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Abstract: M5 branes on a D-type ALE singularity display various phenomena that intro-

duce additional massless degrees of freedom. The M5 branes are known to fractionate on a

D-type singularity. Whenever two fractional M5 branes coincide, tensionless strings arise.

Therefore, these systems do not admit a low-energy Lagrangian description. Focusing on

the 6-dimensional N = (1, 0) world-volume theories on the M5 branes, the vacuum moduli

space has two branches were either the scalar fields in the tensor multiplet or the scalars

in the hypermultiplets acquire a non-trivial vacuum expectation value. As suggested in

previous work, the Higgs branch may change drastically whenever a BPS-string becomes

tensionless. Recently, magnetic quivers have been introduced with the aim to capture all

Higgs branches over any point of the tensor branch. In this paper, the formalism is extended

to Type IIA brane configurations involving O6 planes. Since the 6d N = (1, 0) theories are

composed of orthosymplectic gauge groups, the derivation rules for the magnetic quiver in

the presence of O6 planes have to be conjectured. This is achieved by analysing the 6d

theories for a single M5 brane on a D-type singularity and deriving the magnetic quivers

for the finite and infinite gauge coupling Higgs branch from a brane configuration. The

validity of the proposed derivation rules is underpinned by deriving the associated Hasse

diagram. For multiple M5 branes, the approach of this paper provides magnetic quivers for

all Higgs branches over any point of the tensor branch. In particular, an interesting infinite

gauge coupling transition is found that is related to the SO(8) non-Higgsable cluster.
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1 Introduction

Starting from the 6-dimensional N = (2, 0) world-volume theories living on a stack of M5

branes [1, 2], the 6-dimensional theories derived from M5 branes in various settings have

been studied intensively, but many aspects still remain mysterious. One of the simplest

classes of 6-dimensional N = (1, 0) theories is obtained from multiple M5 branes transverse

to R×C2/Γ with Γ = Zk or Dk−2, i.e. the A or D-type singularities. The main advantage

of this class is the existence of a dual Type IIA construction via D6-D8-NS5 brane config-

urations with or without O6 orientifolds [3–6]. These brane constructions pointed towards

the existence of non-trivial conformal fixed-points at the origin of the tensor branch, where

all NS5 branes become coincident. A classification for more general 6d N = (1, 0) super-

conformal theories obtainable from F-theory compactifications has been proposed in [7, 8].

A 6-dimensional N = (1, 0) supersymmetric theory has massless degrees of freedom

encoded in three types of supermultiplets — tensor multiplet, vector multiplet, and hyper-

multiplet — as well as other degrees of freedom which arise from tensionless strings [1].
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For consistence, the gravitational anomaly cancellation [9] for a 6d N = (1, 0) theory

requires [10, 11]

nh + 29nt − nv = constant , (1.1)

where nt, nv, nh denote the numbers of tensor, vector, and hypermultiplets, respectively.

In general, anomalies in 6-dimensional N = (1, 0) theories have been studied in works

like [12–14].

In contrast to lower dimensional theories, the gauge coupling in 6 dimensions is not a

mere parameter, but inversely proportional to the vacuum expectation value of the scalar

field in the tensor multiplet. Moreover, the inverse gauge coupling serves as tension for

BPS-strings, and is given by the distance of NS5 branes in the Type IIA realisation. On a

generic point of the tensor branch, i.e. a point in which all gauge couplings are finite, the

Higgs branch moduli spaces is a hyper-Kähler quotient realised by the vanishing locus of the

F and D-terms modulo gauge equivalence [15]. Whenever one gauge coupling approaches

infinity, i.e. at a singular locus of the tensor branch, certain BPS-strings become tensionless

and new massless degrees of freedom contribute to the Higgs branch. Due to the amount

of supersymmetry, the Higgs branches over tensor branch singularities are still hyper-

Kähler, but generically not hyper-Kähler quotients anymore. For instance, the jump in

the dimension between the Higgs branch over a generic point and the Higgs branch at

the origin of the tensor branch has been computed in [16]. This indicates a non-trivial

change in the Higgs branch along the tensor branch. Therefore, alternative descriptions

are desirable to capture the changes of the Higgs branch geometry. Fortunately, Coulomb

branches of 3-dimensional N = 4 gauge theories are a most suitable class of hyper-Kähler

moduli spaces, as detailed extensively in [17]. More generally, Higgs branches of theories

with 8 supercharges can be enlarged at the UV fixed point due to massless BPS-objects,

and the classical hyper-Kähler description breaks down. For instance, Coulomb branches

have already been employed successfully to describe Higgs branches of Argyres-Douglas

theories [18], as well as infinite coupling limits of 5-dimensional theories [19–21] and of

6-dimensional gauge theories [17, 22–24]. In fact, by interpreting these moduli spaces as

symplectic singularities [25], the magnetic quiver techniques allowed to derive the Hasse

diagrams for the various Higgs branches [26].

In this paper, the focus is placed on a class of 6d N = (1, 0) supersymmetric gauge

theories that originate from multiple M5 branes on a D-type ALE singularity. As shown

in [27], new massless tensor multiplets appear once the M5 branes reach the fixed point

of the ALE space C2/Dk−2. In other words, an M5 brane fractionates into two parts on

the singularity; a phenomenon, known as NS5 branes splitting into two half NS5s on an

O6 orientifold plane [28]. The associated class of 6d N = (1, 0) theories has been studied

extensively [3–5, 7, 27, 29–32]; interestingly, the Higgs branches at the origin of the tensor

branch have only been addressed in [16, 23, 33] recently. For a single M5 brane on C2/Dk−2,

the Higgs branch dimension jumps by 29 quaternionic units between a generic point and

the origin of the tensor branch [16]. In [23] this phenomenon has been identified with the

small E8 instanton transition [34], see also [3, 29, 30, 35]. For n M5 branes on C2/Dk−2,

the Higgs branch dimension jumps by n+dim SO(8) quaternionic units between a generic
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point and the origin [16]. In [23] a description for the Higgs branch at the CFT point has

been conjectured, but a more detailed analysis is still missing.

The common reason behind the, perhaps surprising, feature that the Higgs branches

change discontinuously over tensor branch lies in BPS-strings becoming tensionless. As

put forward in [17] (see also [16]), the different singular loci of the tensor branch can be

associated with different subsets of order parameters being zero. Here, the inverse gauge

couplings 1
g2
i

serve as suitable order parameters for the Higgs branch phases Pi of a given 6d

N = (1, 0) theory. A unified analysis of the Higgs branch phases is possible by changing the

phase of the Type IIA D6-D8-NS5 brane configuration to the phase where all (as many as

possible) D6 branes are suspended between D8 branes instead of NS5 branes. This is quite

intuitive, because Higgs branch degrees of freedom are read off from D6 branes suspended

between D8 branes. This brane system phase enables one to systematically read off an

associated magnetic quiver Q(Pi) such that its data considered as defining a 3d N = 4

Coulomb branch correctly describes the 6d N = (1, 0) Higgs branch of the point (phase)

Pi of the tensor branch, i.e.

H6d (phase Pi) = C3d
(

magnetic
quiver Q(Pi)

)
(1.2)

holds as equality of moduli spaces.

The key technique [17] for achieving (1.2) is to generalise the notion of electric and

magnetic theory from the Type IIB construction [36] of 3d N = 4 world-volume theories

from D3-D5-NS5 branes. Since the Type IIA system of D6-D8-NS5 branes (with or without

O6 planes) is T-dual to the Type IIB configuration of D3-D5-NS5 branes (with or without

O3 planes), the magnetic quiver is derived from the possible ways virtual D4 branes can be

suspend between D6, D8, and NS5 branes. Again, this is in complete analogy to D-string

in the Type IIB D3-D5-NS5 systems. The main purpose of this paper is to develop the

formalism of magnetic quivers for 6d N = (1, 0) theories with orthosymplectic gauge nodes.

Therefore, the inclusion of O6 orientifold planes is of central importance and one needs to

suitably generalise O3 plane arguments of [37].

The proposed formalism, as extension of [17], is heavily based on various 3d N = 4

Coulomb branch techniques developed after the Coulomb branch realisation as space of

dressed monopole operators [38]. Relevant techniques include Kraft-Procesi transitions and

transverse slices [23, 39, 40], quiver subtraction [41], and discrete quotients [24, 42, 43].

The outline of the paper is as follows: after introducing the set-up in section 2.1, the

concept of a magnetic quiver is detailed in section 2.2. Thereafter, the cases of one M5

and multiple M5s transverse to a R × C2/Dk−2 are focused on in sections 2.3 and 2.4. In

particular, the derivations of the magnetic quivers and the geometry of the transitions of

the different Higgs branches are elaborated. In section 3 the geometry of the finite and

infinite coupling Higgs branch of a single M5 is explored via Kraft-Procesi transitions;

moreover, the corresponding Hasse diagrams are derived. Lastly, section 4 provides a

conclusion and outlook. Appendix A.1 summarises details of O6 planes, and appendix A.2

reviews Coulomb branch symmetries of 3d N = 4 orthosymplectic quiver gauge theories.
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M-theory x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5 × × × × × ×
C2/Dk−2 × × × × × × ×
Type IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D8 × × × × × × × × ×

D6, O6 × × × × × × ×
F1 × ×
D4 × × × × ×

Table 1. Upper part: occupation of space-time directions by M5, and Dk singularity in M-theory.

Lower part: occupation of space-time directions by NS5, D8, D6, and O6 in Type IIA. The

fundamental string F1 and the D4 branes are virtual objects which are used to read off the electric

and magnetic quivers.

2 Magnetic quiver

2.1 Set-up

Consider M5 branes and a Dk ALE singularity C2/Dk−2 stretching the space-time dimen-

sions as indicated in table 1. Here Dk−2 denotes the binary dihedral group of order 4k − 8

such that the crepant resolution of C2/Dk−2 has associated Dynkin diagram D̂k. The sin-

gularity at the origin of C2/Dk−2 is localized in directions x7, x8, x9, and x10, and spans

directions x0, x1, . . . , x6. Therefore, it is represented as a horizontal line. The M-theory

picture can be presented as

Dk ×

×

× ×

×
M5

x6

x7,8,9,10

(2.1)

The corresponding description in Type IIA is obtained by an identification as follows:

the NS5 originates from the M5 which is point-like in the x10 direction. The Dk ALE

space C2/Dk−2 in M-theory provides a local description of k coincident D6 branes on an

O6− orientifold in Type IIA on flat space. In particular, the directions x7, x8, . . . , x10, in

which the singular origin of the ALE singularity is localised in, become the three directions

transverse to the D6s and the direction of the M-theory circle.

An important phenomenon is that M5 branes fractionate on ALE-singularities [27].

While for A-type singularities the number of fractions is just one, the M5 splits into two

fractions on D-type orbifolds. Hence, n M5 on the D-type orbifold correspond to n pairs of

two half NS5 branes in the dual Type IIA description. (The splitting of a full NS5 brane

into two half NS5 branes along an O6 plane in Type IIA had already been observed earlier
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in [28].) The corresponding Type IIA diagram for (2.1) is:

k k−4 k k−4 k k−4 k

1
2NS5

1
2D6

x6

x7,8,9

(2.2)

and the numbers displayed count full D6 branes. Note that the O6 orientifolds change when-

ever they cross a half NS5 or half D8 brane as summarised in appendix A.1. Moverover, the

different numbers of D6 branes follow from the charges of the orientifolds and the charge

conservation.

2.2 Electric and magnetic quiver

In the study of the Higgs branches of 6d N = (1, 0) theories resulting from M5 branes

on an A-type singularity C2/Zk, the concept of magnetic quivers has been introduced

in [17]. In this section, this concept is reviewed and extended for the application of D-type

singularities.

To begin with, recall the D3-D5-NS5 brane configurations of [36] supplemented by

orientifold 3-planes [37], which yield 3d N = 4 world-volume theories with alternating

orthogonal and symplectic gauge groups. Table 2 provides an overview of the set-up. In

this scenario, there exists a natural notion of electric and magnetic gauge theory. D3 branes

suspended between NS5 branes give rise to the electric gauge theory on their world-volume

and the low-energy degrees of freedom are deduced from suspended fundamental strings.

Adding D5 branes introduces electric hypermultiplets. Conversely, D3 branes in between

D5 branes lead to a magnetic gauge theory on the D3 world-volume and it is the D-string

that induces the relevant degrees of freedom. Consequently, NS5 branes are responsible for

magnetic hypermultiplets.

The effect of O3 planes lies in a projection that reduces unitary gauge and flavour

symmetries to orthogonal and symplectic symmetries, see table 3 for an overview. The

characteristic sign of the low-energy effective theories is a quiver gauge theory with alter-

nating orthogonal and symplectic gauge nodes.

By virtue of S-duality or 3d mirror symmetry [44], the maximal branches of the moduli

spaces of electric and magnetic theory are related via

H3d (electric theory) = C3d (magnetic theory) . (2.3)

Nevertheless, 3d mirror symmetry is a full-fledged IR-duality between the electric and

magnetic theory, but for the purposes of this paper relations of the type (2.3) are the

central objective.

Returning to the D6-D8-NS5 brane configurations [3, 4] supplemented by orientifold

6-planes, a central point in the argument of [17] is that the system is T-dual to the D3-

D5-NS5 system upon three T-dualities along x3, x4, x5. The conventional quiver gauge

theory on a generic point of the tensor branch of the 6d N = (1, 0) theory is read off
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Type IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D5 × × × × × ×

D3, O3 × × × ×
F1 × ×
D1 × ×

Table 2. Occupation of space-time directions by NS5, D5, D3, and O3 in Type IIB. The funda-

mental string F1 induces the electric theory, while the D-string D1 induces the magnetic theory.

orientifold gauge group flavour group S-dual

O3− O(2n) USp(2k) O3−

Õ3
−

O(2n+ 1) USp(2k) O3+

O3+ USp(2n) O(2k) or O(2k + 1) Õ3
−

Õ3
+

USp′(2n) O(2k) or O(2k + 1) Õ3
+

Table 3. Effect of O3 orientifolds on the low-energy effective theories. A stack of n full D3 branes

and an O3 plane suspended between two NS5 branes gives rise to the electric gauge group. Moreover,

if there are 2k half D5 branes, or in the case of O3+ and Õ3
+

there may also be 2k+1 half D5s,

intersecting the D3-O3 stack then an electric flavour group arises. Lastly, S-duality transforms the

O3 planes among each other and the resulting magnetic gauge groups are the GNO duals [45] of

the electric gauge groups.

from the phase of the Type IIA brane configuration in which all NS5 branes are well

separated along the orientifold. The effect of the O6 orientifold planes is analogous to the

3d setting and is summarised in the left-hand-side of table 4 for convenience. The condition

for an anomaly-free 6d theory is equivalent to charge conservation in the Type IIA brane

configuration [3, 4], see also appendix A.1 and [13] for 6d anomaly-free theories. This type

of quiver gauge theory is denoted as electric theory in the remainder of this paper.

In p-dimensional world-volume theories (with 8 supercharges) originating from Dp-

D(p+2)-NS5 brane configurations, the Higgs branch degrees of freedom are associated

with freely moving Dp branes suspended between D(p+2) branes. As such, the proposal

of [17] is to employ this phase of the brane configuration to read off a magnetic quiver,

such that

Hpd (electric theory) = C3d (magnetic theory) (2.4)

holds as an equality of moduli spaces.

Inspired from 3d mirror symmetry, the magnetic degrees of freedom are associated to

the suspension pattern of D4 branes in the D6-D8-NS5 configuration, because following

the three T-dualities of the D1 branes in Type IIB precisely lead to D4 branes in Type

IIA. A major difference in the magnetic quiver of the D6-D8-NS5 system compared to

the D3-D5-NS5 system is the role played by the NS5 branes. Since the NS5s and the D6s

– 6 –
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orientifold
electric magnetic magnetic

group orientifold algebra

O6− SO(2n) O6− dn

Õ6
−

SO(2n+ 1) O6+ cn

O6+ USp(2n) Õ6
−

bn

Õ6
+

USp′(2n) Õ6
+

cn

Table 4. The two left columns display low-energy gauge group of a stack of n physical D6 branes on

top of an O6 plane, all suspended in between NS5 branes. The two columns on the right-hand-side

display the proposed magnetic orientifold to read off the magnetic gauge algebra of a stack of n

physical D6 on top of an magnetic orientifold, all suspended between D8 branes.

suspended between D8 branes both share a 6-dimensional world-volume, the NS5 branes

contribute as magnetic gauge degrees of freedom as opposed to flavour degrees of freedom.

The inclusion of O6 planes presents a major conceptual challenge in the derivation of

the associated magnetic quivers. That is because (2.3) for systems with O3 planes involves

S-duality of the orientifold 3-planes, and there is no S-duality in Type IIA. To overcome

this obstacle, one recalls the logic of [17] for A-type singularities (see also [23] for D-type):

the magnetic quiver associated to the conventional electric quiver gauge theory in the finite

coupling phase is essentially given by 3d mirror symmetry, up to taking care of anomalous

U(1) gauge nodes in transition 6d to 3d and back. The point of [17] is to promote the

Higgs branch phase or magnetic phase, i.e. Dp branes suspended between D(p+2), and the

associated quiver theories as valid moduli space description at any value of the electric

gauge coupling. Therefore, inspired from 3d mirror symmetry of orientifolds [37], the

proposed prescription to read off the magnetic quiver is as follows:

(i) Change the brane system to the phase where as many D6 branes are suspended

between D8 branes as possible.

(ii) Change the physical (electric) orientifolds to virtual magnetic orientifolds, which fol-

low the logic of GNO or Langlands duality. These are summarised in table 4.

The main point of this paper is to extend the techniques of [17] to the study of 6d

N = (1, 0) Higgs branches originating from n M5 branes on a Dk singularity C2/Dk−2.

Notation. In the remainder, the notation is adjusted to differentiate electric and mag-

netic quivers, as well as to accommodate for known subtleties. The gauge nodes in the

relevant electric theories are denoted by SO(2k) and Sp(k). For the magnetic quiver, only

the gauge algebra are detailed, i.e. bk, ck, or dk. This is partly due to known issues about

magnetic theories with orthogonal gauge groups. For example, in T ρ(G) theories [46–48]

with G of type B, C, or D, there exists several possible quivers for a single partition ρ.

The corresponding Coulomb branches differ by projections of certain discrete groups and

the correct identification of the required quotient is subtle [49].
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2.3 Single M5 on a D-type singularity

Consider a single M5 brane transverse to R × C2/Dk−2 for k ≥ 4. For the dual Type IIA

description, see table 1, one recalls

k k−4 k (2.5)

and the conventions on O6 planes are summarised in appendix A.1. The low-energy effective

6d N = (1, 0) theory [3–5, 27, 29–32] contains a single tensor multiplet as well as hyper

and vector multiplets encoded in the following electric quiver

Sp(k − 4)

SO(4k)

(2.6)

and the interest is placed on the moduli space of vacua. For completeness, there exists

one decoupled tensor multiplet, which can be neglected for the purposes of this paper.

Since there exists only one non-decoupled tensor multiplet, the interesting part of the

tensor branch is effectively R≥0, which exhibits a singularity at the origin. Therefore, the

objective is to study two spaces:

(i) The Higgs branch H6d
fin of the theory over a generic point of the tensor branch, i.e.

one tensor multiplet together with the gauge theory (2.6) at finite gauge coupling.

(ii) The Higgs branch H6d
∞ over the origin of the tensor branch, i.e. no tensor multiplets,

but the quiver theory (2.6) at infinite coupling.

Physically, whenever a gauge coupling diverges, certain BPS-strings become tensionless

and contribute to the massless degrees of freedom. As, for instance, detailed in [23], these

originate from D2 branes stretched between the half NS5 branes in the brane configura-

tion (2.5). Since the D2s are codimension 4 objects for the D6 branes, they are gauge

instantons with corresponding zero-modes. The quantised zero-modes have been argued to

finitely generate all massless degrees of freedom stemming from the tensionless BPS-strings.

Consequently, there exists a natural inclusion of moduli spaces

H6d
fin ⊂ H6d

∞ (2.7)

because H6d
∞ is generated by all classical Higgs branch generators of H6d

fin plus the additional

generators for the massless string modes.

In this section, the transition between H6d
fin and H6d

∞ as well as their geometry is derived

from a brane construction.

2.3.1 Minimal case k = 4

For k = 4, the electric gauge theory (2.6) is trivial as well as the Higgs branch at finite

gauge coupling. As a warm up, one begins by studying how the trivial finite coupling phase

manifests itself in the magnetic phase.

– 8 –
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Finite coupling. From the view point of the Type IIA brane system, the magnetic phase

for (2.5) is realised by, firstly, pulling in 8 half D8 from x6 = ±∞

1 1 2 2 3 3 4 4 3 3 2 2 1 1

8 half D8 8 half D8

(2.8)

such that the configuration obeys the S-rule. The only D6 branes present are the ones

suspended between D8 and NS5 branes; hence, they are frozen in the sense that the

boundary conditions do not allow any degrees of freedom. One can eliminate these frozen

branes by moving the half NS5 branes through the half D8 branes, taking care of brane

anniliation, see (A.5). Consequently, the second step to reach the magnetic phase becomes

8 half D8 8 half D8

(2.9)

and there are no D6 branes left. This simply reflects that the Higgs branch is trivial.

Nonetheless, being very explicit, the magnetic quiver is read off by converting the physical

O6 planes into magnetic orientifolds, and then assigning a magnetic gauge node for n D6

branes on top of a O6 plane suspended between half D8 branes, as in table 4. The logic

is as in [17], the motion of the D6 in transverse x7,8,9 direction is identified with magnetic

vector multiplet contributions due to D4 branes suspended between the D6 branes. Here,

the gauge part of the magnetic quiver becomes trivial as there are no D6s to begin with,

but one can write

c0 b
0

c0 b
0

c0 b
0

c0 b
0

c0 b
0

c0 b
0

c0 b
0

c0

b0 b0

. (2.10)

Besides the trivial gauge nodes, the quiver (2.10) displays two flavour nodes. These origi-

nate from the two half NS5 branes which are stuck on the orientifold plane. Since these are

not free to move in transverse x7,8,9 direction, one does not associate any magnetic gauge

degrees of freedom with them. As a consequence, the Coulomb branch of the magnetic

quiver (2.10) is trivial

C3d
(

magnetic
quiver (2.10)

)
= {0} = H6d

fin

(
electric
theory (2.6)|k=4

)
, (2.11)

which agrees with the Higgs branch of (2.6) for k = 4 at finite coupling.
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Infinite coupling. Proceeding to infinite gauge coupling, two effects are expected [23]

to happen in order to fit the result of [34]. These are the following:

(i) The SO(16) flavour symmetry enhances to E8.

(ii) The Higgs branch H6d
∞ is the minimal (non-trivial) hyper-Kähler cone with an E8

symmetry, i.e. the closure of the minimal nilpotent orbit of E8.

Now, how to reconcile these features from the magnetic quiver approach? Tuning the gauge

coupling of (2.6) to infinity means that the two half NS5 branes in (2.8) need to become

coincident along the x6 direction. Since the number of D6 branes on the left-hand-side of

the left NS5 coincides with the number of D6 branes on the right-hand-side of the right

NS5 due to charge conservation, the pair of NS5 branes can leave the orientifold plane

while the D6 brane reconnect simultaneously. As the D6s are solely suspended between D8

branes, they become free to move in transverse x7,8,9 direction. Hence, the magnetic brane

configuration for the infinite gauge coupling phase is

1 1 2 2 3 3 4 3 3 2 2 1 1

8 half D8 8 half D8

(2.12)

where there are clearly non-frozen D6 branes. This already indicates that the Higgs branch

of this phase is non-trivial.

To read off the magnetic quiver, one associates to a stack of D6 branes in between D8

branes a magnetic vector multiplet depending on which type of orientifold is present, see

table 4. These magnetic degrees of freedom are associated with the way virtual D4 branes

are suspended. The action of the magnetic orientifold projects out certain states, much like

it does for D1 or F1 suspended between D3 on top of O3 planes. Since the half NS5 branes

have been lifted from the orientifold they are now free to move in the transverse x7,8,9

direction. To this motion one associates a magnetic vector multiplet, much like the reason

for the magnetic vector multiplet coming from the transverse motion of the D6 branes. To

see the character of the gauge group one can suspend virtual D4 branes between a half

NS5 and its mirror image. Then the magnetic orientifold of an O6− is again an O6− such

that the corresponding gauge group is of symplectic nature. In addition, one can suspend

D4 branes between the pair of half NS5 branes and the D6 on top of the orientifold. This

yields magnetic half hypermultiplets between the symplectic gauge group from the NS5

branes and the orthogonal gauge group from the D6 on top of the O6 plane. Consequently,

the resulting magnetic quiver is

c0 d
1

c1 d
2

c2 d
3

c3 d
4

c3 d
3

c2 d
2

c1 d
1

c0

c1

(2.13)
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and dropping the empty gauge nodes yields

d
1

c1 d
2

c2 d
3

c3 d
4

c3 d
3

c2 d
2

c1 d
1

c1

. (2.14)

The Coulomb branch dimension and the (naive) symmetry (see appendix A.2) can be

computed to be

dimH C3d
(

magnetic
quiver (2.14)

)
= 2 ·

3∑
i=1

(dim di + dim ci) + dim d4 + dim c1 = 29 , (2.15)

GJ = SO(16) . (2.16)

In fact, more is true because (2.14) is a star-shaped quiver constructed by gluing

T(18)[SO(8)], T(18)[SO(8)], and T(5,3)[SO(8)] along the common flavour node. As such it

is the mirror of the S1 compactification of an class S theory of type SO(8) with punctures

(18), (18), (5, 3), which is known to be a rank-1 E8 SCFT [50, section 3.2.2]. Therefore,

as concluded in [23, eq. (2.43)] and [51] the Coulomb branch of (2.14) is the closure of the

minimal nilpotent orbit of E8, i.e.

C3d
(

magnetic
quiver (2.14)

)
= OE8

min = H6d
∞
(

electric
theory (2.6)|k=4

)
. (2.17)

The novel point here is that the brane construction (2.12) allows to derive the correct

magnetic quiver that describes H6d
∞ .

The change in dimension of the Higgs branch from finite to infinite coupling follows

straightforwardly from the anomaly cancellation condition (1.1), as discussed in [23]. At

finite coupling, there are no hyper and vector multiplets, but only one tensor multiplet

(ignoring the decoupled tensor multiplet). At infinite coupling, the tensor multiplet is lost

and needs to be compensated by 29 (additional) hypermultiplets, since there are no new

gauge degrees of freedom.

In terms of geometry, the transition from (2.10) to (2.14) is a simple case of a transverse

slice for (2.7), in the sense that locally one may write

H6d
∞ = H6d

fin × S = {0} × S ∼= S = OE8

min . (2.18)

From the associated magnetic quivers (2.10) and (2.14), this statement can be deduced by

quiver subtraction as detailed in [41], see also (3.11) below. For k > 4, the relation (2.18)

becomes more complicated, as H6d
fin is non-trivial.

2.3.2 Generic case k > 4

For k > 4, the electric theory (2.6) as well as the Higgs branch at finite coupling are

non-trivial. Hence, the first task is to derive the magnetic quiver for the finite gauge

coupling phase.
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Finite coupling. Starting from (2.5) one moves to the phase of the brane system where

all D6 are suspended between D8; therefore, from x6 = ±∞ one pulls in 2k half D8 each.

1 1

· · ·
k−1 k−1 k k−4 k k−1 k−1

· · ·
1 1

2k half D8 2k half D8
symmetry axis

(2.19)

To reach the phase of finite gauge coupling, the D6 branes have to be suspended purely

between D8 branes without the half NS5s leaving the orientifold plane. Since the set-up is

symmetric along the x6 direction (see red dotted symmetry axis), one can focus on the left-

hand-side without loss of generality. Inspecting the left-hand-side of (2.19), there are k full

D6 on the left and (k−4) full D6 on the right of the left-most half NS5 brane. Therefore,

one may consider (k−4) D6 branes going through the half NS5 branes such that these D6s

are really suspended between half D8 branes. The remaining 4 full D6 on the left-hand-side

are considered as frozen between D8 branes and the half NS5 brane. These frozen D6 can

be eliminated, without changing the physics, by passing the half NS5 through seven half

D8 branes and taking care of brane anniliation (A.5). One may wonder whether to cross an

additional eighth D8 brane, but it turns out that after conversion to magnetic orientifolds

the correct brane configuration for the purpose of reading the magnetic quiver becomes

1 1

· · ·
k−4 k−4 k−4 k−4 k−4 k−4 k−4 k−4 k−4

· · · (2.20)

and all the D6 branes are suspended between D8 branes. The half NS5 has no D6 branes

ending on it and is, moreover, stuck on the orientifold. Employing the same arguments as

in the previous section — reading off gauge nodes from stacks of D6 branes on magnetic

orientifolds of table 4 and so forth — one deduces the following magnetic quiver:

d
1

c1

...

d
k−

5

c
k−

5

d
k−

4

c
k−

4

b
k−

4

c
k−

4

...

b
k−

4

c
k−

4

d
k−

4

c
k−

5

d
k−

5

...

c1 d
1

b0 b0

7 bk−4 & 8 ck−4

, (2.21)

and potentially empty gauge nodes from D8 intervals with no D6 branes have been omitted.

The dimension and symmetry of the Coulomb branch are computed to be

dimH C3d
(

magnetic
quiver (2.21)

)
= 2 ·

k−4∑
i=1

(dim di + dim ci) + 7 · dim bk−4 + 6 · dim ck−4

= dim SO(2k)− dim SO(8) , (2.22a)

GJ = SO(4k) , (2.22b)
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due to a chain of (4k−3) balanced nodes with d1 nodes at each end, see appendix A.2. These

properties match the classical Higgs branch of (2.6). Hence, the significance of (2.25) lies in

C3d
(

magnetic
quiver (2.21)

)
= H6d

fin

(
electric
theory (2.6)

)
, (2.23)

which can also be derived by taking (2.6) as a 3d N = 4 system and computing the 3d mir-

ror, as shown in [37, figure 13]. While the quiver (2.21) has been conjectured in [23]; here,

the magnetic quiver has been derived from a D6-D8-NS5 brane construction with O6 planes.

Infinite coupling. Having established the magnetic phase for the finite coupling regime,

one can proceed to infinite gauge coupling. Physically, infinite gauge coupling means that

the two half NS5 in (2.5) or (2.19) have vanishing distance along x6. However, when two

half NS5 branes are coincident on an O6 plane, they can leave the orientifold in transverse

x7,8,9 direction as mirror pair of half NS5 branes. The (k−4) full D6 branes that had

originally been suspended between the two half NS5 branes disappeared, and there are no

D6 branes attached between the pair of half NS5 outside the O6 plane. However, the k

full D6 branes1 that were attached from the left and right side of the pair of NS5 branes

can reconnect while the half NS5s leave the orientifold. Therefore, the brane configuration

describing the infinite gauge coupling phase is reached by reuniting the two half NS5s such

that they can leave the orientifold as pair of half NS5, i.e.

1 1

· · ·
k−1 k−1 k k−1 k−1

· · ·
1 1

(2.24)

and the magnetic quiver is read off by using the orientifold conversion to magnetic orien-

tifolds, cf. table 4, to be

d
1

c1 d
2

c2

...

d
k−

1

c
k−

1

d
k

c
k−

1

d
k−

1

...

c2 d
2

c1 d
1

c1

(2.25)

and the Coulomb branch dimension and symmetry is computed to be

dimH C3d
(

magnetic
quiver (2.25)

)
= 2 ·

k−1∑
i=1

(dim di + dim ci) + dim dk + dim c1

= dim SO(2k) + 1 (2.26a)

= dimH C3d
(

magnetic
quiver (2.21)

)
+ 29 ,

GJ = SO(4k) . (2.26b)

1Due to charge conservation, the numbers of D6 branes on the left and right of a pair of half NS5 branes

have to be equal.
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Note that the global symmetry matches the global SO(4k) symmetry of (2.6), which is

expected to remain the symmetry in the infinite coupling case for k > 4. Moreover, the

Higgs branch dimension of (2.6) at infinite coupling has been computed in [16, eq. (1.2)]

and agrees with (2.26). Consequently, the significance of this result lies in

C3d
(

magnetic
quiver (2.25)

)
= H6d

∞
(

electric
theory (2.6)

)
. (2.27)

Again, the magnetic quiver (2.25) had been conjectured in [23], but the formalism presented

here allows to derive it from a brane configuration.

The geometric relationship between finite and infinite gauge coupling phase is the

subject of section 3.

2.4 Multiple M5s on D-type singularity

Having discussed a single M5 brane on a D-type singularity, it is time to include multiple

M5 branes. To be precise, consider n M5 branes on C2/Dk−2 for k ≥ 4, then the dual Type

IIA description yields

k k-4 k k-4

· · ·
k-4 k k-4 k

2n half NS5

(2.28)

such that the resulting 6d N = (1, 0) theory consists of (2n− 1) tensor multiplets together

with hyper and (2n− 1) vector multiplets encoded in the electric quiver gauge theory [3–

5, 27, 29–32]

Sp(k −
4)

SO
(2k)

Sp(k−
4)

. . .
Sp(k−

4)

SO
(2k)

Sp(k−
4)

SO(2k) SO(2k)

2n− 1

(2.29)

and one decoupled tensor multiplet. The vacuum moduli spaces structure is more sophis-

ticated than in the single M5 brane case, simply because there are (2n− 1) non-decoupled

tensor multiplets, or, equivalently, (2n− 1) independent gauge couplings in (2.29). Again,

there are various singular loci where BPS-strings become tensionless and the Higgs branches

of the theories over these singularities have to be investigated carefully.

(i) The Higgs branch H6d
fin over a generic point of the tensor branch, i.e. the theory has

(2n− 1) tensor multiplets and all couplings in the gauge theory (2.29) are finite.

(ii) The Higgs branch H6d
j,γ∈σ(j) over a singular point of order j (1 ≤ j < 2n − 1) of the

tensor branch, i.e. the theory has lost j out of the (2n − 1) tensor multiplets. Note

that there are multiple singular loci of the same order, meaning that there are σ(j)

different possibilities to take j out of the (2n− 1) gauge couplings to infinity.

(iii) The Higgs branch H6d
∞ over the origin of the tensor branch, i.e. no tensor multiplets

and all couplings in (2.29) are infinite.

The Higgs branches of the different phases as well as the transition between them are

derived from a brane configuration in this section.
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Generic point on tensor branch. The first step is to derive the magnetic quiver

description for the finite coupling regime of (2.29). To achieve this, one pulls in 2k half D8

branes from both x6 = ±∞ and obtains

1

· · ·
k−1 k k−4 k

· · ·
k k−4 k k−1

· · ·
1

2k half D8 2k half D82n half NS5

(2.30)

and the next step lies in suspending as many D6 branes between D8 branes as possible.

Since half NS5 branes cannot leave the O6 plane in the finite coupling regime, the strategy

is as follows: firstly, transition the outermost half NS5 brane through seven D8 branes. The

reasoning is as in section 2.3.2, from the k full D6 branes that are suspended between one

of the outer-most NS5 and a D8 brane, one can consider (k − 4) of them as going through

the NS5 and only 4 of them as being frozen between the NS5 and D8. Frozen branes do not

contribute to the Higgs branch and can be eliminated by brane-annihilation (A.5) when

the NS5 passes through half D8 branes.

Secondly, the remaining (n − 1) pairs of half NS5 branes are considered as having 8

half D6 suspended between them, while the other 2(k − 4) half D6 branes are suspended

between the pulled in D8 branes. The brane configuration looks like

1

· · ·
k−4 k−4

· · ·
k−4

k−4

4

· · ·
k−4

· · ·
k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

2n−2 half NS5

(2.31)

In the centre, one observes (n−1) pairs of half NS5 branes with 8 half D6 branes suspended

in between, and there is no way to suspend these D6 between D8 branes. Consequently,

these D6 do not contribute to the Higgs branch either and as such one considers them as

contributing flavour nodes to the magnetic quiver. Employing the conversion to magnetic

orientifolds of table 4, one reads off the magnetic quiver to be

d
1

c1

...

d
k−

5

c
k−

5

d
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

d
k−

4

c
k−

5

d
k−

5

...

c1 d
1

b0 b0cn−1

(2.32)

– 15 –



J
H
E
P
0
2
(
2
0
2
0
)
1
8
4

The Coulomb branch dimension of (2.32) is readily computed

dimH C3d
(

magnetic
quiver (2.32)

)
= 2 ·

k−4∑
i=1

(dim ci + dim di) + 7 · dim bk−4 + 6 · dim ck−4

= dim SO(2k)− dim SO(8) .

(2.33)

To compute the Higgs branch dimension of (2.29), one needs to recall that there is no

complete Higgsing of the SO(2k) gauge nodes; instead, there is partial Higgsing SO(2k)→
SO(8) such that one computes

dimH H6d
finite

(
electric
theory (2.29)

)
= nh − nv = dim SO(2k)− dim SO(8) (2.34)

nh =
1

2
· 2k · (2k − 8) · 2n

nv = n · dim(Sp(k − 4)) + (n− 1) · (dim(SO(2k))− dim(SO(8))) ,

which is independent of n, and confirms that the Higgs branch is trivial for k = 4. One

observes that both dimensions (2.33) and (2.34) agree. Moreover, a computation of the

topological symmetry of (2.32) reveals

GJ = SO(2k)× SO(2k) (2.35)

because the central bk−4 node is never balanced for k > 1, but always a good in the sense

of appendix A.2. The Coulomb branch symmetry agrees with that of the Higgs branch

of (2.6). Therefore, the significance of this derivations is that

C3d
(

magnetic
quiver (2.32)

)
= H6d

fin

(
electric
theory (2.29)

)
. (2.36)

The challenge in computing the Higgs branch of (2.29) lies in non-complete Higgsing, and

current techniques are not suitable or able to overcome the difficulties. Therefore, the

magnetic quiver (2.32) provides a prediction for the Higgs branch description.

One infinite gauge coupling. Next, one can proceed to one of the infinite gauge cou-

pling phases. As indicated above, there are (2n−1) tensor multiplets, i.e. (2n−1) different

order parameters that can be tuned. Moreover, recall that tuning a gauge coupling to

infinity means that the associated pair of half NS5 has to become coincident along x6. By

charge conservation, the numbers of D6 branes on the left and right of a pair of half NS5

branes are identical, as long as no D8 branes are involved. Thus, the pair of half NS5

branes can leave the orientifold in transverse x7,8,9 direction and the D6 branes from the

left and right of the pair reconnect. As apparent from (2.31), there are two different types

of pairs that can become coincident:

(i) either a pair of half NS5 branes with 4 full D6 branes in between,

(ii) or a pair of half NS5 branes with no D6 branes in between.

To begin with, consider the left pair of half NS5 branes with 8 half D6 branes in between

as in brane configuration (2.31), then this pair can leave the O6 as explained above and
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one arrives at

1

· · ·
k−4 k−4

· · ·
k−4

k−4

4

· · ·
k−4

· · ·
k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

2n−2 half NS5

(2.37)

The difference to (2.31) is that the left pair of half NS5 now contributes gauge degrees

of freedom to the magnetic quiver, because the NS5 branes are free to move along x7,8,9.

Put differently, one can non-trivially suspend virtual D4 branes between the half NS5 and

its mirror image. The action of the orientifold leads to a magnetic vector multiplet of a

symplectic gauge group. Consequently, the magnetic quiver is read off as

d
1

c1

...

d
k−

5

c
k−

5

d
k−

4

c
k−

4

b
k−

4

c
k−

4
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4
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k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

b
k−

4

c
k−

4

d
k−

4

c
k−

5

d
k−

5

...

c1 d
1

b0 b0c1 cn−2

(2.38)

In the electric theory (2.29), the changes are easily kept track off. Before the transition,

there are (2n − 1) tensor multiplets and (n − 1) SO(8) vector multiplets, while after the

transition both numbers are reduced by one. In order to satisfy the anomaly cancellation

condition (1.1), the number of hypermultiplets has to change as follows

n′h − nh = 29 · (nt − n′t)− (nv − n′v) = 1 . (2.39)

In other words, the simultaneous loss of one tensor multiplet and one SO(8) vector multiplet

has to be compensated by one new hypermultiplet.

The second option, for tuning one gauge coupling to infinity, is to choose a pair of half

NS5 branes with no D6 branes in between, see configuration (2.31). By the same arguments

as above, the pair becomes coincident along x6, the D6 branes on the left and right of the

pair reconnect, and the pair of half NS5 branes can leave the orientifold in transverse x7,8,9

direction. Hence, the brane configuration becomes

1

· · ·
k−4 k−4

· · ·
k−4

k−4

4

· · ·
k−4

· · ·
k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

2n−2 half NS5

(2.40)
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The associated magnetic quiver is read off by the same logic as before. The D6 branes

suspended in intervals between half D8 branes contribute magnetic gauge nodes according

to the orientifold, see table 4. The pairs of half NS5 branes on the orientifold with 4 full

D6 branes suspended do contribute as flavours. In contrast, the pair of half NS5 that left

the orientifold contributes as magnetic vector multiplet. To see how, one suspends virtual

D4 branes between the NS5s, and observes that the magnetic orientifold of an O6− plan

is again an O6−, resulting in a symplectic gauge node. In addition, virtual D4 branes can

be suspended between the half NS5s that left the orientifold and the D6s in between the

NS5s on the orientifold. Since these D6 branes are not Higgs branch moduli, the D4 branes

lead to a flavour SO(8) node attached to the symplectic magnetic gauge node. Thus, the

magnetic quiver associated to (2.40) becomes
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d
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5

...

c1 d
1

b0 b0

c1

d4

cn−2

(2.41)

which compared to (2.38) has the same moduli space dimension.

In fact, the physical transition from the 6d perspective appears to be identical to the

first case. During the transition, the number of tensor multiplets and the number of SO(8)

vector multiplets are simultaneously reduced by one such that the anomaly cancellation

condition (1.1) enforces the appearance of one additional hypermultiplet. As such, this

confirms the observation that both types of transitions (2.37), (2.40) are one-dimensional.

As a consequence, one may also consider a transition from brane configuration (2.37)

to (2.40). In other words, moving a pair of half NS5 branes that left the orientifold along

the x6 direction across at least one half NS5 brane. Following the brane configuration,

as well as the associated magnetic quiver, leads to the prediction that there is a discrete

change of the Higgs branch whenever a pair of NS5 branes outside the orientifold crosses

a half NS5 brane on the orientfold.

Moreover, one can go back to configuration (2.31) and consider any pair of neighbouring

half NS5 branes. According to the above arguments, for any pair, the infinite gauge coupling

transition for this pair is of the form

1 tensor + 1 SO(8) vector → 1 hyper , (2.42)

but the resulting magnetic quiver is either (2.38) or (2.41), depending on which pair is

chosen. In total, there are exactly (2n− 1) of these one-dimensional transitions. Although

different gauge couplings of (2.29) are taken to infinity, the resulting moduli spaces fall into

two classes, given by (2.38) or (2.41). In addition, the transition between both is physically

described by a change of x6 position of a pair of NS5 branes.

More infinite gauge couplings. Form the (2n − 2) half NS5 branes in the centre

of the brane configuration (2.30), one can form at most (n − 1) pairs that can under-go
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transition (2.42). An arbitrary intermediate stage is given by l pairs of half NS5 branes un-

dergoing the transition (2.42), with l0 pairs of the from (2.37) and l1 pairs of the form (2.40)

such that l = l0 + l1, and remaining separated along x6. For 0 ≤ l ≤ (n− 1), the resulting

magnetic quiver becomes
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c1 c1

d4 d4

···

l0

l1

(2.43)

and the Coulomb branch dimension has increased by l quaternionic units in comparison

to (2.32).

Discrete gauging. Consider the case in which all possible (n − 1) pairs of half NS5

under-go the transition (2.42), then the brane configuration becomes

1

· · ·
k−4 k−4

· · ·
k−4

k−4· · ·

· · ·

k−4

· · ·
k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

2n−2 half NS5

(2.44)

and the x6 distance between the neighbouring pairs still corresponds to tensor multiplet,

i.e. an inverse gauge coupling. By the rules establish so far, the magnetic quiver reads

as follows:
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c1 d
1

b0 b0c1 c1
···

n− 1

(2.45)

In particular, once all (n−1) pairs of half NS5s in the centre of the brane configuration (2.31)

have left the orientifold, there is only one type of c1 gauge node in the magnetic quiver.

Focusing on two neighbouring pairs, one could suspend half D2 branes between the half

NS5 branes. Sending the x6 distance to zero creates tensionless strings on the D2s. The

analogous effect for M5 branes on an A-type singularity has been considered in [24] and

argued to be a discrete gauging of a permutation group acting on the (pairs of) NS5 branes.

Here, the argument applies to n mirror pairs of NS5s in the presence an O6 plane. The

possibilities for the pairs to become coincident along x6 are labeled by partitions {ni}i=1,...,l

of (n − 1), meaning that ni of all pairs coincide in definite x6 position and so on and so
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forth. Hence, one gauges a
∏l
i=1 Sni discrete group and (n − 1 − l) gauge couplings have

been send to infinity. The brane configuration looks like

1

· · ·
k−4 k−4

· · ·
k−4

k−4

· · ·

· · ·

... n1

... n1

... nl

... nl

k−4

· · ·
k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

(2.46)

Focusing on a stack of ni NS5 branes in configuration (2.46), which can be depicted as

displaced along x7,8,9, then D4 branes suspended between the NS5 branes contribute to

the massless degrees of freedom. Analogous to a stack of branes that is half BPS, the

contribution lies in a gauge group and one additional hypermultiplet. Due to the presence

of the O6+ plane, which becomes a magnetic Õ6
−

plane, there is a non-trivial projection

which reduces the gauge group to a symplectic group and the additional hypermultiplet

transforms in the traceless second anti-symmetric representation Λ2 of the symplectic gauge

group. Since this vanished for c1, it has not been detailed so far. Collecting all contributions

for the brane configuration (2.46), the resulting magnetic quiver reads as follows:
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(2.47)

The question is now, whether there is a relation between the Coulomb branches of (2.45)

and (2.47). Physically, the Coulomb branch of (2.46) describes the Higgs branch of the

phase where the maximal number of transitions of the type (2.42) have occurred. Hence,

(n − 1) gauge couplings are infinite. In contrast, (2.47) starts from the phase (2.44) and

tunes further (n − 1 − l) gauge couplings to infinity. Again, the transition is due to a

discrete gauging [24] of the permutation subgroup
∏l
i=1 Sni of the full permutation group

Sn−1 acting on the (n − 1) pairs of half NS5 branes in (2.44). Gauging a discrete permu-

tation group on the Higgs branch of the electric theory corresponds to a quotient of the

permutation group on the Coulomb branch of the magnetic theory. As shown in [42, sec-

tion 2.2], the discrete quotient on the Coulomb branch translates into an simple operation

on the c1 bouquet of (2.45) that results in (2.47). Thus, the relation between the moduli

spaces is

C3d
(

magnetic
quiver (2.47)

)
= C3d

(
magnetic

quiver (2.43)
)
/

l∏
i=1

Sni . (2.48)

As a remark, this discrete gauging transition can occure in any of the intermediate phases

described by (2.45). There, one would label all possible cases by partitions of l instead.

Since the discussion is analogous to the one just presented, it is not further detailed.
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Likewise, one may consider discrete gauging in the phase (2.43). Without loss of

generality, one can assume that all pairs of NS5 branes that underwent transition (2.37)

(or (2.40)) are in the same x6 interval defined by two half NS5 on the orientifold. Then,

one can consider either family of NS5 pairs becoming coincident along x6, i.e. discrete

gauging. For the pure c1 bouquet of size l0, the resulting effects is the same as above due

to [42, section 2.2]. For the (c1 ◦ −�d4) bouquet of size l1, the discrete quotient effect on

the magnetic quiver is a straightforward extension of [42, section 2.2], i.e. one obtains an

cl1 gauge node with a d4 flavour node and an additional traceless 2nd rank anti-symmetric

hypermultiplet.

Small instanton transition. Return to the brane configuration (2.44), and consider

how to take the separation of the two half NS5s that remain on the orientifold to zero.

This is the next logical question, because by the previous paragraphs one knows how to

take all other gauge couplings to infinity. In order to take the last remaining gauge coupling

to infinity, one has to reunite the remaining two NS5 on the orientifold and then remove

them from the O6 plane. By transitioning the two outermost half NS5 branes through the

half D8 branes, one creates D6 branes according to rules in (A.5). At the instance during

which the NS5 become coincident and leave the O6 plane, the D6 brane reconnect such

that the resulting brane configurations becomes

1

· · ·
k−1 k

· · ·

· · ·

k−1

· · ·
1

2k half D8 2k half D82n half NS5

(2.49)

and, here, all NS5 pairs are separated along x6. By the arguments presented above, the

magnetic quiver for (2.49) is readily read off to be

d
1

c1 d
2

c2

...

d
k−

1

c
k−

1

d
k

c
k−

1

d
k−

1

...

c2 d
2

c1 d
1

c1 c1
···

n

, (2.50)

and its Coulomb branch describes a Higgs branch phase of (2.29) with n gauge couplings

tuned to infinity.

The nature of this last transition can be deduced in multiple ways. On the one hand,

the starting point (2.44) describes one remaining M5 that fractionated on the D-type sin-

gularity. Taking it off the singularity corresponds to the small E8 instanton transition

as discussed above. Put differently, before the transition there existed one extra tensor

multiplet, which is lost afterwards. Since the number of vector multiplets has not changed,

there need to be 29 additional hypermultiplets to satisfy (1.1). On the other hand, one can

apply quiver subtraction to (2.50) and (2.43) and deduce that the difference quiver is pre-

cisely (2.14). As detailed in section 3, the transverse slice of the Coulomb branch of (2.43)

inside the Coulomb branch of (2.50) is the closure of the minimal nilpotent orbit of E8.
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As discussed above, the x6 separation between the pairs of NS5 branes in (2.49) corre-

sponds to tensor multiplets. The possibilities of taking different subsets of gauge couplings

to infinity are, again, labeled by partitions {ni}i=1,...,l of n, meaning ni pairs of half NS5

brane coincide along x6, with
∑l

i=1 ni = n.

1

· · ·
k−1 k

... n1

... n1

· · ·

· · ·

... nl

... nl

k−1

· · ·
1

2k half D8 2k half D8
(2.51)

The logic is the same as in (2.47). Therefore, the magnetic quiver becomes

d
1

c1 d
2

c2

...

d
k−

1

c
k−

1

d
k

c
k−

1

d
k−

1

...

c2 c2 c1 d
1

cn1 cnl···

Λ2 Λ2

. (2.52)

It is important to recall that the Coulomb branch of (2.52) describes a Higgs branch phase

where (2n − l) gauge couplings are tuned to infinity. According to [42, section 2.2], the

moduli spaces are related via

C3d
(

magnetic
quiver (2.52)

)
= C3d

(
magnetic

quiver (2.50)
)
/
∏
i

Sni . (2.53)

Physically, there exists a discrete Sn action, or of its subgroups, on the pairs of half NS5

branes, which is gauged when all pairs become coincident.

The Coulomb branch symmetry of (2.52) is

GJ = SO(2k)× SO(2k) (2.54)

because the central dk nodes is always good, but never balanced for n > 1. This symmetry

agrees with the Higgs branch symmetry of (2.29) at the origin of the tensor branch. In

addition, there is discrete Coulomb branch symmetry factor which corresponds to the

symmetry of the magnetic quiver. Next, the Coulomb branch dimension of (2.52) is readily

computed

dimH C3d
(

magnetic
quiver (2.52)

)
= 2 ·

k−1∑
i=1

(dim ci + dim di) + dim dk +

l∑
i=1

dim cni

= n+ dim SO(2k) .

(2.55)
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Origin of tensor branch. Lastly, the origin of the tensor branch is reached when all

half NS5s have left the orientifold pairwise and all pairs are coincident; hence, partition

{n} and the brane configuration becomes

1

· · ·
k−1 k

... n

... n

k−1

· · ·
1

2k half D8 2k half D8

(2.56)

such that the corresponding magnetic quiver, using table 4, is read off to be

d
1

c1 d
2

c2

...

d
k−

1

c
k−

1

d
k

c
k−

1

d
k−

1

...

c2 d
2

c1 d
1

cn

Λ2

, (2.57)

which had been conjectured in [23] as a description for the Higgs branch at infinite coupling.

Here, the magnetic quiver has been derived from a brane system. The Coulomb branch

dimension (2.55) and symmetry are the same as above.

The Higgs branch dimension at infinite coupling has been computed in [16] to be

dimH H6d
∞
(

electric
theory (2.29)

)
= 29 · nt + nh − nv = n+ dim SO(2k) , (2.58)

nt = n ,

nh =
1

2
· 2k · (2k − 8) · 2n ,

nv = n · dim(Sp(k − 4)) + (n− 1) · dim(SO(2k)) .

Using the formalism of magnetic quivers, one is now able to explain the jump in moduli

space dimension

dimHH6d
∞ − dimH H6d

fin = n+ 28 = (n− 1) + 29 (2.59)

in more detail. As the theory has (2n − 1) tensor multiplets, there are (2n − 1) order

parameters that can be tuned and, as such, one expects (2n−1) distinct phase transitions.

The above analysis demonstrates the following:

(i) There are (n− 1) transitions of the form

1 tensor + 1 SO(8) vector → 1 hyper (2.60)

such that the moduli space jumps by one quaternionic unit. This will be called a D4

transition.

(ii) There is precisely one small E8 instanton transition

1 tensor → 29 hypers (2.61)

and the dimension has to jump by 29.

(iii) There are (n − 1) discrete gauging transitions in which the Higgs branch does not

jump in dimension.
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Geometrically, the magnetic quivers also allow to study the transverse slices. As

in (3.11), one can take the difference between the magnetic quivers (2.43) and (2.50),

describing the phase before and after the final transition. By the results of [41], the

Coulomb branch of this difference quiver describes the transverse slice. Inspecting the

relevant theories reveals

magnetic
quiver (2.50)− magnetic

quiver (2.43) = magnetic
quiver (2.25) (2.62)

such that the transverse slice is again the closure of the minimal nilpotent orbit of E8, as

suspected for an E8 transition.

2.5 Derivation rules

Having discussed the various transitions between the different Higgs branch phases and

how to derive their associated magnetic quivers, one can summarise and formalise the rules

as follows:

Conjecture 1 (Magnetic quiver). For a D6-D8-NS5 brane system in the presence of O6

orientifold planes, cf. table 1, in which all D6 branes are suspended between D8 branes, the

massless BPS states, deduced from stretching virtual D4 branes, arise from the following

configurations:

(i) Stack of m full D6 branes on top of a O6 plane suspended between two D8s in a

finite x6 interval: the vertical motion along the x7, x8, x9 directions gives rise to a

magnetic vector multiplet due to D4s stretched between them. Depending on the type

of magnetic O6 plane, the magnetic gauge group is

m D6 & O6−
m

magnetic quiver

dm

D8

(2.63a)

m D6 & Õ6
−

m
magnetic quiver

cm

D8

(2.63b)

m D6 & O6+
m

magnetic quiver

bm

D8

(2.63c)

m D6 & Õ6
+

m
magnetic quiver

cm

D8

(2.63d)

see also table 4.
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(ii) Stacks of m full D6 on some O6 plane and l full D6 branes (on some other O6 plane)

in adjacent D8 intervals along the x6 direction: the D4 branes suspended between D6s

of different intervals induce a magnetic half hypermultiplet transforming as bifunda-

mentals in the corresponding magnetic gauge groups.

(iii) Stack of m full NS5 branes above an O6− or O6+ orientifold at coincident x6 position:

the vertical motion along the x7, x8, x9 directions gives rise to a cm magnetic vector

multiplet due to D4s stretched between. Since the NS5s are free to move along the x6

direction, there is an additional hypermultiplet transforming in the traceless second

anti-symmetric representation Λ2 of cm. Put differently, virtual D4 branes suspended

between the half NS5s and their mirrors furnish the anti-symmetric representation

due to the orientifold action.

O6−

... m

... m

magnetic quiver

cm

Λ2

D8

(2.64a)

O6+

... m

... m

magnetic quiver

cm

Λ2

D8

(2.64b)

(iv) Stack of m full NS5 branes above an O6− orientifold at coincident x6 positions, in

between two half NS5 branes that are stuck on the orientifold and have 4 D6 branes

suspended in-between. In addition to the symplectic magnetic vector multiplet and

the additional magnetic anti-symmetric hypermultiplet, there is a d4 magnetic flavour

node due to virtual D4 branes that can be stretched between the NS5s and the D6s.

4

O6−

... m

... m

magnetic quiver

cm d4

Λ2

(2.65)

(v) Stacks of l full D6 and m full NS5 branes between two D8 in a finite x6 interval: the

vertical distance in the x7, x8, x9 directions leads to a magnetic half hypermultiplet

transforming as bifundamentals in the corresponding magnetic gauge groups.

(vi) Suppose a single half NS5 is stuck on the O6 plane in an D8 interval with k full D6

branes suspended between the D8 branes. Since the NS5 is not free to move, it does not

contribute a magnetic degree of freedom. Put differently, since the NS5 is on the ori-

entifold and has no mirror image, there are no D4 branes that induce a magnetic vec-

tor multiplet. Nevertheless, the stuck half NS5 brane contributes an b0 flavour to the
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magnetic gauge multiplet in that finite D8 segment. The magnetic bifundamentals are

associated to virtual D4 branes stretched between the stuck half NS5 and the D6 branes.

k magnetic quiver

ck

b0

D8

(2.66)

(vii) Suppose a pair of half NS5 branes is stuck on the orientifold between two D8 branes.

Again, as they have no freedom to move, each pair of half NS5 contributes as c1
flavour node, due to virtual D4 branes ending on them. The 4 full D6 branes are not

Higgs branch degrees of freedom, simply because the D6 cannot be suspended between

D8 branes.

k

4
magnetic quiver

bk

c1

D8

(2.67)

The massless degrees of freedom can be encoded in a quiver diagram in the familiar way.

Remark. In view of the other types of bouquets discussed in [42], one may wonder if

these can appear in this set-up. Due to the dual Type IIA description of an Dk singularity

in M-theory, there is always an even number of half D6 branes. Therefore, one has to pull

in an even number of half D8 branes from x6 = ±∞. It follows that the central orientifold

is either O6− or O6+ (before the E8 transition); hence, the magnetic orientifold is O6− or

Õ6
−

, respectively. Consequently, the pairs of half NS5 branes lifted from the orientifold

will always lead to c1-type bouquets.

2.6 Phase diagram

In the above sections, many different transitions have been discussed by using the magnetic

quiver. In table 5 the entire phase structure is presented, graded according to quaternionic

dimension of the moduli space and the number of infinite gauge couplings. For simplicity

and readability, all D4 transitions are assumed to be of the form (2.37), because any

transition resulting from (2.40) can be converted into this form by moving a pair of half NS5

branes along x6. Summarising the above, the three transitions have the following impact:

• The D4 transitions increase the quaternionic dimension as well as the number of

infinite couplings by one. Hence, Higgs branch phases along the diagonal in table 5

can be related by D4 transitions. For instance,

H{ni}
p×D4

D4−−−−−−→
transition

H
{n′j}
(p+1)×D4

(2.68)

where {ni}i=1,...,l is a partition of p, i.e.
∑l

i=1 ni = p, and {n′j}j=1,...,l+1 is a partition

of (p+1) that is obtained by appending a 1 to partition {ni}, i.e. {n′j} ≡ {n1, . . . , nl, 1}
such that

∑l+1
i=1 n

′
i = p+ 1.
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# infinite
gauge

couplings

H-dim of moduli space

d d+1 d+2 d+3 d+4 . . . d+(n−1) d+(n+28)

0 Hfin

1 H{1}1×D4

2 H{1
2}

2×D4

3 H{2}2×D4
H{1

3}
3×D4

4 H{2,1}3×D4
H{1

4}
4×D4

5 H{3}3×D4
H{2,1

2}
4×D4

6
...

7 H{4}4×D4

...
. . .

n−1 H{1
n−1}

(n−1)×D4

n H{2,1
n−2}

(n−1)×D4
H{1

n}
(n−1)×D4

1×E8

...

... H{2,1
n−1}

(n−1)×D4
1×E8

2n−2 H{n−1}
(n−1)×D4

...

2n−1 H{n}(n−1)×D4
1×E8

≡ H∞

Table 5. The multitude of Higgs branch phases for n M5s on a C2/Dk−2 singularity. The subscript

p×D4 indicates p D4 transitions, while 1×E8 indicate the single small instanton transitions. The

superscript {ni} denotes a partition of p indicating the discrete gauging of a permutation (sub-

)groups
∏
i Sni

. At finite coupling, the Higgs branch dimension is d = dim SO(2k) − dim SO(8).

• The discrete gauging transitions do not increase the quaternionic dimension, but the

number of infinite couplings increases depending on the length of partition. Thus,

Higgs branch phases along the vertical direction are related by discrete gauging. In

detail, for a partition {ni} of p

H{1
p}

p×D4

∏
i Sni−−−−−→

gauging
H{ni}

p×D4
(2.69)

where the discrete gauging of
∏
i Sni increases the number of infinite couplings by∑l

i=1(ni− 1) = n− l, with l = length of the partition. The identical statement holds

for H{ni}
(n−1)×D4

1×E8

with {ni} being a partition of n.

• The small E8 instanton transition increases the quaternionic dimension by 29; how-

ever, the number of infinite couplings increases only by one. This transition relates
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Higgs branch phases in the last two columns of table 5, which means

H{ni}
(n−1)×D4

E8 instanton−−−−−−−−→
transition

H
{n′j}
(n−1)×D4

1×E8

(2.70)

where {ni}i=1,...,l is a partition of (n − 1) and {n′j} is a partition of n obtained via

appending a single 1 to {ni}, i.e. {n′j} = {n1, . . . , nl, 1}.

3 Hasse diagram

In section 2 the different Higgs branches of theories corresponding to n M5s on a D-type

singularity have been described via magnetic quivers. Besides providing the Higgs branch

description, one can moreover attempt to analyse the Higgs branch geometries understood

as symplectic singularities [25]. As put forward in [26], the singularity structure can be

encoded in a Hasse diagram. In many cases, the Hasse diagram can be derived either from

the brane configuration using Kraft-Procesi transitions [39, 40] or from the magnetic quiver

description via quiver subtraction [23, 41].

For Lagrangian theories, the Hasse diagram is intimately related to the Higgs mech-

anism. In more detail, consider an electric theory with gauge group G and matter fields

transforming in some (finite dimensional) representation R, which renders the theory

anomaly-free. Suppose there exists a subgroup H ⊂ G such that the matter representation

R and the adjoint representation AdjG decompose into irreducible H representations ri
as follows:

R
∣∣
H

=
⊕
i

airi , ai ∈ N ∪ {0} and AdjG
∣∣
H

= AdjH ⊕
⊕
i

biri , bi ∈ N ∪ {0} , (3.1)

where the infinite summation is taken over all irreducible representations {ri}i of H. How-

ever, only a finite number of the multiplicities ai, bi is non-trivial, because R is finite

dimensional. An assignment of vacuum expectation values breaks G → H consistently

only if the multiplicities ai, bi satisfy finitely many constraints:

ai ≥ bi , ∀i . (3.2)

The resulting H gauge theory has matter content transforming as R′ = ⊕i(ai−bi)ri, which

is assumed to be anomaly-free. More specifically, R′ may contain the trivial representation

i=triv, such that the H gauge theory has non-trivially charged matter R′′=⊕i 6=triv(ai−bi)ri
alongside with (atriv − btriv) ≥ 0 massless gauge singlets.

Returning to the G gauge theory, its Higgs branch HG admits a foliation {Lκ} in

which a leaf Lκ corresponds to the set of vacuum expectation values that break G→ Hκ.

The closure of a leaf Lκ is a symplectic singularity parameterised by the (atriv − btriv)

massless states that appear as singlets in the Higgsing process. The leaves themselves

admit a partial order via inclusion: Lκ < Lλ if and only if Lκ ⊂ Lλ. As argued in [26], the

partial order of leaves is in one-to-one correspondence with the partial order among the

set of subgroups {Hκ}, such that the G gauge theory can be Higgsed to the corresponding

Hκ gauge theory, satisfying (3.2). In other words, Lκ < Lλ if and only if Hκ > Hλ, i.e.
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Hκ ⊃ Hλ. To any ordered pair of leaves (Lκ,Lλ), with Lκ < Lλ, there exists an associated

transverse slice Sκ,λ, meaning that the space transverse to a point in Lκ inside the closure

Lλ equals Sκ,λ. As example, the transverse slice to the pair ({0} ≡ Ltriv,HG) is just HG
itself. Likewise, the pair (Lκ,HG) has a transverse slice given by the Higgs branch of the

Hκ gauge theory with matter content R′′. This is physically intuitive, as the unbroken

gauge theory at any point of Lκ has gauge group Hκ with corresponding matter fields.

Moreover, the commutant Cκ of Hκ inside G is a group of dimension btriv. There are atriv

many hypermulitplets transforming under Cκ as F which, in general, is a sum of irreducible

Cκ representations. Consequently, the closure Lκ is described by the Higgs branch of the

Cκ gauge theory with matter content F .

As summary, the Hasse diagram encodes the decomposition of the Higgs branch into

symplectic leaves. The closures of the leaves correspond to massless states appearing as

gauge singlets, if a Higgs mechanism description is available. More generally, the leaf

closures are described by magnetic quivers, as exemplified below. Moreover, the transverse

slices correspond to Higgs branches of gauge theories, accessible via partial Higgsing (if

applicable). For a Higgs branch which does not originate from a Lagrangian theory, the

decomposition into symplectic leaves still exists and can be summarised in a Hasse diagram,

but there is no description via the Higgs mechanism.

Considering the simplest theories relevant for this paper — 6d N = (1, 0) Sp(k − 4)

gauge theory with SO(4k) flavour — the Hasse diagram of the Higgs branch of (2.6)

at finite and infinite gauge coupling is detailed in [26, table 8], based on the magnetic

quiver realisation with unitary gauge groups [17]. Here, a complementary derivation is

pursued from (i) the brane configuration with O6 orientifolds and (ii) magnetic quivers

with orthosymplectic gauge groups.

3.1 From brane configuration

Recall that the brane configuration (2.24) describes the Higgs branch at infinite coupling of

a single Sp(k−4) gauge group with SO(4k) flavour node. To trace out the structure of the

Higgs branch as a symplectic singularity, Kraft-Procesi transitions need to be performed.

Hence, one needs to find out which minimal transition is possible. An important realisation

is that a minimal transition is accomplished by moving a minimal set of D6 suspended

between D8 branes to being suspended between NS5 branes, see for instance [39, 40] and

also [26, section 2].

e8 transition. In view of brane configuration (2.24), the only way to achieve any such

transition is to confine the NS5 branes to the orientifold. Once the pair of half NS5s is on

the O6− the resulting full NS5 brane cannot fractionate, because there are no D6 branes

attached from the left or right. Hence, to achieve a splitting of the full NS5, one has to

move some D6 branes onto the NS5 brane, and split each D6 brane to end on a half D8

brane on one side and the NS5 on the other. Respecting the S-rule and remembering that

one needs 4 full D6 branes on the left and right of the full NS5 for it to fractionate, the
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brane configuration becomes:

1

· · ·
k−4 k−4 k−4 k−4

......

k−4 k−4 k−4 k−4 k−4 k−4

· · ·

k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

(3.3)

Here, the D6 branes that have been aligned to respect to S-rule are displayed in red; the

number of freely moving D6 branes has been adjusted accordingly. Now, the full NS5 brane

can fractionate into two half NS5s, which are confined to the O6 plane. To reach an easier to

read configuration, one can eliminate the frozen D6 branes between the NS5 and D8 branes

via a brane transition of the half NS5 branes through enough half D8 branes. Note that

this is analogous to the discussion in section 2.3.2. Taking care of brane annihilation (A.5),

the brane configuration becomes

1

· · ·
k−4 k−4 k−4 k−4 k−4 k−4 k−4 k−4 k−4 k−4

· · ·
· · ·

k−4 k−4

· · ·
1

2k half D8

8 half D8

2k half D8

8 half D8

(3.4)

and one recognises that the brane configuration of the remaining freely moving D6 branes

yields the finite coupling case of (2.20).

As a consistency check, one counts the loss in magnetic degrees of freedom: there are

28 freely moving (full) D6 segments lost during the transition and the half NS5 branes are

confined to the orientifold plane, marking another lost degree of freedom. Therefore, one

recovers a loss of 29 quaternionic dimension during the small E8 instanton transition.

Moreover, one can read off the electric and magnetic theory of this configuration.

Unsurprisingly, the magnetic theory is just the one derived in (2.21). The electric theory

is seen to be trivial, as there are no D6 branes suspended between the half NS5 branes. In

terms of the electric theory (2.6), the triviality of the electric theory in the phase (3.4) is

due the locus of the Higgs branch where the Sp(k − 4) gauge group is completely broken

to the trivial gauge group.

d10 transition. Moving on to the finite coupling Higgs branch, one needs to find all

possible Kraft-Procesi transitions. Inspecting brane configuration (3.4), it is straightfor-

ward to see the next transition: moving the half NS5 branes outwards through two half
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D8 branes each and accounting for brane creation. In detail,

1

· · ·
k−5 k−5 k−4 k−4 · · ·

· · ·

k−4
· · ·

· · ·

k−4 k−4 k−5 k−5

· · ·
1

2k half D8

10 half D8

2k half D8

10 half D8

(3.5)

and the created D6 branes (displayed in red) indicate that the next KP-transition pro-

ceeds by aligning sufficiently many freely moving D6 such that there is one full D6 brane

suspended between the two half NS5s. In the brane configuration, this becomes

1

· · ·
k−5 k−5 k−5 k−5 · · ·

· · ·

k−5
· · ·

· · ·

k−5 k−5 k−5 k−5

· · ·
1

2k half D8

10 half D8

2k half D8

10 half D8

(3.6)

and the numbers of freely moving D6 branes has been adjusted. One computes that the

number of lost freely moving D6 branes is 17, and the next step is to figure out the nature

of the transition.

Then the remaining magnetic theory is deduced from the freely moving D6 branes, as

before. The D6 branes suspended between the half NS5 branes do not contribute, while

the NS5 branes still induce flavour nodes. Therefore, the magnetic quiver becomes

d
1

c1

. . .
d
k−

6

c
k−

6

d
k−

5

c
k−

5

b
k−

5

c
k−

5

. . .
b
k−

5

c
k−

5

d
k−

5

c
k−

6

d
k−

6

. . .
c1 d

2

b0 b0

9 bk−5 & 10 ck−5

, (3.7)

and the Coulomb branch dimension is reduced by 17 in comparison to (2.21).

Next, one reads off the electric theory in this configuration from the red brane subcon-

figuration, and finds an Sp(1) gauge theory with SO(20) flavour. The Higgs branch thereof

is the closure of the minimal nilpotent orbit of SO(20), which has quaternionic dimension

17. A transition of this type is called a d10 transition.
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More d2l transitions. Lastly, the transition that led to (3.6) can be iterated until all

D6 branes are suspended between the NS5 branes.

1

· · ·
k−l k−l k−l k−l

l−5
· · ·

· · ·

k−l
· · ·

· · ·

k−l k−l k−l k−l

· · ·
1

2k half D8

2l half D8

2k half D8

2l half D8

(3.8)

The magnetic theory is determined as before

d
1

c1

...

d
k−

l−
1

c
k−

l−
1

d
k−

l

c
k−

l

b
k−

l

c
k−

l

...

b
k−

l

c
k−

l

d
k−

l

c
k−

l−
1

d
k−

l−
1

...

c1 d
2

b0 b0

(2l− 1) bk−l & 2l ck−l

. (3.9)

The full electric theory, determined by all red and blue D6 branes in this phase (3.8), is

an Sp(l−4) gauge theory with SO(2l) flavour group. However, the electric theory corre-

sponding to the KP-transition is giving by the blue brane subconfiguration and describes

an Sp(1) gauge theory with SO(2l) flavour. The Higgs branch of the latter is the closure

of the minimal nilpotent orbit of SO(2l). Therefore, the transition is of type dl.

The brane configuration for the last step is then straightforwardly deduced by setting

l = k in (3.8). For completeness, one verifies the electric and magnetic theory for this

configuration. The magnetic theory is empty, as there are no magnetic degrees of freedom

left. The electric theory, following from all D6 branes suspended between NS5 branes, is

a Sp(k − 4) gauge theory with SO(4k) flavour. The transition is described by an Sp(1)

gauge group with SO(4k) flavour such that the Higgs branch thereof is the closures of the

minimal nilpotent orbit of SO(4k). Hence, one recovers a d2k transition.

Summarising the findings, the Hasse diagram is displayed in figure 1. From there, one

deduces various geometric relationships such as: for a fixed Sp(k − 4) gauge theory with

SO(4k) flavour, the transverse slice of the Higgs branch at finite gauge coupling inside the

Higgs branch at infinite coupling is the minimal nilpotent orbit closure of E8. In addition

for 4 ≤ l < k, the transverse slice of the Higgs branch of an Sp(l − 4) theory at finite

(or infinite) coupling inside the Higgs branch of an Sp(k − 4) theory at finite (or infinite)

coupling is the Coulomb branch of the magnetic quiver (3.9).
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e8

d10

d12

...

d2l

...

d2k

H∞
( �
|
◦

SO(4k)

Sp(k−4)

)
Hfin

( �
|
◦

SO(4k)

Sp(k−4)

)
Hfin

( �
|
◦

SO(4l)

Sp(l−4)

) H∞
( �
|
◦

SO(4l)

Sp(l−4)

)

C
(

magnetic
quiver (3.9)

)

OE8
min

Figure 1. The Hasse diagram for the Higgs branch of (2.6) at infinite gauge coupling. There are

two types of minimal transitions: firstly, the e8 transition, i.e. the transverse slice is the closure of

the minimal nilpotent orbit of E8. Secondly, various d2l transitions, i.e. the transverse slice is the

closure of the minimal nilpotent orbit of SO(4l).

3.2 From quiver subtraction

The analysis can be repeated by means of quiver subtraction [41] that translates the Kraft-

Procesi transitions [23, 39, 40] of the brane configurations into an operation on the magnetic

quivers. Contrary to [26], the realisation of the KP transitions here requires orthosymplectic

quivers. As shown in section 3.1, the simplest case (2.6) only requires an orthosymplectic

quiver for the d2l transitions [40, table 7] and for the e8 transition [23, eq. (2.43)]. The rules

for quiver subtraction of minimal transitions in orthosymplectic quivers can be summarised

as follows: the two to-be-subtracted quivers are aligned along the common subquiver. One

only subtracts gauge nodes of the same algebra type and the arithmetic works like:

bn − bl = bn−l , cn − cl = cn−l , dn − dl = bn−l , for n ≥ l . (3.10)

The resulting quiver needs to be rebalanced, analogously to [26].

e8 transition. The small E8 instanton transition has been discussed in section 2.3 in

detail. Inspecting the magnetic quiver (2.25) and knowing the orthosymplectic quiver

realisation for the e8 transition (2.14), one recognises the possibility of subtracting the e8
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quiver, because the quiver (2.14) is a subquiver of (2.25). In detail, quiver subtraction yields

d
1

c1 d
2

c2

...

d
k−

1

c
k−

1

d
k

c
k−

1

d
k−

1

...

c2 d
2

c1 d
1

c1

−
d
1

c1 d
2

c2 d
3

c3 d
4

c3 d
3

c2 d
2

c1 d
1

c1

= d
1

c1

...

d
k−

5

c
k−

5

d
k−

4

c
k−

4

b
k−

4

c
k−

4

...

b
k−

4

c
k−

4

d
k−

4

c
k−

5

d
k−

5

...

c1 d
1

b0 b0

7 bk−4 & 8 ck−4

(3.11)

such that the magnetic quiver for the finite coupling Higgs branch is obtained.

d2l transition. Given any of the magnetic quivers (3.9), the strategy is to identify sub-

graphs that correspond to KP transitions. Again, one needs to find possible subgraphs such

that they can accommodate either a closure of a minimal nilpotent orbit or a Kleinian sin-

gularity. Inspecting the general case (3.9) and comparing to the known KP transitions

of [40, table 6 & 7] one recognises that the d2l transitions is the only possibility. The

subtraction becomes

d
1

c1

...

d
k−

l−
1

c
k−

l−
1

d
k−

l

c
k−

l

b
k−

l

c
k−

l

...

b
k−

l

c
k−

l

d
k−

l

c
k−

l−
1

d
k−

l−
1

...

c1 d
2

b0 b0

(2l− 1) bk−l & 2l ck−l

−
d
1

c1 b
1

c1

...

b
1

c1 d
1

b0 b0

(2l−1) b1 & 2l c1

(3.12)

= d
1

c1

...

d
k−

l−
2

c
k−

l−
2

d
k−

l−
1

c
k−

l−
1

b
k−

l−
1

c
k−

l−
1

...

b
k−

l−
1

c
k−

l−
1

d
k−

l−
1

c
k−

l−
2

d
k−

l−
2

...

c1 d
2

b0 b0

(2l + 1) bk−l−1 & (2l + 2) ck−l−1

.

In fact, the relevant d2l magnetic quiver can also be seen as a consequence of the brane

considerations in section 3.1. There, one observes that the d2l transition is due to the

electric theory Sp(1) with SO(2l) flavour, and its magnetic quiver (or even its 3d N = 4

mirror) is exactly the quiver for the d2l quiver subtraction.
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4 Conclusions and outlook

In this paper, the formalism of magnetic quivers for 6d N = (1, 0) Higgs branches has been

extended to orthogonal and symplectic gauge nodes. Most notably, the entire derivation is

based on Type IIA brane configurations and can be summarised as in conjecture 1. The

main conceptual point lies in the generalisation of the S-duality rules of O3 planes to the

proposed magnetic orientifolds, see table 4. In contrast to the physical nature of S-duality

for O3 planes, the magnetic orientifolds are purely of conceptual nature. In other words,

they are considered as tool that allows to derive the magnetic quivers for D6-D8-NS5 brane

configurations in the presences of O6 planes.

In this paper, all Higgs branches of the 6d N = (1, 0) theories coming from a single M5

or multiple M5s on R×C2/Dk−2 have been described with magnetic quivers. The concept

of a magnetic quiver has been reviewed in section 2.2.

In case of a single M5, the magnetic quivers for the Higgs branch at finite [37] and

infinite coupling [23] have been known before. The novel point discussed in section 2.3 is

that these magnetic quiver can be derived from a brane configuration and, moreover, this

brane construction correctly shows that the Higgs branch phase transition is a small E8

instanton transition.

In the case of n M5 branes, the magnetic quiver for the Higgs branch at the origin of the

tensor branch had only been conjectured in [23]. As discussed in section 2.4, the formalism

allows to derive the magnetic quivers for the Higgs branches over every point in the tensor

branch. In particular, the nature of the transitions to different singular loci of the tensor

branch has been revealed. Generically, there are three type of transitions in order to reach

the infinite coupling phase. (i) There are (n− 1) one-dimensional D4 transitions in which

one simultaneously trades one tensor multiplet and one SO(8) vector multiplet for a single

hypermultiplet. (ii) There is exactly one small E8 instanton transition, trading one tensor

multiplet for 29 hypermultiplets. (iii) There are P(n) zero-dimensional discrete gauging

transitions. Taking all of these into account leads to a description of the Higgs branch at

the origin of the tensor branch.

Returning to the single M5 case, the geometry of the Higgs branches as a symplectic

singularity has been studied in section 3. Assuming minimal transitions only, the previ-

ously computed Hasse diagram [26] has been rederived using (i) brane configurations with

O6 orientifold planes as well as (ii) quiver subtraction for magnetic quivers with orthosym-

plectic gauge nodes. This results provide a crucial consistency check for the proposal of

this paper.

Outlook. An interesting subject is the understanding the Higgs branches of 6d N = (1, 0)

theories from multiple M5 branes near an M9 plane on a D-type ALE space. For the A-type

case, this has been answered in [17]. In order to derive magnetic quivers for these systems,

there are two necessary ingredients: (i) the rules established in conjecture 1, and (ii) the

embedding of Dk−2 ↪→ E8. In contrast to the A-type case, the latter is not straightforward

and progress [52] has only been achieved recently.
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From the experience gained with magnetic quivers, the changes of Higgs branches

over the tensor branch can be compared to known F-theory descriptions. In particular, a

singularity on the tensor branch corresponds to the collapse of some −n curve. Recently,

the following transitions in 6d have been understood:

• collapse of a single −1 curve ↔ small E8 instanton transition

– SU(N) gauge group with Nf = N + 8 fundamental flavours and one 2nd rank

antisymmetric hypermultiplet [17, 22]

– Sp(N) gauge group with Nf = N + 8 flavours, [17, 22, 23] and section 2.3.2

• collapse of a single −2 curve ↔ discrete gauging transition

– SU(N) gauge group with Nf = 2N flavours [17, 24]

While this paper provides evidence for a new entry in the list, namely following the 1d

transition (2.42):

• collapse of −4 curve ↔ partial Higgsing SO(2k) → SO(8) transition, i.e. the D4

transition.

The simplest set-up, to test this further, corresponds to one full NS5 brane fractionating

on a stack of k full D6 branes on top of an O6+ orientifold in Type IIA, such that the 6d

N = (1, 0) becomes

SO(2k + 8)

Sp(2k)

. (4.1)

Conjecture 1 provides candidate magnetic quivers for the Higgs branch at finite and infinite

coupling, i.e.

b
0

c1 b
1

c2 b
2

...

b
k−

1

c
k b

k
c
k b

k−
1

...

b
2

c2 b
1

c1 b
0

c1

, (4.2a)

b
0

c1 b
1

c2 b
2

...

b
k−

1

c
k b

k
c
k b

k−
1

...

b
2

c2 b
1

c1 b
0

c1

, (4.2b)

such that

H((4.1))fin = C((4.2a)) and H((4.1))∞ = C((4.2b)) . (4.3)

However, the nature of the transition needs to be analysed more carefully; for instance,

what is the geometry of the transverse slice? In addition, it is imperative to study the

Hasse diagram of (4.1) using (4.2) and compare to [53, figure 3] for a single −4 curve. This

is left for future research.
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Type IIA system magnetic quiver

1 NS5 with k D6
(
T(1k)[SU(k)]×T(k−1,1)[SU(k)]×T(1k)[SU(k)]

)
///SU(k)

1 NS5 on O6− with k D6
(
T(12k)[SO(2k)]×T(2k−3,3)[SO(2k)]×T(12k)[SO(2k)]

)
///SO(2k)

1 NS5 on O6+ with k D6
(
T(12k)[SO(2k+1)]×T(2k,2)[SO(2k+1)]×T(12k)[SO(2k+1)]

)
///SO(2k+1)

1 NS5 on Õ6
−

with k D6
(
T(12k+1)[USp(2k)]×T(2k−1,12)[USp(2k)]×T(12k+1)[USp(2k)]

)
///USp(2k)

1 NS5 on Õ6
+

with k D6
(
T(12k)[USp′(2k)]×T(2k−2,2)[USp′(2k)]×T(12k)[USp′(2k)]

)
///USp′(2k)

Table 6. The Higgs branch at the origin of the tensor branch can be described by a magnetic

quiver obtained from three Tρ[G] theories [48] glued along the common G flavour node, which is

denoted by ///G.

Further predictions. With conjecture 1 at hand, one can derive predictions for the

Higgs branches of a single NS5 brane on either a Õ6
−

or Õ6
+

plane with k D6 branes. In

contrast to configurations on a O6− plane or a O6+ plane, discussed above, there exists no

gauge theory description and the NS5 brane cannot split along the orientifold. In addition,

only the configuration (2.5) with O6− admits an M-theory dual, while all other three O6

planes only exist as Type IIA systems. Following the prescription outlined in this paper,

one finds:

1 NS5 on Õ6
−

with k D6:
d
1

c1 d
2

c2

...

c
k−

1

d
k

c
k d

k
c
k−

1

...

c2 d
2

c1 d
1

d1

, (4.4)

1 NS5 on Õ6
+

with k D6:
b
1

c1 b
2

c2

...

c
k−

1

b
k

c
k b

k
c
k−

1

...

c2 b
2

c1 b
1

b1

. (4.5)

By the rules of appendix A.2, one would conclude that the magnetic quiver (4.4) is good,

with all nodes except the central d1 being balanced. Similarly, all nodes in (4.5) are good.

In view of these predictions and the results of [17], one can summarise the magnetic quiver

for a single NS5 brane on k D6 branes with or without an O6 orientifold as in table 6.

Acknowledgments

We are indebted to Antoine Bourget, Julius Grimminger, Rudolph Kalveks, Noppadol

Mekareeya, Tom Rudelius, and Zhenghao Zhong for useful discussions. We thank the Si-

mons Center for Geometry and Physics, Stony Brook University for the hospitality and

the partial support during the initial stage of this work at the Simons Summer workshop

2018. A.H. and M.S. gratefully acknowledge support from the Simons Center for Ge-

ometry and Physics, Stony Brook University during the Simons Summer workshop 2019,

– 37 –



J
H
E
P
0
2
(
2
0
2
0
)
1
8
4

where part of the research for this paper was performed. S.C. was supported by an EP-

SRC DTP studentship EP/M507878/1. A.H. is supported by STFC grant ST/P000762/1.

M.S. had been supported by Austrian Science Fund (FWF) grant P28590. M.S. thanks

the Faculty of Physics of the University of Vienna for travel support via the “Jungwis-

senschaftsförderung”. The work of M.S. was supported by the National Thousand-Young-

Talents Program of China and the China Postdoctoral Science Foundation (grant no.

2019M650616). M.S. thanks the Theoretical Physics Group of Imperial College London

for hospitality.

A Background material

A.1 Brane creation and annihilation

Following [36], in a system of Dp-D(p+2)-NS5 branes, Dp brane creation or annihilation

happens whenever a NS5 passes through an D(p+2). In the presence of Op planes, which

carry non-trivial brane charge, a NS5 brane can pass through an D(p+2) with or without

creation of an additional Dp brane. To begin with, recall [6, 28, 54]

• An Op± becomes an Op∓ when passing through a half NS5; likewise, Õp
±

turns into

Õp
∓

.

• An Op± becomes an Õp
±

when passing through a half D(p+2), and vice versa.

According to [6, 37], the charges of the Op planes (in unites of the physical Dp branes) are

given by

charge(Op±) = ±2p−5 , charge(Õp
−

) =
1

2
− 2p−5 , charge(Õp

+
) = 2p−5 . (A.1)

Following the conventions of [46], the different orientifolds are denoted by:

O6− & 2n · 1

2
D6 : n , Õ6

−
& 2n · 1

2
D6 : n , (A.2)

O6+ & 2n · 1

2
D6 : n , Õ6

+
& 2n · 1

2
D6 : n , (A.3)

i.e. O6− empty line, Õ6
−

solid line, O6+ dotted line, Õ6
+

dashed line.

Next, there a four scenarios for brane creation and annihilation. These follow from

preservation of the linking number before and after the transition. The linking numbers

lNS5 for half NS5 or lD(p+2) for half D(p+2) are defined as [36]

lNS5 =
1

2

(
RD(p+2) − LD(p+2)

)
+ (LDp −RDp) , (A.4a)

lD(p+2) =
1

2
(RNS5 − LNS5 ) + (LDp −RDp) , (A.4b)

where LX , RX denote the total number of branes of type X to the left or right, respectively.

Note that the Op planes contribute to LDp and RDp according to (A.1); naturally, half NS5

or half D(p+2) branes contribute with charge 1
2 to the numbers L and R, respectively. It
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then follows that

+̃ −̃ −
↔

+̃ + −
(A.5a)

+ − −̃
↔

+ +̃ −̃
(A.5b)

− + +̃
↔

− −̃ +̃
(A.5c)

−̃ +̃ +
↔

−̃ − +
(A.5d)

by requiring that all linking numbers (A.4) remain constant.

A.2 Global symmetry for orthosymplectic quiver

Following [46, section 5.1-5.2], there are conditions upon which orthogonal and symplectic

gauge nodes in a 3d N = 4 gauge theory are called good, bad, or ugly. A subset of good

gauge nodes are balanced gauge nodes, for which monopole operators of spin 1 under the

R-charge are expected to lead to symmetry enhancement.

An SO(k) (or O(k)) gauge theory coupled to fundamental hypermultiplets with

USp(2n) flavour symmetry is called

good if n ≥ k − 1 , and balanced if n = k − 1 . (A.6)

Analogously, an USp(2l) = Sp(l) gauge theory coupled to fundamental hypermultiplets

with O(2n) flavour symmetry is called

good if n ≥ 2l + 1 , and balanced if n = 2l + 1 . (A.7)

Considering an orthosymplectic quiver, i.e. a linear quiver with alternating orthogonal and

symplectic gauge nodes, a chain of p balanced nodes gives rise to the following enhanced

Coulomb branch symmetry:

• An SO(p+ 1) symmetry, if there are no SO(2) (or O(2)) gauge nodes at the ends.

• An SO(p+ 2) symmetry, if there is an SO(2) (or O(2)) gauge node at one of the two

ends.

• An SO(p+ 3) symmetry, if there is an SO(2) (or O(2)) gauge node at each end.
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