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Using the method of the two-time Green's function, both static and dynamic properties 

of low dimensional spin systems with an anisotropic exchange interaction were investigated. 

It was shown that the magnetic behaviours of one- and two-dimensional spin systems are 

considerably different from those of the usual three-dimensional systems. That is, the transi

tion temperature is lower than that expected from the magnitude of the coupling constant 

when an anisotropy is small enough. The short range order is developed more remarkably 

in the neighbourhood of the transition temperature. The damping constant increases in both 

ferro- and antiferromagnet with decreasing temperature owing to the anomalous growth of 

fluctuation. At the same time a broad shoulder is developed in the line shape, which may 

be considered as indicating quasi-collective modes of motion which persist in the paramag

netic phase. 

§ 1. Introduction 

Recently many experiments have revealed the magnetic properties of complex 

salts like Cu (NH3)4 504, H 20,1),2) Cu (C6H 5COO)2' 3H20
3) and CoCI2· 2H20

4), etc., 

which are considered to have a rather strong magnetic coupling along a particular 

aXIS. Their magnetic behaviours have several features different from those of 

the usual three-dimensional spin systems. That is, the transition temperature is 

considerably lower than that expected from the magnitude of the coupling constant. 

Near the transition temperature the behaviours of susceptibility and specific heat 

deviate strongly from that in the simple molecular field theory. Anomalous 

relaxation phenomena are found in the vicinity of the transition point. 

A number of theoretical works have been devoted to the study of static 

properties. However, only in the case of a plane and a linear Ising spin systems 

exact solutions have been found for the transition temperature, the specific heat,5) 

the spin polarization,6) and the magnetic susceptibility.7),8) On the other hand, 

on the Heisenberg spin system, only a linear chain system has been investigated 

extensively.9)~12) The dynamical properties of low dimensional spin system have 

scarcely been investigated theoretically.13),14) 

The aim of this paper is to treat both static and dynamic properties and 

their relations in the low dimensional spin systems, and to look for the cause 

of difference between the lower dimensional systems and the three-dimensional 

one. 

These problems are investigated here by using the Green's function method 

for two reasons. First, it allows us to treat both static and dynamic behaviours 
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Magnetic Properties of Low Dimensional Spin Systems 175 

in the same theoretical framework, as was shown in Tomita and Tanaka's paper.15
),*) 

Secondly, several papers have already succeeded in obtaining reasonable descrip

tions of the spin systems by means of this method.15)~19) 

The response function of a transverse component is identical with the follow

mg Green's function l6
) 

G+- (r11 r2, t1 - t 2) =@ (t1 - t 2) < [Sr~ (t1), Sr~ (t 2) J> 

= ~-- ~~ S_ooooG+ - (qII q2; (J)) exp {i (qlrl + q2r 2) } exp { - i{J) (t1 - t 2) } d{J) , 
N 2 

ql qz 

where the step function @ (t) is defined by 

get) = 1
1 , 

° , 
t>o, 
t<o, 

(1·1) 

< ... > is a canonical average and .LV indicates the total number of spins. Therefore 

the Green's function G+- (qllq2, (J)) is directly related to the generalized transverse 

susceptibility x+- (q, (J)). 

In § 2 the transverse static correlation functions are derived and the transi

tion temperature, the paramagnetic polarization and the susceptibility are inves

tigated both qualitatively and quantitatively. Also a discussion will be given of 

the degree of the short range order on the basis of the sum rule. Section 3 is 

devoted to the behaviour of the damping constant. In § 4, the line shape of the 

magnetic resonance absorption is studied. The approximations employed in this 

paper are examined in § 5. 

§ 2. Static properties 

2.1) Correlation functions 

Let us consider a plane system of Heisenberg spins with S = t, which lies 

m the x-z coordinate plane. The Hamiltonian is then given by 

H= - ~ (J)o(r)S/+ ~~ J(rz-sz) Ok (rx- s;;;) {SroS/+t(l-a) (Sr+S, ... -+Sr-S, ... +)} 
r r>s 

+IJ ~~ J(r;;;-sx) Ok (rz-sz) {SroS/+t(l-a) (Sr+ s'~-+Sr-s's+)}, (2·1) 
r>,s 

where the notation ok(r) means Kronecker's 0 function. The first term stands 

for the Zeeman energy ({J)o (r) = r H (r) ), and the second and the last terms are 

the anisotropic exchange energy of intra- and inter-spin chain, respectively. The 

exchange coupling J(x) is assumed to be nonvanishing only between the nearest 

neighbouring spins. The parameter IJ denotes the ratio of coupling constants 

along two coordinate directions; that is, for IJ = 0, the system is reduced to a 

*) Hereafter, this paper will be referred to as T-T. (See Appendix 1.) 
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176 K. Kawasaki 

one-dimensional system along z-aXIS. The notation a IS a parameter which in

dicates the degree of anisotropy in the exchange energy; when a = 0, the interac

tion becomes isotropic, and when a = 1, the system is reduced to an Ising model. 

Under the Hamiltonian Eq. (2 ·1), the equations of motion of the Fourier 

transformed Green's functions are given by 

wG±~(klk'; w) = ±i2<So>±~ wo(q)G±~(k-qlk'; w) 
q 

± ~ ~ D(q, k-q)Go±~(k-q, qlk'; w), (2·2) 

where 

D(q,k-q) = (l-a)J(O) (cos qz+1j cos qx) -J(O) {cos (kz-qz) +ljcos(kx-qx)}' 

(2·3) 

and the Fourier transform is defined by 

A~;=~ I: A(q)exp(-iqx). 
J.V q 

(2 ·4) 

The so-called random phase approximation is introduced to close the hierarchy 

of the Green's functions. The nonvanishing component of the polarization rJ (q) 

=N-\SO(q) > is nothing but the one including a value of q which is identical with 

that of the impressed static field, i.e. q = () for a uniform field Wo (0) and q = re 

for a fictitious staggered field Wo (re) . 

The solution of Eq. (2·2) can easily be obtained as follows :15) 

where 

G+- (kl- k; w) = irJ (re) _____ ,'i~Cz!'_!~=_"!) ________ _ 
vi Ao (k - 7l', 7l') £10 (k, 7l') 

x [~_ vi ilo(k ~ ;,7t)Jo-(l~-, ;) + w + vi io(k -l, ;)-io(k~-;yJN 
for a staggered field, (q = 'It) (2·5) 

= i 2rJ(O) N 
w - ilo (Ii, 0) 

for a uniform field, (q = 0) (2 ·6) 

ilo (k, q) = Wo (q) + rJ (q) D (k, q) . 

Transforming this solution into an ordinary correlation function the transverse 

static correlation function is found to be 

,+- -<S +5- > Ik, -k - /" -k 
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Magnetic Properties of Low Dimensional Spin Systems 

for q = 'It , 

= 2N(J (0) / {1- exp (- Lio (k, 0) /kBT)} 

for q=O. 

177 

(2· 7) 

(2·8) 

In the same way, the other transverse static correlation function can be easily 

obtained as 

In the paramagnetic 

that 

rl.:, :"'~k = r1;;, --k for 

= rk,::1i; - 2(J (0) N for 

regIOn (J (q) /kBT is small enough 

2(J (q) 
rk'::k=rl.:,:"'~Ii;=NkBTL1-;(k, q)' 

q=7C, 

q=O. 

compared 

under the external wavy field characterized by the vector q. 

2.2) Transition temperature 

(2·9) 

(2 ·10) 

with unity, 

(2 ·11) 

In order to get the transition temperature, the sum rule for S = l18) 

1,,(+_+ -+)-1 
N

.L.J rk, -Ii; r1c, -1c -
Ii; 

(2 ·12) 

so 

IS now invoked. Inserting Eq. (2 ·11) into the above relation, the transItIOn 

temperature Ta (or TN) is determined by requiring that the polarization (J (0) 

(or (J(7C» is nonvanishing when the applied field wo(O) (or Wo(7C» on the fer

romagnet (or antiferromagnet) is reduced to zero. 

IJ(O) I (1 + r;)/4kB T N = IJ(O) I (1+r;)/4kB T a , 

=~~ 1 
N Ii; 1- ((I-a)/(I+r;» (cos kz+r; cos k:c) 

(2 ·13) 

If the summation in Eq. (2 ·13) may be replaced by a corresponding integration, 

the following formula is easily obtained, 

where 

p= (l-a)/(I+r;), 

¢1,2 = [ {1-- (1- r;2) p2} ± lTr-=(I~ ~2ypiP-=4r;-2(}iJ/2r;p , 

g (¢) = (r;p¢ _1)2 _ p2, 

,;2= -g(¢2)/g(¢1), /i= (1-¢22)/(1-¢12
), K-2=/i/v\ 

(2 ·14) 

and F(K-) IS the elliptic integral of the first kind. 21a
) This is a fundamental 
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178 K. Kawasaki 

relation between the transItIOn temperature and the parameters a and 'lj. 

Let us now look into several extreme cases with respect to the value of 

parameters. In the linear system ('lj = 0), Eq. (2 ·14) is rewritten as 

(2 ·15) 

When the exchange interaction becomes isotropic, i.e. a = 0, this expression IS 

consistent with the theorem that a linear spin system has no critical point.H
) 

In the case of nonvanishing a, however, according to the present formula, the 

linear spin system exhibits a transition point. The transition temperature is 

proportional to the square root of a in the vicinity of a = 0 and it is the same 

as that of the molecular field theory in the Ising limit a = 1. 

In the planar system with 'lj = 1, the transition temperature is obtained in 

the form 

\J(O) \/2kBTa= (4/(I-a)) vw(a)· (2/n)F(w(a)), (2 ·16) 

where 

The transition temperature tends to zero as the anisotropic parameter a IS de

creased, and it vanishes for a = O. It becomes 

(2 ·17) 

III the nearly Ising case (a = 1) . 

The more quantitative relation between the transition temperature and pa

rameters a and 'lj is shown in Fig. 1. 

2.3) T he spin polarization 

The paramagnetic spin polarization is now discussed in the presence of a 

uniform external field. From Eqs. (2 ·11) and (2 ·12) the following equation 

can be obtained: 

1/2 = 0 (0) ~ L: coth[ \J(O) 1 (1 + 'lj) {. Wo (0) 
N Ii; 2kBT )J(O) \ (1+'lj) 

±0(0) (1- ~~~ (cos kz+'lj cos k x ))} l (2 ·18) 

where the upper sign refers to a ferromagnet and the lower sign to an antiferro

magnet. The argument of coth is nothing but the product of (\J(O) \/2kBT) 

X (1 + 'lj) and the excitation energy from the ground state, which should not be 

negative as far as only stable solutions are concerned. Therefore the condition 

0(0)«I/(2+a)) (wo(O)/\J(O) \ (1+'lj)) is derived for the antiferromagnetic spin 

polarization, *) under which Eq. (2 ·18) determines the spin polarization uniquely 

*) In the ferromagnetic cases, the argument of coth is always positive. Therefore there is no 

condition for spin polarization. 
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l'vfagnetic Proj.Jerties 0/ Low Dimensional Sj.Jin Systems 179 

1.0 ---------------=-=-;;;;;-~-jiiio--·--·i 

Tc1r. Me 

0.5 

a 
°O~----------~--------~ 

0.5 1.0 

Fig. 1. The transition temperature as a func

tion of a and 'YJ in the plane Heisenberg 

magnet. T Me denotes the transition tem

perature IJ(O) 1 (1 + 'YJ)/4kB , given by the 

molecular field theory. 

IJ(O) I (l+r;)/4.kB T 

as a function of temperature and field.*) 

Equation (2 ·18) must be solved nu

merically except a few limiting cases men

tioned in the following. When {J)o (0) / 

kBT> 1, the spin polarization is generally 

given by 

0' (0) = t tanh ({J)o (0) /21~BT), (2 ·19) 

which is exactly the same formula 22) as 

that found for an independent spin system. 

In the opposite limit, i.e. {J)o (0) / kBT < 1, 

the spin polarization is proportional to 

(J)o (0) / kBT. 

2.4) The paramagnetic susceptibility 

Using Eq. (2·18) and the relation 

X (T) = lim 0>0(0)->0 (0' (0) / (J)o (0», the para

magnetic susceptibility X(T) is determined 

from the following equation: 

= ~ ~ ------_·_---------0·-------_·_-----_·_· __ ·_--_·· ......... _. ___ . __ ~ .. __ . ____ . __ .. , 

N k I/IJ(O) I (I+r;)x(T) ± {I- ((I-a)/(l+r;» (cos kz+r; cos 7~.v)} 

(2·20) 

where the upper sign refers to ferromagnet and the lower sign to an antiferro

magnet. A useful relation is derived from the above equation, i.e. 

I/(IJ(O) I (I+r;)xf(T» =I/(IJ(O) I (I+r;)Xa(T» -2, (2·21) 

where, Xj (T) and X(~ (T) are the ferro- and antiferromagnetic susceptibilities, 

respectively. 

Replacing the summation by the corresponding integration, we can easily 

calculate the right-hand side of Eq. (2·20) 

(2·22) 

where ';h ';2, and g (.;) are redefined as follows: 

-----.-----

*) For example, we investigate a linear spin system with a=O at absolute OaK. Replacing the 

summation in Eq. (2,18) by the corresponding integration, the following results are obtained. 

A ferromagnetic linear chain system has no spontaneous spin polarization. On the other 

hand, for an antiferromagnet, 0'(0) =1/2 for wo(O) /IJ (0) 1>1, and 0'(0) = (wo(O)/IJ (0) 1)(1 + sinn/4O' (0) ) 

for wo(O)/IJ(O) 1<1. There is an infinite series of solutions, namely, for woCO) =0, the relation 0'(0) = 

1/6n (n=l, 2, ''', 00) satisfies Eq. (2,18), but from the above condition, only 0'(0) =0 must be 

regarded as a real solution. 
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180 1(. Kawasaki 

~1,2= [J(02(T) - (1-il)p2±'; (Ko2(T) - (1-~-2)ri)2-4r/p2KocrYJ/2r;pI(o(T), 

g (~) = (r;p~ - Ko (T) Y - p2 

and 

(2· 23) 

After a straightforward calculation the Curie-Weiss formula is found in the high 

temperature limit, 

(2·24) 

where 

C=1/4kB 

and 

@= IJ(O) I (1+r;)4kB • 

If we replace Ko (T) by unity, Eq. (2·22) coincides with Eq. (2 ·14) which 

determines the transition temperature. Therefore, at the transition point, the 

susceptibility for an antiferromagnet I J (0) I (1 + '1) Xa (T) is one half and for a 

ferromagnet Xi (T) is divergent. N ear the critical point, the paramagnetic sus

ceptibility decreases in proportion to (T - T a) . Its coefficient is (4kB/ I J (0) I) 

X Ii=-Cl - 002 for both linear and planar systems.*) 

The '1 and the temperature dependences of the susceptibilities with various 

values of the anisotropic parameter are shown in Fig. 2 for the antiferromagnet. 

It is interesting to compare the present results with those of the molecular 

0.4 

0.3 

r 
o 

anti ferromagnet 

1.0 2.0 

Fig. 2. Antiferromagnetic susceptibility versus the 

temperature T/TMC• The solid lines represent 

the case of a = ° and the broken lines a = 0.5. 

Ii,' / molecular field theory 

0..5 1 \ i'\y present result 

1 i . B I k" 120) 
l ,./ uaevs II 12hl 

0..4 \ N~ I I : and Inowashiro and Kctsura 

\ i 'Bonner-Fisher 9
) 

: .......... 1......... . 
0..31. ~' ~-- -- ~ , \ ../': --~,,~ 

~Gri:ffithsI2C) '''-''-, 

0.2 Zf-meain value ~ ____ _ 
I : 

: : 

0..1: j 

:N'lo.i 
, I T/T

MC 0.; , 
I.Q 2.0 3.0 4.0 5.0 

Fig. 3. Antiferromagnetic susceptibilities 

of an isotropic linear chain in various 

theories. 

*) If a=O, the paramagnetic susceptibility decreases in proportion to CT- Ta)2. 
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lVlagnetic ProjJerties of Lo'w Dimensional Spin Systems 181 

field theory and other previous theories. 9
),12a)-12C) As to the linear Heisenberg 

spin system this companson is made in Fig. 3. 

2.5) Short range order 

Although there is no long range order in the paramagnetic region, the short 

range order is persisting near the transition temperature. The behaviour of this 

short range order is investigated on the basis of the sum rule indicating the 

total spin conservation Eg. (2· 12) . 

For the sake of simplicity, let us confine ourselves to the case of isotropic 

Heisenberg ferromagnet (a = 0) and 7J is zero or unity. Using the long wave 

approximation, Eg. (2 ·12) is rewritten as follows: 

. 41lBT c (d) rir lld-l 

1 =TJ(O) I (1 + 'lJ)--~d- Jo 1(0 (T)-=i+ k2/2cl
d1l 

, 

= T.T(O~lIB;f+~5£ ~~l Sairn (k) dk , (2·25) 

where n (k) indicates the number density with the k-mode, 'd' the dimension of 

a system and c (d) the integration of the angular part. 

At high temperature, n (k) slowly varies with ll, while near the transition 

temperature , as shown in Fig. 4, it has a fairly sharp peak at a certain value 

of wave number denoted by h j1I• When the temperature reaches the transition 

point, only the unjform mode may exist. 

It is easy to calculate the value of kAt in one- and two-dimensional systems 

near the critical point, i.e. 

for the one-dimension, 

for the two-dimension. *) 
(2·26) 

2-dim 

o 0.1 0.2 0 0.1 

Fig. 4. The number density n(q) of spins with 
q-mode. The numerals on the curve indicate 

the temperature 4kBT/!J(O)!(1+1l). At the 
absolute zero degree only the uniform mode 

(q=O) is allowed. 

T'he reciprocal value of lljJI may be 

a rough measure of the size of the 

short range order within which the 

spin arrangement is considered spa-

tially uniform. H) In other words, the 

short range order is more developed 

when the temperature is lowered or 

the number of dimensionality is 

smaller. The same discussion can 

be applied to the antiferromagnet 

and their k]/s are identical with those 

of ferromagnet if l?- is regarded as 

a deviation from its Bragg point. 

*) When a;rfO, kfr1~[(4/(1-a»{a+(2kB/!J(O)!)v'1=(f=~r2 (T-Tc)}]112 for the two-dimen-

SlOD. 
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182 K. Kawasaki 

§ 3. Damping constant 

Now, let us discuss the damping constant in one- and two-dimensional spin 

systems in the paramagnetic region. According to T-T 15
) (see Appendix I), the 

general expression of the damping constant is given by 

r(k ) = / 7C ~ '\, {a(2) ~l{~ C(3) (k, q) (w - do (q, O))} 
, w t\I 2 N L;: b (k, q) + b(2) (k, q) 

{ 
(w-do(q, 0)2} 

X exp - ~ 2b(2) (k, q) , (3 -I) 

where the notations a(2) (k, q), b(2) (k, q) and C(3) (k, q) are the same as those listed 

in Table III of the paper T-T except that D(q, q') should be replaced by Eq. 

(2·3) and C (q, q') should be defined by the following formula: 

C(q, q') =t(l-a)J(O) {(cos qz+1J cos qJ;) - (cos qz' +IJ cos q/)}. (3·2) 

On the right-hand side of Eq. (3 ·1), the term involving C(3) (k, q) is neglected, 

for the quantity C(3) (k, q) involves the three-spin correlation, which is much 

smaller than two-spin correlation at least in the paramagnetic phase. In the 

usual case the wavelength of an applied field is long enough compared with 

the sample dimension. Therefore, the special case k = 0 corresponds to the 

response of a system. 

In the case of the plane spin systems with anisotropic exchange coupling, 

the damping constant of resonance absorption is rewritten in terms of the 

generalized susceptibilities!7) 

where 

and 

T(O, 0) =r.L(O)-.l ~ cp(q), 
Nq 

1 
rll (q) =KoCT) =F--Ccos qz+1J cos qJ;), 

1+1J 

(3·3) 

(3·4) 

(3·5) 

the upper sign refers to a ferromagnet and the lower one refers to an antifer

romagnet. As was pointed out by Tomita,l7) the damping constant consists of 

two factors, i.e. the configuration disparity r.L (0) and the torque imbalance 
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Magnetic Properties of Low Dimensional Spin Systems 183 

:Eq<;o (q). In the high temperature limit, the damping constant is of common 

to ferro- and antiferro magnetic spin systems, i.e. 

(3·6) 

This is essentially proportional to the square of anisotropic parameter. The 

temperature dependence of the damping constant will be discussed in more details 

in the following section. 

3.1) Linear spin systems (r; = 0) 

Replacing the summations in Eq. (3·3) by the corresponding integral, the 

damping constant is easily obtained as follows: 

T(O, 0) =aIJ(O)lr-L(O)H(AI' A2; T)/(vP(T) ·r) 

X [{~=FKo(T) (~- 1 )}~F(fC2) 
1- a 010 (l-aYola TC 

+ K 0 (T) (AI - A2) {(oj (010
)2 ! JI (Uo\ fC2) - (a/ { (1- a) 01a}2 ! JI (Ua

2
, fC2)} J 

(3·7) 

where II(u 2
, fC2) is the elliptic integral of the third kind,21a) and the upper sIgn 

refers to a ferromagnet and the lower ones to an antiferromagnet. The deriva-

10O'Or---;;;;:::----r-~----_:_r_-,_----._-r__---_,..-__. 
\ 

\ 

10.0 

1.0 

0.01 0.1 

\9-
\ \' 

\0 

\.0/ 
\ 

\ 
\ 

\ 

", 
' ..... 

\ 
\ 

\ 

\ 
\ 
\ 
\ 

" 
\ 
\ . 
\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 
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Fig. 5. The damping constant of a linear magnetic chain with various anisotropy. The notation 

r co (0, 0) indicates that in the high temperature limit. The solid lines represent the ferromagnet 

;:tnd the broken lines the antiferromagnet. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

2
/2

/1
7
4
/1

8
4
0
6
6
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



184 1(. Kawasa!?i 

tion of the above equation and various notations used in it are described in Ap

pendix II. The temperature dependence of the damping constant for linear spin 

systems with various values of anisotropic parameter was computed by using 

Eq. (3·7) and the results are shown in Fig. 5. The normalized damping constant 

r (0, 0) / roo (0, 0) of the ferromagnet grows monotonically with decreasing tem

perature, while in the antiferromagnet it has a minimum value in some cases and 

then becomes increasing toward the transition temperature. If the parameter a 

approaches to unity, the difference between damping constants of ferromagnet 

and antiferromagnet disappears. In the neighbourhood of the transition tempera

ture, the long wave approximation should be valid because the terms with the 

smaller q becomes dominant. In this approximation the damping constants are 

easily calculated as (see Appendix III) 

reo, 0) ~aIJ(O) I/-tlil' for a ferromagnet 

and (3·8) 

~va(i~a) IJ(O) 1/,vLlT for an antiferromagnet, 

where 

LlT= (T-Ta)/Ta. (3·9) 

When the temperature approaches the critical point, the torque fluctuation in

creases in proportion to (T - T a)-1/4 both in ferro- and antiferromagnets and r 1- (0) 

becomes a for the former and 2 - a for the latter. 

10.0 

r-~~---------'l-----'-----------'----'-----------,----, 

r(o,o) 
1:,(0,0) 

/\ 
7=0 \ 

( \ \\ 
\ \ 
\ \ 

\ \ 

\ 
\ 

\ 
\ 

\ , 

\ 

, 

\ , 

\ 

\ 
\ , 

\ , , \ 

/', \ 
.... \ 

7= I '.<, 
\ ..... \ 

'\, 
" .......... , ... 
, -----

1.0 -
.... 

" ------,--------

~~ __________ ~ ____ LI __________ ~ __ ~I __ (T_-_T,~c_)/_T,~C __ ~I. ___ _ 

0.1 1.0 10.0 

Fig. 6. The 1)-dependence of the damping constant. The solid lines represent the ferromagnet 

and broken lines the antiferromagnet. The numerals on the curve indicate the value of the 

parameter~1). 
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3.2) Plane spin systems 

Since the q-integration In Eq. (3·3) is analytically impossible in this case, 

it was computed numerically. There seems to be little difference in the a de

pendence of the line width between the linear and planar spin systems. It IS 

rather instructive to note how the line width is affected by the magnitude of 

the interaction between chains. The 1J dependence of the damping constant IS 

shown in Fig. 6 for the system with a = O.Ol. 

As is easily seen, the characteristic behaviours of the line width of the 

linear chain are weakened by increasing 1J. That is, when 'r; becomes unity, 

the damping constant of the ferromagnet shows the thermodynamical slowing 

down in the range T> 2Ta and then grows up below 2Ta. The antiferromagnets 

have no dip at any temperature and increase monotonically with decreasing 

temperature as is well known in the three-dimensional case.17
),23) 

3.3) Physical situation 

It is interesting to compare the present results with those of the three

dimensional spin systems. In the usual ferromagnet with a uniaxial anisotropy, 

the resonance line width shows thermodynamical slowing down except in the 

neighbourhood of the critical temperature while in the antiferromagnet it grows 

monotonically with decreasing temperature. In the one-dimensional systems with 

an anisotropic exchange, as was described in the previous sections, the line widths 

of both ferro- and antiferromagnet show different features. This is essentially 

due to the dimensionality of the system for the following two reasons. First, 

it is shown that the line width caused by the uniaxial anisotropy also has the 

same tendency as that caused by the anisotropic exchange, therefore difference 

does not seem to arise from the character of the interaction. Secondly, when 

the system is changed into a plane system from a linear chain, the damping con

stant approaches gradually to that of the three-dimensional case. 

In order to show how the damping constant depends on temperature, the 

contribution of two factors; i.e. the configuration disparity r 1. (0) and the torque 

ferro 

1.0 

0.1 

->-(T-Tc)/Tc 

5.0 

10.0 \ '1;(0)_. __ 
1 __ 0-· 

,tantiferro 
} ... -----" 

1.0 \ 

\ no,o) x 102 

0.1 \ 

"'~~~~-'tlQ,O) xl02 

~~C~---_ 

500 
0.01 

Fig. 7. The contribution of the configuration 

disparity r 1. (0) and the torque disparity 

"2J qtp(q)/N to the damping constant of a 

linear chain with q:=0.01. 

imbalance ~q((J(q)/N, to the damping 

constant is investigated in the one-dimen

sional spin system with small a (= 0.01). 

In Fig. 7, their relations are shown. 

Although the quantity r 1. (0) is common 

to both magnets in the high temperature 

limit, it is reduced with decreasing tem

perature and has limiting values a and 

2 - a for the ferromagnet and antifer

romagnet, respectively, at the transition 

temperature. Therefore, the tempera

ture dependence of configuration dispa-
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186 K. Kawasaki 

rity IS more evident in the former case than 111 the latter unless a is nearly 

equal to unity. On the other hand, the torque imbalance for both magnets in

creases rapidly with lowering temperature and the rate of change with tempera

ture is larger than r 1. (0) in the neighbourhood of the transition temperature. 

Therefore, in one-dimensional system the line width increases with decreasing 

temperature. The thermodynamical slowing down can be seen only in the linear 

antiferromagnet with small a above a certain temperature. In this temperature 

range the torque imbalance of an antiferromagnet is smaller than that of the 

ferromagnet while the quantities r 1. (0) are almost same value for both system, 

I.e. the torque imbalance plays a dominant role to show anomalous behaviours of 

the damping constants of the one dimensional spin system. 

The remaining points are why the torque imbalance increases more rapidly 

with decreasing temperature and why it is larger in a ferromagnet than in an 

antiferromagnet. By using Eq. (2·26), torque imbalance will be rewritten in 

the following form, 

where f(q) is considered to be the torque acted on the q-mode of spin moment. 

In the case of a linear chain with the small a, f(q) is approximated from Eq. 

(3·4), 

f(q) ~ ± a cos q/ J± 15(1') cos2 q - Q (T) cos q -1- R (T), 

where the upper sign refer to the ferromagnet and the lovver one to the anti

ferromagnet. The q-dependences of f(q) in ferro- and antiferromagnets are shown 

in Figs. 8. Near the transition temperature, their characters are quite different 

from each other, i.e. f(q) has a maximum at each Bragg point of the magnet; 

i.e. at q = 0 in the ferromagnet and q = 7C in the antiferromagnet, its value being 

f(q) 
ferromagnet 

(T-TcllTc 
0.1 
1.0 

5.0 

~ ______ ~_______L 
0/2 7T 0 o 

antiferromagnet 

(T-Tc)/Tc 
-0.1 
-- 1.0 
--- 5.0 

-""q 
I 

7T 

Fig. 8. The torque f(q) acted upon the spin moment with q-mode III the case of a. 

linear chain with ~=O.O1, 
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smaller in the latter than in the former. This tendency may be attributed to 

the following facts: we are now concerned with the resonance line width under 

the constant external field ((vo (0) < I J (0) I) . In addition to the internal field due 

to the exchange coupling, the spin system is affected by this external one. In 

a ferromagnet, these two fields will cooperate to make the system uniform, while 

the opposite situation occurs in an antiferromagnet, namely the effect of the 

internal field makes the spin antiparallel and is reduced by the external one. 

Of course these characters will gradually decrease as the thermal agitation 

increases. Furthermore, it is easily seen that the number density n (q) for the 

ferro- and antiferromagnets reflect each other about q = re12. Therefore the total 

torque (lire) In (q) f (q) dq and its correlation are always larger in the ferromagnet 

than in the antiferromagnet and increase with decreasing temperature. 

When the dimensionality of the system becomes larger, as is shown in Fig. 

4, the q-value contributed dominantly to n (q) shifts to the larger (smaller) q

mode in the ferromagnet (antiferromagnet), and the short range order effect is 

reduced. Since the q-dependence of fluctuation has the same tendency as that 

of a linear chain, the important q-values in each of n (q) and f(q) are different 

and separated. The torque fluctuation is then reduced as compared with one

dimensional case. Moreover the thermodynamical slowing dm;vn in the plane 

antiferromagnetic damping constant is not remarkable because the quantity 

LL (0) varies more slowly with temperature than that of a linear chain. Under 

these circumstances, the characteristic behaviours of linear chain are made weak

ened. 

Finally let us consider the a-dependence of the damping constant. When 

a increases, the torque f(q) becomes large while the number density n (q) has 

a more broadened shape in momentum space. Therefore the effect of the short 

range order is reduced. Consequently, although the damping constant itself 

becomes large with increasing a, the rate of change of the damping constant 

T (0, 0) IT co (0, 0) with temperature becomes gradually small and the difference 

between ferro- and antiferromagnet vanishes in the limit a-> 1. 

§ 4. Li.ne shape of resonance absorption 

In order to see the dynamical behaviour in more detail, it is necessary to 

study the line shape of the resonance absorption as well as the damping constant. 

The line shape function is derived according to the paper T_T15) 

20 (O)T(O, w) I (w) = ----~------------------------
[U)-L1(O, W)J2+ [T(O, W)J2 ' 

(4 ·1) 

where T(O, w) and L1 (0, w) stand for the frequency dependent damping constant 

f1-nd its shift respectively. Namely 
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188 K. Kawasah 

(4·2) 

1 . a(2) (0 q) f,QIV2: b(O,q) 

.1(0, (j) =./2 Ai ~b(O~-'qf exp( -Q,2j2b
2
(O, q» Jo exp(y2)dy (4·3) 

and 

Q=w-.1(O,O). (4·4) 

The central intensity (Q = 0) is given by 

l(Ll) =O"(O)jT(O, 0) (4· 5) 

which is a measure of the line shape. 

The temperature dependence and ct- ](O) 

and IJ-dependence of 1(0) are shown 

in Fig. 9 for the linear chain. The 

intensity curves have a maximum at 

a certain temperature. In the high 

temperature, 0" (0) is an infinitesimal 

small and T (0, 0) becomes constant 

owing to the thermal agitation. Both 

the spin polarization 0" (0) and the 

damping constant T(O, 0) increase 

with the decreasing temperature as 

was seen from previous sections. 

Near the transition temperature, the 

former has an upper limit (saturated 

polarization) while the latter diverges 

because of the critical fluctuation. 

Therefore there may be a possibility 

of the existence of a hump in the 

temperature dependence of the central 

intensity. 

Next, the line shapes are studied 

by numerical analysis and are shown 

in Fig. 10 for the linear chain with 

various anisotropy. Paramagnetic 

resonance line sha pe has been 

conventionally considered to be a 

Lorentzian or Gaussian.24
) The pre

sent result, however, shows that side 

peaks appear with decreasing tem

perature. It be~omes more remarka-

100 

10 

o 

I 
/ 

I 
I 
I 

/ 
I 

I 

/"....---------

5 

----

(T-Tc}/Tc 

10 

Fig. 9. The intensity of the magnetic resonance 
absorption for the linear chain with respect to 

the reduced temperature (T-Ta)/Ta. The nu
merals on the curve indicate the degree of 
ansiotropy a. The solid lines correspond to 

the ferromagnet and the broken lines to the 
;:mtiferromagnet, 
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!(r.v) 

t 

J(w) 

300 

1.0 

J5.0 

200 ~IO.O 

100 

antiferromagnetic I inear chain 

i(w) , 

Cl = 0.01 
t 

Cl= 0.1 

0.1 '--'--+--_ ---"<----

0.5-.)- w/IJ(Oll 1.0"'" w/IJ(o)1 

ferromagnetic linear chain 

lew) 

Cl= 0.01 
Cl=O.1 

0.01 0.02 0.03 w/IJ(O) I 65 UfIJ(Oli 

Fig. 10. The line shapes of the magnetic resonance absorption for the linear magnetic 

chains with various anisotropy a. 

ble with increase of anisotropy. Near the transition temperature, fluctuations are 

fairly developed while spins will arrange almost spatially uniform in the ferromagnet 

or alternatively in the antiferromagnet according to the anomalously developed 

short range order. In this situation the quasi-collective mode17
) may be seen and 

this will correspond to the separate peaks. 

Finally, the experimental data are examined. There are several samples 

which are considered to be nearly linear magnetic chain. The damping constant 

for Cu (C6H 5COO)2' 3H20
3

) has a minimum at a certain temperature if the constant 

field is applied in a suitable direction. It grows monotonically in the antifer

romagnet Cu (NHs) 4S04' H 20
2

) with decreasing temperature. These behaviours 

may be explained qualitatively within the present theory (see Figs. 5 and 6). 

A ferromagnetic chain system is found along c-axis in CoC12 • 2H20. The concept 

of the cluster resonance 4
) for an Ising spin is introduced to explain the anomaly 

of the intensity for the resonance absorption. I-Iowever, it seems more apprQ-
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190 K. Kawasaki 

priate to treat this matter as a Heisenberg spin chain with a strong anisotropy. 

From our point of view, the facts that the absorption intensity decreases with 

lowering temperature and that double peaks appear in this substance may be 

due to the anomalous development of the short range order in this system. 

§ 5. Discussion 

Although it is an advantage of the Green's function method that both static 

and dynamic quantities can be treated within the same theoretical framework, 

several approximations have been invoked in practice. The most important ap

proximations used in this paper are the following. First, higher order Green's 

functions were decoupled into a sum of products of lower order Green's functions 

and the static average. The truncation of higher order Green's function leads 

to the result that the local fluctuation of spins will be more or less smeared 

out. Secondly, in order to derive the damping constant, the torque correlation 

was assumed to be Gaussian in its time dependence. The assumption of the 

Gaussian decay will be reasonable in the high frequency limit and be enough 

to give an overall line spread. However, there is a possibility of improving 

this assumption when the line shape is under discussion. Thirdly, the static 

correlation functions, in terms of which the damping constant is expressed, were 

calculated at the lowest step of the equation of motion, though the third step 

is, at least, necessary in derivation of the general expression of the damping 

constant. That is, each quantity was obtained in the lowest approximation 

respectively. However, the present treatment may involve self-inconsistency 

between the static and dynamic quantities. 

In spite of these approximations, the present treatment succeeded in ex

plaining the unusual character of the lower dimensional spin systems; when the 

anisotropy is small the transition temperature becomes much lower than that 

given by molecular field theory. The effect of the short range order is the most 

remarkable in the linear chain. Owing to the anomalous growth of fluctuations 

the effect of the thermodynamical slowing down will be upset and the line width 

will increase in both ferro- and antiferromagnet with the lowering of tempera

ture. Line shapes are also calculated, which have broad shoulders in the neigh

bourhood of the critical temperature. Their peak frequencies are determined by 

the anisotropy and the temperature as was described in the previous section. 

Therefore, their peaks may be concerned with the quasi-collective modes of spin 

motion which persists in the paramagnetic phase.17
) These facts become evident 

in the study of inelastic neutron scattering.25
) 

In order to discuss quantitatively the anomalous behaviours of magnetic prop

erties near the transition temperature, a more accurate treatment will be needed. 

The numerical integration was performed by using the so-called Gaussian 

quadratur~ method. 21b
) The nU,mber of division is 96 within the range of thy 
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wave vector [0, n]. It turned out that this number is large enough to be ac

curate when compared with analytical results in the case of a linear chain. 
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Appendix I 

Summary of Tomita and Tanaka's theory15) 

In the derivation of the general expression of the damping constant, the 

following approximations were used in their paper. 

(i) The higher order Green's functions which were generated in the equation 

of motion of the Green's function, were decomposed into those of the lower 

order ones, i.e. 

Gl-"ilJ,o(kllll:o; 0)) = GcI-"1I-"z(kllll:o; 0)), 

G1-"11-"21-"O(kb k2lko; CD) =<SX~)GcI-"21-"0(k2Iko; 0)) + <SX:)Gc'"11-"0(k1 \ k o; 0)) 

G 1-"11-"21-"3"'0 (k k k I k . /,,) = 'i.' <Sill S f2)G 1-"31-"0 (k IIi' /,,) 
1, 2, 3 0, w LJ k1 '';2 C 3 0, w 

cyclic 

+ " <Sfl1)G #21-"31-"0 (k k \k . Ur)) + G 1-"1/"'21-"31-"0 (k k k \k • ",) .L..J k1 c 2, 3 0 , c b 2, 3 0, w , 
cyclic 

where the cumulant-type Green's functions, Gc'"11-"2#0 (kb k2 k o; w), etc., were intro

duced as a remainder of the decomposition process. 

(ii) In the paramagnetic range, the hierarchy of the cumulant-type Green's func

tions must be accounted for at least the third step. At first step, a renormalized 

spectrum was found. A correction to spin wave spectrum was given at the next 

step. While it was shown not to be sufficient for the discussion of the damping 

in the paramagnetic range, the correct second moment of the distribution or the 

correct initial curvature of the higher order relaxation function is expressed at 

this stage. Therefore third step may be termed as a stochastic introduction of 

damping. Consequently, the relaxation function was assumed to be the Gaussian 

with the initial curvature which was evaluated at the second step. 

(iii) After the above procedures, the damping constant was given in terms of 

the Fourier transforms of the spatial correlations. In order to obtain the damping 

constant definitely, the correlation functions were calculated by means of the 

lowest order approximation. 
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Appendix II 

Derivation of Eq. (3·7) 

Let us calculate the damping constant for the linear spin system by putting 

IJ = 0 in Eq. (3·3). In this case, the damping constant is given by 

where 

T(O, 0) =aIJ(O) Ir.L(0)J4k;T7J(-6Y~ ("(1/rll(q)-l/r.L(q)) 
rc Jo 

x 7±=p(T5~~~2qc=-~25(TS~~~-q+71TTS dq , 

=aIJ(O) Ir.L (0) J iff;l-TI J(C5Yl(T) , (II· 1) 

1( 1') = ~ Soil (1/rll (q) -II r.L (q)) ;;±=p(TYZo~~2-=q=~26=tTY~-o;~q-+R(T)dq , 

P(T) = 3Ua (1') + (1- aYUo (1'), 

o (1') = { (1 ~ a + 2) 1<'0 (T) + (3 - a) } U a (I') + (1- a) (Ko (I') + 1) Uo ( 1') , 

R(T) =Ko(T) (3Ua (T) + Uo(T)), 

(II·2) 

Hereafter the upper sign refer to the ferromagnet and lower one to the antifer

romagnet. If we set x = cos q, from (II ·1) we obtain 

I (I') = ~ 51 d x {-~- =f 1<'0 (I') ( __ 1 ________ .. __ . _____________ .. _1_ .. _______ .. _____ .... _______ .... _ I 
rc -1 1-a x =f Ko (I') (1- a) 2 (x =f Ko (I') I (1- a)) J 

(II·3) 

After the following replacement x = CAlt + ;1.2) I (t + 1)" it is found that 

1(1') = CAl - }'2) {_.i£ __ =f Ko (1') (~ 
I-a 01 

1 1 S 1 ) 
- (l-aYo/ -; dt vi (g'(AI)-f+-g-CA2)) (hCAI)t2 +h(A2)Y 

+ K 0 (I') (AI - ;1.2) ~ S dt ((~~6)2 (ii=r02) - T(i-=--~)e~~}2 (t2 =-r}Y) 

(II·4) 

where 
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}\1 2 = {R (T) + 1 ± -J Ck(:tf+--I)2--=-02(Tj) IQ (T), 

Oia = Ai - Ko (T) 1 (1- a), r a = 02« Ic'Jl
a

, 

gCA) =1_}\2 and hCA) =P(T)A2 -O(T)}\+R(T). 

Using the following new variables: 

the integrand of the first term of Eq. (II· 4) is rewritten as 

1 1 

J(g(;::rl~~g~(I2)(h()\~)-t2+X-~(i:)Y -71?/cXSXUSI 

(22 (T) ~4R (1'), 

(22 (T) >4R (1'), 

in the ferromagnet and 

111 

(II· 5) 

Jri;-();Xt/~~g-O:)Y(X(X~rt2C~rh-(1:)Y --;; Tg(;~;)h~(I15·r JTt2'~'-~2r(tJ=-c~25' 

in the antiferromagnet respectively. Therefore, the damping constants are rep

resented by the elliptic integrals of the first and third kinds and can be easily 

calculated. l'hen Eq. (3·7) results where 

and the following notations are used. 

Table 1. 

Ferromagnet for 4R(T)<Q(T) 
and Antiferromagnet 

Ferromagnet for 4RCT)>-QCT) 

p.2/).12 

ra/Cra2 -p.2) 

p.2/ra2 

Appendix III 

Derivation of Eq. (3·8) 

p.2 + liZ 

p.2/Cp.z+).I2) 

lira 

p.2/Cra2 -p.2) 

In order to see the damping constant in the vicinity of the transition point, 

the long wave approximation is used. Then it is found that in the ferromagnet 
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(III ·1) 

where 

Aa(T) =2 (](o (T) - (l-a))/(I-a) 

and 

B(T) = (P(T) -0(T)/2)/(P(T) -OCT) +R(T)). 

Since Ao (T) becomes extremely small in proportion to (T- To) near the tran

sition temperature 

and 

where 

i1T=2· (4!?B/J(0)) . Ji=-Cf=a)2(T- To). 

U sing above relations, r (0, 0) is easily calculated as follows: 

reo, 0) =aIJ(O) 1 4JL1T[1~a ~ j;~~: sinh-
1 (jl~-~-n) +J~T 

I:C-=- a I 2J2[7c2-~~-a/ (1~ a)] I 

- n j-za log \1 + n- J2'[~2=--ta7(1=~5j! J vTo 

a 1;--
~ 21 J(O) 1-4-7iTl:; v Te. (III·2) 

In the antiferromagnet, we also find that 

reo, 0) = Ja(2-aYI J (0) I 4JL{7'[(i~ta)-2-JaT2-=a)~- sinh-
1 (Ja't-i;a)'~cn) 

+ )]T + jl~-; a;/' tan-' (ji ~a1rj;";(~H~~;~,) ] 
/-- JTc 

~ va (2 - a) IJ(O) 14Jj'1~ . (III· 3) 

From Eqs. (III· 2) and (III· 3) the damping constants are divergent toward the 

transition temperature both in ferro and antiferromagnets. 
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