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Magnetic properties of GaMnAS from an effective Heisenberg Hamiltonian.
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We introduce a Heisenberg Hamiltonian for describing the magnetic properties of GaMnAs. Elec-
tronic degrees of freedom are integrated out leading to a pairwise interaction between Mn spins.
Monte Carlo simulations in large systems are then possible, and reliable values for the Curie temper-
atures of diluted magnetic semiconductors can be obtained. Comparison of mean field and Monte
Carlo Curie temperatures shows that fluctuation effects are important for systems with a large hole
density and/or increasing locality in the carriers-Mn coupling. We have also compared the results
obtained by using a realistic k ·p model with those of a simplified parabolic two band model. In the
two band model, the existence of a spherical Fermi surface produces the expected sign oscillations
in the coupling between Mn spins, magnifying the effect of fluctuations and leading to the eventual
disappearance of ferromagnetism . In the more realistic k · p model, warping of the Fermi surface
diminishes the sign oscillations in the effective coupling and, therefore, the effect of fluctuations on
the critical temperature is severely reduced. Finally, by studying the collective magnetic excitations
of the this model at zero temperature, we analyze the stability of the fully polarized ferromagnetic
ground state.

PACS numbers: 75.50.Pp, 75.10.-b,75.10.Nr,75.30.Hx

I. INTRODUCTION

In recent years, one of the most studied diluted mag-
netic semiconductor (DMS) has been Ga1−xMnxAs[1, 2,
3]. Ideally, the Mn ions substitute Ga atoms, close a
d shell acquiring a core spin S=5/2, and give a hole to
the system. Due to the experimental growth conditions,
these semiconductors have defects in the positions of Ga
and As atoms (antisite defects), and in the location of Mn
ions (interstitials). Some of these defects act as donors
that partially compensate the holes contributed by the
Mn ions[3]. Therefore, the density of holes, p, is gener-
ally smaller than the density of Mn ions, c.
Experimentally, high Curie temperatures (TC) are ob-

served near an optimal doping around x ∼0.05. At this
dilute concentrations, direct interaction between Mn ions
can be neglected. However, Mn spins have a strong anti-
ferromagnetic kinetic exchange coupling, Jpd, with hole
spins[4]. For metallic systems, the motion of holes me-
diates a ferromagnetic interaction between the Mn ions,
leading to spontaneous magnetization with experimental
TC as high as 130K.
A first approach to the problem consists in describ-

ing the electronic system within the virtual crystal ap-
proximation, and the thermal effects in the mean-field
approximation[5, 6]. In this scheme, the hole spins feel
the magnetic field created by the Mn spins which, in turn,
are equally affected by the effective field of hole spins.
Therefore, Mn ions and holes become coupled by Jpd,
and the low temperature phase exhibits ferromagnetism
with Curie temperature:

kBT
vca
C =

S2J2
pd

3
χp(q = 0) c , (1)

where χp(q = 0) is the zero wavevector paramagnetic sus-

ceptibility of the hole gas[7]. This expression indicates
that the Curie temperature can be increased by raising
the density of Mn ions and/or the number of holes. The
former possibility is limited by the tendency of the Mn
ions to form clusters of antiferromagnetically coupled Mn
spins, which do not contribute mobile holes to the host
semiconductor. The latter possibility has been explored
experimentally by different groups[8, 9]. They have per-
formed annealing treatments to MBE grown GaMnAs
samples. In this process, the number of defects acting
as donors is reduced and, therefore, the number of holes
increases. In this way, the Curie temperature has been
raised from 75K to 110K[8], for a Mn concentration of
x=0.06.

The natural question that arises concerns the pos-
sibility of further increasing Curie temperatures. Ex-
perimental studies of the Mn ferromagnetic moment
in post-annealed samples show that a large fraction of
Mn spins (more than 50%) does not participate in the
ferromagnetism[8]. This result opens up the possibility
of increasing Curie temperatures by a better alignment
of the Mn spins in the zero temperature ground state
of the system. Therefore, it is very important to know
whether the observed lack of magnetization saturation is
due to an extrinsic effect such as, for instance, the wrong
location of some Mn ions in the host semiconductor, or
rather to intrinsic frustration related to the spatial oscil-
latory behavior of the hole mediated interaction between
Mn spins. The study of this last possibility provides the
main motivation for this work.

As already mentioned, usual mean-field calculations
like that of Eq.(1)[5, 6] assume a virtual crystal approx-
imation (VCA), where the Mn ions are replaced by an
uniform magnetic field acting on the hole spins. This
approach does not describe the individual interactions
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between the Mn spins and the holes, and always pre-
dicts a fully saturated ferromagnetic ground state (GS)
for the Mn spins. There have been several attempts to
study the effect that thermal fluctuations and disorder
have on the value of TC [10, 11, 12, 13], by means of
Monte Carlo (MC) simulations. By disorder we mean
the random location of the Mn ions on the FCC lat-
tice of the host semiconductor. These calculations have
strong finite size effects because, even though the Mn
spins are treated classically, the carriers kinetic energy
must be evaluated at each MC step, requiring the diag-
onalization of the electron Hamiltonian. Therefore, MC
simulations have been limited to simple electronic mod-
els (one-orbital tight-binding Hamiltonian or two-band
parabolic model) and to small systems (less than 600 Mn
ions and 60 carriers).
On the other hand, Schliemann and MacDonald[14, 15]

have studied the effect that disorder and quantum fluctu-
ations have on the zero temperature GS, using perturba-
tion theory and a two band model. They conclude that
long-range fluctuations make the full ferromagnetic phase
unstable against a non collinear ferromagnetic state. In
the same direction and using a four band model, Zaránd
and Jankó[16] have obtained that, due to the large spin-
orbit coupling existing in the host semiconductor, the
interaction between Mn spins is highly anisotropic, con-
cluding that the zero temperature GS is intrinsically spin-
disordered. Also recently, using a disordered RKKY lat-
tice mean field theory for a two band model, Priour et al.
[17] have found that Mn spins are not fully spin polarized
in the zero temperature ground state.
In this work we study the effect that disorder and ther-

mal fluctuations have on the value of TC . We also analyze
the effect that disorder and quantum fluctuations have on
the zero temperature GS of the system. To this end, we
introduce a Heisenberg-like Hamiltonian with pairwise
interactions between Mn ions for describing the magnetic
properties of GaMnAs. This approach just requires the
position and spin orientation of the Mn ions, without ex-
plicit consideration of the electronic degrees of freedom.
To be precise, we propose the following functional,

E = EKE −
∑

I,J

J(RIJ)SI · SJ , (2)

where the coupling constant J(RIJ ) is obtained using a
realistic 6-band k ·p Hamiltonian. The indices (I, J) run
on the position of the Mn spins, which are randomly lo-
cated at sites RI of the host semiconductor FCC lattice,
with RIJ=RI-RJ . We will justify the correctness of this
procedure for the expected range of parameters and, fur-
thermore, show that J(RIJ ) can be obtained perturba-
tively. As the electronic degrees of freedom are integrated
inside these coupling constants, we can perform large MC
simulations for estimating the value of TC . Also, treating
Mn spins as quantum objects, we will be able to study
collective magnetic excitations of Eq(2) and analyze the
stability of the zero temperature ferromagnetic GS. This
will be done by means of an explicit calculation of cou-

pling constants J(RIJ) in the spin-polarized background
of carriers at zero temperature.
The paper is organized as follows. Section II presents

the microscopic model. In section III, we deduce the
Hamiltonian of Eq.(2) from the microscopic model and
justify its use. In section IV, the coupling constants of the
pairwise Hamiltonian are obtained perturbatively, and
mean-field treatments are revised. A criterion is intro-
duced to quantitatively assess the effect of fluctuations
from the mere analysis of interactions. Results of MC
are shown in section V for both the two-band and six-
band models. The importance of fluctuations (thermal
and disorder), their dependence on system parameters,
and their impact on the critical temperature are particu-
larly considered. In section VI, we study our model in the
zero temperature limit. We obtain the density of states
of collective magnetic excitations and analyze the stabil-
ity of the zero temperature ferromagnetic ground state.
In section VII we finish the paper with the conclusions.

II. THE MICROSCOPIC MODEL

As explained above, we assume that Mn ions, with a
3d5 and S=5/2 configuration, are randomly located in a
FCC lattice. These ions donate a density p of holes to the
system that, according to photoemission studies[18], have
a strong 4p character that should be associated with va-
lence band states of the host semiconductor. Therefore,
we model the motion of holes in the host semiconduc-
tor, and their interaction with the Mn spins, with the
following Hamiltonian:

H = Hholes +
∑

I

∫

d3r SI · s(r) J̃(r−RI) , (3)

where s(r) is the spin density of carriers, antiferromag-
netically coupled to the Mn spins SI located at random
positions RI of the FCC lattice. The exchange coupling
J̃(r) has a spatial extension that we model as a Gaussian
of width a0:

J̃(r) =
Jpd

(2πa2o)
3/2

e−r2/2a2

0 . (4)

Jpd parameterizes the strength of the coupling, whereas
the parameter a0 is a measure of the non-local character
of this interaction. a0 should be of the order of the first
neighbors distance, which corresponds to the minimum
separation between the Mn-d orbitals and the GaAs-p or-
bitals that form the hole bands of the host semiconduc-
tor. Experimental work[18] estimates Jpd ≈60meV . As
the Mn ions are rather diluted, we have neglected any di-
rect superexchange interaction between them.. The term
Hholes, representing the motion of holes in the semicon-
ductor, is described with a realistic six band k·p envelope
function formalism[19]. In the actual magnetic semicon-
ductors, the carrier density is of the order of 1020cm−3

and, for these values, it seems justified to neglect the
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effect of the carrier-carrier interaction. As we know[20]
that the rearrangement of defects considerably weakens
the interaction between carriers and defects, we also ne-
glect any effect of disorder in the motion of carriers be-
yond the mere magnetic coupling of Eq.(3).
In the k · p model[21], the hole wavefunctions are de-

scribed by a band index n, and a wavevector k, having
the form,

ψn,k(r) = eikr
∑

J,mJ

αJ,mJ

n,k uJ,mJ
(r) (5)

uJ,mJ
(r) =

1√
N

∑

I

φJ,mJ
(r−RI) , (6)

where uJ,mJ
(r) are the six Γ4v valence band wavefunc-

tions with k=0, and φJ,mJ
represent atomic-like orbitals

with total angular momentum J , and z-component of
the angular momentum mJ . The six higher energy va-
lence band states of GaAs correspond to J=3/2 and
J=1/2. In Eq.(6), the index I runs over all the (N)

sites of the FCC lattice, and
√
N is the normalization

factor. The parameters that determine the wavefunc-

tions, αJ,mJ

n,k , and the corresponding eigenvalues, ǫn,k,

are obtained by diagonalizing a 6×6 matrix[21] for each
wavevector. The entries of this matrix depend on the
spin-orbit coupling (∆so), the Kohn-Luttinger parame-
ters (γi), and on the wavevector k. We use parameters
appropriated for GaAs[21], with values: γ1=6.85, γ2=2.1,
γ3=2.9, and ∆so=0.34 eV.
In the k · p basis, the Hamiltonian of Eq.(3) has the

form,

H =
∑

nk

ǫnkc
+
nkcnk +

∑

nk,n′k′

< nk|V |n′k′ > c+nkcn′k′ ,

(7)
where c+nk creates a hole with quantum numbers n and
k. The second term of this equation is the interaction
between the holes and the Mn spins,

< nk|V |n′k′ >=
Jpd
Ω

∑

I

e−i(k−k′)RI ×

SI · < n′,k′|s|n,k > e−(k−k′)2
a0

2

2 (8)

where

< n′,k′|s|n,k >=
∑

JmJ ,J′m′

J

(

αJ,mJ

n,k

)∗

α
J′,m′

J

n′,k′ sJmj,J′m′

J
,

the index I runs over Mn locations, sJmj ,J′m′

J
is the ma-

trix element of the hole spin operator in the local angular
momentum basis[19], and Ω is the system volume. The
eigen-energies of this Hamiltonian can be written in the
form

E = EKE +∆E , (9)

EKE being the energy of the carriers in absence of ex-
change coupling with the Mn ions, and ∆E the variation
of the system energy due to the hole-Mn spin interaction.
We take EKE as our zero of energy.

III. PAIRWISE INTERACTIONS BETWEEN

MANGANESE SPINS

In this section we will justify the validity of the
Heisenberg-like model of Eq.(2) for the experimentally
relevant range of parameters, with coupling constants
J(RIJ) obtained perturbatively.

A. Interaction energy of a pair of Mn spins: spin

and spatial anisotropies

Our first result is that the interaction between two Mn
spins, S1 and S2, is very well described by their scalar
product. To show this, we have calculated the energy
of a system containing just two Mn ions: one located
at the origin with its spin pointing in the (0, 0, 1) di-
rection, and the other placed at one of the first neigh-
bor positions (0, a, a)/2 of the FCC lattice (a=5.66Å for
GaAs) with its spin pointing in the (0, sin θ, cos θ) direc-
tion. In Fig.1 we plot this energy for different relative
orientations, θ, for a hole density p=0.44nm−3, an ex-
change coupling Jpd=0.06eV nm3, and a spatial exten-

sion of the coupling a0=4Å. We see that the interaction
energy can be fitted very well by cos θ. Since we expect
spin anisotropies to show up predominantly at short dis-
tances, its absence for nearest neighbors makes us con-
clude that a spin isotropic interaction is appropriate for
arbitrarily separated Mn spins. Therefore, we write the
energy of a pair of Mn spins, S1 and S2, separated by an
arbitrary vector (i, j, k)a/2, in the form:

∆E = 2Σ+∆Ui,j,k
S1 · S2

S2
, (10)

with

∆Uijk =
1

2

(

∆
(2)
ijk(↑, ↑)−∆

(2)
ijk(↑, ↓)

)

Σ =
1

4

(

∆
(2)
ijk(↑, ↑) + ∆

(2)
ijk(↑, ↓)

)

, (11)

where the expressions ∆
(2)
ijk(↑, ↑) and ∆

(2)
ijk(↑, ↓) represent

the energies of a pair of Mn spins separated by a vec-
tor (i, j, k)a/2, with parallel and antiparallel spins in the
z-direction. Σ is a self-interaction energy that neither
depends on (i, j, k) nor affects the spin coupling.
Recently, Zaránd and Jankó[16] derived that the Mn-

Mn interaction in GaMnAs is highly anisotropic, using
a four band model[22]. This anisotropy is due to the
p-character of the top valence bands and to the large
spin-orbit coupling existing in GaAs. In particular, they
found that the interaction between two parallel spins sep-
arated by a vector R is different depending on whether
the spins point along the vector R or perpendicular to
it. This large anisotropy predicted in [16], seems to be in
contradiction with the results presented in Fig. 1, where
a simple cosine fits the interaction very well. In order to
study the spin anisotropy more carefully, we have calcu-
lated the energy of a pair of parallel Mn spins pointing
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FIG. 1: Energy of a system formed by two Mn ions. One
is located at (0, 0, 0), with its spin pointing in the (0, 0, 1)
direction, the other is at (0, 1, 1)a/2, with its spin oriented in
the (0, sin θ, cosθ) direction. The calculations have been done
for a hole density p=0.44nm−3, a coupling Jpd=0.06eV nm3,
and a spatial extension of the interaction a0=4Å

in the (0, sin θ, cos θ) direction and separated by a vec-
tor (0, 0, a). In Fig. 2 (top panel), we plot the energy
of this configuration for p=0.44nm−3, Jpd=0.06eV nm3,

and a0=4Å. We obtain, in agreement with reference [16],
that the interaction energy depends on the angle formed
by the spins and the vector joining them. Quantitatively,
however, this anisotropy is very small: less that 10−4

times smaller than the interaction energy and, therefore,
it can be safely neglected. We have found that this spin
anisotropy becomes larger for smaller values of the spa-
tial extension of the interaction a0, but always remains
smaller than 5% of the interaction energy, even for the
extreme case of a purely local coupling a0 = 0. We
have checked that the discrepancy between the results
of Zaránd and Jankó and ours originates in the differ-
ent models used for the band structure. The four band
chiral spherical model used in [16] considers an infinite
spin-orbit coupling and, therefore, overestimates consid-
erably the spin anisotropy of the interaction.

Due to the p-character of the higher energy valence
band states of GaAs, the symmetry of the k · p Hamil-
tonian is cubic. Therefore, spatial directions not re-
lated by the symmetry operations of the cubic group
are not equivalent. In order to estimate this spatial
anisotropy, we have calculated the exchange interaction
energy, Eq.(11), for two Mn ions located at (0, 0, 0) and
at (cosα, sinα, 0)a, and with spins oriented in the z-
direction. Using this geometry, we avoid the effects asso-
ciated with the spin anisotropy discussed before, leaving
alone the spatial anisotropy. In Fig.2 (bottom panel) we
plot the interaction energy as a function of the angle α,
for p=0.44nm−3, Jpd=0.06eV nm3, and a0=4Å. We ob-
serve that the interaction energy depends very weekly on

θ/π
0.0 0.2 0.4 0.6 0.8 1.0

E
n

e
rg

y
 (

m
e

V
)

-3.9692

-3.9690

-3.9688

-3.9686

-3.9684

-3.9682

-3.9680

(0,sinθ,cosθ)

(0,0,1)a

α/π
0.0 0.1 0.2 0.3 0.4 0.5

∆ U
(c

o
s
α,
s
in

α,
0)

(m
e
V

)

-3.375

-3.370

-3.365

-3.360

-3.355

-3.350

-3.345

FIG. 2: Top panel: Energy of a system formed by two Mn ions
located at (0, 0, 0) and at (0, 0, a). Mn spins are parallel and
point in the (0, sin θ, cos θ) direction. The calculations have
been done for p=0.44nm−3, Jpd=0.06eV nm3, and a0=4Å.
Bottom panel: Interaction energy of a system formed by two
Mn ions located at (0, 0, 0) and at (cosα, sinα, 0)a, for the
same parameters. Mn spins point in the z-direction.

the the orientation of the vector that joins the Mn spins.
As in the case of spin anisotropy, the effect of the spa-
tial anisotropy is also larger for smaller values of a0, but
always remains smaller than 5%. In conclusion, an ex-
pression like Eq.(2), with a coupling constant dependent
on distance but not on orientation, provides an adequate
description for the interaction between two Mn spins.

B. Virial expansion and perturbation theory

Previous MC simulations[12] have shown that the
Curie temperature of DMS increases linearly with x for
low Mn concentration. This linearity strongly suggests
that a virial-like approach, where the Mn interaction is
expressed as a sum of pairwise terms, should provide a
good approximation in this low concentration regime.
In order to test the validity of this approach, we have

computed the energy of a three Mn ions system, compar-
ing the result with the energy of three systems containing
only two Mn ions. We place three Mn ions at close posi-
tions (0, 0, 0), (1, 0, 0)a, and (0, 1, 0)a, and call ∆(3) the
exact energy of this three-body system. Assuming only
pairwise interactions, the energy to be associated to this
system can be written as (see Eq.(11):

∆
(3)
pairs = 3Σ+∆U020 +∆U200 +∆U220 (12)

The comparison between the exact and pairwise ap-
proximated energies for the parameters p=0.44nm−3,
Jpd=0.06eV nm−3, and a0=4Å, provides the following re-
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sults:

∆(3) = −5.043meV, ∆
(3)
pair = −5.031meV (13)

From these numbers, we conclude that writing the energy
of the system as a sum of pair interactions is indeed a very
good approximation for DMS.
The interaction energies presented in the previous sub-

sections were obtained by solving the Hamiltonian (3).
From these calculations we have justified the use of a
Heisenberg-like Hamiltonian for describing the magnetic
properties of GaMnAs. In this approach, the coupling
constants J(RIJ) have been obtained by solving Eq.(3)
for different distances between Mn ions, and for paral-
lel and antiparallel orientation of their spins. The exact
solution of the Hamiltonian (3), even for only two Mn
ions as in the previous subsections, requires the diago-
nalization of very large complex matrices (larger than
3000×3000), posing a severe computational problem.
To bypass this difficulty, we have resorted to pertur-

bation theory for the calculation of coupling constants.
We know that, for small values of the exchange cou-
pling, a second order perturbation theory treatment of
V (Eq.(8)) should be valid, leading to interaction ener-
gies proportional to J2

pd. In order to check the validity
of a perturbative treatment, we have calculated the in-
teraction energy of a system formed by two Mn spins
located at positions (0, 0, 0) and (1, 1, 0)a/2, for the pa-
rameters p=0.44nm−3, and a0=4Å. The results, plotted
in Fig.(3), confirm that the interaction energy remains
quadratic until values of the exchange coupling of the
order Jpd ∼100meV nm−3. Therefore, we conclude that
the use of perturbation theory for computing the interac-
tion energies is appropriated, enormously simplifying the
computational effort. It is worth mentioning here that,
although previous MC simulations [10, 12] have found
deviations form the quadratic dependence of the Curie
temperature on Jpd, however, these deviations appear at
values of Jpd larger than 0.1eVnm−3.
It is interesting to note that the perturbative regime,

with its associated small values of coupling constants,
fits nicely within the virial expansion approach. Three-
body interactions will only appear to order J3

pd, making
us expect our pair interaction approximation to be valid
even for not so low impurity concentrations, provided the
coupling constant remains small.

IV. HEISENBERG HAMILTONIAN.

MEAN-FIELD TREATMENTS AND

FLUCTUATIONS

The calculations presented in the previous section jus-
tify the description of magnetic properties of GaMnAs
in terms of a two body, spin isotropic, Heisenberg-like
Hamiltonian:

H = −
∑

I,J

J(RIJ)SI · SJ , (14)

Jpd (eV nm3 )
0.00 0.02 0.04 0.06 0.08 0.10

∆U
1
1
0
(m
e
V
)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3: Interaction energy as function of Jpd of a system
formed by two Mn ions located at (0, 0, 0) and at (1, 1, 0)a/2.
The calculations have been done for p=0.44nm−3 and a0=4Å

with exchange coupling given by

J(RIJ) =
1

N

∑

q

j(q)eiqRIJ . (15)

The Fourier transformed coupling, j(q), is given by

j(q) = J2
pd

N

Ω
χp(q) e

−q2a2

0 (16)

with the paramagnetic susceptibility obtained in the
standard perturbative manner form the original Hamil-
tonian of Eq. 3:

χ(q) =
1

Ω

∑

n′,n,k

nF (ǫn,k)− nF (ǫn′,k+q)

ǫn′,k+q − ǫn,k

| < n′,k+ q|sz |n,k > |2 . (17)

As explained in the previous section, we will consider
a space-isotropic susceptibility χ(q), obtained by angular
averaging the true susceptibility. This leads to a function
j(q) depending only on the modulus of q, from which real
space couplings are easily extracted.
Our main concern will be the obtention of critical tem-

peratures from MC simulations. Nevertheless, we will
also compare MC calculations with the predictions of
mean-field approaches. We believe this is interesting for,
given the usual computer limitations of MC calculations,
this comparison allows us to gauge the merits and short-
coming of standard mean-field techniques. In addition,
we will show that simple considerations concerning the
effect of fluctuations, allow us to estimate how far the
mean-field temperature is from the real one. Therefore,
we devote the rest of this section of this analysis.
In the standard mean-field approach, the critical tem-

perature can be read-off from the effective field experi-
enced by a magnetic impurity. In our site disordered
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system, this can be written as follows:

kTmf
C =

S2

3
<
∑

I 6=0

xiJ(RI) >=
S2

3
x
∑

I 6=0

J(RI) , (18)

Where the sum runs over all sites of the FCC lattice and
the average is taken over disorder configuration. The
latter is characterized by the random variable xi, which
marks the presence (xi = 1) or absence (xi = 0) of im-
purity at site i, with average < xi >= x.
The sum can be evaluated in Fourier space as follows

kBT
mf
C =

S2

3
x

(

∑

i

J(RI)− J(R = 0)

)

=
S2

3
x

(

J2
pd

N

Ω
χp(q → 0)− 1

N

∑

q

j(q)

)

= kBT
vca
C

(

1− 1

N

∑

q

χp(q)e
−q2a2

0

χp(q → 0)

)

. (19)

Notice that the self-interaction must be explicitly re-
moved. If it is not, one ends up with a different mean-field
approximation which we have previously termed the vir-
tual crystal approximation T vca

C . Looking at the Heisen-
berg Hamiltonian of Eq. 14, it is clear from a conceptual
point of view that the genuine mean-field approximation
requires this removal of the self-interaction term, even if
both temperatures turn out to be similar in the physi-
cal region of parameters . It is this suppression of self-
interaction what accounts for the reduction, and even the
disappearance, of the critical temperature with increas-
ing carrier concentration, owing to the oscillatory nature

of the exchange coupling. While Tmf
C accounts for this

effect, the VCA approach is blind to this oscillations, al-
ways predicting a finite transition temperature.
It is well known that mean-field approximations tend

to overestimate the transition temperature due to the
neglect of fluctuations. Nevertheless, the effect of the ne-
glected fluctuations, and their influence in the transition
temperature, can be estimated by means of a consistency
criterion, similar in spirit to the well-known Ginsburg cri-
terion (see any text on critical phenomena, for instance,
Ref.[23]), as we now explain. The mean-field approach as-
sumes independent spins under the influence of a molec-

ular field determined self-consistently. At T = Tmf
C , the

average molecular field is zero, and so is the magneti-
zation. Yet, even within this mean-field scenario, there
are fluctuations around the zero average field. In the
present case where the interaction can extend over large
distances for small carrier concentration, this molecular
field will be the sum of many random variables, therefore
a Gaussian distribution is expected for it. At the critical
temperature, we can write the following expression for
the distribution of molecular fields along the z axis

P(hmol) =
1

(2π∆hmol)1/2
exp

(

− h2mol

2(∆hmol)2

)

, (20)

with a dispersion in local fields given by

(∆hmol)
2 =

xS2

3

∑

I 6=0

(J(RI))
2, (21)

where the lattice sum can be evaluated in Fourier space
as

∑

I 6=0

(J(RI))
2 =

1

N

∑

q

|J(q)|2 −
(

1

N

∑

q

J(q)

)2

. (22)

Notice that both thermal and positional disorder con-
tribute to the expression of Eq. 21.
This means that, even though the average (sponta-

neous) magnetization is zero at the nominal critical tem-

perature Tmf
C , there will be a distribution of local mag-

netizations, with a dispersion given by

< m2 >Tmf

C

=

∫

dhmol P(hmol) (SM̃(h̃mol))
2 (23)

where

M̃(h̃mol) =

(

1

tanh(h̃mol)
− 1

h̃mol

)

(24)

is the normalized magnetization of a isolated impurity in
the presence of the (dimensionless) molecular field h̃mol =

Shmol/(kT
mf
C ).

This provides us with a natural consistency criterion
for the validity of mean-field results. We can say, for in-
stance, that we will trust the mean-field results for tem-

peratures T ≤ T ∗ < Tmf
C such that the average, spon-

taneous, mean field magnetization m(T ∗) is much larger

than the ”incertitude” of the magnetization at Tmf
C due

to fluctuations (several variants of this criterion can be
envisaged). To be specific, we will define a temperature
T ∗ such that

(m(T ∗))
2
= G < m2 >Tmf

C

(25)

where G is a ”large”, dimensionless parameter, and the
mean-field magnetization is the well-known implicit solu-
tion of m = SM̃(3 T

Tmf

C

m
S ). We have chosen the value of

G by looking at the simplest Heisenberg model: classical
spins in a cubic lattice with nearest neighbor couplings.
In this simpler reference model, the value of G is obtained
demanding that, if the previous scheme is applied, the
T ∗ so obtained coincides with the MC determined tem-
perature for that model[24]. The actual value is around
G = 8.3. Irrespective of the precise numerical value of
the coefficient G, it is clear that the T ∗ so obtained is
a direct measure of the effect of fluctuations and, there-
fore, of the corrections to the mean-field temperatures.
We will term this T ∗ the fluctuations-corrected critical
temperature.
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FIG. 4: Top panel: Fourier transform of the interaction en-
ergy as function of q for a two-band model with m∗=0.5,
p=0.44nm−3, Jpd=0.06meV nm3, and two different values of
the exchange coupling spatial extension a0=0 and a0=4Å.
Bottom panel: Real space exchange coupling as function of r
for a two-band model with the same parameters.

V. RESULTS: EXCHANGE INTERACTIONS,

CURIE TEMPERATURES, AND

MAGNETIZATION

A. Two-band model

As a first example, we apply or method to the simplest
case of a two-band model. In this model, the wavefunc-
tions are plane waves of momentum k with a dispersion
relation ~

2k2/(2m∗), m∗ being the average effective mass
of the holes. In Fig.(4) (top panel) we show the Fourier
transform of the exchange interaction for p=0.44nm−3,
Jpd=0.06meV nm3,m∗=0.5, and different values of a0: 0,

1.6Å, and 4Å. For a0=0, j(q) is proportional to the para-
magnetic susceptibility, which coincides with the Lind-
hard function[25] and exhibits the well known anomaly
in the second derivative at 2 kF . For a0=0, the param-
agnetic susceptibility of the carriers decays very slowly
as a function of q, and the value of the coupling j(q)
is significant even for values of q near the zone bound-
ary 2π/a. This result is unlikely as the effective mass
approximation and the k · p method are just applica-
ble for describing the semiconductor band structure near
the center of the Brillouin zone. Fortunately, this prob-
lem is solved when we introduce a finite spatial extent
(a0) for the coupling between Mn and carriers. In the
paper we perform calculations for a0= 1.6Å and 4Å. For
a0=1.6Å, the interaction decays rather slowly in recip-
rocal space, although its value at the zone boundary is
practically zero, Fig.(4). For a0=4Å, the interaction de-
cays rather fast in reciprocal space, being nearly zero at

half the Brillouin zone. The value a0=4Å corresponds
to the first neighbors distance in the FCC lattice with
a=5.66Å.
In Fig.(4) (bottom panel) we show the real space cou-

pling constant as a function of r/a for the same parame-
ters. For a0=0, this is nothing but the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction:

Jtwo band(r) ∼
2kF r cos(2kF r)− sin(2kF r)

(2kF r)4
. (26)

This function decays as r3 and oscillates in sign with
the distance. This oscillatory behavior is a signature of
the 2kF anomaly that occurs in the paramagnetic sus-
ceptibility. For finite values of a0, the 2kF anomaly in
j(q) is softened, and the oscillatory behavior of the real
space coupling, J(r), is damped, although for a0=1.6Å
it remains notable. It is important to remark the rather
long-range character of the interaction between Mn spins.
Even for the case of a0=4Å, the coupling is significant up
to distances three times larger than the FCC lattice pa-
rameter. Note that, in the FCC lattice, the number of
neighbors for a distance cutoff of 3a is around 500. There-
fore, in the Heisenberg Hamiltonian (Eq.14), the number
of neighbors to be taken into account is of the order of
x×500, at least.
Once the real space exchange coupling constants are

known, we perform classical MC simulations on the ori-
entation of the Mn spins. We use a FCC super cell of

volume N3 a3

4 with N = 30, including more than 1200
Mn ions. For this system size, we have checked that the
results are free of size effects, and that the disorder in
the Mn ion positions is self averaged. Due to the long-
range character of the interaction, we have to include the
interaction of each Mn spin with its first 150 neighbors
in the MC simulation. This corresponds to a real space
cutoff bigger than 5a. For distances larger than 5a, the
interaction can be neglected, as shown in Fig. 4.
The most notable result is the absence of a finite Curie

temperature in the MC simulations for small values of a0
and large values of the hole density. We have checked
the absence of spontaneous magnetization for a0=1.6,
and carrier densities above p = 0.44nm−3. For a den-
sity p=0.22nm−3, we obtain a Curie temperature of 14K,
considerably smaller than the mean field value. It is in-
teresting to realize that the fluctuation analysis described
previously fits nicely with these MC results. In Fig. 5, we
plot the predictions of the mean-field treatments, along
with the expected corrections from the neglect of fluctu-
ations. We see that, for p ∼ 0.44nm−3, the fluctuations
have grown to the point that no finite temperature ex-
ists meeting the consistency criterion described in Eq.
25, in agreement with the absence of magnetization ob-
served in MC simulations. Notice that, for lower car-
rier concentration, a finite magnetization re-emerges. In

fact, the mean-field temperatures Tmf
C , T V CA

C , and the
fluctuations-corrected temperature T ∗, merge in the very
low density limit, as shown in Fig. 5. This is not surpris-
ing, for a vanishing kF implies long-ranged interactions
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FIG. 5: VCA mean-field Curie temperature (T vca
C ),

self-interaction corrected Curie temperature (Tmf
C ), and

fluctuations-corrected Curie temperature (T ∗) for a0=1.6Å
and a Mn concentration x=0.05. The cross represents the MC
temperature for p=0.22nm−3. No magnetization is observed
above p=0.44nm−3 in the MC simulations.

where the neglect of fluctuations becomes increasingly ir-
relevant, leading to the asymptotic correctness of mean-
field results.

Increasing the spatial extension of the coupling be-
tween impurities and carriers to a0=4Å, the RKKY
oscillations are damped and a low temperature ferro-
magnetic GS appears in MC calculations. In the in-
set of Fig. (6), we plot the temperature dependence of
the Mn spin polarization as obtained from MC simula-
tions for a two-band model with m∗=0.5, p=0.44nm−3,
Jpd=0.06meV nm3, a0=4Å, and a Mn concentration
x=0.05. In Fig. (6), we plot the MC Curie temperatures
for different hole densities, along with the fluctuations-
corrected T ∗ and the mean-field results, both with
and without self-interaction corrections. The observed
MC temperatures are consistent with the fluctuations-
corrected T ∗. From this analysis, it is clear that Curie
temperatures approach the mean-field results with in-
creasing non-locality (larger values of a0) in the coupling
between impurities and carriers.

B. k · p model

The k ·p model describes the valence band of the semi-
conductors in a realistic way. The most characteristic
features of the GaAs valence bands are the anisotropy
in reciprocal space and the strong coupling between the
heavy and light hole bands. These effects substantially
alter the constant energy surfaces of the holes states,
which become non spherical, with a warped shape. The
lack of a well-defined modulus of the Fermi wavevector
softens the 2kF anomaly in the average paramagnetic
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FIG. 6: VCA mean-field Curie temperature (T vca
C ),

self-interaction corrected Curie temperature (Tmf

C ), and
fluctuations-corrected Curie temperature (T ∗) as a func-
tion of carrier density, for a two-band model with m∗=0.5,
Jpd=0.06meV nm3, a0=4Å, and a Mn concentration x=0.05.
MC Curie temperatures corresponding to different hole den-
sities are represented by crosses. Inset: Close dots represent
the temperature dependence of the Mn spin polarization as
obtained from MC simulations for p=0.44nm−3. Open dots
correspond to Mn spin polarization fluctuations, that help to
estimate the value of the Curie temperature.
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that help to estimate the value of the Curie temperature.

susceptibility as a function of q. This is clear in Fig(7)
(top panel), where we plot the Fourier transform of the
interaction energy for the same parameters as in Fig.(4),
for a0=1.6Å and a0=4Å. In the bottom panel of Fig.(7),
we plot the real space energy coupling J(r). It decays
almost continuously to zero with a very weak oscillation,
as expected from the absence of strong anomalies in j(q).
As in the two band model, we obtain that the interac-
tion between Mn ions extends several lattice sites, and
the quantity of merit, J(r)r2 (see inset of Fig.(7)), has a
maximum near r = 2a, for both values of a0=1.6Å and
a0=4Å.

We have performed MC simulation with the coupling
constants showed in Fig(7) and a concentration of Mn
ions of 5%. The details of the simulation are the same
as in the two band case. Representative results for the
Mn spin polarization as a function of temperature are
shown in Fig.(8). In Fig. (9), we exhibit the MC Curie
temperatures along with the mean-field and fluctuation-
corrected results. Comparing with the corresponding re-
sults for the two-band case, the six-band model shows an
overall increase of transition temperatures. In addition,
the MC temperatures are closer to the mean-field results
than in the two-band case, for the same parameters. It is
interesting to note that, again, the fluctuation-corrected
temperature (T ∗) offers a fair estimation of the MC tem-
perature. In any case, the combined effect of thermal and
disorder fluctuation are much less severe than in the two-
band case. This is evident, for instance, in the curves for
a0=4 Å, where the VCA transition temperature T vca
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0 0.1 0.2 0.3 0.40.5 0.6 0.7

p (nm
-3

)

0

50

100

150

T
em

pe
ra

tu
re

 (
K

)

a
0
 = 1.6 Å

T
C

MC

T*
T

C

mf

T
C

vca

0 0.1 0.2 0.3 0.40.5 0.6 0.7

p (nm
 -3

)

0

50

100

150

a
0
 = 4 Å

T
C

MC

T*
T

C

mf

T
C

vca

FIG. 9: k ·p model Curie temperatures from MC calculations
as a function of hole density, compared with results of mean-
field temperatures: T vca

C ,Tmf

C , and the fluctuations-corrected
critical temperature T ∗, for Mn concentration x=0.05

ready provides a good estimation of the MC TC . This is
consistent with the fact that interactions in this six-band
case, while extending several lattice sites, do not mani-
fest the violent sign oscillations present in the two-band
calculation. As in the two-band calculation, mean-field
and exact (MC) temperatures tend to merge at low car-
rier density, as expected from the increasing range of the
exchange coupling between Mn ions. Similarly, increas-
ing the spatial extent of the interaction between Mn ions
and carriers (a0) softens the effect of fluctuations, lead-
ing to a better agreement between mean-field and MC
temperatures.

VI. COLLECTIVE EXCITATIONS OF THE T=0

GROUND STATE

In this section, we study the low energy collective mag-
netic excitations of DMS at zero temperature. We as-
sume that, at T=0, Mn spins are fully polarized, and
the spin polarization of the carriers, ξ, is obtained by
solving the carriers Schrodinger equation in the presence
of the uniform magnetic field created by the Mn ions,
SJpdc. The low energy collective magnetic excitations of
the system are obtained from the Heisenberg Hamilto-
nian,

Hξ = EKE(ξ)−
∑

I,J

Jξ(RIJ)SI · SJ , (27)

where EKE(ξ) is the kinetic energy of the carriers eval-
uated at the hole spin polarization ξ. This Hamiltonian
describes small oscillations of the Mn spins from the fully
polarized state, that we choose to point in the z-direction.
The Fourier transform of the coupling constants Jξ(RIJ)
is proportional to the transverse response function of the
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FIG. 10: Spin wave dispersion, obtained in the virtual crystal
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a Mn concentration x=0.05 and two different values of a0,
1.6Åand 4Å. The carriers spin polarization is ξ=0.69 for the
two band model and ξ=0.69 for the k · p model.

polarized hole gas χ⊥(q, ξ),

jξ(q) = J2
pd

N

Ω
χ⊥(q, ξ)e−q2a2

0 (28)

In writing Eq.(27) and Eq.(28) we assume, as we have jus-
tified in previous sections, that the Mn interaction energy
can be expressed as a sum of Mn spin pair interactions,
which only depends on the relative angle formed by the
Mn spins and on the distance separating them. We have
also neglected the magnetic anisotropy energy that we
know is very small[5, 6].
The low energy collective excitation are obtained by

solving the equation of motion of the Mn spins,

−i~∂S
−
I

∂t
= [Hξ, S

−
I ] = −

∑

J

Jξ(RI,J)
(

Sz
i S

−
J − Sz

JS
−
I )
)

.

(29)
Near T=0, the Mn spins are fully polarized, we replace
Sz by S and the equations may be linearized.

A. Spin waves in the VCA

In the VCA, all sites are equivalent and, in Eq.(29),
the sum over the Mn positions is replaced by a sum over
all lattice position times the Mn concentration x. In this

approximation the collective excitations are spin waves
with momentum q and dispersion relation

ω(q) = xS [Jξ(q = 0)− Jξ(q)] . (30)

In Fig.(10) we plot the spin wave dispersion for the two-
band model and for the six-band k · p model with typ-
ical values of the parameters and for both a0=4Å and
a0=1.6Å. The spin waves are gapless as the model Hamil-
tonian (27) is invariant under rotations. At small val-
ues of the wavevector, the spin waves disperse quadrati-
cally and the expression ω(q) = ρsq

2/(2π/a) defines the
spin stiffness ρs. The spin waves are harder in the six-
band k·p model (ρs=242meV and 370meV, for a0= 1.6Å
and a0=4Å, respectively ) than in the two band model
(ρs=18meV and 76meV, for a0= 1.6Å and a0=4Å, re-
spectively). This is consistent with the fact that the
Curie temperature is larger in the k · p model than in
the two band model. Also we find that the stiffness in-
creases as a0 increases. These numerical results for the
stiffness agree with those obtained by Konig et al. using
a formalism that treat the Mn spins as non-interacting
bosons[26].

B. Effect of the disorder

In this subsection we analyze the effect of the disor-
der on collective magnetic excitations of the T=0 ferro-
magnetic ground state. To this end, we diagonalize the
equations of motion, Eq.(29), for different disorder re-
alizations. We place the Mn ions randomly on a FCC
lattice, and consider the interaction of each Mn with all
its neighbors within a distance shorter than six lattice
units. We consider systems with more than, typically,
500 Mn spins, and use periodic boundary conditions. In
the presence of disorder, the collective excitations can not
be characterized by a wave vector and we, therefore, ana-
lyze their density of states (DOS). In Fig.(11) we plot the
DOS of the collective excitations for the two band model
and for the for the six-band k ·p model, for different val-
ues of a0. The DOS is obtained by averaging over differ-
ent disorder realizations. For every disorder realization,
we always obtain a zero energy mode that corresponds to
an uniform rotation of all the Mn spins. This Goldstone
mode reflects the symmetry of the Hamiltonian Eq.(27).
In Fig.(11a) we see that, in the two band model and for
short spatial extension of the spin interaction, there are
collective excitations with negative energy. This implies
that the fully polarized GS is unstable. This instability
is due to the long range oscillations of the interaction
between the Mn spins. For a0=4Å these oscillations are
damped and the fully polarized ferromagnetic GS is sta-
ble.
In Fig.11(b), we plot the DOS for the six band k · p

model. Our results show that the fully polarized ferro-
magnetic GS is stable for any value of a0 at the density of
carriers studied. This stability is the result of the Fermi
surface warping produced by the heavy hole light hole
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FIG. 11: Density of states for low energy excitations in the
two-band model and in the k · p model, obtained from the
equation of motion method. The DOS is averaged over differ-
ent disorder realizations. The parameters used are the same
as in Fig.(10).

mixing in the k · p Hamiltonian. The holes do not have
a well defined 2kF anomaly in the response functions.
This stability analysis obtained from the study of the

T=0 ferromagnetic GS low energy magnetic excitations
is in agreement with the results presented in the previous
section. Note, however, that only the paramagnetic spin
susceptibility enters in the interaction between Mn spins
for the calculated Curie temperatures,.
Recently Schlienman et al.[14, 15] have computed the

T=0 response function of DMS and have suggested that,
in general, the GS of DMS should be non collinear. In
their calculations they use a two band model, and the
instability is the same that we find in Fig.11(a). From
our calculations we conclude that the instabilities found
in references [14, 15] are just due to the model consid-
ered, and disappear when a more realistic band structure
model is used.

VII. CONCLUSIONS

We have introduced a Heisenberg-like Hamiltonian,
Eq.(14), for describing the magnetic properties of GaM-
nAs. This model just requires the positions and orienta-
tions of the Mn spins. The use of this model is justified

because: i) the energy of the system can be written as a
sum of pair interactions, ii) the interaction between two
Mn spins is well described by their scalar product and iii)
the coupling constants of the Heisenberg model depend
basically on the distance between Mn spins, and can be
evaluated perturbatively.
As the electronic properties of the host semiconductor

are integrated into the coupling constants of the Heisen-
berg Hamiltonian, it is possible to perfom MC simula-
tions in systems with a large number of Mn spins, and
so to obtain the Curie temperature of the DMS. We have
compared the Monte Carlo, mean field and a fluctuation
corrected critical temperatures for different band struc-
ture models and for different values of the exchange cou-
pling spatial extension a0. The fluctuations effects are
important for large hole densities, being more relevant
for smaller values of a0.
In the two band model, the existence of a well defined

2kF anomaly produces a long range interaction between
Mn spins that oscillates in sign with the distance. The
fluctuations are magnified by these oscillations which can
lead to the disappearance of the ferromagnetic state from
moderate to large values of the hole density. We find that,
for a0 smaller than 1.6Å and hole densities larger than
0.44nm−3 ,there is not a finite Curie temperature. When
the value of a0 increases, the interaction oscillations are
damped and a finite Curie temperature appears.
In the k · p model, the warping of the Fermi surface

softens the 2kF anomaly in the response function and the
real space interaction oscillations are almost suppressed.
Therefore, the effect of fluctuations is weaker than in the
two band model. We find that, for a0=4Å, the fluctua-
tions effect reduces the Curie temperature no more than
10%. For smaller values of a0, the effect of the fluctua-
tions is more severe, with a reduction of Curie tempera-
tures by almost 50%, for p=0.66nm−3. Nevertheless, we
believe that a value of a0 close to 4Å is appropriated,
as it corresponds to the first neighbors distance in the
FCC lattice. This is the minimum separation between
the Mn–d orbitals and the GaAs-p orbitals that form the
hole band of the semiconductor.
Finally, we have studied our model in the zero temper-

ature limit. We have computed the low energy collective
magnetic excitations of the T=0 ferromagnetic ground
state. In agreement with the Monte Carlo results, we find
that, for the two band model and moderate to large hole
densities, the ferromagnetic ground state is no longer sta-
ble. However, when a more realistic six band k ·p model
is used, the stability of the fully polarized ferromagnetic
ground state is recovered.
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