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theories with 8 supercharges at UV fixed points. For a given low-energy gauge theory re-

alised via a Type II brane construction, there exist magnetic quivers for the Higgs branches

at finite and infinite gauge coupling. Comparing these moduli spaces allows one to study

the non-perturbative effects when transitioning to the fixed point. For 5d N = 1 SQCD,

5-brane webs have been an important tool for deriving magnetic quivers. In this work, the

emphasis is placed on 5-brane webs with orientifold 5-planes which give rise to 5d theories

with orthogonal or symplectic gauge groups. For this set-up, the magnetic quiver pre-

scription is derived and contrasted against a unitary magnetic quiver description extracted

from an O7− construction. Further validation is achieved by a derivation of the associated

Hasse diagrams. An important class of families considered are the orthogonal exceptional

En families (−∞ < n ≤ 8), realised as infinite coupling Higgs branches of Sp(k) gauge

theories with fundamental matter. In particular, the moduli spaces are realised by a novel

type of magnetic quivers, called unitary-orthosymplectic quivers.
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1 Introduction

5-dimensional N=1 gauge theories are perturbatively non-renormalisable and can only

meaningfully be defined as mass deformations of renormalisation group fixed points. Ini-

tially, these theories have been studied from various aspects: field theory [1–3], brane con-

structions [4–6], and geometry via M-theory backgrounds with Calabi-Yau singularities [7].

In this work, focus is placed on 5-brane webs in Type IIB superstring theory [4–6]

and generalisations that include orientifold planes [8–11]. One advantage of these brane

constructions is that they capture the dynamics of the corresponding 5d gauge theories

and, simultaneously, their UV fixed points. Recent developments using brane webs in-

clude [12–26]. As known from the SU(2) example with Nf < 8 flavours [1, 2], it is im-

portant to understand the enhancement of the global symmetry of these theories at the

fixed point. Hence, this question has been studied via various techniques: for instance,

superconformal indices [13, 15, 27–36], Nekrasov partition functions and topological string

partition functions [12, 37–44]. The enhancement has been argued to be due to instanton

operators [45–47], which create instanton particles in the UV superconformal field theory.

Recall that in 5 dimensions, the instanton is a particle charged under the U(1)I topological

symmetry associated to the conserved current Tr ∗ (F ∧ F ).

Recently, there have been many works devoted to uncover further features [48–51]; in

particular, classifications of 5d SCFTs [52–54] and 5d N=1 gauge theories [55] have been

proposed.

An interesting question concerns the Higgs branch of the full vacuum moduli space:

for the low-energy effective theory the Higgs branch is described by the hyper-Kähler

quotient construction [56]; in contrast, for the Higgs branch H∞ at the fixed point the

same is not true. The first studies [57, 58] of H∞ indicated that in order to capture the

geometric features of the moduli space at infinite gauge coupling, 3d N = 4 Coulomb

branches of certain quiver gauge theories are useful. This idea has been further developed

and systematised in [24]: for a given 5-brane web, where each external 5-brane ends on

a 7-brane, magnetic quivers can be derived such that the 3d N = 4 Coulomb branches

thereof are equivalent geometric descriptions for the finite and infinite coupling 5d N = 1

Higgs branches.
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So far, the magnetic quiver description has only been available for 5d gauge theories

with special unitary gauge groups. However, many interesting 5d dualities, see for in-

stance [16, 18, 53, 55], are between unitary and orthogonal or symplectic gauge groups.

Hence, it is natural to further develop the understanding of Higgs branches of 5d theories

with orthogonal or symplectic groups. Suitable 5-brane web realisations either contain O5

or O7 planes. In this work, the focus is placed on 5-brane webs in the presence of O5 orien-

tifolds. For single gauge groups with fundamental matter, the field theory classification of

theories with non-trivial interacting fixed point has been presented in [3]; the subsequent

brane construction [8] confirmed these results. However, more non-trivial fixed points have

been proposed in [9].

Consider the Higgs branch moduli space in more detail. To begin with, the finite cou-

pling, or classical, Higgs branches are conventionally treated by an F and D-term analysis.

However, it is a known fact that Sp(k) theories with Nf < 2k fundamental flavours and

O(k) theories with Nf ≤ k−3 fundamental flavours do not admit complete Higgsing. Con-

sequently, their analysis is currently incomplete. For instance, the analogous behaviour

exists for 5d N = 1 SU(k) SQCD with Nf < 2k, which has only recently been addressed

in [59]. In terms of brane webs, the quaternionic Higgs branch degrees of freedom can be

counted by a decomposition into independent subwebs, as introduced in [5] and demon-

strated for 5-brane webs with O5 planes in [10]. Moving on to the infinite coupling Higgs

branches, the enhancement of the global symmetry has been studied via field theory [35]

and brane webs [9]. Moreover, the counting of additional new Higgs branch dimension at

the fixed point has been demonstrated in [10]. Hence, dimension and global symmetry of

H∞ are known, but no geometrical description has been provided yet.

This is precisely the first aim of the present paper: to provide an improved description

of finite and infinite coupling Higgs branches. The approach taken is known as magnetic

quivers [24, 60, 61] (see also [62]): in brief, a magnetic quiver Q is a combinatorial object

that is derived from the Type II brane configuration with 8 supercharges, describing a given

theory T in a certain phase P. The Higgs branch of T in that phase equals the 3d N = 4

Coulomb branch of the magnetic quiver, meaning that the combinatorial data is taken as

an input to derive a space of dressed monopole operators in the sense of [63]. Thus,

H (phase P of theory T) = C (magnetic quiver Q(P)) (1.1)

holds as equality of moduli spaces. To be more precise: the magnetic quivers compute a

geometric space, called Higgs variety. The Higgs branch chiral ring may contain nilpotent

operators which makes the full Higgs branch a so called non-reduced scheme, called Higgs

Scheme. This problem is addressed for classical 4d N = 2 SQCD in [59]. In the rest of

the paper only the geometric parts of the moduli space are studied and the analysis of

nilpotent elements is left for future work. The concept of magnetic quivers has proven

itself useful in a variety of cases: for 6d N = (1, 0) theories [60, 61, 64–66], 5d N = 1 gauge

theories [24, 57, 58], and 4d Argyres-Douglas theories [67].

The second aim of the present paper is to derive the Hasse diagrams for the finite

and infinite coupling Higgs branches. Hasse diagrams for nilpotent orbits were studied in

detail by Kraft and Procesi in [68, 69]. As described in [70], the Hasse diagram details

the singularity structure of a Higgs branch understood as a symplectic singularity [71].

– 2 –
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For finite coupling Higgs branches, the Hasse diagram could, for example, be derived from

the Higgs mechanism; however, the same method is not applicable at the fixed point.

Alternatively, the Hasse diagram can also be derived from (i) the brane web via Kraft-

Procesi transitions [72, 73], or (ii) from quiver subtraction [74] on the magnetic quivers.

Once the combinatorial data of the magnetic quiver is known, the techniques developed

allow to extract the following information:

(i) Dimension.

(ii) Global symmetry.

(iii) Representation content of the chiral ring via the Hilbert series.

(iv) Hasse diagram.

(v) Comparison of dimensions, global symmetry, chiral ring representation content, and

Hasse diagram between finite and infinite gauge coupling.

Complementing these facts by approaches that rely on the same combinatorial input data,

like for instance [75–77], one reaches the conclusion that the entire moduli space geometry

is determined by this data.

Summary of main results. The methods developed in this paper yield a multitude of

results and are summarised here for convenience.

• Among the most interesting results are the magnetic quivers for Sp(k) theories with

0 ≤ Nf ≤ 2k + 5 fundamental flavours, summarised in table 1. Here, two different

constructions, by O5+ and O7− orientifolds, give rise to two different sets of magnetic

quivers: unitary-orthosymplectic quivers and unitary quivers, respectively. The re-

sults are remarkable for various reasons: for the unitary magnetic quivers the global

symmetry is straightforwardly evaluated, see tables 2, 3, and, for k = 1, reproduce

the known enhancement for ENf+1. Therefore, the cases Sp(k) with Nf fundamentals

are referred to as generalised exceptional families. For the unitary-orthosymplectic

magnetic quivers, the global symmetry is less obvious from the quiver itself. How-

ever, a Hilbert series computation confirms that for each case both magnetic quivers

have the same highest weight generating (HWG) function, see table 4, which is a

necessary condition that both quivers describe the same moduli space. The details

of the computational challenges are a subject of a companion paper [80].

• Besides the two different magnetic quiver descriptions, the geometry of the Higgs

branches is further detailed by the Hasse diagram. A non-trivial consistency check

has been passed by verifying that both, the unitary and the unitary-orthosymplectic,

magnetic quivers for the exceptional families lead to the same Hasse diagram, see

tables 2 and 3. The appearance of minimal nilpotent orbit closures en of exceptional

Lie algebras En at the top of the infinite coupling Hasse diagram yields another

reason for calling these families exceptional families.

While the Hasse diagram derivation for the unitary quivers is straightforward from the

results of [70, 74], the algorithm for orthosymplectic quivers is more subtle. Quiver

subtraction with (framed) orthosymplectic quivers have been used in [65, 81] and the

first Hasse diagrams derived in this class have been presented in [61], in the context

of 6d theories.
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Family Theory SU Theory Sp Magnetic quiver U Magnetic quiver OSp

E8

SU(k+1)
±

1

2

2k+5

Sp(k)

D2k+5

1

· · ·

2
k
+
4

k
+
3

2

k + 2

D1 C1

· · ·

Ck+2 Dk+3 Ck+2

· · ·

C1 D1

C1

E7

SU(k+1)±1

2k+4

Sp(k)

D2k+4

1

· · ·

2
k
+
2

k
+
2

2 1

k + 1

D1 C1

· · ·

Ck+1 Dk+2 Ck+1

· · ·

C1 D1

C1

U1

E6

SU(k+1)
±

3

2

2k+3

Sp(k)

D2k+3

1

· · ·

2
k
+
1

k
+
1

1

k + 1 1

D1 C1

· · ·

Dk+1 Ck+1 Dk+1

· · ·

C1 D1

U1

E5

SU(k+1)±2

2k+2

Sp(k)

D2k+2

1

· · ·

2
k

k
+
1

1

k 1

D1 C1

· · ·

Ck Dk+1 Ck

· · ·

C1 D1

U1

E4−2l

k≥l≥0

SU(k+1)
±( 5

2
+l)

2k−2l+1

Sp(k)

D2k−2l+1

1

· · ·

2
k
−

2
l
−

1

k
−

l
1

l
+
1

k−l

1

D1 C1

· · ·

Dk−l Ck−l Dk−l

· · ·

C1 D1

U1

l+1

E3−2l

k≥l≥0

SU(k+1)±(3+l)

2k−2l

Sp(k)

D2k−2l 1

· · ·

2
k
−

2
l
−

2

k
−

l
1

l
+
1

k−l−1

1

1

· · ·

2
k
−

2
l
−

2

k
−

l
1

2

k−l−1
D1 C1

· · ·

Ck−l−1Dk−lCk−l−1

· · ·

C1 D1

U1

l+1

Cannot be read from brane diagram

Table 1. Magnetic quivers at infinite coupling. The 5d N = 1 duality between “Theory SU” and

“Theory Sp” has been observed in [16], also [18]. The wiggly link denotes a charge 2 hypermultiplet.

The “Magnetic quiver OSp” are derived in section 3, while “Magnetic Quiver U” are subject of

section 4. For k = 0, the moduli spaces are free hypermultiplets transforming as spinors of the

global symmetry. The “Magnetic quiver OSp” for E8,7,6 can be obtained from class S [78, 79].

• Concerning orthogonal or symplectic gauge theories without complete Higgsing,

the magnetic quivers provide predictions on the finite and infinite coupling Higgs

branches.

Outline. The remainder of this paper is organised as follows: after reviewing the set-up,

section 2 is devoted to a study of the Higgs branches for Sp(1) with Nf < 8 flavours. In

each case, the brane web and the Higgs branch degrees of freedom are detailed. Building on

that, the rules to read off the magnetic quivers are established. Thereafter, the magnetic

quiver proposal is applied to 5d Sp(k) theories with fundamental matter in section 3; in

each case, the 5-brane webs are detailed and the magnetic quivers are derived. The results
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Family
Dimension and

symmetry for k > 1

at finite coupling

Dimension and

symmetry for k > 1

at infinite coupling

Hasse diagram

finite coupling

Hasse diagram

infinite coupling

E8
2k2 + 9k

so(4k + 10)

2k2 + 11k + 16

so(4k + 12) .

.

.

d7

d9

d2k+5

.

.

.

e8

d10

d2k+6

E7
2k2 + 7k

so(4k + 8)

2k2 + 7k + 8

so(4k + 8)⊕ su(2) .

.

.

d6

d8

d2k+4

.

.

.

e7

d8

d10

d2k+4

.

.

.

e8

d10

d2k+4

a1

a1

a1

a1

E6
2k2 + 5k

so(4k + 6)

2k2 + 5k + 4

so(4k + 6)⊕ u(1) .

.

.

d5

d7

d2k+3

.

.

.

e6

d7

d2k+3

E5
2k2 + 3k

so(4k + 4)

2k2 + 3k + 2

so(4k + 4)⊕ u(1) .

.

.

d4

d6

d2k+2

.

.

.

e5

d6

d2k+2

Table 2. Coulomb branch quaternionic dimension, global symmetry and Hasse diagram for the

orthogonal exceptional families, both at finite and infinite gauge coupling. The Hasse diagrams

are further detailed in section 5. Note the following changes between finite and infinite coupling.

The constant terms in the dimension formulae change in powers of two, as indicated by the spinor

representations for the free hypermultiplets in the k = 0 case. The global symmetry at finite

coupling does not include the U(1)I factor since it is realized by the gaugino bilinear which lives in

a nilpotent supermultiplet. At infinite coupling, it ceases to be nilpotent and becomes part of the

geometry. As a consequence the rank of the global symmetry of the Higgs branch variety increases

by one. The Hasse diagram is modified only in its top dimensional symplectic leaf for the E6 and

E5 families, while the change is deeper for the E7 and E8 families. A recurring pattern for the En

families is the transformation of a dn−1 transition into an en transition.

for Sp(k) theories are studied from an alternative O7− construction in section 4, and

contrasted to the results of section 3. Having derived the magnetic quivers for finite and

infinite coupling Higgs branch in a variety of cases, section 5 details the derivation of the

associated Hasse diagrams. In section 6, a family of linear orthosymplectic quiver gauge

theories is studied and the multitude of different infinite coupling phases is discussed.

Lastly, section 7 provides a conclusion and outlook. Appendix A provides background

material on general Type II brane configurations with 8 supercharges, 5-brane webs, and

3d N = 4 Coulomb branches, as well as a brief summary of [80].
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Family
Dimension and

symmetry for k > 1

at finite coupling

Dimension and

symmetry for k > 1

at infinite coupling

Hasse diagram

finite coupling

Hasse diagram

infinite coupling

E4
2k2 + k

so(4k + 2)

2k2 + k + 1

so(4k + 2)⊕ u(1) .

.

.

d3

d5

d2k+1

.

.

.

e4

d5

d2k+1

E3
2k2 − k

so(4k)

2k2 − k + 1

so(4k)⊕ u(1) .

.

.

a1

d4

d2k

A1

.

.

.

a2

d4

d2k

A1

E4−2l

k≥l>0

(k − l)(2k − 2l + 1)

so(4k − 4l + 2)

(k − l)(2k − 2l + 1) + 1

so(4k − 4l + 2)⊕ u(1) .

.

.

d3

d2k−2l+1

.

.

.

Al

d3

d2k−2l+1

E3−2l

k≥l>0

(k − l)(2k − 2l − 1)

so(4k − 4l)

(k − l)(2k − 2l − 1) + 1

so(4k − 4l)⊕ u(1)
.

.

.

A1

d4

d2k−2l

A1

.

.

.

Al

A1

d4

d2k−2l

A1

Table 3. Coulomb branch quaternionic dimension, global symmetry and Hasse diagram for the

orthogonal exceptional families, both at finite and infinite gauge coupling. The Hasse diagrams are

further detailed in section 5. Note the following changes between finite and infinite coupling. The

quaternionic dimension changes by one. The global symmetry at finite coupling does not include

the U(1)I factor since it is realized by the gaugino bilinear which lives in a nilpotent supermultiplet.

At infinite coupling, it ceases to be nilpotent and becomes part of the geometry. As a consequence

the rank of the global symmetry of the Higgs branch variety increases by one. The Hasse diagrams

show, in some cases, a bifurcation; as detailed in section 5, the O5 brane construction studied in

sections 2 and 3 only renders the part of the Hasse diagram depicted using vertical lines. The O7−

brane construction studied in section 4 produces the entire Hasse diagrams. In the E3 case, the

bifurcation at the top of the finite coupling diagram could equivalently be denoted as d2, and the

bifurcation at the top of the infinite coupling diagram could equivalently be denoted as e3, so that

the modification at infinite coupling can be seen as d2 → e3.
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Family HWG at finite coupling HWG at infinite coupling

E8

k∑
i=1

µ2it
2i

(
k+2∑
i=1

µ2it
2i

)
+t4+µ2k+6(t

k+1+tk+3)

E7

k∑
i=1

µ2it
2i

(
k+1∑
i=1

µ2it
2i

)
+ν2t2+t4

+νµ2k+4(t
k+1+tk+3)+µ2

2k+4t
2k+4−ν2µ2

2k+4t
2k+6

E6

k∑
i=1

µ2it
2i

(
k∑

i=1
µ2it

2i

)
+t2+(µ2k+2q+µ2k+3q

−1)tk+1

E5

k∑
i=1

µ2it
2i

(
k∑

i=1
µ2it

2i

)
+t2+(q+q−1)µ2k+2t

k+1

E4

(
k−1∑
i=1

µ2it
2i

)
+µ2kµ2k+1t

2k

(
k−1∑
i=1

µ2it
2i

)
+t2+(qµ2k+q−1µ2k+1)t

k+1

+µ2kµ2k+1(t
2k−t2k+2)

E3

(
k−1∑
i=1

µ2it
2i

)
+(µ2

2k−1+µ2
2k)t

2k

−µ2
2k−1µ

2
2kt

4k

(
k−1∑
i=1

µ2it
2i

)
+t2+(q+

1

q
)µ2kt

k+1+µ2
2kt

2k

−µ2
2kt

2k+2

E4−2l

k≥l≥0

(
k−l−1∑
i=1

µ2it
2i

)
+µ2k−2lµ2k−2l+1t

2k−2l

(
k−l−1∑
i=1

µ2it
2i

)
+t2+(qµ2k−2l+

1
qµ2k−2l+1)t

k+1

+µ2k−2lµ2k−2l+1(t
2k−2l−t2k+2)

E3−2l

k≥l≥0

(
k−l−1∑
i=1

µ2it
2i

)
+(µ2

2k−2l−1+µ2
2k−2l)t

2k−2l

−µ2
2k−2l−1µ

2
2k−2lt

4k−2l

(
k−l−1∑
i=1

µ2it
2i

)
+t2+(q+

1

q
)µ2k−2lt

k+1

+µ2
2k−2l(t

2k−2l−t2k+2)

Table 4. Highest weight generating function (HWG) [82, 83] for the orthogonal exceptional families.

The highest weight fugacities are assigned as follows: µi for so, ν for su(2), and q for u(1). The

global symmetry in each case can be read in tables 2 and 3. Moreover, t denotes the SU(2)R fugacity

along the 3d N =4 Coulomb branch.

2 Magnetic quivers and known examples

2.1 Set-up

5-dimensional N = 1 gauge theories can be constructed as low-energy effective theories

for 5-brane webs in Type IIB superstring theory [4–6]. The different branes occupy the

space-time dimensions as summarised in table 5. Aiming for symplectic and orthogonal

gauge symmetries, one may utilise orientifold planes [84, 85], in particular O5 planes [8–11]

for the purposes of this work. As displayed in table 6, the effect is twofold: the gauge

symmetry along 5-brane parallel to the O5 is projected to an orthogonal or symplectic

algebra; while the flavour symmetry originating from transversal 7-branes is also projected

to ortho-symplectic algebras, but in the opposite way. Further details on brane webs are

summarised in appendix A.

– 7 –
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Type IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×

D5 × × × × × ×

O5 × × × × × ×

(p, q) 5-brane × × × × × angle α

[p, q] 7-brane × × × × × × × ×

Table 5. Type IIB 5-brane web set-up: × indicates the space-time directions spanned by the

various branes and the orientifold plane. A (p, q) 5-brane is a line of slope tan(α) = qτ2/(p + qτ1)

in the x5,6 plane where the axiodilaton is τ = τ1 + iτ2. In this paper all the brane webs are drawn

for the value τ = i, so that tan(α) = q/p.

Orientifold Drawing Gauge algebra Flavour algebra Charge

Õp
−

Bk Cn
1
2 − 2p−5

Op+ Ck Dn 2p−5

Õp
+

Ck Dn 2p−5

Op− Dk Cn −2p−5

Table 6. Summary of orientifolds. The gauge algebra is indicated for a stack of k half Dp branes

on a Op orientifold plane. Whereas the flavour algebra is provided for a stack of n half D(p+2)

branes perpendicular to orientifold.

2.2 Magnetic quivers

A 5-brane web, where every external (p, q) 5-brane ends on a [p, q] 7-brane, in the presence

of an O5 plane has various phases: for instance, the pure Coulomb branch phase, the

pure Higgs branch phase, as well as mixed phases. As customary, the brane web in the

massive Coulomb branch phase is reached by placing gauge and flavour D5 branes in various

positions along the x5 direction, i.e. assigning VEVs to scalars in the gauge multiplets as

well as assigning masses to the fundamental flavours. This phase is convenient for reading

off the electric gauge theory description via the suspension pattern of fundamental strings.

The pure Higgs branch phase at finite gauge coupling can be entered in two steps:

firstly, the flavour D5 branes are moved to coincide on the orientifold as well, i.e. all mass

parameters are set to zero. Secondly, all gauge D5 branes are aligned on the O5 plane,

i.e. the VEVs of the 5d gauge multiplet are tuned to zero. This results in a brane system

which represents the origin of the Coulomb branch where Higgs branch directions can open

up. For this, it is important to recall that the half [1, 0] 7-branes, on which the flavour

D5s end, merge with their mirrors on the orientifold plane, such that the resulting physical

7-brane can be split along the O5 plane. The S-rule then determines how many branes are

connected between each half 7-brane. The Higgs branch degrees of freedom are realised by

independent 5-brane subwebs that are free to move along the 7-branes in directions x7, x8,

x9. Each such subweb contributes one quaternionic dimension to the total Higgs branch.
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Besides the classical Higgs branch, meaning the Higgs branch of the low-energy effective

gauge theory at finite gauge coupling, there exists also a Higgs branch at the RG-fixed

point of the theory. For the purposes of this paper, the fixed point is always described

by a 5d N = 1 SCFT and is further referred to as infinite (gauge) coupling phase. In

terms of the 5-brane web, this point is reached when all external 5-branes meet at single

point. The changes between the Higgs branch at finite and infinite coupling have been first

emphasised in [1] and further elaborated in [10, 57, 58]. While [10] computed the change

in Higgs branch dimension via 5-brane webs, it has been demonstrated in [57, 58] that

infinite coupling Higgs branches can be described by Coulomb branches of 3d N = 4 gauge

theories. Building on that, a systematic procedure on deriving the magnetic quiver for any

phase of a given 5-brane web has been developed in [24]. The magnetic quiver proposal [24,

conjecture 1] can be summarised as follows:

(i) Quiver: Find all inequivalent maximal subdivisions {Si} of a given 5-brane web

which is suspended between 7-branes. Whether a decomposition is compatible with

supersymmetry can be determined by the S-rule [62], see also [86]. Each subdivision

Si gives rise to one magnetic quiver with the following data:

(ii) Gauge groups: The different subwebs in a given subdivision Si are associated to

magnetic gauge groups, wherein the number of identical subwebs determines the rank.

(iii) Matter: The magnetic hypermultiplets between two magnetic gauge groups are de-

rived from the generalised intersection number of two different subwebs. This number

is composed of intersection number of lines in the x5,6 plane plus a modification if

the subwebs end on common 7-branes.

Consequently, the Higgs branch associated to given phase of a 5-brane web is described via

H =
⋃

{Si}

C (Q(Si)) (2.1)

such that the moduli space is generically a union of symplectic singularities, one for each

subdivison.

In order to derive magnetic quivers for 5-brane webs with O5 planes, the major con-

ceptual challenge lies in the treatment of the orientifolds. In more detail, the T-dual set-up

of [62], involving D3-D5-NS5 brane configurations, can accommodate for O3 planes [87]

rather easily, because S-duality maps one O3 into another O3 plane. However, the same is

not true for O5 planes, as S-duality, for instance, relates an ON plane with a O5 plane [88],

see also [89]. Therefore, as emphasised in all magnetic quiver constructions [24, 60–62],

S-duality is neither correct nor necessary to change between electric and magnetic theory.

Consequently, the proposal of [61] is inspired from the O3 planes and involves magnetic

orientifolds as summarise in table 7. In other words, besides moving the 5-brane web

into the Higgs branch phase, one also needs to convert the electric orientifolds into their

magnetic counterparts in order to derive the magnetic quivers.

Before exploring potential predictions from magnetic quivers for 5-branes with orien-

tifolds, one needs to derive a proposal that reproduces known cases. In section 2.3, the

case of 5d N = 1 SU(2) ∼= Sp(1) gauge theory with 0 ≤ Nf < 8 fundamental flavours

is tested against the known symmetry enhancement at infinite coupling [1, 2] and against
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Orientifold
Electric Magnetic Magnetic

algebra orientifold algebra

Op+ Ck Õp
−

Bk

Op− Dk Op− Dk

Õp
+

Ck Õp
+

Ck

Õp
−

Bk Op+ Ck

Table 7. Proposal for magnetic orientifolds [61]. A stack of k physical D5 branes on top of a

O5 plane, while being suspended between NS5 branes, has a 5-dimensional low-energy description

given by a gauge field for the electric algebra. In contrast, k identical subwebs suspended between

7-branes on top of a magnetic orientifold O5 contribute to the magnetic quiver as gauge multiplet

for the magnetic algebra.

the magnetic quiver construction for 5-brane webs without orientifolds [24]. Thereafter, a

precise proposal is formulated in section 2.4. One is then in the position to analyse various

5d brane web constructions with this technique. In particular, section 3 is focused on the

general case of 5d N = 1 Sp(k) gauge theory with Nf fundamental flavours. As a proof of

concept, a class of 5d N = 1 linear quiver gauge theories is analysed in section 6.

2.3 Single Sp(1) gauge group

In this section, a 5d N = 1 Sp(1) gauge theory with 0 ≤ Nf < 8 fundamental flavours is

considered. The 5-brane web is presented, from which the magnetic quiver is derived at

finite and infinite gauge coupling. A crucial consistency check is given by reproducing the

enlargement of the Higgs branch from the minimal nilpotent orbit closure of so(2Nf ) at

finite coupling to the minimal nilpotent orbit closure of ENf+1 at the UV fixed point. As

detailed below, the finite coupling magnetic quivers agree with the results of [87].

2.3.1 E8: Sp(1) with 7 flavours

For the first case, consider Sp(1) with 7 flavours. The brane web in the Coulomb branch

phase with massive flavours is given by

(2,1)

(3,1) [1,0]

[0,1]

[1,1]

(2.2)
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where the red dashed lines indicate the half monodromy cuts associated to each half 7-

brane. The orientifold notation is summarised in table 6. Moreover, the distance between

the flavour 5-branes and the orientifold gives the bare mass. The transition into the Higgs

branch, where all masses are set to zero, is achieved by two steps: firstly, aligning the flavour

7-branes and the gauge (1, 0) 5-brane on the orientifold. Secondly, the half 7-branes merge

with their mirror images such that the physical 7-branes can be split along the O5 plane.

The novelty, compared to the classical 5-brane web construction with Nf < 7, is that

one of the external non-flavour branes bends inside, i.e. the (1, 1) 5-brane. Consequently,

there are two intermediate representations of the Higgs branch phase. On the one hand,

the non-flavour branes are kept separated such that the brane web (2.2) turns into

14 33 23 22 1211 1

[0,1]
[1,1]

(2.3)

The numbers displayed above the branes count physical (1, 0) 5-branes on top of O5 planes,

see table 6 for conventions.

On the other hand, the (1, 0) and (1, 1) 5-branes can cross such that the brane config-

uration becomes

14 33 23 22 1211 1

[0,1]

[1,0]

(2.4)

where one accounts for brane creation, see appendix A. Both, (2.3) and (2.4), are useful

starting points as shown below.

Finite coupling. To analyse the finite coupling Higgs branch, one considers (2.3) and

notices that several branes are non-dynamical as they serve to connect the (0, 1) and (1, 1)

5-brane with several half 7-branes in order to render the configuration supersymmetric.

The number of these branes can be minimised by transitioning the (0, 1) and (1, 1) through

several half 7-branes such that brane annihilation leads to the following configuration:

11 11 11 1111 1

[1,1][1,−1]

(2.5)

where the monodromy cuts have been chosen for unambiguous presentation.
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Starting from (2.5), the magnetic quiver is read off as follows: to begin with, the

orientifolds are converted into magnetic orientifolds, see table 7. Then one needs to find all

maximal subdivisions: in this case, there is only one. Between the half 7-branes along the

orientifold plane, all physical D5 branes constitute independent subwebs. Note that there

are no two identical subwebs, because the D5s are suspended between different 7-branes.

Consequently, all magnetic gauge groups associated to these branes have rank one because

each subweb contributes one quaternionic dimension to the Higgs branch. The character

of the magnetic gauge multiplet is deduced from the magnetic orientifold between two

adjacent [1, 0] 7-branes. The remaining parts that need to be understood are the [1,±1]

5-branes on the left and right-hand-side. To be specific focus on the left-hand-side, one

could transition the (1,−1) 5-brane through one more half 7-brane to the left without

brane creation or annihilation. Due to the effects of the monodromy line, one would end

up with a (2,−1) 5-brane, which is known to be a supersymmetric configuration by itself,

see (A.2). Therefore, the original (1,−1) 5-brane is also supersymmetric, but, in contrast

to all other 5-branes, the (1,−1) 5-brane is not an independent subweb. In particular, this

means that both the (1,±1) branes are non-dynamical as these cannot be moved along the

x7,8,9 directions. As such these pieces of the brane web contribute as magnetic B0 flavour

nodes only. Analogous to [61, eq. (2.66)], the B0 denotes a single half-hypermultiplet for

a Ck magnetic gauge node. As a remark, for reading off the magnetic gauge algebra, it is

convenient to have the free consistent configuration on top of Õ5
+
and Õ5

−
planes, because

the magnetic orientifolds of table 7 imply an unambiguous magnetic algebra in contrast to

a configuration on top of O5+ and O5− planes.

This discussion reveals the magnetic gauge multiplets and background gauge multi-

plets. In addition, there is matter derived from the generalised intersection number [24].

To be explicit, consider two adjacent D5 branes connecting a common half 7-brane from the

left and right-hand-side, respectively. Then the intersection number between the two D5s

is zero, but there is a positive contribution because they end on the common 7-brane from

opposite sides. The generalised intersection number turns out to be one. Alternatively,

one can simply consider D3 branes suspended between the two subwebs and recognise the

bifundamental hypermultiplet between the gauge groups, see also [61]. Lastly, consider

the (1,±1) branes together with the closest D5 brane. Here, one computes the intersec-

tion number between a (1,±1) and a (1, 0) 5-brane, which is simply one. Since there are

no common 7-branes, the generalised intersection number is one too, indicating a simple

magnetic fundamental hypermultiplet between the flavour and gauge node.

Collecting all the pieces, the magnetic quiver becomes

D1 C1 B1 C1 B1 C1 B1 C1 B1 C1 D1

B0 B0

(2.6)

such that Coulomb branch dimension and global symmetry, see appendix A.3, are computed

to be

dimH C (2.6) = 11 , G = SO(14) . (2.7a)
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Upon choosing the magnetic gauge groups suitably, the full Coulomb branch geometry is

known [90–92]

C (2.6) = O
min
D7

, (2.7b)

i.e. the closure of the minimal nilpotent orbit of so(14). The details of the assignment of the

magnetic gauge group are the subject of the companion paper [80], see also appendix A.4.

The properties (2.7) match the classical Higgs branch as well as the non-abelian part of

the global symmetry.

The alert reader will notice that the U(1)I symmetry is missing from the classical

global symmetry computed from the magnetic quiver. This is because this global symmetry

is associated with the gaugino bilinear. Being a nilpotent operator in the chiral ring, the

gaugino bilinear does not enter the geometric part of the classical moduli space, called Higgs

variety in [59]. The current status of magnetic quivers is not sensitive to nilpotent elements,

i.e. it is does not compute the whole Higgs Scheme. If nilpotent operators are present in the

chiral ring, the Higgs branch is a non-reduced scheme, and the magnetic quiver computes

its geometric reduction. See [57] for a discussion of the gaugino biliniear and [59] for a

detailed analysis of the difference between the Higgs variety and the Higgs scheme.

Infinite coupling. For the brane web at infinite coupling, the configuration (2.4) is

convenient. Here, moving the infinite coupling is realised by moving the half [1, 0] 7-brane,

which is away from the orientifold, onto the O5 plane. Then it merges with its mirror image

and the resulting physical 7-brane can be split along the orientifold. As a consequence, the

brane web becomes

44 3 33 23 22 1211 1

[0,1]

(2.8)

and, again, the numbers denote physical D5 branes in between half 7-branes. The mag-

netic quiver is derived as follows: inspecting (2.8) shows that there is only one maximal

subdivision. Therein, all subwebs are given either by D5 branes suspended between ad-

jacent 7-branes along the orientifold or by NS5 branes suspended between a half 7-brane

and its mirror image away from the O5 plane. There are two new features compared to

the finite coupling case: firstly, there are multiple copies of identical subwebs. The number

of physical D5 branes between two adjacent half 7-branes coincides with the number of

identical webs, and, therefore, yields the rank of the magnetic gauge group after transition

to the magnetic orientifold, see table 7. Secondly, the NS5 branes also form one subweb,

but the orientifold projections now acts differently. Since the magnetic orientifold for the

NS5s is a O5− plane, the NS5 branes contribute a C1 magnetic gauge group.

The determination of the matter content proceeds as above: the stacks of adjacent

D5 brane subwebs have generalised intersection number of one; while the NS5 branes and
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the D5 branes in the central segment have intersection number one with no additional

corrections from common 7-branes. Therefore, all magnetic gauge nodes are connected by

bifundamental magnetic hypermultilets. Alternatively, the same conclusion is reached by

inspecting the suspension pattern of D3 branes, analogous to the 6d setting of [61].

Consequently, the magnetic quiver associated to (2.8) is given by

D1 C1 D2 C2 D3 C3 D4 C3 D3 C2 D2 C1 D1

C1

(2.9)

with a Coulomb branch dimension of

dimH C (2.9) = 29 . (2.10)

It has been concluded in [65, eq. (2.43)] and [93] that the Coulomb branch of (2.8) is

the minimal nilpotent orbit of E8. However, this result relies on clarifying what magnetic

gauge group has to be assigned to (2.9), which is elaborated on in a companion paper [80]

see appendix A.4 for a summary).

Comparing to class S technology, one can decompose the star-shaped quiver (2.9) into

three D4 punctures associated with the following linear quivers: T(18)[SO(8)], T(18)[SO(8)],

and T(5,3)[SO(8)]. As demonstrated in [78, section 3.2.2], the fixture obtained via gluing

gives rise to the so-called E8 SCFT, which yields further validation to the approach of

this paper.

2.3.2 E7: Sp(1) with 6 flavours

Considering Sp(1) with 6 fundamental flavours, the brane web in the Coulomb branch

phase with massive flavours is given by

(2,1)

(3,1) [1,0]

[0,1]

(2.11)

where the semi-infinite flavour 5-branes are set to end on half 7-branes. Next, the Higgs

branch phase is reached by moving the half [1, 0] 7-branes and the (1, 0) gauge 5-brane onto
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the O5 plane. The half 7-branes merge with their mirror images such that the resulting

physical 7-brane can be split along the orientifold. The brane web becomes

13 32 22 21 11 1

[0,1] [0,1]

(2.12)

and the S-rule implies that the two (0, 1) 5-branes need to be connected to more than one

7-brane via (1, 0) 5-branes.

Finite coupling. The non-dynamical parts of the brane web (2.12) can be minimised

by transitioning the (0, 1) 5-branes to the left or right, respectively. Accounting for brane

annihilation leads to

11 11 11 11 1

[1,−1] [1,1]

(2.13)

where the monodromy cuts have been chosen for the sake of a clear presentation. The

only maximal subdivision is composed of subwebs that are D5 branes suspended between

adjacent half 7-branes. As above, the (1,±1) 5-branes between Õ5
+

and Õ5
−

are su-

persymmetric configurations by themselves. However, these branes are non-dynamical, as

they are not part of any subweb in a maximal subdivision of (2.13). The magnetic quiver

associated to (2.13) is read off by the same logic as above; hence, one finds

D1 C1 B1 C1 B1 C1 B1 C1 D1

B0 B0

(2.14)

and Coulomb branch dimension and global symmetry, see appendix A.3, are given by

dimH C (2.14) = 9 , G = SO(12) . (2.15a)

Even more is true, because if the magnetic gauge groups for the quiver (2.14) are chosen

appropriately then it is known [90–92] that

C (2.14) = O
min
D6

, (2.15b)

which denotes the closure of the minimal nilpotent orbit of so(12). Again, the correct

choice of magnetic gauge group is subject of the companion paper [80]. Compared to

the classical Higgs branch and the non-abelian part of the global symmetry, the magnetic

quiver matches these properties (2.15) exactly.
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Infinite coupling. Proceeding to infinite coupling means that the two (0, 1) 5-branes

in (2.12) coincide on the O5 plane. Since both branes end on half 7-branes, these can be

vertically displaced slightly to a brane configuration of the form

3 32 22 21 11 1

[0,1]

[0,1]

(2.16)

Finding a maximal subdivision is similar to the cases above, the only new feature is the set

of vertically aligned half 7-branes outside the O5 plane. The two (half) (0, 1) 5-branes that

pass through the orientifold form two identical subwebs that are subjected to the projec-

tions of the magnetic orientifolds as discussed above. The (0, 1) 5-brane that is suspended

between the two half [0, 1] 7-branes outside the orientifold is, in contrast, not affected by

the orientifold projection and, consequently, induces a unitary magnetic gauge multiplet of

rank one. The matter content between the magnetic U(1) and C1 node is determined by

the intersection property. The intersection number is zero, but the generalised intersection

number receives a positive contribution because the corresponding subwebs end on oppo-

site side on the common half 7-brane. Therefore, there exists a magnetic bifundamental

hypermultiplet between these nodes.

Adding all the pieces, one then derives the following magnetic quiver:

D1 C1 D2 C2 D3 C2 D2 C1 D1

C1

U1

(2.17)

and the Coulomb branch dimension is computed to be

dimH C (2.17) = 17 . (2.18)

The physical choice of magnetic gauge groups for any orthosymplectic quiver is subject of

the companion paper [80]; such that a Hilbert series analysis suggests that C (2.17) = O
min
E7

holds.

Borrowing from class S literature, the star-shaped quiver (2.17) can be decomposed

into three D3 punctures corresponding to the linear quivers T(16)[SO(6)], T(16)[SO(6)], and

T(3,13)[SO(6)]. As detailed in [78, section 3.2.2], the resulting fixture gives rise to the

so-called E7 SCFT.
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2.3.3 E6: Sp(1) with 5 flavours

The 5-brane web for Sp(1) with 5 fundamental flavours in the Coulomb branch phase with

masses for the flavours is given by

(2,1)

(3,1) [1,0]

[1,1]

[0,1]

(2.19)

and the splitting into 3 flavours on the left and 2 flavours on the right-hand-side is a

convenient choice. Subsequently moving to the origin of the 5d Coulomb branch is realised

by moving the flavour half [1, 0] 7-branes and the gauge (1, 0) 5-brane onto the O5 plane.

Once the half 7-branes merge with their respective mirror branes, the physical 7-branes

can split on the orientifold leading to the following brane web in the Higgs branch phase:

13 22 12 111

[0,1] [1,1]

(2.20)

The (1, 1) 5-brane is connected via another (1, 0) 5-brane to a 7-brane on the right-hand-

side, due to the S-rule. Moreover, the (0, 1) 5-brane has to be connected to several 7-branes

on the left-hand-side in order to preserve supersymmetry.

Finite coupling. To analyse the finite coupling Higgs branch, one eliminates the non-

dynamical 5-branes as much as possible by transitioning the (0, 1) and (1, 1) 5-brane

through 7-branes on the left or right, respectively. Carefully considering brane annihi-

lation reveals that the configuration (2.20) becomes

11 111 11

[1,−1] [1,1]

(2.21)
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where the monodromy cuts have been chosen for an unambiguous presentation. As above

the (1,±1) 5-branes between Õ5
+
and Õ5

−
are supersymmetric, but non-dynamical branes.

Hence, these contribute as flavours to the magnetic quiver. The remaining brane web is

subdivided into subwebs, where each (1, 0) 5-brane ending on 7-branes is such a consistent

subweb. Then, following table 7, the magnetic quiver associated to (2.21) is given by

D1 C1 B1 C1 B1 C1 D1

B0 B0

(2.22)

and the Coulomb branch dimension and global symmetry, see appendix A.3, can be com-

puted to be

dimH C (2.22) = 7 ; G = SO(10) . (2.23a)

Upon choosing the magnetic gauge groups for (2.22) suitably, the entire moduli spaces is

known [92, table 11], see also [90, 91],

C (2.22) = O
min
D5

(2.23b)

i.e. the closure of the minimal nilpotent orbit of so(10). The rationale behind the choice of

magnetic gauge group for orthosymplectic magnetic quivers is addressed in a companion

paper [80]. Consequently, the properties (2.23) correctly reproduce the finite coupling

Higgs branch as well as the non-abelian part of the global symmetry.

Infinite coupling. In order to transition to the Higgs branch phase at infinite coupling,

the (0, 1) and (1, 1) 5-brane in (2.20) have to become coincident on the O5 plane. However,

as remarked above, there is a non-dynamical brane in (2.20), which can be eliminated

by passing the (0, 1) and (1, 1) 5-brane through one half 7-brane on the left-hand-side.

Accounting for brane-annihilation leads to

2 22 12 111

[0,1] [1,1]

(2.24)

where the (1, 1) and (0, 1) 5-branes constitute an independent subweb in the maximal sub-

division of (2.24), see also appendix A. Again, this subweb passes through the O5 plane,

but is mapped to itself, such that the magnetic degrees of freedom are not affected by

the orientifold projection. The subweb contributes a unitary magnetic vector multiplet.

The generalised intersection number between this subweb and the D5 branes in the central

segment is computed to be one, simply from the intersection number without further cor-

rections. Therefore, the U(1) node connects via a bifundamental magnetic hypermultiplet
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to another magnetic gauge node. In addition, since the (0, 1) and (1, 1) 5-brane have a non-

trivial intersection before orientifolding, one may wonder if this implies additional matter.

However, due to the identification of the 7-branes which leads to common 7-branes, the

generalised intersection evaluates to zero and no matter multiplet arises.

The remaining subwebs are, again, given by D5 branes between half 7-branes and

represent no new challenge. Accounting for identical subwebs and transitioning to magnetic

orientifolds, see table 7, leads to the following magnetic quiver:

D1 C1 D2 C2 D2 C1 D1

U1

(2.25)

The Coulomb branch dimension is computed to be

dimH C (2.25) = 11 . (2.26)

The identification of the magnetic gauge groups for (2.25) is addressed in the companion pa-

per [80], such that a Hilbert series computation indicates the stronger claim C (2.25)=O
min
E6

.

In terms of the class S dictionary, the star-shaped quiver (2.25) can be decomposed

into one untwisted A3 puncture corresponding to the linear quiver T(3,1)[SU(4)] and two

twisted A3 punctures associated with the linear quiver T(15)[USp(4)]. The resulting twisted

A3 fixture is referred to as E6 SCFT [79, section A.1.5].

2.3.4 E5: Sp(1) with 4 flavours

The 5-brane web for Sp(1) with 4 massive flavours in the Coulomb branch phase reads

(2,1)

(3,1) [1,0]

[1,1]

(2.27)

and the flavour branes have been chosen symmetrically for convenience. Transitioning to

the Higgs branch phase, configuration (2.27) becomes

12 21 11 1

[1,−1] [1,1]

(2.28)
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As above, the (1,±1) 5-branes each need to be connected to a [1, 0] 7-brane via a (1, 0)

5-brane for consistency.

Finite coupling. The finite coupling Higgs branch phase is most conveniently anal-

ysed when the (1,±1) 5-branes in (2.28) are passed through the 7-branes on the left or

right-hand-side, respectively. Accounting for brane annihilation, the resulting 5-brane web

becomes

11 11 1

[1,−1] [1,1]

(2.29)

where the monodormy cuts have been slightly displaced for the sake of an unambiguous

configuration. Now, one can analyse the Higgs branch degrees of freedom. The (1,±1)

5-branes between Õ5
+

and Õ5
−

are not freely-moving subwebs, and contribute only as

magnetic flavours. The (1, 0) 5-branes between the different 7-branes are all subwebs and

induce magnetic gauge multiplets according to which orientifold they coincide with, see

table 7. The associated magnetic quiver reads

D1 C1 B1 C1 D1

B0 B0

(2.30)

and Coulomb branch dimension and global symmetry, see appendix A.3, are computed

to be

dimH C (2.30) = 5 , G = SO(8) . (2.31a)

In fact, it is known [92, table 7], see also [90, 91], that upon choosing the magnetic gauge

groups corresponding to the algebras in (2.30) correctly,

C (2.30) = O
min
D4

(2.31b)

meaning that (2.30) describes the closure of the minimal nilpotent orbit of so(8). The

reasoning behind choosing the magnetic gauge group from an orthosynmplectic magnetic

quiver is subject of a companion paper [80]. Consequently, the properties (2.31) correctly

match the classical Higgs branch as well as the non-abelian part of the global symmetry.

Infinite coupling. The brane configuration for infinite gauge coupling is reached by

starting from (2.28) and making the (1,±1) 5-branes become coincident on the O5 plane.
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In more detail

21 11 1

[1,−1] [1,1]

(2.32)

such that a new Higgs branch degree of freedom appears because the (1,±1) 5-branes

form an independent subweb. In contrast to the subwebs formed by D5 branes suspended

between [1, 0] 7-branes, the subweb given by the (1,±1) branes passes through the O5 plane,

but is mapped to itself under the orientfold action. Hence, the O5 plane does not affect

the magnetic degrees of freedom of this subweb, such that the contribution is a unitary

magnetic gauge node as in [24]. Without the O5 plane, the (1,±1) 5-branes have a non-

trivial intersection, but the orientifold identifies the 7-branes on which the 5-brane ends.

Thus, the generalised intersection evaluates to zero because of the negative contributions

from the common 7-brane, such that no new matter multiplet arises.

Using the prescription of the magnetic orientifolds of table 7 for the remaining subwebs

of D5 branes and computing the intersection numbers, the magnetic quiver is read off to be

D1 C1 D2 C1 D1

U1

(2.33)

with a Coulomb branch of dimension

dimH C (2.33) = 7 . (2.34)

In a companion paper [80], the choice of magnetic gauge group for (2.33) will be clarified,

which then indicates that C (2.33) = O
min
E5

from a Hilbert series analysis.

2.3.5 E4: Sp(1) with 3 flavours

The 5-brane web for Sp(1) with 3 fundamental flavours can be chosen to be

(2,1)

(3,1) [1,0]

[2,1][1,−1]

(2.35)
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where the separation into 2 flavours on the left and 1 flavour on the right is simply a

convenient choice. In order to transfer the 5-brane web (2.35) into the Higgs phase, one

moves the system to the origin of the 5d Coulomb branch which is reached when the flavour

[1, 0] 7-branes and the gauge (1, 0) 5-brane are on the O5 plane. After merging the half

[1, 0] 7-branes with their mirrors on the orientifold and subsequent splitting along the O5

plane, the Higgs branch phase for (2.35) is given by

12 111

[1,−1] [2,1]

(2.36)

Inspecting (2.36) shows that the (1,−1) 5-brane, in contrast to the (2, 1) 5-brane, is not

a supersymmetric configuration by itself and needs to be connected to a [1, 0] 7-brane on

the left-hand-side via another 5-brane.

Finite coupling. Configuration (2.36) can equivalently be described as

1 11

[1,−1] [2,1]

(2.37)

by transitioning the (p, q) 5-brane outside the orientifold through the 7-branes and account-

ing for brane creation and annihilation. As above, the (1,−1) 5-branes between Õ5
+
and

Õ5
−

are consistent configurations by themselves, but these are not Higgs branch degrees

for freedom. The (2, 1) 5-branes behave essentially like the (1,−1) branes, because the half

monodromy cut turns the (2, 1) close to the orientifold into a (1, 1) brane. In contrast, the

collection of (1, 0) 5-branes suspended between different 7-branes are all independent sub-

webs, representing non-trivial Higgs branch degrees of freedom. From (2.37), the magnetic

quiver is read off to be

D1 C1 D1

D1

. (2.38)

Straightforwardly computing the Coulomb branch dimension and global symmetry, see

appendix A.3, yields

dimH C (2.38) = 3 , G = SO(6) (2.39)

which matches the Higgs branch dimension as well as the non-abelian part of the global

symmetry correctly.
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Infinite coupling. Proceeding to infinite coupling is realised by setting the distance be-

tween NS5 branes to zero. In other words, the (1, 1) and (1,−1) 5-branes become coincident

on the O5 plane and the brane web is given by

1 111

[1,−1] [2,1]

(2.40)

Crucially, this opens up a new Higgs branch direction, because the combination of the (2, 1)

and (1,−1) 5-brane is a consistent subweb and free to move along the x7,8,9 direction. As

this subweb passes through the O5 plane, but is mapped to itself, the associated magnetic

gauge multiplet is of U(1) type. Moreover, the intersection number with the central D5

brane is one, so there is one magnetic bi-fundamental hypermultiplet between the U(1) and

the C1 node. As above, one needs to examine interplay of the (1,−1) and (2, 1) 5-branes

closely. The intersection number of the 5-branes evaluates to 3, but becomes corrected

by common 7-branes such that the generalised intersection number is 2. Therefore, novel

matter multiplets arise form the non-trivial generalised intersection number. To see what

these might be, it is instructive to imagine the (1,−1) and (2, 1) 5-brane without the

O5 plane. Then each 5-brane would lead to a U(1) magnetic vector multiplet and the

intersection number dictates the number of copies of bifundamental matter that connects

these magnetic gauge nodes. Including the orientifold then leads to an identification of

these magnetic vector multiplets and it is suggestive that the two bifundamental magnetic

hypermultiplets turn into one magnetic hypermultiplet of charge 2 for the magnetic U(1)

gauge node.

Since the remainder of the web has not changed compared to the finite coupling

case (2.37), the magnetic quiver for infinite coupling is read off to be

D1 C1 D1

U1

1

(2.41)

where the wiggly line denotes a hypermultiplet of charge 2. The Coulomb branch dimension

becomes

dimH C (2.41) = 4 . (2.42)

Again, the choice of magnetic gauge groups is expanded on in [80]; the subsequent Hilbert

series analysis suggest that the Coulomb branch satisfies C (2.41) = O
min
D4

.

One may wonder why the identification in (2.41) is one hypermultiplet of charge two

and not two hypermultiplets of charge one. The brane system for both looks the same.

The answer to this is coming form the computation of the Higgs branch of (2.41) which

should have dimension 1 and not 2.
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2.3.6 E3: Sp(1) with 2 flavours

Next, considering Sp(1) with Nf = 2 flavours, the relevant 5-brane web is given by

(2,1)

(3,1) [1,0]

[2,1]

(2.43)

where the two flavours have been chosen symmetrically. Transitioning into the Higgs branch

phase, the gauge and flavour D5s align with the O5 plane and the flavour half 7-branes are

split along the orientifold. Then, the brane web becomes

11 1

[2,−1] [2,1]

(2.44)

and one observes that the (2,±1) 5-brane are already free configurations.

Finite coupling. To read off the magnetic quiver at finite coupling, the (2,±1) 5-branes

in (2.44) can stay where they are, as one can read a magnetic O5− plane with two magnetic

flavours. Thus, the magnetic quiver associated to (2.44) is found to be

D1

C1

(2.45)

which has a Coulomb branch of quaternionic dimension one. In fact, it is known that

C (2.45) = O
min
D2

. (2.46)

As known from [94], the finite coupling Higgs branch is a union of two (isomorphic) cones.

Correspondingly, one would expect two maximal inequivalent subdivision of the brane

web (2.44), but the current observations show only one.
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Infinite coupling. To reach the infinite coupling phase, the (2,±1) 5-branes in (2.44)

are made coincident along the orientifold such that the web becomes

1

[2,−1] [2,1]

(2.47)

and one can proceed to read off the Higgs branch degrees of freedom. The subweb consisting

of a D5 on top of an O5− plane provides a D1 magnetic node. The subweb formed by the

(2,±1) branes yields a U(1) node, that is connected by a bifundamental to the D1 node

because the intersection number is 1. In addition, the self-intersection of the (2,±1) branes

needs be considered. The intersection number of the (2,±1) 5-branes is four, but there are

also common 7-branes to be take into account. In total, the generalised intersection number

is 2, which then suggest that the U(1) magnetic gauge node needs to be supplemented by

one magnetic hypermultiplet of charge 2. Thus, the magnetic quiver is given by

D1

U1

1

(2.48)

Notice that only a U1 ⊂ C1 subalgebra of the C1 flavour symmetry in (2.45) is gauged.

The moduli space becomes

C (2.48) = O
min
A2

(2.49)

which is also denoted as a2.

It should be noted that the expectation is that there should be two maximal subdi-

visions [24, section 2.1] in order to reflect the existence of two cones e3 ∼= a2 ∪ a1 [1, 2].

However, the 5-brane web (2.47) does not show any signs for a second subdivision.

2.3.7 E2: Sp(1) with 1 flavour

Reducing the number of flavours to Nf = 1, the 5-brane web is given by

(2,1)

[3,1]

[2,−1]

(2.50)

– 25 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
4

and one transitions to the Higgs branch phase by the same steps as above. Thus, one

arrives at

11

[2,−1] [3,1]

(2.51)

where the (2,−1) brane is a free configuration. However, the (3, 1) 5-brane is connected

via a D5 brane to the 7-branes on the left-hand-side.

Finite coupling. Eliminating the non-dynamical branes via brane annihilation leads to

a clean Higgs branch phase at finite coupling:

[2,−1] [3,1]

(2.52)

and one realises that there are no Higgs branch directions. Hence, the magnetic quiver is

empty.

Infinite coupling. From (2.52) one takes the gauge coupling to infinity by making the

(2,−1) and (3, 1) 5-brane coincident on the orientifold. The 5-brane web is

[2,−1] [3,1]

(2.53)

and one recognises a new Higgs branch direction. The subweb consisting of the (2,−1) and

(3, 1) brane yield a U(1) magnetic gauge group, and the self-intersection of 4 contributes

two magnetic hypermultiplets of charge 2. Therefore, the magnetic quiver becomes

U1

2

(2.54)

such that the Coulomb branch is

C (2.54) = C
2/Z2 , (2.55)

which equals the A1 part of the e2 ∼= A1 ∪ Z2 moduli space. The Z2 factor is due to

a nilpotent operator in the infinite coupling Higgs branch chiral ring [57] and hence not

detectable with current magnetic quiver methods.
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2.3.8 E1: pure Sp(1) theory

Now, consider pure Sp(1) gauge theory with brane web given by

(2,1)

[3,1]

(2.56)

with no flavours.

Finite coupling. The Higgs branch phase is realised by aligning the D5 with the orien-

tifold. Hence, the web becomes

1

[3,−1] [3,1]

(2.57)

and shows that there are no Higgs branch directions at finite coupling. Consequently, the

magnetic quiver is empty.

Infinite coupling. Transitioning (2.57) to infinite coupling, by making the (3,±1) branes

coincident, the brane web reads

[3,−1] [3,1]

(2.58)

and one recognises one additional Higgs branch direction. The magnetic gauge group is

a U(1), and the generalised self-intersection of 4 between the (3 ± 1) 5-branes suggest

that there are two magnetic hypermultiplets of charge 2. The associated magnetic quiver

becomes

U1

2

(2.59)

and the moduli space is

C (2.59) = C
2/Z2 , (2.60)

i.e. the e1 ∼= A1 space; in agreement with [24, 57].
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The Ẽ1 theory. In [22] an O5 construction for the Ẽ1 theory, whose Higgs branch is

known to be a single point [4], was proposed; however, this is not elaborated here and the

reader is referred to the discussion in [22].

2.3.9 E0 theory

Finally, to conclude this subsection, it is natural to introduce an E0 theory. It does not

admit a gauge theory description, as the number of flavours would need to be negative.

However, as shown in tables 1–4, higher rank theories allow to define En families for

arbitrary −∞ < n ≤ 8.

The family of interest here is E4−2l, specifically for l = 2. Brane systems, magnetic

quivers and Hasse diagrams are derived in full generality in the coming sections for rank k

satisfying k ≥ l; for k = 1 one can attempt an analytic continuation. As shown in table 3,

the dimension of the Higgs branch at infinite coupling is 0, consistent with the expectation

that the E0 theory has a Higgs branch which is a single point [4]. Correspondingly the

Hasse diagram is reduced to a single trivial leaf, which is a point.

2.4 Rules for magnetic quivers

After establishing the validity of the magnetic quiver proposal by using magnetic orien-

tifolds of table 7, one has to formulate the proposal for a generic 5-brane web in the presence

of O5 planes. Building on section 2.3, the magnetic quivers for a given 5-brane web in the

Higgs branch phase are derived as follows.

Consider a 5-brane web with O5 planes in which each external half (p, q) 5-brane is

terminated on a half [p, q] 7-brane.

Conjecture 1 (Magnetic Quiver) The Higgs branch phase is realised when all the

flavour and all gauge D5 branes are coincident with the O5 plane, such that the result-

ing physical [1, 0] 7-branes are split along the orientifold. Then, for each inequivalent

maximal subdivision into subwebs suspended between 7-branes, which is compatible with

supersymmetry, the associated magnetic quiver can be derived by the following set of rules:

• Gauge nodes: a stack of k identical subwebs which are free to move in the x7,8,9

direction contribute a magnetic gauge multiplet.

(a) A stack of D5s, on top of an O5 plane, the magnetic gauge algebra is the one

naturally associate to the magnetic orientifold.

(b) A stack of NS5s, on top of an O5 plane, the magnetic gauge algebra is determined

by, firstly, transitioning to the magnetic orientifold of table 7 and, secondly, using

the corresponding flavour algebra of table 6 as magnetic gauge algebra.

(c) A stack of any other kind of subwebs contributes a U(k) magnetic gauge multiplet.

In addition, observation 1 may apply.

• Flavour nodes: the 5-branes that are allowed by supersymmetry, but are not free to

move along the x7,8,9 direction, only contribute flavour nodes to the magnetic quiver.

The type of flavour is dictated by the magnetic orientifold. Most notably, a (1,±1)

5-brane between a Õ5
+

and Õ5
−

plane contributes a B0 magnetic flavour, denoting

a single half-hypermultiplet.
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• Matter: two non-identical subwebs are linked by a number of bi-fundamental mag-

netic hypermultiplets, determined by the generalised intersection number.

In addition, there are infinite coupling configurations that involve (p, q) 5-branes which

are neither D5 nor NS5 branes. The corresponding contributions to magnetic quivers are

observed to be as follows:

Observation 1 (Charged matter) For a pair of (r,±1) 5-branes on a O5− plane, the

stable intersection between of the two mirror half 5-branes is 2r, while the common 7-branes

contribute a −2 such that the generalised intersection number is 2r − 2. The U(1) node is

supplemented by 2r−2
2 charge 2 hypermultiplets and the magnetic quiver reads

k

[r,1][r,−1]

−→

Dk

U1

r−1

(2.61a)

Analogously, for a pair of (r,−1) and (r + 1, 1) 5-branes on a Õ5
−

plane, the generalised

intersection number of the two mirror half 5-branes is 2r − 1. The Õ5
−

plane is suspected

to additionally modify the intersection number by +1 due to the stuck half D5. The U(1)

node has r charge 2 magnetic hypermultiplets such that the contribution to the magnetic

quiver then becomes

k

[r+1,1][r,−1]

−→

Ck

U1

r

(2.61b)

As a comment, contrary to 5-brane web without orientifolds [24], the examples consid-

ered in this paper do not show any signs of multiple inequivalent subdivisions for a given

5-brane web. However, the possibility is covered by conjecture 1.

3 Single Sp(k) gauge group

Having developed the magnetic quiver proposal for 5-brane webs with O5 planes, this

section focuses on brane constructions for Sp(k) gauge theories with fundamental hyper-

multiplets. To begin with, known facts from field theory and 5-brane webs are collected

and contrasted.

Field theory. For a 5d N = 1 Sp(k) gauge theory with Nf fundamental flavours, a

non-trivial interacting fixed point has been argued to exist for Nf ≤ 2k+4 in [3, section 4].
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Suppose Nf ≥ 2k, considering the finite coupling Higgs branch yields

dimHH =
1

2
· 2Nf · 2k − dimSp(k) = k(2Nf − 2k − 1) . (3.1)

For Nf ≥ 2k, complete Higgsing is possible and, according to [94], the expectation for the

finite coupling Higgs branch is as follows:

H =
{
M ∈ Mat2Nf×2Nf

∣∣M +MT = 0 , M2 = 0 , rank(M) ≤ 2k
}

= O
[22k,1

2Nf−4k
]

DNf

(3.2)

• Nf > 2k: the Higgs branch is a single cone which is a nilpotent orbit closure of

so(2Nf ).

• Nf = 2k: the Higgs branch is a union of two cones.

For Nf < 2k, only partial Higgsing is possible and the claim is as follows:

• Nf even: partial Higgsing to

Sp(k) with Nf flavours −→ pure Sp
(
k −

Nf

2

)
(3.3a)

such that the Higgs branch dimension becomes

dimHH =
1

2
2Nf · 2k −

(
dimSp(k)− dimSp

(
k −

Nf

2

))

=
1

2
Nf (Nf − 1) . (3.3b)

Again, the Higgs branch is a union of two cones

H = O
[2

Nf ]
DNf

. (3.3c)

• Nf odd: partial Higgsing to

Sp(k) with Nf flavours −→ Sp
(
k −

Nf−1
2

)
with 1 flavour (3.4a)

and the Higgs branch dimension is computed to be

dimHH =
1

2

(
2Nf · 2k − 2 ·

(
k −

Nf−1
2

))
−
(
dimSp(k)− dimSp

(
k −

Nf−1
2

))

=
1

2
Nf (Nf − 1) . (3.4b)

In fact, the Higgs branch equals

H = O
[2

Nf−1
,12]

DNf
. (3.4c)

5-brane web. The requirement that the external 5-branes do not intersect, which would

introduce additional massless degrees of freedom, leads to the constraint [8, section 3.4]

that Nf ≤ 2k+4. It has been argued in [9, section 2] that the case Nf = 2k+5 also gives

rise to a consistent 5d theory, which for k = 1 yields the familiar E8 theory.
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The change in Higgs branch dimension when approaching the fixed point has been

studied in [10] and can be summarised as follows:

• 0 ≤ Nf ≤ 2k: the number of D5s in between the branes with non-zero NS charge is

larger than on the outside. Then exactly one extra dimension is gained by detaching

the 5-branes from the O5 plane after collapsing the gauge 5-branes.

• 2k + 1 ≤ Nf ≤ 2k + 3: the number of D5s in between the branes with non-zero NS

charge is smaller compared to the outside. Then at infinite coupling, there exists one

extra dimension due to the (p, q) 5-branes with q > 0. Moreover, there exist further

additional Higgs branch directions originating from the D5s that can reconnect once

the gauge branes collapsed.

• Nf = 2k + 4: there are new Higgs branch directions due to D5s that reconnect once

the gauge branes collapsed. Moreover, one extra dimension is gained by detaching

the 5-branes from the O5 plane after collapsing the gauge 5-branes; the external NS5

branes are parallel and an additional direction becomes accessible by breaking one of

them on a 7-brane.

• Nf = 2k+5: the external 5-branes intersect and the resolution thereof yields several

additional directions. One extra dimension is gained by detaching the 5-branes from

the O5 plane after collapsing the gauge 5-branes; while several other directions open

up due to D5 branes that can reconnect once the gauge branes collapsed.

In addition, [9, 35] investigated the potential enhancement of the classical SO(2Nf )×U(1)I
global symmetry and the claim is that

• Nf < 2k + 4: no enhancement.

• Nf = 2k + 4: the U(1)I factor enhances to a SU(2).

• Nf = 2k + 5: the symmetry enhances as SO(4k + 10)×U(1)I → SO(4k + 12).

3.1 Sp(k) with fundamental flavours and O5+

The construction of the 5-brane web for a 5d N = 1 Sp(k) gauge theory with Nf fundamen-

tal flavours follows [10]. In detail, the brane web for NR flavour branes on the right-hand-

side and NL flavour brane on the left-hand-side starts from the Coulomb branch phase

with identical masses given by

(2,1)

k
(k+2,1)

· · · · · ·

(k−NR+2,1)(k−NL+2,−1)

NL NR

· · · · · ·

(3.5)

such that the transition to the Higgs branch phase is again achieved in several steps: firstly,

the flavour half [1, 0] 7-branes as well as the gauge (1, 0) 5-branes move towards the O5 plane
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such that the half 7-branes merge with their mirror images. Secondly, the newly formed

physical 7-branes can be split along the orientifold such that the 5-brane web becomes

kNL NRNL−1 NR−11 11 1

· · · · · ·

[k−NR+2,1][k−NL+2,−1]

2NL 2NR

(3.6)

using the O5 plane notation of table 6. Without loss of generality, it is sufficient to consider

two cases

(i) Nf even: NL = NR =
Nf

2 ,

(ii) Nf odd: NL = NR + 1 =
Nf+1

2 .

This is because any other configuration can be transitioned into one of the two cases by

moving sufficiently many flavour branes from one side to the other, due to brane annihila-

tion and creation.

3.1.1 Finite coupling

Nf even. For NL = NR the brane configuration (3.6) simplifies to

kNL NLNL−1 NL−11 11 1

· · · · · ·

[k−NL+2,1][k−NL+2,−1]

2NL 2NL

(3.7)

If NL ≤ k or, equivalently, Nf ≤ 2k then only NL 5-branes in the central segment of k

physical (1, 0) 5-branes are dynamical. In particular, k−NL of the central 5-branes remain

suspended between NS5 branes such that there is a residual Sp
(
k −

Nf

2

)
gauge group left.

For the 5-branes that contribute to the Higgs branch, the associated magnetic quiver reads

D1 C1

· · ·

CNf
2

−1

DNf
2

CNf
2

−1

· · ·

C1 D1

C1

(3.8)

and one computes

dimH C (3.8) =
1

2
Nf (Nf − 1) , G = SO(2Nf ) (3.9)

because all gauge nodes are balanced, cf. appendix A.3. The nilpotent orbit O
[2

Nf ]
DNf

=

O
[2

Nf ]I
DNf

∪ O
[2

Nf ]II
DNf

of so(2Nf ) is a union of two nilpotent orbits [95], the Coulomb branch
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of (3.8) is the closure of one of these orbits. In particular, the properties (3.9) agree with

the expectation (3.3) and the brane web (3.7) displays the residual gauge theory explicitly.

As in the case of Sp(1) only one cone can be identified from the web, however a direct

computation of the hyper-Kähler quotient shows, that there are indeed two cones. See

section 4.5 for more on the two cone problem.

If NL > k or, equivalently, Nf ≥ 2k+ 2 then all of the k central branes are dynamical

Higgs branch degrees of freedom. The (k − NL + 1,±1) 5-branes are connected to 7-

branes via NL − k branes, which can be annihilated when moving the (k − NL + 1,±1)

5-branes through sufficiently many 7-branes, as discussed above. Hence, the magnetic

quiver becomes

D1 C1

· · ·

Dk Ck Bk

· · ·

Bk Ck Dk

· · ·

C1 D1

B0 B0

2Nf−4k−1

(3.10)

and one verifies

dimH C (3.10) = k(2Nf − 2k − 1) , G = SO(2Nf ) (3.11a)

because all gauge nodes are balanced, cf. appendix A.3. Moreover, the Coulomb branch

geometry is known to be

C (3.10) = O
[22k,1

2Nf−4k
]

DNf
(3.11b)

i.e. a nilpotent orbit closure for so(2Nf ). Consequently, the properties (3.11) correctly

reproduce the finite coupling Higgs branch.

Nf odd. For NL = NR + 1 the brane configuration (3.6) specialises to

kNL NL−1NL−1 NL−21 11 1

· · · · · ·

[k−NL+2+1,1][k−NL+2,−1]

2NL 2NL−2

(3.12)

Regardless of the value of Nf , after moving both, the (k−NL+2−1, 1) as well as the

(k−NL+2,−1) 5-brane through the first 7-brane on the left-hand side, the brane configu-

ration becomes

NL−1k NL−1NL−1 NL−21 11 1

· · · · · ·

[k−NL+3,1][k−NL+2,−1]

2NL−1 2NL−1

(3.13)
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If NL − 1 ≤ k or, equivalently, Nf ≤ 2k + 1 only
Nf−1

2 k of the k central 5-branes are

dynamical Higgs branch degrees of freedom. Hence, k −
Nf−1

2 5-branes remain suspended

between NS5 branes and indicate a residual Sp
(
k −

Nf−1
2

)
gauge group. In addition, the

half 7-branes closest to the NS5 branes contribute a single flavour to the residual gauge

group. From the remaining 5-branes that contribute to the Higgs branch one reads off the

magnetic quiver as follows

D1 C1

· · ·

DNf−1

2

CNf−1

2

DNf−1

2

· · ·

C1 D1

D1

(3.14)

and one can compute

dimH C (3.14) =
1

2
Nf (Nf − 1) , G = SO(2Nf ) (3.15)

because all gauge nodes are balanced, cf. appendix A.3. The Coulomb branch of (3.14)

is the closure of the nilpotent orbit [2Nf−1, 12] of so(2Nf ). As a consequence, the proper-

ties (3.15) agree with the expectation (3.4) and the brane web displays the residual gauge

theory explicitly.

On the other hand, if NL−1 > k or, equivalently, Nf > 2k+1 then all of the k central

5-branes are Higgs branch degrees of freedom. As dictated by the S-rule, the (k−NL+2,−1)

and (k−NL+3, 1) 5-branes are connected to 7-branes via sufficiently many (1, 0) 5-branes,

which can be annihilated by moving the non-flavour 5-branes through 7-branes. As a result,

one finds the following magnetic quiver

D1 C1

· · ·

Dk Ck Bk

· · ·

Bk Ck Dk

· · ·

C1 D1

B0 B0

2Nf−4k−1

(3.16)

which is the same as for Nf even and Nf ≥ 2k + 1. A computation shows

dimH C (3.16) = k(2Nf − 2k − 1) , G = SO(2Nf ) (3.17a)

because all gauge nodes are balanced, cf. appendix A.3. In fact

C (3.16) = O
[22k,1

2Nf−4k
]

DNf
, (3.17b)

which is a nilpotent orbit closure of so(2Nf ). Therefore, the properties (3.17) match the

finite coupling Higgs branch.
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3.1.2 Infinite coupling

Nf even. For NL = NR the 5-brane web at infinite coupling has to be considered for

two distinct cases. Firstly, if NL < k + 2 or, equivalently, Nf < 2k + 4, the web becomes

NLNL−1 NL−11 11 1

· · · · · ·

[k−NL+2,1][k−NL+2,−1]

2NL 2NL

(3.18)

and the magnetic quiver is read off to be

D1 C1

· · ·

CNf
2

−1

DNf
2

CNf
2

−1

· · ·

C1 D1

U1

k−
Nf

2
+1

(3.19)

and one verifies

dimH C (3.19) =
Nf (Nf − 1)

2
+ 1 . (3.20)

The charge two magnetic hypermultiplets are expected from the self-intersection of the

(k − NL + 2,±1) 5-branes, as detailed in observation 1. Moreover, one notices that the

family of magnetic quivers (3.19) contains the E5 case (2.33), the E3 case (2.48) and the

E1 case (2.59).

Secondly, if NL = k + 2 or, equivalently, Nf = 2k + 4, the web at infinite coupling

reads

NLNL−1 NL−11 11 1

· · · · · ·

[0,1]

[0,1]

2NL 2NL

(3.21)

such that the magnetic quiver is

D1 C1

· · ·

CNf
2

−1

DNf
2

CNf
2

−1

· · ·

C1 D1

C1

U1

(3.22)
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and the dimension is

dimH C (3.22) =
Nf (Nf − 1)

2
+ 2 . (3.23)

One observes that this family contains the E7 case (2.17).

Nf odd. For NL = NR + 1 there exists two distinct cases for the brane web at infinite

coupling. Firstly, for NL < k + 3 or, equivalently, Nf < 2k + 5 the finite coupling 5-brane

web (3.12) can be used to make the (k −NL + 2,−1) and (k −NL + 3, 1) 5-brane become

coincident on the O5 plane. Doing so results in

NL−1NL−1 NL−21 11 1

· · · · · ·

[k−NL+3,1][k−NL+2,−1]

2NL−1 2NL−1

(3.24)

such that the magnetic quiver can be read off

D1 C1

· · ·

DNf−1

2

CNf−1

2

DNf−1

2

· · ·

C1 D1

U1

k−
Nf+1

2
+2

(3.25)

and the Coulomb branch dimension is

dimH C (3.25) =
Nf (Nf − 1)

2
+ 1 . (3.26)

The charge two magnetic hypermultiplet is an expected consequence from the intersection

of the (k − NL + 2,−1) and (k − NL + 3, 1) 5-brane, as suggested in observation 1. One

notices that the family (3.25) of quivers contains the E6 case (2.25), the E4 case (2.41) and

the E2 case (2.54).

Secondly, for NL = k + 3 or, equivalently, Nf = 2k + 5 the finite coupling brane web

can be written as

kNL NL−1NL−1 NL−21 11 1

· · · · · ·

[0,1]

[1,0]

2NL 2NL−2

(3.27)
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such that the infinite coupling configuration is reached once the [1, 0] 7-brane moves onto

the O5 plane, and the physical 7-brane splits along the orientifold. In detail, the brane

web becomes

NLNL−1 NL−11 11 1

· · · · · ·

[0,1]

2NL 2NL

(3.28)

and the magnetic quiver is straightforwardly read off to be

D1 C1

· · ·

CNf−1

2

DNf+1

2

CNf−1

2

· · ·

C1 D1

C1

(3.29)

and

dimH C (3.29) =
Nf (Nf + 1)

2
+ 1 . (3.30)

One notices that this family contains the E8 case (2.9).

3.2 Sp(k) with fundamental flavours and Õ5
+

Since an Õ5
+

plane does also give rise to symplectic low-energy gauge theories, it is

tempting to generalise the analysis to this case. From the brane-web perspective, a con-

venient starting point is the 5-brane web with an O5+ plane for a Sp(k) theory with

Nf = NL+NR+1 fundamental flavours. Without loss of generality, the additional flavour

is chosen to be on the right-hand-side, such that

(2,1)

k
(k+2,1)

· · · · · ·

(k−NR+1,1)(k−NL+2,−1)

NL NR+1

· · · · · ·

(3.31)

and then one can move one of the flavours on the right-hand-side onto the orientifold. The

resulting physical 7-brane, from the merging of the half 7-brane and its mirror, can be

– 37 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
4

Type IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×

D5 × × × × × ×

(p, q) 5-brane × × × × × angle α

O7− × × × × × × × ×

[p, q] 7-brane × × × × × × × ×

Table 8. Type IIB 5-brane web set-up with O7− plane: × indicates the space-time directions

spanned by the various branes and the orientifold plane. A (p, q) 5-brane is a line of slope tan(α) =

qτ2/(p + qτ1) in the x5,6 plane where the axiodilaton is τ = τ1 + iτ2. In this paper all the brane

webs are drawn for the value τ = i, so that tan(α) = q/p.

split along the orientifold. Then, moving only one half 7-brane through the 5-branes to the

left-hand-side results in

(1,1)

k
(k+1,1)

· · · · · ·

(k−NR+1,1)(k−NL+2,−1)

NL NR

· · · · · ·

(3.32)

and one can send the two half 7-branes which are on the orientifold towards ±∞. Via these

steps, one has achieve a 5-brane construction for a symplectic gauge group using an Õ5
+

plane. Consequently, the brane web proposal for Sp(k) with Ñf = NL+NR = Nf −1 from

an O5+ plane is equivalent to that of Sp(k) with Nf flavours from an Õ5
+

plane. Hence,

there does not appear to be a new theory, which agrees with the findings of [10] and the

3d N = 4 analysis in [87].

4 Comparison with O7− construction

While the main focus of this work are constructions of 5d N = 1 gauge theories and their

UV fixed points using brane webs with O5 planes, it is instructive to compare the results

to constructions with an O7 plane [9]. The space-time occupation of the various branes

in this setup are summarised in table 8. In this section, the brane webs with an O7−

plane realising an Sp(k) gauge theory with Nf ≤ 2k + 5 fundamental hypermultiplets are

presented. The starting point is the massive Coulomb phase, which for k being the rank
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of the gauge group and Nf = NL +NR can be depicted as follows:

(2,−1) (2,1)

· · · · · ·

(2+k−NL,−1) (2+k−NR,1)

k

NL NR

O7−

NL NR

(4.1)

and masses of the hypermultiplets are chosen to be equal for convenience. For the purposes

of this section, the decomposition of the number of flavours into Nf = NL + NR is a

convenient choice and has no impact on the results. As shown in [96], an O7− orientifold

is quantum mechanically resolved into a pair of mutually non-local [p, q] 7-branes, such

that the combined monodromy equals that of the O7−. One common choice is given by a

[1, 1] 7-brane together with a [1,−1] 7-brane, which is denoted as blue and red respectively.

Thus, then quantum mechanically corrected 5-brane web becomes

(2,−1) (2,1)

· · · · · ·

(2+k−NL,−1) (2+k−NR,1)

k

NL NR

NL NR

(4.2)

which can be brought into a more convenient form by moving the monodromy cuts.

Accounting for the effects of the monodromy (A.3), one finds

.

.

.

.

.

.

(1,k−NL) (1,NR−k)k

k

k

NL NR

NL NR

(4.3)

and the [1,±1] 7-branes inside the web can be moved through the 5-branes by accounting for

brane creation, as in (A.4). Therefore, the 5-brane web with all 7-branes outside is given by

.

.

.

.

.

.

(1,k−NL) (1,NR−k)k

k

k

k k

NL NR

NL NR

(4.4)
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such that one can finally transition to the Higgs branch phase. For this, all masses are set

to zero and one ends up with

.

.

.

(1,k−NL) (1,NR−k)2k

k

NL+NR

NL+NR

(4.5)

which is a 5-brane web ending on 7-branes without O5 planes. Therefore, the results

of [24] apply. In other words, starting from (4.5), the associated magnetic quivers with

only unitary magnetic gauge nodes are read off by [24, conjecture 1].

4.1 Finite coupling

In the following, unitary magnetic quivers are computed for Sp(k) theories at finite

coupling.

Nf ≤ 2k + 1. For small numbers of flavours the magnetic quiver depends on Nf being

even or odd. For even number of flavours one finds the following two maximal subdivisions:

1 2 Nf−3

Nf−2

Nf

2
−1

Nf

2

1

· · ·
(4.6a)

1 2 Nf−3

Nf−2

Nf

2

Nf

2
−1

1

· · ·
(4.6b)
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and the intersection of the cones associated to (4.6a) and (4.6b) in the Higgs branch is

described by

1 2

Nf−3

Nf−2

Nf

2
−1

Nf

2
−1

1

· · ·
(4.6c)

In contrast, for odd number of flavours there is only one maximal subdivision and the

magnetic quiver becomes

1 2 Nf−3

Nf−2

Nf−1

2

Nf−1

2

1· · ·
(4.7)

In both cases, one straightforwardly computes

dimH C (4.6) = dimH C (4.7) =
Nf (Nf − 1)

2
and G = SO(2Nf ) (4.8)

due to the subset of balanced nodes, see A.3. In fact, the moduli spaces are known [94] to

satisfy

C (4.6a) ∪ C (4.6b) = O
[2

Nf ]
D , C (4.6a) ∩ C (4.6b) = C (4.6c) = O

[2
Nf−2

,14]
D , (4.9a)

C (4.7) = O
[2

Nf−1
,12]

D . (4.9b)

As a remark, incomplete Higgsing has not been detailed in [94]; however, the magnetic

quivers still have the same structure and thus the results apply. In particular, these re-

sults agree with the Higgs branch expectations (3.3)–(3.4) as well as the magnetic quivers

results (3.9) and (3.15) derived from O5 planes.

Nf > 2k+1. For large number of flavours, the magnetic quiver shows uniform behaviour

and is read off to be

· · · · · ·

1 2 2k−1 2k 2k

k

k

1

Nf−2k−1

(4.10)
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and one confirms that

dimH C (4.10) = k (2Nf − 2k − 1) and G = SO(2Nf ) (4.11)

which agrees with the Higgs branch expectation (3.1) as well as the magnetic quiver re-

sult (3.11) and (3.17) derived from O5 planes. In addition, one notes that (4.10) agrees

with the 3d N = 4 mirror theory for Sp(k) gauge theory with Nf ≥ 2k flavours derived

in [97] [94, figure 4]. The moduli space

C (4.10) = O
[22k,1

2Nf−4k
]

D (4.12)

is known to be a nilpotent orbit closure.

4.2 Infinite coupling

In the following unitary magnetic quivers are computed for Sp(k) theories at infinite

coupling.

Nf ≤ 2k. Suppose the number of flavours satisfies Nf ≤ 2k, then the infinite coupling

regime is reached via global deformation of the brane web

.

.

.

(1,k−NL) (1,NR−k)

k k

NL+NR

NL+NR

(4.13)

and magnetic quivers at infinite coupling can be read off by the usual rules. However, the

result depends on Nf being even or odd, similar to the finite coupling case. To begin with,

suppose Nf is even, then one finds two maximal subdivision with the following magnetic

quivers:

1 2 Nf−3

Nf−2

Nf

2
−1

Nf

2

1

· · ·
(4.14a)

k−
Nf

2
+1

1 2 Nf−3

Nf−2

Nf

2

Nf

2
−1

· · ·

1

1

(4.14b)
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and the moduli space becomes the union of two cones. Note that (4.14a) coincides with

the finite coupling results, while for (4.14b) one computes the following

dimH C (4.14b) =
1

2
Nf (Nf − 1) + 1 G = SO(2Nf )×U(1) . (4.15)

For odd number of flavours Nf , there exists only one maximal subdivision and the magnetic

quivers is read off to be

k−
Nf−1

2
+1

1 2 Nf−3

Nf−2

Nf−1

2

Nf−1

2

· · ·

1

1

(4.16)

and, as above, one concludes that

dimH C (4.16) =
1

2
Nf (Nf − 1) + 1 GJ = SO(2Nf )×U(1) . (4.17)

Both cases (4.14)–(4.16) correctly reproduce the number of additional Higgs branch direc-

tions at infinite coupling [9]. Comparing to the results (3.19) and (3.25) from the O5 plane

construction, the O7− results do indicate the existence of multiple cones, which are not

currently visible in the O5 analysis.

Nf = 2k+1. Increasing the number of flavours to Nf = 2k+1, the 5-brane web has to

be evaluated more carefully. In detail, it becomes

.

.

.

k+1
k

2k+1

2k+1

(4.18)

and the associated magnetic quiver is

1 2 2k−2

2k−1

k

k

· · ·

1

1

(4.19)
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The Coulomb branch dimension is readily computed

dimH C (4.19) =
1

2
Nf (Nf − 1) + 1 and G = SO(2Nf )×U(1) . (4.20)

The addition in Higgs branch dimension agrees with the expectation [9] as well as the di-

mension of the magnetic quiver (3.25) from the O5 plane construction. Furthermore, (4.19)

reduces for k = 1 to the affine a4 quiver whose Coulomb branch equals O
min
A4

.

Nf = 2k + 2. Next, for Nf = 2k + 2 fundamental flavours the 5-brane web is given by

.

.

.

k+1 k+1

2k+2

2k+2

(4.21)

and the corresponding magnetic quiver is determined to be

1 2 2k−1

2k

k+1

k

· · ·

1

1

(4.22)

The associated Coulomb branch is of dimension

dimH C (4.22) =
1

2
Nf (Nf − 1) + 1 and G = SO(2Nf )×U(1) . (4.23)

Note that the case k = 1 reduces to the affine d5 quiver, i.e. the quiver whose Coulomb

branch equals O
min
D5

.
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Nf = 2k + 3. Increasing the number of flavours further Nf = 2k + 3, the brane web is

given by

.

.

.

k+1

k+1 k+1

2k+2

2k+2

(4.24)

such that the magnetic quiver reads

1 2 2k

2k+1

k+1

k+1

· · ·

1

1

(4.25)

One readily confirms that

dimH C (4.25) =
1

2
Nf (Nf − 1) + 1 and G = SO(2Nf )×U(1) , (4.26)

which indicates one additional Higgs branch direction at infinite coupling, in agreement

with [9]. Moreover, note that the k = 1 case reduces (4.25) to the affine e6 quiver, i.e. the

quiver with Coulomb branch O
min
E6

.

Nf = 2k + 4. The brane web for the field theory limit Nf = 2k + 4 is given by

2k+2

2k+2

k+2

2

1

k+1

.

.

.

(4.27)
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and the associated magnetic quiver is

· · ·

1 2 2k+1 2k+2 k+2 2 1

k+1

(4.28)

One readily computes

dimH C (4.28) =
1

2
Nf (Nf − 1) + 2 and G = SO(2Nf )× SU(2) (4.29)

which indicates two additional Higgs branch directions in comparison to the finite coupling

case. This agrees with the expectation of [9] as well as the magnetic quiver (3.22) from

O5 plane construction. In particular, note that for k = 1 the quiver (4.28) reduces to the

affine e7 quiver, meaning that its Coulomb branch is O
min
E7

.

Nf = 2k + 5. Lastly, considering the maximal number of flavours, the brane web is

given by

2k+3

2k+3

.

.

.

k+2

k+2

3k+5

2k+4

k+3

(4.30)

and one derives the magnetic quiver to be

· · ·

1 2 2k+3 2k+4 k+3 2

k+2

(4.31)

Computing the moduli space properties reveals

dimH C (4.31) =
1

2
Nf (Nf + 1) + 1 and G = SO(2Nf + 2) , (4.32)

which matches the dimension of (3.29) from the O5 construction. Moreover, for k = 1

one observes that (4.31) reduces to the affine e8 quiver such that its Coulomb branch

equals O
min
E8

.
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4.3 Duality with 5d SQCD

The unitary magnetic quiver descriptions for the 5d Sp(k) theories derived above admit an

interesting property. Recalling the infinite coupling Higgs branch descriptions for 5d SQCD

in [24, section 5.4] one finds that the following theories have the same infinite coupling Higgs

branch descriptions in terms of magnetic quivers

• E8 family (4.31): 5d Sp(k) with Nf = 2k + 5 flavours ↔ 5d SU(k + 1) with Nf

flavours and CS-level κ = ±1
2 , [24, table 20]

• E7 family (4.28): 5d Sp(k) with Nf = 2k + 4 flavours ↔ 5d SU(k + 1) with Nf

flavours and CS-level κ = ±1, [24, table 19]

• E6 family (4.25): 5d Sp(k) with Nf = 2k + 3 flavours ↔ 5d SU(k + 1) with Nf

flavours and CS-level κ = ±3
2 , [24, table 18]

• E5 family (4.22): 5d Sp(k) with Nf = 2k + 2 flavours ↔ 5d SU(k + 1) with Nf

flavours and CS-level κ = ±2, [24, table 17]

• E4 family (4.19): 5d Sp(k) with Nf = 2k + 1 flavours ↔ 5d SU(k + 1) with Nf

flavours and CS-level κ = ±5
2 , [24, table 16 (V)]

• Case (4.14): 5d Sp(k) with even number of flavours Nf ≤ 2k ↔ 5d SU(k + 1) with

Nf flavours and CS-level κ = ±(k + 3−
Nf

2 ), [24, table 16 (IV) & (V)]

• Case (4.16): 5d Sp(k) with odd number of flavours Nf ≤ 2k ↔ 5d SU(k + 1) with

Nf flavours and CS-level κ = ±(k + 3−
Nf

2 ), [24, table 16 (V)]

As summarised in table 1, the magnetic quivers hint on the 5d N = 1 duality

Sp(k), Nf flavours ←→ SU(k + 1)
±(k+3−

Nf

2
)
, Nf flavours (4.33)

In fact, the duality (4.33) has been conjectured in [16] and observed from 5-brane webs

in [18] or from geometric studies in [53, eq. (4.2)] and [55, eq. (2.225)].

4.4 Two realisations

Another immediate observations follows from the construction of 5d Sp(k) theories via O5

planes or O7 planes. In other words, for each 5d Sp(k) theory with Nf flavours, there

exists

(i) a unitary-orthosymplectic (or orthosymplectic) magnetic quiver from the O5− plane

construction of section 3, and

(ii) a unitary magnetic quiver from the O7− construction of section 4.

Table 1 contrasts the quivers in each case. For consistency, one needs to verify that the

moduli spaces associated to both types of magnetic quiver are the same, or at least isomor-

phic. In a companion paper [80], the Hilbert series analysis is presented and the results

confirm the suspected agreement.

4.5 Problem of two cones

From the construction of unitary magnetic quivers, it is clear that the (classical as well as

infinite coupling) Higgs branch of Sp(k) with an even number of flavours Nf ≤ 2k, is a

union of two cones. However, in the O5 construction of section 3 only one cone is visible.

Note that a similar problem exists for constructions of 3 dimensional theories in Type IIB
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systems of NS5, D3, D5 with an O3 plane versus an O5 plane construction. One crucial

difference between the unitary and orthosymplectic quivers for D-type global symmetry is

the visibility of the spinor nodes in the unitary construction. To be specific, focus on the

finite coupling case. The classical Higgs branch is the closure of a very even height two

O(2Nf ) nilpotent orbit closure. The O(2Nf ) very even orbit is known to be a union of two

SO(2Nf ) orbits [95], and the Higgs branch is a union of two cones. For a unitary quiver,

one is able to make a clear distinction between the two cones and also detail the intersection

of the cones. The quivers representing the two cones are related by a non-trivial Z2-action,

and the individual cones are isomorphic. The non-trivial intersection is given by a quiver

invariant under the Z2-action. The relevant quivers are as follows:

1 2 Nf−3

Nf−2

Nf

2
−1

Nf

2
1

· · ·

Z2←−−−−→
1 2 Nf−3

Nf−2

Nf

2

Nf

2
−1

1

· · ·

1 2

Nf−3

Nf−2

Nf

2
−1

Nf

2
−1

1

· · ·Intersection:
(4.34)

In contrast, the construction of the two cones as Coulomb branches of orthosymplectic

quivers is slightly different. Here, the two cones cannot be made distinct, the relevant

quivers are as follows:

D1

· · ·

CNf
2

−1

DNf
2

CNf
2

−1

· · ·

D1

C1

=
←−−−→

D1

· · ·

CNf
2

−1

DNf
2

CNf
2

−1

· · ·

D1

C1

D1

· · ·

CNf
2

−1

BNf
2

−1

CNf
2

−1

· · ·

D1

B0 B0

Intersection: (4.35)

So the inability to distinguish two cones may come from the inability to distinguish the

magnetic quivers in the first place. This changes at infinite coupling, where only one of

the cones grows with respect to the finite coupling case, and one can in principle make a
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distinction between the quivers representing the two cones. Still there is no way to identify

which of the cones was enhanced and only the magnetic quiver representing the enhanced

cone can be identified.

5 Hasse diagrams and quiver subtraction

This section is dedicated to the study of Hasse diagrams of the theories discussed in this

note. The finite coupling Hasse diagrams are known [69], so only the infinite coupling Hasse

diagrams are computed in this section. The results for both finite and infinite coupling are

juxtaposed in tables 2 and 3.

Following the spirit of [70] one can derive the Higgs branch Hasse diagrams of the

theories considered by using the brane web construction of section 3. In principle, one

could also use the algorithm of quiver subtraction, as introduced in [73, 74] and further

developed for unitary quivers in [70] and for framed (flavoured) orthosymplectic quivers

in [81]. However, the orthosymplectic quivers appearing in table 1 are not framed, and may

involve unitary gauge groups, and as a consequence the currently known algorithm needs

to be extended. After one transition, framed quivers appear and the quiver subtraction

algorithm of [73, 74, 81] yields the rest of the Hasse diagram.

The results of section 2.3 and 3 show that unitary-orthosymplectic magnetic quivers

naturally arise and create the need for an adaptation of quiver subtraction to this class of

theories. In this section, the quiver subtraction algorithm is derived from brane set-ups,

which then allows one to derive the Hasse diagram.

5.1 E8 family

Consider the brane web (3.28), which describes the Higgs branch of Sp(k) with Nf = 2k+5

flavours at infinite coupling. Opening up a Coulomb branch modulus one has to be careful

to take the S-rule as well as charge conservation into account. In order to respect the

S-rule from the point of view of the [0, 1] 7-brane, the two (0, 1) 5-branes have to split into

a (2, 1) and (2,−1) 5-brane. Moreover, charge conservation on the orientifold implies that

there have to be 4 full (1, 0) 5-branes on the left-hand-side and right-hand-side. The S-rule

further determines that every half (1, 0) 5-brane has to end on its own half [1, 0] 7-brane.

The central part of the resulting web is

· · ·· · ·

(2,−1)(2,−1)

44 k−1k−1 k−1

3 3

(5.1)

such that the blue 5-branes subweb can no longer split and is stuck to the orientifold.

Thus, this subweb contributes as a flavour to both, the magnetic gauge group on its left
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and right. In more detail, the magnetic quiver corresponding to (5.1) is read off to be

D1 C1

· · ·

Dk−1 Ck−1 Bk−1

· · ·

Bk−1 Ck−1 Dk−1

· · ·

C1 D1

B0 B0

15

(5.2)

The blue piece can now be considered on its own and can be recognised as the E8 brane

system (2.8), with magnetic quiver given in (2.9). The procedure on the brane web above

corresponds to a quiver subtraction of unframed quivers resulting in a quiver with framing,

which was discussed for this e8 transition in [65].

Having reduced the problem to a familiar setting, one can now employ the rules for

quiver subtraction of framed linear orthosymplectic quivers [73, 81]. As a result, one obtains

the following Hasse diagram:

e8

d10

d12

d2k+6

.

.

.

(5.3)

which matches the Hasse diagram [70, table 30] obtained from the unitary magnetic

quiver (4.31). For k = 1, the Hasse diagram reduces to a single e8 transition.

5.2 E7 family

Next, consider the brane web (3.21) for the Higgs branch of Sp(k) with Nf = 2k+4 flavours

at infinite coupling. In this case there are two ways to open up a single Coulomb branch

modulus. On the one hand, one can repeat the same transition as for the E8 family, given

that k > 1:

· · ·· · ·

(2,−1)(2,1)

44 k−2k−2 k−2

3 3

(5.4)
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Consequently, the Hasse diagram has a e8 transition at the top. The structure of the

brane web (5.4) implies that the Higgs branch is described by a magnetic quiver which is

a disjoint union of two quivers

D1 C1

· · ·

Dk−2 Ck−2 Bk−2

· · ·

Bk−2 Ck−2 Dk−2

· · ·

C1 D1

B0 B0

15

U1

2
(5.5)

which is a framed orthosymplectic quiver together with a framed unitary quiver.

On the other hand, for k ≥ 1 one can open up a different Coulomb branch modulus in

the brane web (3.21) via

(1,−1)(1,1)

33 k−1k−1 k−1

2 2

· · ·· · ·
(5.6)

such that the blue brane subweb corresponds to the E7 brane configuration (2.16) whose

magnetic quiver is (2.17). For the Higgs branch described by the brane web (5.6) one reads

off the following magnetic quiver:

D1 C1

· · ·

Dk−1 Ck−1 Bk−1

· · ·

Bk−1 Ck−1 Dk−1

· · ·

C1 D1

B0 B0

11

(5.7)

which is again a framed orthosymplectic quiver.

As a consequence, both ways to open up the minimal amount of Coulomb branch

directions result in Higgs branches that are describable by framed orthosymplectic (or

unitary) magnetic quivers (5.5) and (5.7). Therefore, the known algorithms for quiver
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subtraction then allow to derive the full Hasse diagram

e8

d10

d12

d2k+4

.

.

.

.

.

.

e7

d8

d10

d12

d2k+4

a1

a1

a1

a1

a1

(5.8)

which agrees with the Hasse diagram [70, table 29] computed from the unitary magnetic

quiver (4.28). For k = 1, the Hasse diagram reduces to a single e7 transition.

5.3 E6 family

Moving on to the brane web (3.24) for the Higgs branch of Sp(k) with Nf = 2k+3 flavours

at infinite coupling, one recognises that there is exactly one option to open up a minimal

Coulomb branch direction. In the brane web, the central part becomes

22 k−1k−1 k−1

2 2

· · ·· · ·
(5.9)

and the blue brane subweb is identified as the E6 configuration (2.24), whose magnetic

quiver is (2.25). For the remaining Higgs branch degrees of freedom in (5.9) one derives

the following magnetic quiver

D1 C1

· · ·

Dk−1 Ck−1 Bk−1

· · ·

Bk−1 Ck−1 Dk−1

· · ·

C1 D1

B0 B0

9

(5.10)

which is a framed orthosymplectic quiver.
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Again, as the Higgs branch after the e6 transition is described by a framed quiver (5.10),

the quiver subtraction algorithm allows one to complete the Higgs branch Hasse diagram.

In detail, one obtains

e6

d7

d9

d2k+3

.

.

.

(5.11)

and one can verify the agreement with the Hasse diagram [70, table 28] obtained from

the unitary magnetic quiver (4.25). For k = 1, the Hasse diagram reduces to a single e6
transition.

5.4 E5 family

Consider the brane web (3.18) for the Higgs branch of Sp(k) with Nf = 2k + 2 flavours at

infinite coupling. In order to open up the minimal number of Coulomb branch moduli, one

finds that there is only one possibility

22 k−1k−1 k−1

1 1

· · ·· · ·
(5.12)

where the blue brane subweb corresponds to the E5 configuration (2.32), with magnetic

quiver (2.33). For the remaining Higgs branch directions in (5.12) one finds the magnetic

quiver

D1 C1

· · ·

Dk−1 Ck−1 Bk−1

· · ·

Bk−1 Ck−1 Dk−1

· · ·

C1 D1

B0 B0

7

(5.13)

which is again a framed orthosymplectic quiver.
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Hence, the full Higgs branch Hasse diagram can then be derived from the framed

starting point (5.13) via quiver subtraction. The Hasse diagram reads

e5 = d5

d6

d8

d2k+2

.

.

.

(5.14)

which coincides with the Hasse diagram [70, table 27] derived from the unitary magnetic

quiver (4.22). For k = 1, the Hasse diagram reduces to a single e5 = d5 transition.

5.5 E4 family

Next, moving on to the brane web (3.24) for the Higgs branch of Sp(k) with Nf = 2k + 1

flavours at infinite coupling. The minimal choice of opening up Coulomb branch direc-

tions is

11 k−1k−1 k−1

1 1

· · ·· · ·

(2,1)

(5.15)

where the blue brane subweb corresponds to the E4 configuration (2.40), with magnetic

quiver (2.41). The magnetic quiver for (5.15) reads

D1 C1

· · ·

Dk−1 Ck−1 Bk−1 Ck−1 Bk−1 Ck−1 Dk−1

· · ·

C1 D1

B0 B0

(5.16)
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The remaining Hasse diagram can be derived by the same techniques as discussed above

and one finds

e4 = a4

d5

d7

d2k+1

.

.

.

(5.17)

which agrees with the Hasse diagram [70, table 26] obtained from the unitary magnetic

quiver (4.19). For k = 1, the Hasse diagram reduces to a single e4 = a4 transition.

5.6 E3 family

In the case of the generalised E3 family, the brane web (3.18) for the Higgs branch of Sp(k)

with Nf = 2k flavours at infinite coupling does only give rise to one cone from the expected

union of two cones. It is then not surprising that the web only allows one to identify the a2
part of e3 = a2∪a1 transition. In more detail, opening up the minimal number of Coulomb

branch directions looks as follows:

11 k−1k−1 k−1

0 0

· · ·· · ·

(2,1)(2,−1)

(5.18)

where the blue brane subweb corresponds to the E3 configuration (2.47), with magnetic

quiver (2.48). The magnetic quiver for (5.18) reads

D1 C1

· · ·

Dk−1 Ck−1 Bk−1 Ck−1 Dk−1

· · ·

C1 D1

B0 B0

(5.19)
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Taking (5.18) as a starting point, using quiver subtraction of framed orthosymplectic quiv-

ers, one obtains the black part of the following Hasse diagram:

a2A1

d4

d6

d2k

.

.

.

with e3 = a2A1
(5.20)

The A1 transition indicated in red seems beyond the reach of the brane web (3.18) and

it is currently not possible to identify it in this construction. Comparing with the Hasse

diagram [70, table 6] obtained from the unitary magnetic quivers, one finds the black part

of (5.20) from (4.14b) and the red transition from (4.14a). For k = 1, the Hasse diagram

reduces to a single e3 transition.

5.7 E2 family

For the Higgs branch of Sp(k) with Nf = 2k−1 flavours at infinite coupling, the brane web

is given in (3.24). The expectation is to find an a1 transition on top, since e2 = a1 ∪ Z2,

where Z2 is an abuse of notation to denote the ‘fat point’ non-reduced algebraic scheme [57].

The following Coulomb branch modulus can be opened up:

00 k−1k−1 k−1

· · ·· · ·

(3,1)
(2,−1)

(5.21)

where the blue brane subweb corresponds to the E2 configuration (2.53), with magnetic

quiver (2.54). The magnetic quiver for (5.21) is

D1 C1

· · ·

Dk−1 Ck−1 Dk−1

· · ·

C1 D1

D1

(5.22)
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The Hasse diagram is

a1

d3 = a3

d5

d2k−1

.

.

.

(5.23)

which matches the Hasse diagram [70, table 26] obtained from the unitary magnetic

quiver (4.16). For k = 1, the Hasse diagram reduces to a single e2 transition.

5.8 E1 family

Next, for Sp(k) with Nf = 2k − 2 flavours at infinite coupling, the brane web is provided

in (3.18). To open up the minimal amount of Coulomb branch directions, one finds

k−1k−2 k−2

· · ·· · ·

(3,1)(3,−1)

(5.24)

where the blue brane subweb corresponds to the E1 configuration (2.58), with magnetic

quiver (2.59). The magnetic quiver for (5.24) is

D1 C1

· · ·

Ck−2 Dk−1 Ck−2

· · ·

C1 D1

C1

(5.25)

However, the problem lies in identifying the second cone from the brane web with O5 plane

such that only a part of the Hasse diagram is visible. Nevertheless, the missing transition,

denoted in red, can be seen from the O7− construction of section 4. Then, the full Hasse
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diagram is

e1 = a1

A1A1

d4

d6

d2k−2

.

.

.

(5.26)

which matches the Hasse diagram [70, table 6] obtained from the unitary magnetic quiv-

ers (4.14a) and (4.14b). The red transition stems from (4.14a). Note that the two A1

transitions above the d4 can be viewed as a d2 = A1 ∪ A1. For k = 2 the Hasse diagram

consists only of A1 ∪A1 with the e1 transition on one cone.

5.9 E≤0 families

For the top transitions in the Higgs branch Hasse diagram of Sp(k) with Nf < 2k − 2 fun-

damental flavours at infinite coupling one does a similar transition on the brane web, (3.18)

or (3.24), as for the E2 or E1 family. Thus, one finds a Ak−Nf/2 transition for Nf even and

Ak−(Nf−1)/2 transition for Nf odd. In the case of Nf even, only one cone is visible, the

second cone is denoted in red as above. In total, one obtains the following Hasse diagram:

Nf even:

Ak−Nf/2

A1A1

d4

d6

dNf

.

.

.

Nf odd:

Ak+(Nf−1)/2

d3 = a3

d5

dNf

.

.

.

(5.27)

which matches the Hasse diagram [70, table 6] obtained from the unitary magnetic quiv-

ers (4.14a) and (4.14b) for Nf even, and (4.16) for Nf odd.

6 Linear orthosymplectic quiver theories

Instead of a theory with a single gauge group, one can construct quiver gauge theories with

alternating orthogonal and symplectic gauge groups. Consider, for instance, the following
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5-brane web

· · ·

k+2
k

k+2
k k

k+2

2n [0, 1] 7-branes

(6.1)

which gives rise to the following 5d N = 1 quiver gauge theory

Sp(k)

O
(2
k+
4)

Sp(k)

· · ·

O
(2
k+
4)

Sp(k)

SO(2k+4) SO(2k+4)

2n−1

(6.2)

The theory (6.2) gives rise to various different Higgs branches. Given that there are 2n− 1

gauge couplings, any of these can either be finite or infinite. In the following, the finite

coupling phase, some intermediate, and the fixed point phase are detailed.

Finite coupling. Starting from the brane web (6.1), the finite coupling Higgs branch

phase is accessible as detailed above: aligning flavour and gauge branes on the orientifold,

such that the half [1, 0] 7-branes merge with their mirror images. The resulting physical

[1, 0] 7-branes can split along the orientifold and one obtains

k k+1 k+1 k+2 k k+2 k+1 k+1 k

· · · · · ·· · ·

[0,1]

2k+4 2k+4

2n (6.3)

The classical Higgs branch of (6.2) is of dimension

dimHH (6.2) = nh − nv = k(2k + 7) = dimO(2k + 4)− dimO(4) , (6.4)

nh = 1
2 · 2k · (2k + 4) · 2n ,

nv = n · dimSp(k) + (n− 1) · (dimO(2k + 4)− dimO(4)) .

Note that there is no complete Higgsing for the orthogonal gauge groups, analogous to the

6d scenario of [61, section 2.4].
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In order to find a suitable configuration to read off the magnetic quiver, one moves

the left and right outermost (0, 1) 5-branes through three half 7-branes each such that the

brane web becomes

k k k k k+2 k k k k

· · · · · ·

[1,−1] [1,1]

· · ·

[0,1]

2k+4 2k+4

2n−2 (6.5)

The central segments deserve some comments: there are k physical D5 branes that are

freely moving subwebs between 7-branes. In addition, there are pairs of (0, 1) 5-branes

that have 2 extra D5 suspended in between; these are interpreted as residual gauge branes.

In order words, these are subwebs that remain on the Coulomb branch and, as such, they

contribute as flavour to the magnetic quiver

D1 C1

· · ·

Dk Ck Bk Ck Bk Ck Bk Ck Dk

· · ·

C1 D1

B0 B0Cn−1

(6.6)

for which one can compute

dimH C (6.6) = dimO(2k + 4)− dimO(4) , (6.7a)

G = SO(2k + 4)× SO(2k + 4) . (6.7b)

The global symmetry is a product because the central Bk node is not balanced, see ap-

pendix A.3. Compared to the classical Higgs branch of (6.2), the magnetic quiver (6.6)

correctly reproduces dimension (6.4) and the non-abelian global symmetry, but the way

the magnetic quiver is read from the brane system is not sensitive to the possibility of

multiple cones in the Higgs branch. Moreover, note that this magnetic quiver is similar to

the 6d case [61, section 2.4].

One infinite gauge coupling. Starting from the finite coupling phase, one can now

inquire the effects of turning a single gauge coupling to infinity. Inspecting the brane

web (6.5), one notices there are two potentially different transitions that make two (0, 1)

5-brane subwebs become coincident.

(i) Two (0, 1) 5-brane subwebs on an O5+ plane, where the k physical D5 branes are

suspended between 7-branes.

(ii) Two (0, 1) 5-brane subwebs on an O5− plane, where two out of the k + 2 physical

D5 branes are suspended between the NS5 branes, forming the residual O(4) gauge

group.
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To begin with, consider the first case, i.e. the brane web is

k k k k k k k k k

· · · · · ·

[1,−1] [1,1]

· · ·

[0,1]

2k+4 2k+4

2n−4

(6.8)

and the change of the magnetic quiver is apparent. The (0, 1) 5-branes have entered the

Higgs branch and are freely moving subwebs suspended between 7-branes. Thus, (6.6)

changes to

D1 C1

· · ·

Dk Ck Bk Ck Bk Ck Bk Ck Dk

· · ·

C1 D1

B0 B0

Cn−2

C1

U1

(6.9)

and the dimension has increased

dimH C (6.9) = 2 + dimO(2k + 4)− dimO(4) . (6.10)

In terms of the electric theory, a residual O(4) gauge symmetry vanished.

Considering now the second possibility, the brane web (6.5) changes to

k k k k k+2 k k k k

· · · · · ·

[1,−1] [1,1]

· · ·

[0,1]

2k+4 2k+4

2n−5

(6.11)

such that the new Higgs branch degrees of freedom are suspended on an O5 interval with

a residual O(4) gauge symmetry. Analogous to the proposal of [61, section 2.4], the con-

tribution of this gauge symmetry is argued to be a flavour in the magnetic quiver which
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reads as

D1 C1

· · ·

Dk Ck Bk Ck Bk Ck Bk Ck Dk

· · ·

C1 D1

B0 B0

Cn−2

C1

U1
D2

(6.12)

and the dimension has increased

dimH C (6.12) = 2 + dimO(2k + 4)− dimO(4) . (6.13)

As in the first case (6.8), the web (6.11) clearly displays the loss of an O(4) residual gauge

symmetry.

Several infinite couplings. Repeatedly taking couplings to infinite, in the form of (6.8)

or (6.11), and assuming that at most two NS5 branes become coincident, one obtains a

generalisation of the notion of bouquet for a magnetic quiver [60, 61, 66, 98, 99]. For

instance, allowing n1 transitions of type (6.9) and n2 transitions of type (6.12) such that

n1 + n2 ≤ n− 1 the magnetic quiver reads

D1 C1

· · ·

Dk Ck Bk Ck Bk Ck Bk Ck Dk

· · ·

C1 D1

B0 B0Cl

C1

U1

D2

C1

U1

D2

· · ·

C1

U1

C1

U1

· · ·

n2 n1

(6.14)

with l = n− 1− n1 − n2 ≥ 0.

So far, the assumption has been to have at most two coinciding NS5 branes. In order

to move towards the fixed point of (6.2) one needs to coincide all of the NS5 simultaneously.

As an exemplary case, consider (6.5) and make the first 2j half NS5 branes on the left-
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hand-side of the central segment coincident. Then the brane web becomes

k k k k k k k k

· · · · · ·

[1,−1] [1,1]

· · ·

[0,1]

.

.

.

.

.

.

2j

2j−1

1

2k+4 2k+4

2n−2(j+1)

2j

(6.15)

such that one now has to explain how to read off the magnetic quiver. The D5 branes

suspended between half [1, 0] 7-branes along the orientifold are no conceptual challenge,

due to the discussion above. In contrast, the half NS5 branes between half [0, 1] 7-branes

behave differently. The set of 2j identical (0, 1) 5-brane subwebs suspended between a

half 7-brane and its mirror image is affected by the orientifold projection, because the

NS5 branes cross the O5 plane. Hence, this set of identical subwebs contributes a Cj

magnetic gauge node. In the adjacent segments, there is always a set of m identical

NS5 branes suspended between two half [0, 1] 7-branes. Note, however, that these NS5

branes do not cross the orientifold and, therefore, the associated magnetic gauge node

is a U(m). Following [24], the unitary nodes are connected by magnetic bi-fundamental

hypermultiplets. In summary, the magnetic quiver for (6.15) reads

D1 C1

· · ·

Dk Ck Bk Ck Bk Ck Bk Ck Dk

· · ·

C1 D1

B0 B0

Cn−2

Cj

U2j−1

U2j−2

.

.

.

U2

U1

(6.16)
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and the dimension is increased as

dimH C (6.16) = 2j2 + dimO(2k + 4)− dimO(4) . (6.17)

Analogously, if instead one coincides 2j half NS5 branes over a segment with a residual

O(4) gauge symmetry, the only change compared to (6.16) lies in an additional D4 flavour

node for the Cj gauge node, similar to (6.12).

Infinite coupling. To transfer the finite coupling brane web (6.5) into the fixed point

phase, the various (0, 1) 5-branes, i.e. NS5 branes, have to be made coincident. So far, it

has been demonstrated how to make at most 2n−2 half NS5 brane coincident starting from

the brane web (6.5). The process proceeds via the two fundamental transitions (6.8), (6.11)

via various intermediate phases (6.15). However, to reach the fixed point phase, the two

outermost (1,±1) 5-branes need to be transitioned to the central segment again, i.e. one

starts from (6.3). Next, merging all the half NS5 branes pairwise, the brane web becomes

k k+1 k+1 k+2 k+2 k+1 k+1 k

· · · · · ·· · ·

[0,1]

2k+4 2k+4

n (6.18)

such that the magnetic quiver is straightforwardly read off

D1 C1

· · ·

Dk+1 Ck+1 Dk+2 Ck+1 Dk+1

· · ·

C1 D1

C1

U1

· · ·

C1

U1

n

(6.19)

with a Coulomb branch of dimension

dimH C (6.19) = 2n+ 6 + dimO(2k + 4)− dimO(4) . (6.20)

Note that the moduli space dimension of (6.19) is increased by two sources: (i) each pair

of coincident half NS5 branes yields 2 Higgs branch degrees of freedom, and (ii) moving

the outermost (1,±1) 5-branes from (6.5) into the central segment leads to another 6

Higgs branch degrees of freedom due to D5 branes suspended between 7-branes along the

orientifold plane.
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Finally, one can make all NS5 branes coincident. Analogously to (6.15), the [0, 1] 7-

branes can be vertically displaced because the NS5 branes can be split between them. As

a consequence, the brane web becomes

k k+1 k+1 k+2 k+1 k+1 k

· · · · · ·

.

.

.

.

.

.

2n

2n−1

1

2k+4 2k+4

2n

(6.21)

The 5-brane webs suspended between 7-branes on the orientifold are no conceptual chal-

lenge, due to the discussions above. The (0, 1) 5-branes, in contrast, need to be examined

in detail. The first 2n (0, 1) branes that go through the O5 plane contribute a Cn magnetic

gauge node, because the orientifold projection acts on these subwebs. The subsequent j

copies of identical (0, 1) 5-branes between adjacent half 7-branes are not affected by the

orientifold, because they are away from the plane. Hence, these stacks of identical sub-

webs contribute magnetic U(j) gauge nodes. Put differently, away from the orientifold,

the rules of [24] apply without modifications. Putting all the pieces together, the magnetic

quiver reads

D1 C1

· · ·

Dk+1 Ck+1 Dk+2 Ck+1 Dk+1

· · ·

C1 D1

Cn

U2n−1

U2n−2

.

.

.

U2

U1

(6.22)
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and its Coulomb branch dimension is computed to be

dimH C (6.22) = 2n2 + 6 + dimO(2k + 4)− dimO(4) . (6.23)

Compare to the finite coupling magnetic quiver (6.6), the moduli spaces has grown in

dimension by 2n2 + 6 quaternionic units. The increase can be traced back to two different

origins, similarly to (6.19): (i) the 6 additional Higgs branch directions originate from D5

branes suspended between 7-branes along the O5 plane; while, (ii) the 2n2 new moduli

originate from the coincident NS5 branes.

Hasse diagram. For the quiver theories (6.2) one could, in principle, detail the Hasse

diagrams as well. Inspecting the infinite coupling magnetic quiver (6.22) shows that the

challenge lies in the unitary-orthosymplectic quiver with a large number of unitary nodes.

From the insights gained in section 2, it is apparent that the first minimal transitions that

open up a Coulomb branch direction are necessarily e7 or e8 transitions. Thereafter, the

number of possible transitions is quite involved and there is no clear gain of attempting to

derive the entire Hasse diagram.

7 Conclusion

In this work, the Higgs branches of 5d N = 1 theories with symplectic or orthogonal gauge

groups and fundamental matter are investigated at finite and infinite gauge coupling. Based

on the 5-brane web realisations in the presence of O5 orientifold planes, the key technique

for this study is the use of magnetic quivers. More generally, the techniques presented

here open a window on the Higgs branch of any 5d SCFT that can be engineered via

brane webs involving (p, q) 5-branes and O5 planes, which potentially includes theories

with exceptional gauge algebra G2.

Compared to the magnetic quiver proposal [24] for brane webs without O5 planes,

the conceptual challenge is the inclusion of the orientifolds. As detailed in section 2, the

proposed magnetic orientifolds of [61] do consistently reproduce known Higgs branch ge-

ometries at finite coupling and some infinite coupling cases. In addition, an unprecedented

phenomenon appeared at infinite coupling: due to additional Higgs branch directions the

corresponding magnetic quivers become a combination of orthosymplectic and unitary quiv-

ers. Therefore, magnetic orientifolds need to be supplemented by unitary magnetic gauge

multiplets and corresponding matter fields, in order to address all Higgs branch phases.

In section 3, the magnetic quiver proposal has been applied to Sp(k) gauge theories

with Nf ≤ 2k + 5 flavours. The finite coupling Higgs branches are all described by or-

thosymplectic magnetic quivers, which correctly reproduce moduli space dimensions and

the non-abelian part of the global symmetry. A further matching between the Higgs branch

Hilbert series and magnetic quiver Hilbert series is detailed in a companion paper [80]. For

infinite gauge coupling, the magnetic quivers do match the moduli space dimensions, in

agreement with the additional Higgs branch directions at the fixed point found in [10].

Further Hilbert series details will be presented in [80]. Moreover, the infinite coupling

results fall into generalised En classes (for −∞ < n ≤ 8), summarised in tables 1, 2, 3
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and 4. It is important to note that when the finite coupling Higgs branch consists of two

identical cones (i.e. when Nf ≤ 2k even), from the O5 construction only cone can be seen.

At infinite coupling only one cone gets enhanced, which is the cone obtained from the O5

construction.

Besides O5+ planes, one may engineer Sp(k) theories via O7− planes as detailed in

section 4. Since an O7− plane can be resolved into a pair of [1,±1] 7-branes, one can

analyse these cases with the techniques developed in [24]. Interestingly, this approach

yields unitary magnetic quiver for the same Higgs branches as discussed in section 3.

On the one hand, the unitary magnetic quivers allow to immediately verify dimension

and global symmetry of the various Higgs branches. These agree with known symmetry

enhancement results at the fixed point. On the other hand, one has to confirm that the

unitary-orthosymplectic quiver from the O5 plane construction and the unitary magnetic

quiver from the O7− construction yield the same moduli space. One step further towards a

verification is subject of a companion paper [80]. Most importantly, this provides different

realisations for the same Higgs branches, as summarised in table 1.

Finally, the validity of the proposed modification for magnetic quivers from 5-branes on

O5 planes is further underpinned by deriving the associated Hasse diagrams. As detailed

in section 5 for the generalised En families (for −∞ < n ≤ 8), the Hasse diagrams are

derived starting from the 5-brane web with O5 at infinite coupling and then opening up a

minimal amount of Coulomb branch directions. The transitions found are all exceptional

minimal nilpotent orbit closures (or the appropriate substitution for n ≤ 3), because the

transitions are realised by the brane configurations of section 2.3. Thereafter, the remaining

magnetic quivers are all framed orthosymplectic quivers, such that conventional quiver

subtraction suffices to completely determine the Hasse diagram. A non-trivial consistency

check is provided by verifying that the Hasse diagrams from the unitary magnetic quivers

of section 4 agree with those from the unitary-orthosymplectic quivers.

As a next more complicated example, section 6 deals with 5d N = 1 linear orthosym-

plectic quiver gauge theories. In contrast to the single gauge group cases, the quiver theories

admit a multitude of Higgs branch phases, depending on which subset of gauge couplings

has been taking to infinity. In particular, there exist two types of infinite coupling tran-

sitions (6.9) and (6.12) that are expected to open up two new Higgs branch dimensions.

One notes the close analogy to the D4 transition of [61]. However, the 5d setting of a

generalised bouquet of type

C1

U1

or

C1

D2 U1

(7.1)

is not comparable to the discrete gauge phenomenon [66, 98, 99]. If the relevant NS5 branes

become coincident, the resulting magnetic quiver is obtained by replacing the bouquet by

a longer unitary tail.
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(2,−1)

k
(k−2,1)

· · · · · ·

(k−NR−2,1)(k−NL−2,−1)

NL NR

· · · · · ·

Nf even

B0 C1 B1

· · ·

BNf
2

−1

CNf
2

BNf
2

CNf
2

BNf
2

−1

· · ·

B1 C1 B0

C1

Nf odd

B0 C1 B1

· · ·

CNf−1

2

BNf−1

2

CNf+1

2

BNf−1

2

CNf−1

2

· · ·

B1 C1 B0

D1

Table 9. Brane web for O(2k) with Nf = NL + NR flavours. On a generic point of the Higgs

branch O(2k) with Nf flavours is broken to pure O(2k −Nf ) gauge theory. The magnetic quivers

describe then a moduli space of quaternionic dimension 1

2
Nf (Nf + 1).

Further predictions. In addition to 5-brane webs on O5+ planes, one may equally

well study configurations involving O5− and Õ5
−
plane, which low-energy descriptions in

terms of O(k) gauge theories. For O5− planes the constraints on the number of flavours

Nf ≤ 2k − 4 for a non-trivial interaction fixed point are well-known [3, 8]. In addition, it

has been argued in [9, section 3.1] that Nf = 2k − 3 also leads to an interacting 5d fixed

point. The relevant brane configuration is depicted in table 9. Analysing the Higgs branch

via the conjecture 1 and a generalisation of observation 1, leads to the magnetic quivers for

finite coupling in table 9 and infinite coupling in table 11. Likewise, brane webs with Õ5
−

planes can be reached via Higgsing the brane web of O(2k + 2) with Nf + 1 fundamental

flavours to the web corresponding to O(2k + 1) with Nf flavours, see table 10. The brane

web yields the constraint Nf ≤ 2k−3, while [9] showed the existence of another non-trivial

fixed point for Nf = 2k − 2. The finite coupling magnetic quivers are summarised in

table 10, while the infinite coupling magnetic quivers are shown in table 12.

In contrast to the symplectic case, the orthogonal gauge theories do not admit complete

Higgsing such that already the finite coupling Higgs branch represents a computational

challenge. Here, the magnetic quivers derived provide a prediction for the Higgs branches

at all values of the coupling. So far, the magnetic quivers do consistently reproduce the

expected dimensions. Similar to the open puzzles in 6d theories with orthogonal gauge

groups [61], a more detailed analysis is left for future research.

Outlook. Having considered all allowed numbers of flavours for Sp(k) theories, one

should have observed instances of multiple cones. As known from [94], for Nf = 2k the
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(1,1) (2,−1)

k
(k−1,−1) (k−2,1)· · · · · ·

(k−NR−2,1)(k−NL−1,−1)

NL NR

· · · · · ·

Nf even

B1 C1 B2

· · ·

CNf
2

−1

BNf
2

CNf
2

BNf
2

CNf
2

−1

· · ·

B2 C1 B1

D1

Nf odd

B1 C1 B2

· · ·

BNf−1

2

CNf−1

2

BNf+1

2

CNf−1

2

BNf−1

2

· · ·

B2 C1 B1

C1

Table 10. Brane web for O(2k+1) with Nf = NL +NR flavours. On a generic point of the Higgs

branch O(2k + 1) with Nf flavours is broken to pure O(2k + 1−Nf ) gauge theory. The magnetic

quivers describe then a moduli space of quaternionic dimension 1

2
Nf (Nf + 1).

Higgs branch is a union of two cones. In terms of the brane web, this should be manifest

in two inequivalent maximal subdivisions, as for instance in [24]. However, so far there

is no sign of more than one maximal subdivision in any of the cases based on O5 planes.

In contrast, the O7− construction does admit two inequivalent subdivision such that the

Higgs branch is, in fact, recovered to be a union of two cones.

In addition, for cases with non-complete Higgsing such as Sp(k) with Nf < 2k flavours

as well as O(k) with Nf ≤ k− 3, one can expect the appearance of nilpotent operators, as

discussed for SU(k) gauge theories in [59]. Further progress in this direction requires, in

part, a detailed analysis of the Higgs branch using different methods.
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Nf=2k−3

B0 C1 B1

· · ·

BNf−1

2

CNf+1

2

BNf+1

2

CNf+1

2

BNf−1

2

· · ·

B1 C1 B0

C1

Nf=2k−4

B0 C1 B1

· · ·

BNf
2

−1

CNf
2

BNf
2

CNf
2

BNf
2

−1

· · ·

B1 C1 B0

C1

U1

Nf<2k−3

Nf odd

B0 C1 B1

· · ·

CNf−1

2

BNf−1

2

CNf+1

2

BNf−1

2

CNf−1

2

· · ·

B1 C1 B0

U1

k−
Nf+1

2
−2

Nf<2k−4

Nf even

B0 C1 B1

· · ·

BNf
2

−1

CNf
2

BNf
2

CNf
2

BNf
2

−1

· · ·

B1 C1 B0

U1

k−
Nf

2
−3

Table 11. Infinite coupling Higgs branches for O(2k) theories with Nf flavours. The moduli

space dimensions correctly match the increase due to the new Higgs branch directions at infinite

coupling [10] compared to finite coupling of table 9.

A Background material

A.1 Type II brane configurations with 8 supercharges

Consider Type II superstring theory with

• NS5 branes in x0, x1, . . . , x5 direction,

• Dp branes in x0, x1, . . . , xp−1, x6, direction,

• D(p+2) branes in x0, x1, . . . , xp−1, x7, x8, x9 direction.

For 0 ≤ p ≤ 6 the configuration preserves 8 supercharges and gives rise to a p dimensional

world-volume theory living on the Dp branes suspended between NS5 branes. Since every

such Dp-D(p+2)-NS5 brane configuration is T-dual to the set-up of [62], a Dp brane is

created or annihilated whenever a NS5 passes through a D(p+2) brane. In the presence of

Op planes, brane creation and annihilation is modified due to the non-trivial brane charge

of the orientifold. In units of the physical Dp branes, the RR-charges of the Op planes are

as follows [87, 97]:

charge(Op±) = ±2p−5 , charge(Õp
−
) =

1

2
− 2p−5 , charge(Õp

+
) = 2p−5 . (A.1)
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Nf=2k−2

B1 C1 B2

· · ·

BNf
2

CNf
2

BNf
2

+1

CNf
2

BNf
2

· · ·

B2 C1 B1

C1

Nf≤2k−3

Nf odd

B1 C1 B2

· · ·

BNf−1

2

CNf−1

2

BNf+1

2

CNf−1

2

BNf−1

2

· · ·

B2 C1 B1

U1

k−
Nf+1

2
−2

Nf<2k−2

Nf even

B1 C1 B2

· · ·

CNf
2

−1

BNf
2

CNf
2

BNf
2

CNf
2

−1

· · ·

B2 C1 B1

U1

k−
Nf

2
−2

Table 12. Infinite coupling Higgs branches for O(2k + 1) theories with Nf flavours. The moduli

space dimensions match the increase due to the new Higgs branch directions at infinite coupling [10]

compared to finite coupling of table 10.

As a remark, the NS-charges of the Op planes are zero. Moreover, the orientifolds change

whenever passing through a half NS5 or half D(p+2) brane [84, 89, 97]: on the one hand, an

Op± passing through a half NS5 turns into an Op∓; likewise, an Õp
±
becomes an Õp

∓
. On

the other hand, an Op± passing through a half D(p+2) turns into an Õp
±
, and vice versa.

If there are Dp branes parallel to the Op planes, the world volume gauge theory becomes

ortho-symplectic. Similarly, effects are induced on the world volume of the D(p+2). Table 6

summarises these known results and introduces the notation, which follows [100].

A.2 5-branes webs with 7-branes and orientifold 5-planes

For this paper, (p, q) 5-branes webs in the presence of [p, q] 7-branes and orientifold 5-planes

are relevant. The integers p and q are assumed to be coprime throughout. The Type IIB

brane construction is summarised in table 5.

Brane bending due to orientifold planes Since O5 planes change whenever crossing

an half NS5 brane, one finds that a (0, 1) 5-brane (i.e. an NS5 brane) that separates a O5+

and O5− plane is bent. Using charge conservation, the quantum corrected configuration

becomes [10]:

(2,1)

(2,−1)

(A.2)
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Attempting to repeat the analysis for a classical (0, 1) 5-brane separating a Õ5
+
and Õ5

−

plane is known to be troublesome due to arising fractional brane charges. A solution

involving monodromy cuts has been proposed in [10].

Monodromy of the 7-brane. For the [p, q] 7-brane, the associated monodromy matrix

is given by

M[p,q] =

(
1− pq p2

−q2 1 + pq

)
(A.3)

such that the action is clockwise; in more detail, a schematic depiction looks like

(r, s)

M[p,q] · (r, s)

[p, q]

(r, s)

M[p,q] · (r, s)

|ps− qr| · (p, q)

[p, q]

(A.4)

where M[p,q] · (r, s) denotes the matrix product with a vector.

Õ5
+

and Õ5
−

planes and bending. Following an argument presented in [10], one

considers the well-defined set-up (A.2), adds two [1, 0] 7-branes on the left-hand-side

(2,1)

[2,1]

[1,0]
(A.5a)

and moves them successively through the 5-branes, accounting for brane creation and

annihilation. The first transitions is not accompanied by brane creation

(2,1)

[2,1]

[1,0]
(A.5b)

while the second transition is indeed accompanied by brane creation

(2,1)

[2,1]

[1,0]
(A.5c)
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Thereafter, one can move the monodromy cuts, which then affects the (2, 1) 5-brane as

described in (A.3). Thus,

(2,1)

(1,1)

[2,1]

[1,0]
(A.5d)

and finally one ends up with

(1,1)

[1,1]

[1,0]
(A.5e)

Hence, the understanding of Õ5
+
and Õ5

−
becomes

• Õ5
−
equals an O5− together with half a stuck D5 and a (half-) monodromy cut.

• Õ5
+
contains a (half-) monodromy cut as well.

The (half-)monodromy cut is associated to a [1, 0] 7-brane and coincides with the orientifold

drawn (x5, x6)-plane.

Splitting 7-branes on O5 planes. Having half 7-branes merging on a O5 plane and

subsequently splitting along the orientifold, one needs to take care of how branes are created

in the process. The different cases are summarised in table 13.

A.3 3d N = 4 Coulomb branches

Associated to a magnetic quiver is a space of dressed monopole operators or, loosely speak-

ing, a 3d N = 4 Coulomb branch. In particular for linear quiver gauge theories of either

unitary gauge groups or alternating ortho-symplectic gauge nodes, the IR global symmetry

G is usually well approximated by analysing the subset of balanced nodes.

Unitary quivers. A unitary gauge node U(k) with Nf flavours is called [100, section 2.4]

good if Nf ≥ 2k , and balanced if Nf = 2k . (A.6)

Then for a quiver comprised of unitary nodes the following is expected to hold:

• The subset of balanced gauge nodes forms the Dynkin diagram of the non-abelian

part of the Coulomb branch global symmetry.

• The number of unbalanced nodes minus one yields the number of U(1) factors inside

the Coulomb branch global symmetry.

Note that this procedure might only provide a subgroup of the global symmetry of the

Coulomb branch.
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Orientifold Splitting pattern

O5−

Õ5
−

O5+

Õ5
+

Table 13. Splitting of D7 branes, with D5 branes ending on them, on various O5 planes.

Ortho-symplectic linear quivers. For orthogonal and symplectic 3d N = 4 gauge

theories, the conditions for good and balanced are as follows [100, section 5.1–5.2]: a O(k)

(or SO(k)) gauge group with fundamental flavours, transforming under a USp(2Nf ) global

symmetry, is called

good if Nf ≥ k − 1 , and balanced if Nf = k − 1 . (A.7)

Similarly, a USp(2k) = Sp(k) gauge group with fundamental flavours, transforming under

a O(2Nf ) global symmetry, is called

good if Nf ≥ 2k + 1 , and balanced if Nf = 2k + 1 . (A.8)

Consider a linear quiver with alternating orthogonal and symplectic gauge nodes, then

a chain of p balanced nodes is expected to give rise to the following enhanced Coulomb

branch symmetry G:

• An SO(p+ 1) symmetry, if there are no SO(2) (or O(2)) gauge nodes at the ends.

• An SO(p+2) symmetry, if there is an SO(2) (or O(2)) gauge node at one of the ends.

• An SO(p+ 3) symmetry, if there is an SO(2) (or O(2)) at each end.

A.4 Summary companion paper

As indicated in the main text, the choice of gauge group for a unitary-orthosymplectic

quiver needs to be specified when considering the Coulomb branch moduli space. In this
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appendix, the main idea of the companion paper [80] is summarised. Based on the brane

configurations, the magnetic gauge nodes are associated with the following groups

Bn → SO(2n+ 1) , Cn → USp(2n) , Dn → SO(2n) . (A.9)

However, the choice of overall magnetic gauge group of a given quiver remains and is

resolved in [80] as follows:

• Framed orthosymplectic quiver: the magnetic gauge group of the quiver is the product

group over all nodes, because the kernel of the representation defining the matter

content is trivial.

• Unframed (unitary-) orthosymplectic quiver without any SO(odd): the matter rep-

resentation for the product gauge group has a nontrivial Z2 kernel. In order to

reproduce the expected moduli spaces, the gauge group is chosen to be the product

gauge group modulo this diagonal Z2.

• Unframed (unitary-) orthosymplectic quiver with SO(odd): the matter representation

for the product gauge group has a trivial kernel. Hence, the gauge group of the quiver

is the product gauge group.

Once the gauge group of a quiver is specified, the magnetic lattice is uniquely determined

and the Coulomb branch Hilbert series can be evaluated via [63].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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