ti0.1Si2 as derived from Rietveld  
refinements of the neutron diffraction patterns and the BLOKJE program. µ total

Mn - the Mn magnetic 
moment; µc

Mn - the Mn moment along the c-axis; µab
Mn - the Mn moment in (001) Mn layers; µNd - the 

Nd moment along the c-axis; the errors for the data at T=3 K are shown as typical examples. 

T (K) 3 K 15 K 25 K 35 K 50 K 150 K 200 K 300 K 450 K 

a(Å) 4.001(7) 4 3.999 3.998 3.997 4.001 4.003 4.009 4.022 
c(Å) 10.523(8) 10.522 10.535 10.536 10.535 10.543 10.548 10.558 10.574 

V(Å3) 168.39(8) 168.38 168.43 168.44 168.42 168.74 169.04 169.73 171.13 

dMn-Mn(Å) 2.8286(9) 2.8285 2.8273 2.8272 2.8271 2.8288 2.8307 2.8351 2.8446 

ZSi 0.3793(6) 0.3813 0.3807 0.3812 0.3813 0.3789 0.3786 0.3809 0.381 

µ total
Mn 1.56(4) 1.54 1.67 1.98 2.1 1.91 1.85 1.53 - 

µc
Mn 1.30(6) 1.26 1.67 1.98 2.1 1.91 1.85 1.53 - 

µab
Mn 0.86(2) 0.89 - - - - - - - 

µNd 2.56(5) 2.77 - - - - - - - 

Rwp 5.46 5.87 5.99 6.21 6.59 6.93 7.35 7.75 8.05 

Rexp 3.23 3.45 3.95 4.67 4.89 5.04 5.25 5.65 5.78 
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Figures 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Temperature dependence of magnetization of NdMn2-xTixSi2 compounds (x = 0, 0.1, 0.2, 
and 0.3) as measured in a field of 0.01 T (left axis; solid symbols for zero field cooling, ZFC, and 
open symbol for field cooling, FC); and differential scanning calorimetry measurements for the 
temperature range 300-450 K (right axis; solid symbols). The inset shows the Néel temperatures (TN) 
and the Curie temperatures (TC) for the set of samples. 
 

 

Figure 2. Experimental (squares) and calculated values (circles) of the Curie temperature TC as a 
function of Ti concentration for NdMn2-xTixSi2 (x = 0, 0.1, 0.2, 0.3). The TC values were calculated 
using the Murnaghan equation and dTC/dp = -0.6 K/kbar as described in the text. The dashed lines act 
as a guide to the eye with the horizontal dashed line included to emphasise the slight increase in the 
calculated TC values, with increasing Ti concentration. 
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Figure 3. Magnetization curves (B = 0 - 5 T) for NdMn2-xTixSi2 compounds (x = 0, 0.1, 0.2, 0.3) at T 
= 10 K (closed symbols denote field increasing and open symbols field decreasing). 
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Figure 4. Isothermal magnetization curves in the vicinity of the ferromagnetic ordering temperatures 
for: (a) NdMn2Si2 (TC = 36 K with B = 0 - 8 T) and (b) NdMn1.9Ti0.1Si2 (TC = 22 K with B = 0 - 5 T) 
(the  arrows indicate the direction of the  applied fields during magnetisation measurements, and (c) 
Comparison of the magnetic hysteresis losses for NdMn2Si2 and NdMn1.9Ti0.1Si2 for magnetic fields 
over the ranges B=0-5 T (the results for B=0-2 T are shown in the insert). 
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Figure 6. Arrott plots of M2 versus B/M for the set of NdMn2-xTixSi2 compounds: (a) NdMn2Si2; (b) 
NdMn1.9Ti0.1Si2, (c) NdMn1.8Ti0.2Si2, and (d) NdMn1.7Ti0.3Si2.  
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Figure 7. (a) The temperature dependence of the isothermal magnetic entropy change, -∆SM, for 
NdMn0.9Ti0.1Si2 as determined from the magnetization isotherms for �B = 0-1 T, �B = 0-2 T, �B = 0-
3 T, �B = 0-4 T and �B = 0-5 T (closed symbols for increasing fields and open symbols for 
decreasing fields). (b) The temperature dependence of the isothermal magnetic entropy change, -∆SM, 
for NdMn2-xTixSi2 compounds with x = 0, 0.1, 0.2 and 0.3 as measured from magnetization isotherms 
(�B = 0-5 T from decreasing field curves). 
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Figure 8. (a) The magnetic entropy change, -∆SM, determined from the heat capacity measurements 
of figure 8(b) for NdMn1.9Ti0.1Si2 (�B = 0-2 T, �B = 0-5 T). (b) The heat capacity of NdMn1.9Ti0.1Si2 
as measured over the temperature range 10-70 K in magnetic fields B = 0 T, 2 T, 5 T. (c) The 
adiabatic temperature change, �Tad, for NdMn1.9Ti0.1Si2 as determined from the heat capacity(open 
symbol) of figure 8(b) and magnetization (closed symbol) measurements.  
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Figure 10. (a) The lattice parameters of NdMn1.9Ti0.1Si2 as a function of temperature and (b) 
temperature dependence of the Mn magnetic moment (3-450 K). The Néel temperature TN and Curie 
temperature TC are denoted by arrows with the dotted lines delineating the paramagnetic (PM), 
antiferromagnetic (AFil-type) and ferromagnetic (Fmc+F(Nd)) regions. The line through the moment 
values act as a guide to the eye.  
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