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ABSTRACT

Context. Most of the rotational luminosity of a pulsar is carried away by a relativistic magnetised wind in which the matter energy
flux is negligible compared to the Poynting flux. However, observations of the Crab nebula for instance clearly indicate that most
of the Poynting flux is eventually converted into ultra-relativistic particles. The mechanism responsible for transformation of the
electro-magnetic energy into the particle energy remains poorly understood. Near the equatorial plane of an obliquely rotating pulsar
magnetosphere, the magnetic field reverses polarity with the pulsar period, forming a wind with oppositely directed field lines. This
structure is called a striped wind; dissipation of alternating fields in the striped wind is the object of our study.
Aims. The aim of this paper is to study the conditions required for magnetic energy release at the termination shock of the striped
pulsar wind. Magnetic reconnection is considered via analytical methods and 1D relativistic PIC simulations.
Methods. An analytical condition on the upstream parameters for partial and full magnetic reconnection is derived from the conserva-
tion laws of energy, momentum and particle number density across the relativistic shock. Furthermore, by using a 1D relativistic PIC
code, we study in detail the reconnection process at the termination shock for different upstream Lorentz factors and magnetisations.
Results. We found a very simple criterion for dissipation of alternating fields at the termination shock, depending on the upstream
parameters of the flow, namely, the magnetisation σ, the Larmor radius rB and the wavelength l of the striped wind. The model de-
pends also on a free parameter ξ > 1, which is the ratio of the current sheet width to the particle Larmor radius. It is found that for
σ ≫ l/ξ rB, all the Poynting flux is converted into particle energy whereas for σ ≪ (l/ξ rB)2/3, no dissipation occurs. In the latter
case, the shock can be accurately described by the ideal MHD shock conditions. Finally, 1D relativistic PIC simulations confirm this
prediction and enable us to fix the free parameter ξ in the analytical model.
Conclusions. Alternating magnetic fields annihilate easily at relativistic highly magnetised shocks. In plerions, our condition for full
magnetic dissipation is satisfied at the termination shock so that the Poynting flux may be converted into ultra-relativistic particles
not in the pulsar wind but just at the termination shock. The constraints are more severe for the intra-binary shocks in double pulsar
systems. Available models explaining observations require low magnetisation in the downstream flow. The condition that the magnetic
field dissipates at the intra-binary shock implies an upper limit on the pair multiplicity in the pulsar wind κ. We found κ � few × 104

for PSR 1259-63 and PSR 1957+20. In the double pulsar PSR 0737-3039, the radio emission from the pulsar B is modulated with the
period of the pulsar A, which implies that the striped structure is not erased completely; this gives a lower limit for κ � 310.

Key words. acceleration of particles – magnetohydrodynamics MHD – shock waves – stars: pulsars: general –
methods: analytical – methods: numerical

1. Introduction

Relativistic shock fronts and currents sheets in relativistic flows
play an important role in astrophysical models of gamma-ray
bursts (for a review see Piran 2005), jets in active galactic nu-
clei and pulsar winds (e.g. Michel 2005; Kirk 2005). The un-
derlying plasma is probably composed of electrons, positrons
and/or protons, whose temperature may be relativistic, i.e. com-
parable to or larger than their rest mass energy. A shock front
is created whenever a fast flow encounters the interstellar or in-
tergalactic medium. Relativistic effects become important when
the post shock temperature is so high that the speed of parti-
cles approaches the speed of light c or when the bulk velocity
of the flow is close to c. Shock acceleration is used to explain
the observed radiation from gamma-ray bursts or active galactic
nuclei. In this paper, we focus on relativistic shocks arising from
the interaction of the pulsar wind with its surrounding medium.
For a detailed review on theoretical aspects on pulsar wind and

plerions, see Lyubarsky (2005a). We briefly recall the main issue
in this introduction.

It is widely assumed that most of the rotational energy of a
pulsar is carried away in the form of an ultra-relativistic magne-
tised wind. The outflow is dominated by the magnetic field in the
sense that the energy carried away by the plasma remains small
compared to the Poynting flux. This is usually described by the
magnetisation parameter σ, the ratio of the Poynting flux to the
particle energy flux, which is very large, σ ≫ 1. Therefore the
total power lost by the pulsar may be conveniently estimated by
the loss rate of the rotating magnetic dipole in vacuum (Michel
1991). In the general case of an oblique rotator, energy loss can
be thought as being shared between the steady axisymmetric
component and one oscillating with the period of the pulsar,
the ratio being determined by the angle between the rotational
and magnetic axes. Michel (1971) pointed out that such waves,
which have a phase speed less than that of light, should evolve
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Fig. 1. Structure of the current sheet in the oblique rotator. The rotating
neutron star is located at the centre. When crossing the current sheet,
the magnetic polarity is reversed. Moreover, this structure is expanding
radially outwards with a constant speed close to the light velocity.

into regions of cold magnetically dominated plasma separated by
narrow hot current sheets. This structure is called a striped pul-
sar wind and has originally been introduced by Coroniti (1990)
and Michel (1994).

The structure of this striped wind can be explained as fol-
lows. In the aligned rotator, a radially outflowing stream of par-
ticles opens up the dipolar magnetic field lines crossing the light
cylinder. Asymptotically, the stream lines become radial and can
be described by the so-called split monopole solution (Michel
1973). It consists of two half magnetic monopoles with equal
magnitude but opposite sign separated by the equatorial plane.
When crossing this equatorial plane, the polarity of the magnetic
field reverses, implying a surface current density, i.e. the current
sheet. If the rotation axis is tilted with respect to the magnetic
moment, the current sheet oscillates around the equatorial plane
and develops a wave structure, expanding radially at a speed
close to the light velocity. In a radial outflow, the amplitude of
the oscillations grows linearly with radius and at large distances
can be approximated locally by spherical current sheets sepa-
rating the stripes of magnetised plasma with opposite magnetic
polarity. The exact solution for the oblique split monopole in the
ideal MHD approximation has been found by Bogovalov (1999).
Simulations by Spitkovsky (2006) in the force-free limit show
that beyond the light cylinder, the wind from an oblique dipole
pulsar magnetosphere is similar to that from the split monopole.
The structure of the current sheet in the striped wind is shown
in Fig. 1. Note that the oscillating current sheet is found in the
solar wind so that this structure is generic.

While expanding into the nebula, the pulsar wind terminates
at a standing shock located at a distance where the confining
pressure of the nebula balances the ram pressure of the wind,
this is called the termination shock (Rees & Gunn 1974; Kennel
& Coroniti 1984a,b; Emmering & Chevalier 1987). At the shock
front, the energy in the wind is released into ultra-relativistic par-
ticles responsible for the observed radiation. Observations of the
interaction between the wind and the neighboring nebula clearly
indicate that the electromagnetic energy of the wind is largely
converted into particle kinetic energy. However, the conversion
mechanism and the corresponding acceleration process still re-
main unclear.

Indeed, the analyses done by different authors, (Tomimatsu
1994; Beskin et al. 1998; Chiueh et al. 1998; Bogovalov &
Tsinganos 1999; Lyubarsky & Eichler 2001) show that in an
ultra-relativistic, radial wind, the electric force compensates the
magnetic tension so that the flow could not be accelerated signif-
icantly. This means that the electromagnetic energy is not trans-
ferred to the plasma. To summarise, in the region where the
wind is launched, the magnetisation should be high, σ ≫ 1,

whereas just beyond the termination shock, it should be small,
σ ≪ 1. But according to the previous results on MHD wind
collimation and acceleration, a significant decrease in σ is for-
bidden. Therefore, there is a contradiction, which is known as
the σ-problem. A promising alternative solution to convert the
Poynting flux to particle kinetic energy is investigated in this
paper. We demonstrate that, under certain conditions, magnetic
reconnection in the striped wind occurs when it crosses the ter-
mination shock.

Both observations of the inner region of the Crab nebula
done by Weisskopf et al. (2000) and the solution by Bogovalov
(1999) show that most of the energy carried by the wind is trans-
ported in the equatorial plane of the pulsar wind. In this region,
energy is transferred predominantly by the alternating magnetic
field. So dissipation of alternating fields in the striped wind could
be the main energy conversion mechanism in pulsars. It was
recognised by Usov (1975) and Michel (1982) that the amplitude
of the magnetic oscillations decreases with the distance as r−1,
whereas the particle number density sustaining these waves falls
off as r−2, where r is the radius in spherical coordinates. At a
given point, the charge carriers become insufficient to maintain
the required current and the alternating field annihilates. Coroniti
(1990) considered magnetic reconnection in the striped wind and
was lead to the same conclusion. However, the flow is acceler-
ated during the process of magnetic dissipation, which dilates
the timescale of the wave decay such that the magnetisation re-
mains high at the termination shock (Lyubarsky & Kirk 2001).
Therefore, the wind enters the termination shock still dominated
by Poynting flux unless the annihilation rate is near the causal
limit (Kirk & Skjæraasen 2003). However, when the flow enters
the shock, the plasma is compressed, which could result in the
forced annihilation of the alternating magnetic fields. In this pa-
per, we address annihilation of alternating fields at a relativistic
shock in electron-positron plasma.

In Lyubarsky (2003), the reconnection of the magnetic field
at the termination shock was studied phenomenologically by in-
troducing a fraction η of the magnetic energy dissipated at the
shock. Relativistic MHD shock fronts with dissipation have al-
ready been studied by Levinson & van Putten (1997). The jump
conditions for a relativistic perpendicular ideal MHD shock
with arbitrary magnetisation has been investigated by Zhang &
Kobayashi (2005) in the context of GRBs. In the present paper,
we use a kinetic description of the plasma in the striped wind.
First we find jump conditions assuming that the thickness of the
current sheets downstream of the shock is scaled as the particle
Larmor radius; this gives us the fraction of the dissipated mag-
netic energy as a function of upstream parameters and of a phe-
nomenological parameter, ξ > 1, which is defined as the ratio of
the sheet width to the Larmor radius. Then we perform particle-
in-cell (PIC) simulations of the shock in the striped wind (such
simulations were briefly described in Lyubarsky 2005b) and find
the parameter ξ from the simulation results. We show that the
alternating fields are easily annihilated at the shock front so that
the electromagnetic energy of the pulsar wind could be readily
converted into the plasma energy at the termination shock. This
could provide a solution to the σ-problem.

The paper is organised as follows. In Sect. 2, we present the
full system for the jump conditions of the averaged quantities
in the striped wind. In Sect. 3, we solve the system analytically.
We derive an analytical condition for magnetic annihilation for
an ultra-relativistic and strongly magnetised flow. The results are
then checked and extended by numerically solving the jump con-
ditions at the termination shock for the average parameters. In
Sect. 4, we perform several 1D PIC simulations of the striped
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wind by varying the parameters in the upstream plasma, like the
Lorentz factor and the magnetisation. Two typical situations are
presented, the first one demonstrating that no magnetic energy
is released at all and the second one showing full dissipation of
the Poynting flux, which is converted into particle heating. An
empirical law for dissipation is then derived from the full set of
PIC simulations. The results are compared to those obtained in
Sect. 3. In Sect. 5, the results are applied to pulsars in binary
systems. On one hand, magnetic dissipation at the termination
shock implies an upper limit on the pair multiplicity factor κ.
Applications are presented for two binary pulsars, PSR 1259-63
and PSR 1957+20. On the other hand, an absence of significant
dissipation imposes a lower limit on κ. This is applied to the
double pulsar PSR 0737-3039. The conclusions are presented in
Sect. 6.

2. Jump conditions in the shock

In this section, we derive the criterion for dissipation of alter-
nating field at the shock by considering the jump conditions for
the averaged quantities in the flow, namely, the conservation of
the energy, momentum and the particle number density. We as-
sume that the striped structure survives in the downstream flow
and find the condition of the total dissipation of the alternating
fields from the condition that the thickness of the current sheet
downstream of the shock approaches the thickness of the stripes.

2.1. Description of the wind flow

Let us consider a one dimensional striped pulsar wind entering
the termination shock. By convention, we refer to quantities in
the shock frame with unprimed letters, while in the proper frame
of each plasma, quantities are denoted by a prime. However,
thermodynamical quantities such as pressure p, temperature T ,
internal energy e and enthalpy w, are always expressed in the
proper frame, so dropping primes should not lead to any confu-
sion for these quantities.

The striped wind propagates in the x-direction with relativis-
tic velocity and possesses an alternating magnetic field directed
along the z-axis. Moreover, in this and the following sections
we assume that its average over one period of the striped wind
vanishes. Quantities upstream, i.e. before crossing the shock dis-
continuity are subscripted by 1 whereas quantities downstream
are subscripted by 2.

Let us describe the state of the incoming plasma. In the shock
frame, the upstream Lorentz factor of the ultra-relativistic wind
is Γ1 ≫ 1. The current sheets are made of a hot, unmagnetised
plasma with density nh1 and a temperature Th1. The distance sep-
arating the middle of two successive current sheets is denoted
by l1 (half a wavelength of the wind) and their thickness ∆1 is
much less than half a wavelength, ∆1 ≪ l1. The magnetised
part of the wind is cold, Tc1 = 0, has a density nc1 and a mag-
netic field strength B1. Moreover, the wind is strongly magne-
tised such that the magnetisation parameter upstream defined by

σ1 =
B2

1

µ0 Γ
2
1
wc1

=
B2

1

µ0 Γ1 nc1 m c2
(1)

is very high, σ1 ≫ 1. The enthalpy is simply given by the
rest mass energy of the cold ultra-relativistic particles, wc1 =

n′
c1

m c2. The speed of light is c, and m is the mass of the lep-
tons composing the wind, actually electrons and positrons. We
neglect the enthalpy contribution from the hot current sheets be-
cause their thickness is assumed to be very small.

Downstream, the wind is decelerated to a Lorentz factor Γ2

and compressed such that the distance separating two succes-
sive current sheets shrinks to a length l2. When compressed, the
cold magnetised component of the wind is heated to a temper-
ature T given in the limit of high magnetisation, σ1 ≫ 1, and
high Lorentz factor, Γ1 ≫ 1, by (Kennel & Coroniti 1984a, see
also Appendix A):

kB T

m c2
=

1

8

Γ1

Γ2

(2)

where kB is the Boltzmann constant. We assume here that the
shock width is much less than the wavelength of the wind. When
the shock is between the sheets, ideal MHD shock applies and
Eq. (2) is locally valid. Note also that the shock velocity in
the cold part is close to the speed of light c and different from
the shock velocity in the hot part. Quantities are evaluated in the
frame where the shock is at rest on average. Equation (2) is valid
in any frame.

Note that even if the upstream flow is a pure entropy wave
with a constant magnetic field between the sheets, fast magne-
tosonic waves should be generated beyond the shock. Therefore
the structure downstream is not steady in the proper frame; there
should be oscillations. We consider quantities averaged over the
wave period and neglect contribution of these oscillations into
the fluxes.

Pressure balance between gaseous and magnetic part does
therefore apply on both sides of the discontinuity. The gaseous
pressures are given by:

p1 = n′h1 kB Th1 (3)

p2 = n′h2 kB Th2 (4)

pc2 = n′c2 kB T =
1

8

Γ1

Γ2

n′c2 m c2. (5)

Note that the “cold” part of the wind is heated to relativistic
temperature downstream and therefore also contributes to the
gaseous pressure via the term pc2, where the temperature is given
according to Eq. (2). In other words, upstream we have

p1 =
B2

1

2 µ0 Γ
2
1

(6)

whereas downstream, taking into account the heated cold com-
ponent, we find

p2 = pc2 +
B2

2

2 µ0 Γ
2
2

· (7)

Due to the Lorentz length contraction, the densities in the proper
frame and in the shock frame are related by n = Γ n′. On the
other hand, the Lorentz transformation of the magnetic field is
B = Γ B′.

2.2. Jump conditions for average quantities

We now report the MHD jump conditions for the quantities aver-
aged over one wavelength of the wind. Following the procedure
described in Lyubarsky (2003) for a perpendicular MHD shock,
the conservation laws can be cast in a form similar to those for a
relativistic hydrodynamical flow. Noting that in the cold magne-
tised part, the field is frozen into the plasma

B1

Γ1 n′
c1

=
B2

Γ2 n′
c2

≡ B1

nc1

=
B2

nc2

(8)
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such that the magnetic field becomes a function of the density.
One can introduce the effective pressure and enthalpy by:

Pi = pi +
B2

i

2 µ0 Γ
2
i

(9)

Wi = wi +
B2

i

µ0 Γ
2
i

· (10)

Now the jump conditions at the shock discontinuity are given by

– conservation of particle number density:

〈Γ1 β1 n′1〉 = 〈Γ2 β2 n′2〉 ≡ 〈β1 n1〉 = 〈β2 n2〉; (11)

– conservation of total energy:

〈Γ2
1 β1W1〉 = 〈Γ2

2 β2W2〉; (12)

– conservation of total momentum:

〈Γ2
1 β

2
1W1 + P1〉 = 〈Γ2

2 β
2
2W2 + P2〉· (13)

Here β1,2c are the upstream and downstream velocities, corre-
spondingly, and the angular brackets, 〈〉, denotes averaging over
the wave period, which means spatial averages. We assume that
the downstream flow is settled into an equilibrium pattern mov-
ing with constant velocity, i.e. that only an entropy wave is
present downstream. Then time averages are expressed via spa-
tial averages, e.g. the average particle flux is

1

T

∫ T

0

n β dt =
1

T

∫ l

0

n dx =
β

l

∫ l

0

n dx. (14)

As the time-averaged particle flux (the left-hand side of Eq. (14))
is constant and the total number of particles within the wave-

length (
∫ l

0
n dx) is conserved, Eq. (14) yields a useful relation

between the upstream and downstream wavelengths:

β1

l1
=
β2

l2
· (15)

Of course, our assumption is not exactly correct; when an en-
tropy wave impinges on the shock, both entropy and fast mag-
netosonic waves generally appear in the downstream flow. One
could assume that the shock width is small as compared to the
sheet width; then one could apply Rankine-Hugoniot relations
locally and find the time-dependent structure of the downstream
flow. However, such an assumption is too stringent; it could be
valid in fact only when dissipation is negligible. In this paper,
we look for a criterion for complete dissipation of the alternat-
ing magnetic field. This criterion is found by extrapolating our
analytical model to the case when the downstream Larmor radius
becomes comparable to the wave period so that the structure as-
sumed in the model is already destroyed. Therefore this criterion
is anyway very rough. We believe that such a rough criterion
should be independent of the fine structure of the downstream
flow, like fast magnetosonic oscillations. PIC simulations indeed
show that our criterion for dissipation is roughly correct so that
our model is viable. Detailed study of the shock interaction with
the current sheets in case of partial dissipation, as well as gener-
ation of fast magnetosonic waves in the downstream flow, is the
subject of our future work.

In the hot phases of the plasma, we use the ultra-relativistic
equation of state such that w = 4 p. Therefore, the average effec-
tive enthalpies upstream and downstream are

〈W1〉 = 4 p1 δ1 + (1 − δ1)

⎡

⎢

⎢

⎢

⎢

⎣

n′c1 m c2 +
B2

1

µ0 Γ
2
1

⎤

⎥

⎥

⎥

⎥

⎦

(16)

〈W2〉 = 4 p2 δ2 + (1 − δ2)

⎡

⎢

⎢

⎢

⎢

⎣

4 pc2 +
B2

2

µ0 Γ
2
2

⎤

⎥

⎥

⎥

⎥

⎦

· (17)

For the remaining of this paper, we introduce the relative thick-
ness of a current sheet by δi = ∆i/li, (i = 1, 2). Making use of the
pressure balance condition Eq. (6), one can express the upstream
enthalpy via the magnetisation parameter Eq. (1) as

〈W1〉 = n′c1 m c2 [1 − δ1 + (1 + δ1)σ1]. (18)

The downstream pressure balance Eq. (7) could be also ex-
pressed via σ1 taking into account that between the current
sheets, the magnetic field is frozen into the plasma, Eq. (8):

p2 =
1

8

Γ1

Γ2

n′c2 m c2

(

1 + 4
nc2

nc1

σ1

)

. (19)

Then the downstream enthalpy is written as

〈W2〉 =
1

2

Γ1

Γ2

n′c2 m c2

[

1 + (1 + δ2) 2
nc2

nc1

σ1

]

. (20)

Now the conservation of particle number density, energy and
momentum simplifies, respectively, into:

β1 [(1 − δ1) nc1 + δ1 nh1] = β2 [(1 − δ2) nc2 + δ2 nh2] (21)

2β1nc1 [1 − δ1 + (1 + δ1)σ1] = β2nc2

[

1 + (1 + δ2)2
nc2

nc1

σ1

]

(22)

nc1

[

Γ1 β
2
1 [1 − δ1 + (1 + δ1)σ1] +

σ1

2 Γ1

]

=

nc2

{

Γ2 β
2
2

[

1 + (1 + δ2) 2
nc2

nc1

σ1

]

+
1

4 Γ2

+
nc2 σ1

nc1 Γ2

}

1

2

Γ1

Γ2

· (23)

The striped wind downstream is described by four parameters,
namely, the particle number density in the hot (unmagnetised)
and cold (magnetised) part, nh2 and nc2, the Lorentz factor Γ2

and the relative current sheet thickness δ2. The available three
Eqs. (21)–(23) should be complemented by one more equation;
some assumption about microphysics of the reconnection pro-
cess is necessary to close the system.

The most natural assumption is that in the course of the
reconnection process the current sheet thickness scales as the
Larmor radius of the particle in the sheet; then the system is
closed by introducing a parameter ξ > 1 such that the down-
stream current sheet thickness in the proper frame is defined by

∆′2 = ξ r′B. (24)

The Larmor radius in the downstream plasma frame is given by:

r′B ≈
kB Th2

|q| B′
2

c
=
Γ2 kB Th2

|q| B2 c
(25)

q is the charge of a lepton (electron or positron), q = ±e.
Expressing the temperature via the pressure Eq. (5) and sub-
stituting the pressure balance condition Eq. (19), one can write
Eq. (24) as

∆′2 =
ξ

8

(

1 + 4
nc2

nc1

σ1

)

nc1

nh2

r0; (26)

where we introduced the Larmor radius related to the upstream
bulk velocity β1 c and defined by

r0 =
Γ1 m c

|q| B1

· (27)

This quantity could be deduced from the upstream parameters as

r0 =
1

|q|

√

Γ1 m

µ0 σ1 nc1

· (28)
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Note that the expression (27) is not the true Larmor radius of
the particles in the upstream flow, the last being dependent on
the plasma temperature. Transforming to the shock frame, ∆2 =

∆′
2
/Γ2, dividing by l2 and making use of Eq. (15), one can finally

write the closure condition as

δ2 =
ξ

8

(

1 + 4
nc2

nc1

σ1

)

nc1 β1

nh2 β2

r0

Γ2 l1
· (29)

3. Solutions of the jump conditions

The set of Eqs. (21)–(23) and (29) is first solved analytically un-
der the assumption that the fraction of the dissipated magnetic
energy is small, so that the downstream current sheet remains
narrow and the downstream flow remains ultra-relativistic and
strongly magnetised. By extrapolating the obtained asymptotics
to the case when the thickness of the current sheet in the down-
stream flow becomes comparable to the wavelength, we obtain
an analytical criterion for the full dissipation of the alternating
magnetic fields at the shock front. More general conditions are
then investigated by solving the system numerically.

3.1. Analytical asymptotic solution

We are interested in a highly relativistic, Poynting dominated up-
stream flow so that σ1 ≫ 1, Γ1 ≫ 1, δ1 ≪ 1. In the ideal MHD,
such a flow would remain highly relativistic downstream of the
shock, Γ2 =

√
σ1 (Kennel & Coroniti 1984a and Appendix A).

When some fraction of the magnetic energy is dissipated at the
shock front, the velocity of the downstream flow decreases and
reaches β2 = 1/3 when the magnetic field is completely dis-
sipated (Lyubarsky 2003). In this subsection, we assume that
only a small fraction of the magnetic energy is dissipated so
that downstream of the shock, the current sheets remain nar-
row, δ2 ≪ 1 and the flow remains ultra-relativistic, Γ2 ≫ 1. We
solve Eqs. (21)–(23) and (29) assuming that 1/σ1, 1/Γ1,2 and δ1,2

are small. In the zeroth order approximation in these parameters
(when all of them are equal to zero), the three Eqs. (21)–(23) are
reduced to the same equality

nc1 = nc2 (30)

so the system is nearly degenerate. It is therefore necessary to
retain higher order terms. For a while we do not assume any re-
lations between these parameters and just expand Eqs. (21)–(23)
to the first non-vanishing order in each of them independently.
In the obtained equations, both the zero and the first order terms
are presented. Dealing with equations containing terms of dif-
ferent order is difficult. One can simplify the problem if one
uses Eq. (22) in order to eliminate the zeroth order terms from
Eqs. (21) and (23), correspondingly; then one gets two equa-
tions containing only small order terms; these equations could be
complemented by the zeroth order Eq. (30) and also by Eq. (29)
in the zeroth order.

Expanding Eq. (21) to first non-vanishing order in small pa-
rameters we find

nc1 − nc2 = δ1 (nc1 − nh1) − δ2 (nc2 − nh2) +
nc1

2 Γ2
1

− nc2

2 Γ2
2

· (31)

We put the zeroth order terms to the left hand side and the small
terms to the right hand side; one can see that the difference
nc1 − nc2 is small. Now let us divide Eq. (22) by σ1 so that the

leading order terms be of zeroth order; then expanding in the
small parameters to the first non-vanishing order yields

2nc1

⎡

⎢

⎢

⎢

⎢

⎣

1+δ1+
1

σ1

− nc1

2Γ2
1

⎤

⎥

⎥

⎥

⎥

⎦

=nc2

⎡

⎢

⎢

⎢

⎢

⎣

2(1+δ2)
nc2

nc1

+
1

σ1

−
n2

c2

nc1

1

Γ2
2

⎤

⎥

⎥

⎥

⎥

⎦

· (32)

One sees that neglecting small order terms would result again
to Eq. (30) therefore the small terms should be retained.
Substituting Eq. (31) into the zeroth order terms and Eq. (30)
into the rest of the terms, one gets

1

2σ1

+
1

2 Γ2
1

− 1

2 Γ2
2

= δ2

(

3 − 2

Z2

)

− δ1

(

3 − 2

Z1

)

· (33)

Here, we introduced the fraction of cold to hot particle densi-
ties by

Z =
nc

nh

· (34)

In order to eliminate the zeroth order terms from Eqs. (22)
and (23), one can simply extract one of them from another be-
cause the zeroth order terms in these equations are the same
(those containing Γ2 σ1). Making use of Eq. (30) in the rest of
the terms, we arrive at

δ1 +
1

σ1

− 1

4 Γ2
1

=
Γ2

1

Γ2
2

⎡

⎢

⎢

⎢

⎢

⎣

δ2 +
1

4σ1

− 1

4 Γ2
2

⎤

⎥

⎥

⎥

⎥

⎦

· (35)

The set of Eqs. (30), (33) and (35) is equivalent to Eqs. (21)–(23)
if the parameters δ1, 1/σ1 and 1/Γ2

1
are small.

Recall that the speed of the shocked plasma cannot exceed
the speed of the fast magnetosonic wave having a Lorentz fac-

tor Γfms =
√

σ1/(1 − c2
s ) where cs is the sound speed. For an

ultra-relativistic gas, cs ≈ 1/
√

3 and therefore Γ2 ≤ Γfms ≈√
3σ1/2. Thus, for a super-magnetosonic upstream flow satisfy-

ing Γ1 ≫
√
σ1, the downstream Lorentz factor always satisfies

Γ2 ≪ Γ1. Assuming also that upstream of the shock, contribu-
tion of the hot plasma in the sheet to the total plasma energy is
small, such that δ1 ≪ 1/σ1, one reduces Eqs. (33) and (35) to

1

2σ1

− 1

2 Γ2
2

= δ2

(

3 − 2

Z2

)

; (36)

δ2 +
1

4σ1

=
1

4 Γ2
2

· (37)

Combining Eqs. (37) and (36) one immediately gets Z2 = 2/5.
The two remaining unknowns, δ2 and Γ2, could be found

from Eq. (37) and the closure condition Eq. (29). In the limit
σ1 ≫ 1, Γ1,2 ≫ 1 the last is written, with account of Z2 = 2/5, as

δ2 =
ξ

5 Γ2

β1

β2

σ1 r0

l1
· (38)

Making use of Eqs. (37) and (38), we can now analyse dissipa-
tion of the alternating magnetic fields at the shock front.

An interesting quantity is the ratio of the downstream mag-
netic energy flux to the downstream matter energy flux. This is
the true magnetisation parameter of the shocked flow defined as

σ2 =
(1 − δ2)B2

2

4 µ0[δ2 p2 + (1 − δ2)pc2]Γ2
2

=
2 (1 − δ2) nc2 σ1

nc1 + 4 δ2 nc2 σ1

· (39)

If the dissipated fraction of the magnetic field is sufficiently
small, the flow should satisfy the ideal MHD jump conditions;
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Table 1. Summary of the analytical criterion for the dissipation of alternating fields at the shock.

σ1 ≫ 5 l1/(ξ r0) 1/5 ≪ l1/(ξ r0 σ1) ≪ √σ1 σ1 ≪
[

5 l1/(4 ξ r0)
]2/3

Reconnection level Full Partial Negligible

δ2 ≈1 (2 ξ σ1 r0/5 l1)2 ≪1/4σ1

Γ2 ≈3/(2
√

2) 5 l1/(4 ξ σ1 r0)
√
σ1

then the downstream magnetisation is given by σ2 = 2σ1

(Appendix A). Inspecting Eq. (39), this condition leads to

δ2 ≪
1

4σ1

· (40)

Equation (40) means that contribution of the plasma in the cur-
rent sheets to the plasma energy in the downstream flow remains
negligibly small so that magnetic dissipation does not affect
the dynamics of the flow. Moreover at the condition Eq. (40),
Eq. (37) yields Γ2 =

√
σ1, which is the usual result for ideal

perpendicular MHD shock. Substituting this result to Eq. (38)
gives

δ2 =
ξ

5

√
σ1 r0

l1
· (41)

Now the condition (40) for the negligible dissipation can finally
be written in terms of the upstream parameters as

σ1 ≪
(

5 l1

4 ξ r0

)2/3

· (42)

Now let a significant fraction of magnetic energy dissipate. Then
the condition opposite to Eq. (40) is fulfilled so that one can
neglect the second term in the left hand side of Eq. (37). Together
with Eq. (38) this yields

Γ2

β2

=
5

4 ξ

l1

σ1 r0

; (43)

δ2 =

(

2 ξ σ1 r0

5 l1

)2

· (44)

At the condition opposite to Eq. (40), Eq. (43) gives Γ2 <
√
σ1.

In order to have physically meaningful results, we assume that
δ2 < 1, i.e. that the current sheet thickness can never exceed the
distance between two stripes. Full dissipation occurs when the
width of the current sheets becomes as large as the distance be-
tween two successive sheets, which means δ2 → 1. This occurs
when the expression in the curly brackets in Eq. (44) goes to
unity. Now the condition of full magnetic dissipation could be
written as

σ1 >
5 l1

2 ξ r0

· (45)

When this limit is reached, the Lorentz factor downstream,
Eq. (43), becomes non-relativistic Γ2 ≈ 1. More precisely, set-
ting δ2 = 1 in the exact jump conditions Eqs. (22) and (23), we
get

2 β1 nc1 (1 + σ1) = β2 nc2

(

1 + 4
nc2

nc1

σ1

)

(46)

nc1

(

Γ1 β
2
1 (1 + σ1) +

σ1

2 Γ1

)

=

nc2

{

Γ2 β
2
2

[

1 + 4
nc2

nc1

σ1

]

+
1

4 Γ2

+
nc2 σ1

nc1 Γ2

}

1

2

Γ1

Γ2

· (47)

In the highly magnetised and ultra-relativistic limit, we find

β2 +
1

4 Γ2
2
β2

= 1. (48)

The only physically acceptable solution is β2 = 1/3. Therefore,
in case of full dissipation, the downstream parameters are the
same as in the non-magnetised shock.

We summarise the aforementioned results in Table 1.

3.2. Numerical solution to the jump conditions

In order to investigate the reconnection properties in less re-
stricted limits than those used to obtain an analytical solution
to the jump condition in Table 1, we solve numerically the av-
erage conservation laws of particles, energy and momentum,
Eqs. (21)–(23) supplemented with Eq. (29) for the current sheet
thickness. We remove the assumption σ1 ≫ 1 but keep a highly
relativistic supermagnetosonic flow, Γ1 ≫

√
σ1, with thin cur-

rent sheets, δ1 ≪ 1/σ1.
We solve the full system of Eqs. (21)–(23), (2) and (26) with

upstream flow conditions given by Γ1 = 104, nc1 = nh1 = 1,
δ1 = 10−8 and different values for the parameter ξ = 10, 102, 103.
Note that if the flow is super-magnetosonic, Γ1 ≫

√
σ1, and

the contribution of the hot plasma in the sheets to the overall
plasma energy is negligible, δ1 ≪ 1/σ1, the results are inde-
pendent of δ1, Z1 and Γ1; the only important quantity being the
upstream magnetisation σ1. The free parameter ξ will be deter-
mined later by performing PIC simulations (see Sect. 4).

Results for different upstream magnetisation σ1 and differ-
ent half wavelength of the striped wind l1 are summarised in
Fig. 2. The results scale with ξ as expected so we divide the ab-
scissa by the parameter ξ to get “universal” curves. When the
contribution of the hot plasma in the current sheet to the over-
all plasma energy downstream is small, i.e. for δ2 σ1 ≪ 1, dis-
sipation is negligible and the ideal MHD jump conditions ap-
ply. Inspecting Fig. 2e, we conclude that this should happen
whenever σ1 ≤ (l1/ξ r0)2/3 so that we recover the no dissipa-
tion criterion Eq. (42). Therefore, the Lorentz factor is equal to
Γ2

2
≈ σ1 + 9/8 (Kennel & Coroniti 1984a; Appendix A) as read-

ily seen in Fig. 2b. Because the upstream flow is not necessarily
highly magnetised, in order to achieve satisfactory accuracy, we
kept two terms in the expansion of the Lorentz factor Γ2 with re-
spect to σ1 as given in Kennel & Coroniti (1984a). In this region,
the density of the cold part is close to the second order approxi-
mation nc2/nc1 ≈ (1 + 1/2σ1 − 3/16σ2

1
). The wind remains en-

tirely dominated by the electromagnetic energy flux, σ2 ≈ 2σ1.
The dissipation is complete when δ2 approaches unity, Fig. 2c,
so that the striped structure is removed. Equivalently, it corre-
sponds to the case where σ2 ≪ 1. Inspecting the Fig. 2f, we
expect this to happen when σ1 ≥ l1/ξ r0; so we retrieve the con-
dition Eq. (45) for full Poynting flux dissipation. In this case,
the magnetic field is converted into particle heating. The ther-
malisation is complete and the flow downstream is purely hy-
drodynamical. The total energy flux is entirely carried by the
matter energy flux, σ2 ≪ 1. Note that the region where δ2 > 1 is
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Fig. 2. Several downstream parameters obtained by numerical solution of the jump conditions. The ratio Z2 = nc2/nh2 is shown in a), the down-
stream Lorentz factor in b), the downstream relative current sheet thickness in c). The fraction of cold to hot plasma component after shock
crossing, evaluated by Eq. (49) is shown in d). Even in the low dissipation limit, it is not equal to the upstream fraction, denoted by a solid thick
line at 108, see Eq. (50). The ratio of downstream to upstream magnetisation σ2/σ1 is shown in e), the downstream magnetisation in f). Note that
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cept for e) are plotted versus the adimensional parameter l1/ξ σ1 r0. Different colors associated with different symbols represent different log10 σ1,
as detailed in the legend. The asymptotes in the limit of no dissipation (ideal MHD shock) in b) are shown in coloured dotted lines.

meaningless. This can imply some negative magnetisation for
low σ1 as clearly seen in Fig. 2e. The fraction of cold to hot
particle densities Z2 is close to 2/5, (Fig. 2a). Actually, for
sufficiently large magnetisation σ1, it does not vary much and
remains close to this value, regardless of reconnection. The
Lorentz factor becomes close to unity Γ2 ≈ 1, (Fig. 2b).

To resume, the numerical solution of the jump conditions
confirm our analytical expectations summarised in Table 1.
Results have been extended to less restricted upstream flows, the
magnetisation being not necessarily very high. A good estimate
for Z2 is 2/5. It is a good approximation whenever σ1 ≥ 100, as
depicted by a solid thick line in Fig. 2a.

In Fig. 2d, we plot the fraction of cold to hot plasma compo-
nent given by

Z2

1 − δ2

δ2

· (49)

It is clearly seen that this ratio is not constant and much less than
the upstream fraction given by

Z1

1 − δ1

δ1

= 108 (50)

and shown by a solid thick line. The reason is that some magnetic
dissipation occurs even at the condition (42). The amount of the
energy dissipated is not sufficient to affect the jump conditions
but some particles from the cold part diffuse across the magnetic
field lines and enter the sheets.

In a final step, we determine the free parameter ξ with help
of PIC simulations. This is discussed in the next section.

4. Termination shock: pic simulations

We designed a fully relativistic and electromagnetic 1D PIC
code following the algorithms described in Birdsall & Langdon
(2005). Particle trajectories are advanced in time by integrating
the relativistic equation of motion due to the Lorentz force. The
longitudinal electric field is found by solving the Poisson equa-
tion whereas the transverse components of the electromagnetic
field are computed by the remaining component of Maxwell’s
equations introducing a left and right-going wave such as F± =
Ey ± c Bz (see Birdsall & Langdon 2005). The simulation is one
dimensional in space along the x-axis and two dimensional in
velocity in the plane (xOy).
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Fig. 3. Initial conditions. The geometry of the striped magnetic field is shown in a). The longitudinal px and transversal py components of the
momentum of one species are seen in b) and c) respectively. The temperature and the drift speed for one species (the speed of the other species is
equal and opposite) are shown respectively in d) and e).

The striped wind propagates along the x-axis and hits a
wall located at the right boundary of the simulation box of
length L. We also impose no incoming electromagnetic wave at
this boundary. The particle momentum vector possesses a lon-
gitudinal component px and a transversal component py. They
propagate from the left to the right and hit the solid wall at
x = L. This means that particles are reflected at this bound-
ary, the px momentum is reversed whereas the py component
remains unchanged. The magnetic field is directed along the
z-axis and reverses polarity when crossing each current sheet.
Electromagnetic waves leave the simulation box at the right
boundary without any reflection. Similar simulations have al-
ready been performed by Lyubarsky (2005b).

A typical initial situation showing the magnetic field struc-
ture, the lepton distribution functions, the temperature and the
drift speed is shown in Fig. 3. Close to the right wall, we im-
pose a decreasing magnetic field strength Bz(x), which almost
vanishes at x = L, Fig. 3a. The magnetic polarity reversal is
smooth, it is not squared but evolves according to the following
expression

Bz(x) = B0 tanh [∆ (a + b cos (λ x))] D(x) (51)

where B0 is the maximal intensity of the magnetic field, and a,
b, λ and ∆ are constants, ∆ prescribing the thickness of a current
sheet and λ the number of periods in the simulation box. This

particular expression is dictated by the structure of the striped
wind (see for instance Eq. (1) in Pétri & Kirk 2005). D(x) is
a function introduced to decrease the magnetic field intensity
close to the wall, at x = L. Moreover, because magnetic pressure
is balanced by gaseous pressure, the temperature T (x) in the gas
also decreases close to the right wall where it almost vanishes
(Fig. 3d), in accordance with the magnetic field behavior. Lower
temperature implies weaker spread in particle momentum space
(Figs. 3b,c; note that we keep track of only 50 000 particles, cho-
sen randomly at each time step, in order to avoid too large data
files). We also take the bulk Lorentz factor of the flow, Γ1, de-
creasing near the right wall. The average longitudinal momen-
tum px also decreases in relation with the decreasing Γ1. With
this initial condition, we avoid the formation of too large a tran-
sient when the plasma first collides with the right wall.

The plasma moves in the positive x direction with the bulk
Lorentz factor Γ1 = 20. The temperature in the plasma is ob-
tained from the equilibrium conditions, namely pressure balance
between gaseous and magnetic part. In the current sheet, the tem-
perature is much higher than in the magnetised part (Fig. 3d).
This implies a much larger spread in momentum as seen in
Figs. 3b,c. The average magnetic field α = 〈B〉/B0 is not nec-
essarily zero because two successive stripes generally have dif-
ferent widths but the same magnetic field intensity B0. In the
pulsar wind, the average magnetic field only vanishes in the
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Fig. 4. Example of run showing no magnetic reconnection at the termination shock. The Lorentz factor of the wind is Γ1 = 20 and the magnetisation
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equatorial plane, θ = π/2 in spherical coordinates (r, θ, ϕ).
Actually, in Fig. 3a as well as in the simulation results presented
below (Figs. 4a and 8a), the average magnetic field is α ≈ 0.12.
We choose an average value different from zero not because of a
numerical stability requirement but because we want to demon-
strate that even in case of full dissipation the average magnetic
flux downstream of the shock is preserved. We also performed a
set of simulations with zero average magnetic field. The results
obtained are not affected and remain qualitatively the same in
both cases as will be shown later. Moreover, passing from one
current sheet to the next one, the drift speed for each species
reverses sign (Fig. 3e). Indeed, in a current sheet, the magnetic
field, oriented in the z direction, is sustained by an electric cur-
rent flowing in the y direction. This current is generated by elec-
trons moving in, let us say, the positive y direction at a speed
Us whereas positrons are moving in the opposite direction at a
speed −Us. Charge neutrality is maintained but a net total current
exists.

For the results presented in this section, the simulation box is
divided into 2 × 105 cells and we used 8 × 105 particles for each
species, i.e. 8×105 electrons and 8×105 positrons. Therefore, on
average, there are only 4+4 particles per cell. Although this num-
ber seems rather small, we checked that increasing the number
of particles per cell did not improve the accuracy of our results.

Thus, we performed the whole set of simulations with this res-
olution. To support our statement, we will show examples with
40+ 40 particles per cell. The particle number density in the hot
unmagnetised part, i.e. in the sheets, is five times higher than
in the cold magnetised part, nh1 = 5 nc1. The time step is cho-
sen such that ωB ∆t = 0.5. The resulting upstream Larmor ra-
dius, deduced from this value and from Γ1 = 20 according to
Eq. (28), is equal to r0 = 40 cells. Half a wavelength of the
striped wind is l1 = 2500 cells and the relative current sheet
thickness is δ1 = 0.1. At the left boundary of the simulation box,
no incoming plasma is injected. The upstream plasma is simply
flowing to the right and leaves an empty space behind it with a
constant magnetic field advected at the flow bulk speed Γ1. In or-
der to keep meaningful results, the simulation has to be stopped
at the time tf = L/2c before the electromagnetic wave starting at
t = 0 at the right wall reaches this vacuum region, propagating
from left to right starting from x = 0 at t = 0.

In all runs, the simulation box starts with a inhomogeneous
plasma made of electrons and positrons following a 2D rela-
tivistic Maxwellian distribution function in their proper frame
given by

fs(x, px, py) =
Ns

2 π

e−(γ−1)/Θs

m2
s c2Θs (1 + Θs)

(52)
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with relativistic temperatureΘs = kB Ts/ms c2 and Lorentz factor

γ =

√

1 + (p2
x + p2

y)/m
2
s c2. The temperatureΘs is obtained from

the pressure equilibrium condition Eq. (6) and shown in Fig. 3d.
Ns is the particle number density in the proper frame, and ms the
mass of a particle of each species. Because they are equal for
electrons and positrons, we note ms = m. We have to distinguish
between 3 reference frames

– Rs: the species frame or proper frame of reference for each
species, electrons and positrons, in which the distribution
function is given by the 2D relativistic Maxwellian Eq. (52);

– Rw: the wind frame of reference in which the leptons are
counter-streaming with velocity ±Us;

– R0: the observer frame or simulation box frame or lab frame
of reference in which the wind (the current sheets) is propa-
gating in the positive x-direction with a Lorentz factor Γ1.

To upload the initial distribution function of each species in the
lab frame, we have to make two successive Lorentz transforma-
tions, the first one leading from Rs to Rw and the second one
leading from Rw to R0.

We performed many runs with different initial Lorentz fac-
tors of the wind and different magnetisation. We give a typical
sample of runs demonstrating full dissipation of the magnetic
field or no dissipation at all.

Because the velocity space is only two-dimensional in our
simulations (see the distribution function Eq. (52)), the adia-
batic index for the relativistic plasma is γ = 3/2 instead of the
usual 4/3. This different index will affect the parameters down-
stream of the shock, like the temperature, the Lorentz factor and
the magnetisation. The general jump conditions for arbitrary adi-
abatic index are derived in Appendix A. These formulae will
help us to make quantitative comparisons between the analyti-
cal results presented before (and made for γ = 4/3) and the PIC
simulations.

4.1. Negligible dissipation

Here we show details of a typical example where magnetic dissi-
pation is negligibly small. The magnetisation between the sheets
is set to σ1 = 3. It corresponds to the definition of σ1 in Eq. (1).
The true magnetisation Eq. (53), equal to σ1 ≈ 2.7, differs from
the one in the cold part σ1 because in our PIC simulations, we
need to resolve the structure of the sheet (sheet thickness larger
than the Larmor radius) therefore the contribution from the cold
unmagnetised part is not negligible. The true average magneti-
sation is actually roughly 10% lower than the one in the cold
part due to the relative current sheets thickness δ1 = 0.1. The
true magnetisation, averaged over one wavelength of the striped
wind, is given in the rest frame of the downstream plasma by

〈σ〉 = 〈electromagnetic energy density〉
〈enthalphy density〉 · (53)

For a fluid with adiabatic index γ = 3/2, the average enthalpy
density (in the rest frame) is given by

〈enthalphy density〉 = 3/2 〈internal energy density〉
−1/2 〈particle number density〉 c2. (54)

The internal energy includes the rest mass energy as well as
the kinetic energy of the particles. This formula is only valid
in the rest frame of the fluid. In our computations, the frame of
the simulation box corresponds to the rest frame of the down-
stream plasma, therefore Eq. (54) applies to this plasma but

not to the upstream one, which moves with a Lorentz factor Γ1

with respect to the simulation box. Thus, we first have to trans-
form back to the rest frame of the upstream plasma and then
apply Eqs. (53) and (54). The upstream rest frame is easily
found because we impose the Lorentz factor of the upstream
plasma with respect to the simulation box, which is also the rest
frame of the downstream plasma. Therefore, the Lorentz trans-
form in the upstream frame involves simply Γ1. Note, however,
that this is correct only well upstream and not in the shock it-
self. The bulk Lorentz factor differs from Γ1 whenever a precur-
sor arrives. Nevertheless, we are only interested in the average
quantities when the front shock has passed through the plasma.
The precise values within the shock front are not significant for
our study. Note that the true local wavelength upstream as well
as downstream of the shock, necessary for the averaging 〈〉 in
Eqs. (53) and (54), is determined by looking for the locations
where the magnetic field vanishes. Indeed, due to compression of
the plasma after shock crossing, the length of the stripes down-
stream are reduced by a factor β1/β2(x) > 1 compared to their
value upstream, according to Eq. (15). Note also that the down-
stream wavelength can vary slightly (a few percent) from one
period to the next, due to some perturbations. These perturba-
tions propagate also in the upstream flow, causing some small
changes in the upstream wavelength too. All these variations are
taken into account when computing the averaged quantities pre-
sented in the figures.

The results of the run are summarised in Fig. 4 for a final
time of simulation tf = L/2 c = 5 × 104. This corresponds to
the time needed by an electromagnetic wave to propagate from
the wall at the right boundary, starting at t = 0 and arriving at
the middle of the simulation box L/2 at the time tf . The shock
front is very sharp, with a very small thickness and located at
approximately x/L ≈ 0.62. It propagates in the negative x di-
rection, starting from the wall located at the right boundary as
before. Looking at the structure of the magnetic field (Fig. 4a),
the stripes downstream are perfectly preserved. They are still
clearly recognisable in Figs. 4b,c. They are only subject to a
compression of a factor roughly equal to two. Thus the wave-
length of the wind in the downstream frame has been divided by
two whereas the magnetic field strength, due to magnetic flux
conservation, increases by a factor two. The mean particle den-
sity in the shocked plasma (Fig. 4e), reaches a value close to two,
in accordance with the magnetic field compression ratio of two.
Because we average over one wavelength of the striped wind,
the difference in hot and cold density is smoothed out.

The factor two can be explained as follows. The shock prop-
agates with velocity close to c. In the shock frame, the magnetic
field strength and the particle number density remain nearly the
same, B2 = B1 and n2 = n1 (in the high σ limit the shock is
weak). However, in the simulation frame, which is the down-
stream frame, they vary because of Lorentz transformations.
Indeed, let us note n1/2 the density of the upstream plasma,
proper density n′

1
, as measured in the rest frame of the down-

stream plasma. Let also Γ1/2 be the relative Lorentz factor of the
incoming flow as measured in the shocked plasma. It is easy to
show that a Lorentz transformation gives

Γ1/2 = Γ1 Γ2 (1 − β1 β2). (55)

Thus the upstream density as measured in the downstream
plasma is

n1/2 = Γ1/2 n′1. (56)
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With help of the jump condition for particle number density con-
servation, we found

n′
2

n1/2

=
Γ1 β1

Γ1/2 Γ2 β2

· (57)

In the ultra-relativistic limit, β1 → 1, we get

n′
2

n1/2

≈ 1 + β2

β2

· (58)

Therefore the factor 2 when β2 ≈ 1. Actually, because the mag-
netisation is not very high,σ1 = 3, in the shock frame, the down-
stream plasma propagates with a Lorentz factor Γ2 ≈

√
5σ1/4

(see Appendix A), corresponding to a speed β2 = 0.86. Inserting
this value in Eq. (58), we found n′

2
/n1/2 ≈ 2.15, very close to the

average density in the shocked plasma (see Fig. 4e). Therefore,
the shock front propagates in the negative x-direction with the
speed β2. Starting from t = 0 at x = L, at the end of our simula-
tion, it travelled a distance ∆x = β2 c/2 ∗ tf ≈ 0.43 L. Therefore
the shock front should be located at x/L = 0.57. However, the
magnetisation close to the wall is very weak at the initial time,
close to unity. Therefore, the shock speed is smaller at earlier
times. That is why the shock front is located at only x/L ≈ 0.62,
as can be checked by inspecting Figs. 4a–c where a sharp transi-
tion is observed between the upstream and downstream flow.

Another way to estimate the speed of the shock is to compare
the position of the shock front at the final snapshot (x/L ≈ 0.62)
and at the penultimate snapshot (x/L ≈ 0.664). Moreover, the
time between these two snapshots is ∆t = L/20 c. Therefore, the
speed of the shock front is roughly β2 ≈ 0.044 L/(L/20) ≈ 0.88,
close to the estimate made above.

The particles downstream are not thermalised. Indeed, the
particle momentum, which is mainly directed along the propa-
gation axis of the wind in the upstream flow, py ≪ px, is only
weakly disturbed by the shock. The magnitude of px is not al-
tered by the shock. Nevertheless, after crossing the shock, both
longitudinal and transversal momenta are of the same order of
magnitude, py ≈ px. The mean particle Lorentz factor, γ, is
roughly increased by a factor of two (Fig. 5). Although the tran-
sition for the transverse momentum component is very sharp, the
stripes are still clearly identifiable (Figs. 4b, c). The magnetisa-
tion downstream is increased by a factor roughly equal to two,
as expected from the analysis of Sect. 3 (Fig. 4d), demonstrating
that the magnetic field does not dissipate. Contrary to the run
presented in the next section, there is no electromagnetic precur-
sor; the flow is not perturbed by the shock front. The situation is
very similar to the ideal relativistic MHD shock. The magnetic
field lines, frozen into the plasma, have to follow the motion im-
posed by the matter. The shocked plasma is compressed, and due
to the frozen magnetic flux, the stripes are also compressed in the
same ratio.

Increasing the number of particles per cell will not improve
the accuracy. Indeed, we performed another run with ten times
more particles per cell (40 + 40) (see Fig. 6 and compare with
Fig. 4). Therefore, using only 4 + 4 particles per cell is justified.

Finally, we show an example with zero average magnetic
field α = 0 in Fig. 7 to prove that this parameter α does not
greatly affect the flow downstream provided α≪ 1.

4.2. Full dissipation

In this paragraph, we discuss in detail a typical example of full
magnetic reconnection in the striped wind. The magnetisation
in the cold magnetised part, i.e. between the sheets, is set to
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Fig. 5. Mean particle Lorentz factor averaged over one period of the
striped wind at an intermediate, t = 2.5 × 104 (dotted line) and final,
t = 5 × 104 (solid line) time of simulation.

σ1 = 45. The true average magnetisation, σ1 ≈ 40.0, is again
roughly 10% lower than the one in the cold part due to the rela-
tive current sheets thickness δ1 = 0.1.

The only change we made compared to the previous case was
to take a higher magnetisation. This has dramatic consequences
on the flow downstream as we will see now.

The simulation results are shown in Fig. 8 for the final time
tf = L/2 c = 5 × 104. At this snapshot, the shock front is lo-
cated at approximately x/L ≈ 0.75 (see below how this location
was determined). It propagates in the negative x direction, start-
ing from the wall located at the right boundary x = L. Looking
at the structure of the magnetic field (Fig. 8a), it is clear that
the stripes, after crossing the shock, are destroyed. Nevertheless,
because the average magnetic field does not vanish, a small DC
component remains, of the order of α = 0.12. The particles
downstream are fully thermalised. Indeed, in the upstream flow
corresponding to x/L < 0.78, the particle momentum is mainly
directed along the propagation axis of the wind, longitudinal mo-
mentum px (depicted in Fig. 8b), with non negligible transverse
momentum py only within the current sheets (Fig. 8c). The up-
stream longitudinal component px is orders of magnitude larger
than the transverse component py, py ≪ px. The particle mo-
mentum distribution function is randomised when crossing the
shock discontinuity, i.e. in the region defined by x/L > 0.75, and
therefore downstream the two components of the momentum are
of the same order of magnitude py ≈ px, and orders of magni-
tude larger than before the shock. The enhancement in the mo-
mentum of the particle in both directions, px and py, is explained
by the Poynting flux dissipation. Magnetic energy is converted
into particle kinetic energy. There are no more spikes in the px

graph proving that the stripes disappeared. The magnetisation
downstream is almost zero (solid curve in Fig. 8d), indicating
that the alternating magnetic field has completely dissipated into
particle heating, as expected. In that case, the flow downstream
is hydrodynamical and the compression ratio is close to three.
The mean particle density in the shocked plasma (solid curve in
Fig. 8e), indeed reaches a value close to three.

The factor three can be explained in the following way.
Assuming full dissipation of the magnetic field, the upstream
flow is strongly magnetised whereas the downstream plasma is
purely hydrodynamical. For an ultra-relativistic gas, the adia-
batic index is γ = 4/3. This is true for particles evolving in a
three dimensional velocity space in which they possess three de-
grees of freedom in translation motion. However, in our simula-
tions, the distribution function, Eq. (52), is only two-dimensional
in velocity space and the corresponding adiabatic index is thus
γ = 3/2. Solving the MHD jump conditions for this 2D plasma,
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Fig. 6. Same as Fig. 4 but with ten times more particles per cell, i.e. 40 positrons and 40 electrons per cell. The results are nearly the same as in
Fig. 4. However, we stopped the run when we had made sure that everything had proceeded similarly to the run with 4+ 4 pairs, so the position of
the shock is different.

it is easily found that the downstream plasma velocity in the rest
frame of the shock is β2 = 1/2 (2D velocity space) instead of
the traditional β2 = 1/3 (3D velocity space). Using Eq. (58), the
ratio of the particle number density expressed in the downstream
frame (simulation box frame) is n′

2
/n1/2 = 3, as expected. Again,

the front shock propagates in the negative x-direction with the
speed β2 = 1/2. Starting from t = 0 at x = L, at the end of our
simulation, it travelled a distance ∆x = c/2 tf = L/4. Therefore
the shock front should be located at x/L = 0.75. However, be-
cause of some small retardation effect to initiate the shock front,
it is seen to lie at x/L ≈ 0.78 by inspecting Figs. 8a–c.

It is also interesting to note that the incoming flow is already
perturbed before entering the shock. The magnetisation gradu-
ally decreases and becomes very small in the region just before
the shock discontinuity. The stripes start to be significantly dis-
turbed at x/L ≈ 0.6. This phenomenon is probably due to an
electromagnetic precursor, i.e. electromagnetic wave generated
at the shock front and propagating downwards into the upstream
plasma (Hoshino et al. 1992; Gallant et al. 1992). Moreover,
from the momentum component px, we conclude that the flow
is heated well upstream of the shock. If the strong electromag-
netic precursor would be generated immediately at the initial
time t = 0, we would expect it to influence half of the simulation
box from x/L = 0.5 to x/L = 1 at the final time tf . However,
the amplitude of the precursor is initially small because, due to

the chosen initial distribution of the flow parameters (Fig. 3), the
energy of the plasma entering the shock is initially small. The
strong shock is formed after some time (about 0.05L/c) when
the highly relativistic plasma enters the shock. Thus, a strong
enough precursor is generated not from the beginning of the
simulations and therefore the flow is significantly perturbed at
x/L � 0.55. The effect of a precursor was not included in our
analytic analysis. It is performed with the assumption that the
dissipation is weak; in this case, there is no significant precursor.
In any case, our analysis is valid provided the downstream flow
is settled into a striped wind. Then we apply the conservation
laws to flows well upstream and well downstream of the shock,
and processes within the “black box” containing the shock, and
possible precursors do not affect the results.

In case of high upstream magnetisation, the flow in the wind
is dominated by the dynamics of the magnetic field, i.e. gaseous
pressure negligible compared to magnetic pressure. Therefore
the shocked plasma has to reorganise in such a way to keep the
striped structure. If this plasma is unable to maintain the current
required by the magnetic field, the latter will dissipate.

Finally, we show an example with zero average magnetic
field α = 0 in Fig. 9. One sees that the Poynting flux also
dissipates completely in this case. However, there is no sharp
shock transition in this case. When the average magnetic field
is nonzero, the shock is mediated by the Larmor rotation of
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Fig. 7. Same as Fig. 4 but with zero average magnetic field, α = 0. The results are nearly the same as in Fig. 4.

particles and the width of the shock transition is roughly equal to
the Larmor radius in the average field, r0/α. In our simulations
this is 40/α cells so that even at α = 0.1 the shock transition is
narrow. When α = 0, the particle free path is determined only by
scattering on magnetic fluctuations therefore the shock transition
could be rather wide.

4.3. Empirical law

In the previous two paragraphs, we gave two examples of runs,
the former demonstrating that the striped wind can be preserved
when some conditions are fulfilled and the latter showing a
case of full magnetic reconnection. We performed many simula-
tions with different parameters, changing the magnetisation, the
Lorentz factor, the Larmor radius in order to segregate between
the two regimes.

The results of the full set of simulations can be summarised
in plots showing the ratio of the true downstream to the true up-
stream magnetisation σ2/σ1 as well as σ2 (Fig. 10). To sum-
marise, we obtain the curves represented in Fig. 10, where these

quantities are plotted against the parameter η = l1/r0 σ
3/2

1
and

η
√
σ1 for Figs. 10a and b, respectively, and for different initial

magnetisations, as was done in the semi-analytical results pre-
sented in Figs. 2e,f.

For the largest values of η, no reconnection is observed as we
would expect from the analytical study discussed in Sect. 3. In
the no dissipation limit, η ≫ 1, the ratio σ2/σ1 reaches values
close to 1.7, in accordance with the expected 5/3-ratio for the
ideal MHD shock with γ = 3/2 (see Appendix A). As this limit
is achieved at the same η for any σ1, we retrieve the condition
Eq. (42). According to Fig 10b, all the presented curves, with the
exception of the one corresponding to σ1 = 1, go to zero at the
same condition

l1

r0 σ1

≤ 3. (59)

This confirms the analytical criterion (45) found at the condition
σ1 ≫ 1.

To allow detailed comparisons of the PIC simulations with
the theoretical model presented in Sects. 2 and 3, we plotted in
Fig. 11 the quantities σ2/σ1 and σ2 calculated from the theoret-
ical model with the adiabatic index γ = 3/2 (the same quantities
were plotted in Figs. 2e,f for γ = 4/3). Theoretical jump condi-
tions for arbitrary γ are presented in Appendix A. Comparing
Figs. 11a and 10a on one hand, and Figs. 11b and 10b on the
other, the parameter ξ (the ratio of the sheet width and the parti-
cle Larmor radius), introduced at the end of Sect. 2, can be easily
estimated. Indeed, looking at Fig. 10a, we find that no dissipa-

tion occurs whenever l1/r0 σ
3/2

1
≈ 100 whereas Fig. 11a gives

l1/r0 ξ σ
3/2

1
≈ 10 so that ξ ≈ 10. On the other hand, Fig. 10b
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Fig. 8. Example of run showing the magnetic reconnection at the termination shock. The Lorentz factor of the wind is Γ1 = 20 and the magnetisa-
tion σ1 = 45. The same quantities as in Fig. 4 are plotted.

shows full dissipation at l1/r0 σ1 ≈ 3. Comparing with Fig. 11b
which gives l1/r0 ξ σ1 ≈ 0.5, we get ξ ≈ 6. This means that
ξ ≈ 6−10.

Finally substituting Eqs. (1) and (27) into Eq. (59), the pa-
rameter region for full dissipation is found as

µ0 c |q| l1 nc1

B1

≤ 3. (60)

Note also that the condition for full dissipation Eq. (60) is inde-
pendent of the upstream Lorentz factor Γ1.

5. Application to pulsar winds

We apply Eq. (60) to pulsar winds. The idea is to find the lim-
iting radius beyond which the alternating field dissipates at the
termination shock. Because all quantities refer to the upstream
plasma, we drop the subscript 1.

Beyond the light cylinder, we assume that the outflow is ra-
dial and propagating in the radial direction. The magnetic field
is predominantly toroidal and decreases with radius as

B = BL

RL

R
(61)

where RL = c/Ω is the radius of the light cylinder,Ω the angular
velocity of the neutron star and BL the magnetic field strength at
the light cylinder. The particle number density falls off as

n = nL

(

RL

R

)2

(62)

where the density at the light cylinder nL is conventionally ex-
pressed via the so called multiplicity factor κ such that

nL = 2 ε0 κ
Ω BL

|q| · (63)

Half of a wavelength in the striped wind is given by l = πRL.
Substituting these relations into Eq. (60), one finds that full mag-
netic dissipation occurs at the termination shock whenever the
shock arises at the distance larger than

R

RL

≥ 2 π

3
κ. (64)

We suppose that the termination shock is stationary in the ob-
server (pulsar) frame.

The value of the multiplicity, κ, is rather uncertain. The avail-
able theoretical models (Hibschman & Arons 2001a,b), give κ
from a few to thousands. The observed synchrotron emission
from the Crab nebula places wide limits on κ, from κ ∼ 104,
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Fig. 9. Same as Fig. 8 but with zero average magnetic field, α = 0.

at the assumption that only high energy electrons (those emitting
the optical and harder radiation) are injected now into the nebula,
to κ ∼ 106 if the radio emitting electrons are also injected now
but not only in the early stage of the pulsar history. In any case,
the condition Eq. (64) is easily satisfied for plerions because the
termination shock is located at radii 1014−1016 m ∼ 108−1010 RL

from the pulsar. For instance, in the Crab nebula, the termination
shock is located at Rshock/RL = 3× 109 ≫ κ. Thus, for these pul-
sar wind nebulae, the magnetic energy is easily dissipated at the
termination shock so that the pulsar wind could remain highly
magnetised even in the upstream region close to the shock front.
All the available observation limits on σ are obtained from the
analysis of the plasma flow and radiation beyond the termina-
tion shock, the necessary upstream σ being calculated from the
ideal MHD jump conditions (see for instance the recent papers
by Torii et al. 2000; Safi-Harb et al. 2001; Petre et al. 2002).
Our results show that even if the pulsar wind remains Poynting
dominated until the termination shock, magnetic dissipation at
the shock front would suffice to efficiently convert the electro-
magnetic energy to the plasma energy. This point of view is an
alternative to the σ-problem.

In binary pulsars, interaction of the pulsar wind with the
companion star results in formation of an intra-binary shock very
close to the neutron star, only thousands of light cylinder radii.
Arons & Tavani (1993), Tavani & Arons (1997), Cheng et al.
(2006) claim that the X-ray emission observed from the binary

pulsars PSR 1957+20 and PSR 1259-63 is explained if the mag-
netisation downstream of the shock is small so that the Poynting
flux is already converted into the plasma energy. Then we could
estimate from Eq. (64) the upper limit of the pair production fac-
tor κ for these pulsars.

Indeed, first consider the pulsar PSR 1957+20. It has a ro-
tation period of P = 1.607 ms, corresponding to a light cylin-
der radius of RL = 76.7 km. The intra-binary shock arises
at a distance less than the orbital separation to the compan-
ion star, so that we get Rshock � 1.7 × 106 km. According to
Eq. (64), in order to expect a significant dissipation of the mag-
netic field at the shock, the multiplicity factor should then satisfy
κ ≤ (1/π) Rshock/RL ≈ 104.

Next consider the pulsar PSR 1259-63. It possesses a pe-
riod of P = 47.7 ms, corresponding to a light cylinder radius
RL = 2279 km. Because here again the shock should arise at a
distance smaller than the orbital separation, we found Rshock �

3.9 × 108 km. Magnetic reconnection implies κ � 8 × 104.

Another interesting case is the famous double pulsar
PSR J0737-3039. According to McLaughlin et al. (2004), the
radio emission from the pulsar B is modulated with the period
of pulsar A. This strongly supports the idea that the magne-
tosphere of pulsar B is disturbed by the striped wind emanat-
ing from pulsar A. The condition that the striped structure has
not been erased at the distance separating both pulsars, imposes
a lower limit on the multiplicity factor κ in this case. Let us
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estimate this limit. The period of pulsar A is PA = 22.699 ms
corresponding to a light cylinder radius of RL = 1083 km. The
separation between the two pulsars is approximately 700 000 km
(Lyne & Kramer 2005). Then the lower limit for the ratio in
Eq. (64) is R/RL ≈ 646. We conclude that the lower limit for
the pair production multiplicity in pulsar A is κ � 310.

6. Conclusion

In this paper, we studied the magnetic reconnection process at
the termination shock in the pulsar striped wind. Using the jump
conditions for the averaged quantities (over a wavelength) in
the striped wind, we derived a simple analytical criterion for
magnetic dissipation (see Table 1). However, we had to intro-
duce a free parameter ξ, Eq. (38), entering the dissipation con-
dition. It relates the downstream thickness ∆2 of a current sheet
to the downstream Larmor radius r0 by the following expres-
sion ∆2 = ξ r0. ξ is the only free parameter in our model. In
order to estimate this parameter, we performed 1D relativistic
PIC simulations and found that ξ ≈ 10.

Knowing the important flow parameters in the incoming
plasma, which are half the wavelength l, the magnetisation σ
and the Larmor radius r0, we are able to predict the percentage
of magnetic reconnection in the striped wind when crossing the
termination shock, according to the following law

– for l/r0 σ ≤ 3, full dissipation occurs, the flow down-
stream is purely hydrodynamical with Lorentz factor close
to unity Γ2 ≈ 1, particles are thermalised and heated to rela-
tivistic temperature. The magnetic field has completely dis-
appeared, except for the DC component (i.e. average mag-
netic field);

– for σ ≤ (l/12 r0)2/3, no magnetic reconnection exists. The
striped wind structure is preserved downstream, it is just
compressed. The downstream Lorentz factor is the same as
for ideal MHD, Γ2 =

√
σ;

– 3 ≤ l/r0 σ ≤ 12
√
σ, the magnetic field is partially dissi-

pated. The stripes are weakened and the flow is decelerated
to a downstream Lorentz factor Γ2 = l/(12 r0 σ).

We applied the condition for full magnetic dissipation, Eq. (64),
to pulsar wind nebula and binary pulsars. Because in plerions the
termination shock is located at radii 1014−1016 m ∼ 108−1010 RL

from the pulsar, magnetic reconnection is easily achieved. This
conclusion could resolve a long-standing difficulty with transfor-
mation of the electro-magnetic energy of the pulsar wind into the
plasma energy in the nebula (the so called σ-problem). First of
all, both observations of the X-ray tori (Weisskopf et al. 2000)
and theoretical models (Bogovalov 1999) suggest that most of
the energy in the pulsar wind is transferred in the equatorial
belt where the magnetic field is predominantly alternating. We
see now that even though dissipation of the alternating fields
in the wind is hampered by relativistic slowing-down of time
(Lyubarsky & Kirk 2001; Kirk & Skjæraasen 2003), the electro-
magnetic energy is readily released at the terminating shock.

Our model could also be applied to pulsars in binary sys-
tems, where interaction of the pulsar wind with the companion
star results in a formation of a shock relatively close to the pul-
sar. In this case, the presence or absence of magnetic dissipation
imposes a strong constraint on the pair multiplicity factor κ. For
pulsars PSR 1259-63 and PSR 1957+20, where full dissipation
is expected, the upper limit is roughly κ � few × 104. For the bi-
nary pulsar PSR 0737-3039, we do not expect full reconnection
and therefore the lower limit is found to be κ � 310.

The generation of electromagnetic waves at the shock front
and their propagation in the upstream plasma will affect the flow
before entering the discontinuity. This aspect of the reconnection
in the termination shock is left for future work.
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Appendix A: Jump conditions for arbitrary adiabatic index γ

A.1. Ideal MHD

In this appendix, we give the general expressions for the ideal MHD jump conditions for arbitrary adiabatic index γ, (Gallant et al.
1992; Hoshino et al. 1992). Let us assume that the equation of state for the ultra-relativistic plasma is given by

e =
p

γ − 1
(A.1)

for an arbitrary index γ. The enthalpy is therefore given by

w =
γ p

γ − 1
· (A.2)

Following the procedure of Kennel & Coroniti (1984a), the solutions to the MHD jump conditions for the 4-velocity gives

u2
2 =

(4 − γ) γσ2
1
+ 4 (1 + (γ − 1)2)σ1 + 4 (γ − 1)2

8 γ(2 − γ) (σ1 + 1)
(A.3)

±

√

16 γ (γ − 2)3 σ2
1

(σ1 + 1) + [(γ − 2)2 σ2
1
− 4 (σ1 + 1) (σ1 + (γ − 1)2)]2

8 γ(2 − γ) (σ1 + 1)
·

Starting from the 4-velocity, we can compute the Lorentz factor, the downstream temperature and the magnetisation by

Γ2 =

√

1 + u2
2

(A.4)

kB T2

Γ1 m c2
=
γ − 1

γ

1

Γ2

[

1 + σ1

(

1 − 1

β2

)]

(A.5)

σ2 =
γ − 1

γ

n2

n1

Γ1

Γ2

m c2

kB T2

σ1 (A.6)

n2

n1

=
1

β2

· (A.7)

For γ = 4/3 we retrieve the usual result

u2
2 =

8σ2
1
+ 10σ1 + 1 ±

√

64σ4
1
+ 128σ3

1
+ 84σ2

1
+ 20σ1 + 1

16 (σ1 + 1)
· (A.8)

For arbitrary γ, the expansion in 1/σ1 to the second order leads to

u2
2 =

γ − 4

4 (γ − 2)
σ1 −

γ2 − 8 γ + 8

4
(

γ2 − 6 γ + 8
) · (A.9)

The corresponding Lorentz factor is to the same order

Γ2 =
1

2

√

(σ1 + 3) γ2 − 8 (σ1 + 2) γ + 8 (2σ1 + 3)

γ2 − 6 γ + 8
· (A.10)

This leads to a downstream temperature

kB T2

Γ1 m c2
=
γ − 1

4 − γ

√

γ − 2

γ − 4

1
√
σ1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −
γ3
(

3 γ2 − 8 γ + 8
)

(γ − 4)2 γ3

1

σ1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.11)

a density jump

n2

n1

= 1 + 2
γ − 2

γ − 4

1

σ1

(A.12)

and a magnetisation

σ2 =

(

4 − γ
γ
− 2

(γ − 2)2

γ (γ − 4)σ1

)

σ1. (A.13)

In Table A.1, we give the numerical values for the different coefficients for γ = 4/3 and γ = 3/2.
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Table A.1. Downstream parameters for the two adiabatic indexes γ = 4/3, 3/2, expanded to first order in the upstream magnetisation 1/σ1.

Quantity γ = 4/3 γ = 3/2

Γ2

√

σ1 +
9
8

√

5
4
σ1 +

27
20

kB T2/m c2 Γ1

16
√
σ1

(

2 − 3
8σ1

)

Γ1

5
√

5σ1

(

2 − 11
25σ1

)

n2/n1 1 + 1
2σ1

1 + 2
5σ1

σ2/σ1 2 + 1
4σ1

5
3
+ 2

15σ1

A.2. Striped wind

We now give the general formulae for the jump conditions in the striped wind for arbitrary adiabatic index γ. Following the same
procedure as in Sect. 2 using the general expression described in the previous section, the average conservation of particle and
energy-momentum read,

β1 [(1 − δ1) nc1 + δ1 nh1] = β2 [(1 − δ2) nc2 + δ2 nh2] (A.14)

β1 nc1

[

1 − δ1 +

(

2 − γ
2 (γ − 1)

δ1 + 1

)

σ1

]

= β2 nc2

[

γ

4 − γ +
(

1 +
2 − γ

2 (γ − 1)
δ2

)

nc2

nc1

σ1

]

(A.15)

nc1

[

Γ1 β
2
1

(

1 − δ1 +

(

2 − γ
2 (γ − 1)

δ1 + 1

)

σ1

)

+
σ1

2 Γ1

]

=
Γ1

Γ2

nc2

[

Γ2 β
2
2

(

γ

4 − γ +
(

1 +
2 − γ

2 (γ − 1)
δ2

)

nc2

nc1

σ1

)

+
γ − 1

4 − γ
1

Γ2

+
nc2 σ1

2 nc1 Γ2

]

· (A.16)

The prescription for the current sheet thickness downstream is

δ2 = ξ

[

γ − 1

4 − γ +
nc2 σ1

2 nc1

]

β1 nc1

Γ2 β2 nh2

r0

l1
· (A.17)
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