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Magnetic reconnection: Sweet-Parker versus Petschek
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The two theories for magnetic reconnection, one of Sweet and Parker, and the other of Petschek, are reconciled
by exhibiting an extra condition in that of Petschek which reduces his theory to that of Sweet and Parker, provided
that the resistivity is constant in space. On the other hand, if the resistivity is enhanced by instabilities, then the
reconnection rate of both theories is increased substantially, but Petschek’s rate can be faster. A different formula
from the usual one is presented for enhanced Petschek reconnection.

1. Introduction
As is well known, the process of magnetic reconnection

is important in many space and astrophysical contexts. The
initial problem that first inspired research into the subject was
the solar flare phenomenon, in which it appeared that energy
was first slowly built up and stored in the magnetic field,
and then suddenly released into thermal and kinetic energy.
The first solution of the problem was given independently
by Sweet (1958) and Parker (1957), who approximated the
problem as a two dimensional incompressible MHD prob-
lem. They showed that the problem was essentially a bound-
ary layer problem, and they estimated the rate of reconnec-
tion from a boundary layer analysis. This boundary layer
analysis led to release of magnetic energy over a period of
time several orders of magnitude longer than the observed
energy release time in solar flares. A probable explanation
of this discrepancy could be the fact that their estimates of the
reconnection rate are based on normal (Spitzer) resistivity,
while in the actual solar flare the resistivity could be greatly
enhanced, leading to a much faster energy release.
On the other hand, at the time when Sweet and Parker de-

veloped their theories, the possibility of enhanced resistivity
was not appreciated, and other means of increasing the re-
connection rates were sought. Petschek (1964) pointed out
that, since the magnetic reconnection was a topological pro-
cess, the field lines need not reconnect resistively along the
entire length of the boundary layer, but could merge over a
shorter length L ′.

For this to happen, the rest of the boundary layer region
should consist of slow shocks that could accelerate the mat-
ter that did not pass through the diffusive region. He found
that the resulting reconnection rate was increased by the fac-
tor

√
L/L ′, and by choosing L ′ small enough, a very rapid

reconnection could be achieved.
Ever since the two theories, Sweet-Parker’s and

Petschek’s, were published, there has been a controversy
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over which one was the correct one to apply. The contro-
versy seemed to be settled, by the rather complete numerical
simulation of Biskamp (1986), to be in favor of the Sweet-
Parker result. Since then, a number of numerical simulations
have confirmed this.
Since both theories seemed rather well founded, it is a

question of how either of them could be incorrect. In this
note, I will show that the Petschek theory, as he proposed, it
is indeed not correct, at least in the context ofMHDwith con-
stant resistivity. In the development of his theory, Petschek
left out one condition that also must be satisfied. The satis-
faction of this condition leads to a unique determination of
the length L ′ in his theory, and indeed, if the resistivity is
constant in space, it is the case that L ′ is equal to L . This
reduces Petschek’s enhancement factor

√
L/L ′ to unity and

Petschek’s reconnection rate to Sweet-Parker’s rate for con-
stant resistivity.
On the other hand, if one considers the possibility of en-

hanced resistivity, two things happen. (1) The Sweet-Parker
reconnection rate becomes much faster, for the solar flare
case, and (2) because such enhanced resistivity is very sen-
sitive to current density, it can be space dependent also.
This leads to L ′, being smaller than L , and to a even faster,
Petschek like, reconnection rate.

2. The Boundary Layer
Reconnection is as much a global phenomena as a local

one. For example, consider the magnetic reconnection of
two cylinders with opposite poloidal flux (Fig. 1). Let us also
assume that the velocities induced by magnetic reconnection
are slow compared to the Alfven speed everywhere, except
in the reconnection and separatrix layers. Then, everywhere
else, we have

j × B = ∇p. (1)

Also, since the layers are thin, we have the jump in p+B2/8π
zero across these layers. This means that, if the amount
of reconnected and unreconnected flux is given, and if the
rotational transform and pressure are known on each mag-
netic surface as functions of the poloidal magnetic flux, then
there is a unique equilibrium. But as magnetic reconnec-
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Fig. 1. Slow merging of two cylinders. The situation is in a slowly evolving
quasistatic equilibrium everywhere, except in the layers across which
p + B2/8π is continuous. R is the region of reconnected flux, and U is
the region of unreconnected flux.

tion proceeds, one can keep track of the pressure and the
rotational transform in both the regions of reconnected and
unreconnected flux. The two regions change geometrically
and physically as reconnection proceeds, Thus, the plasma
first moves from the unreconnected region into the reconnec-
tion layer, where it is heated, then it flows into the separatrix
region, and, finally, as the magnetic configuration changes,
into the reconnected region. (However, this does not change
the uniqueness of the equilibrium at each stage of reconnec-
tion.)

Because of this uniqueness, the length of the reconnection
layer L is totally determined at each stage as well as the
horizontal field just outside of the layer.

Appreciating this fact, all three authors took the length of
the layer as well as the variation of the bounding field as
given. They assumed that the region into which the plasma
flowed (the separatrix region) was at the same pressure as
the upstream ambient pressure. This was the boundary layer
problem to be solved.

3. The Sweet-Parker and Petschek Theories for a
Constant Resistivity

Let us now examine the two theories. First consider that
of Sweet and Parker. The reconnection layer is sketched in
Fig. 2. It is easily shown that the flow out of the layer is
at the Alfven speed, Vx = VA ≡ B0/

√
4πρ. The incoming

flow of matter −LVy = LVR must balance the outgoing flow
VAδ, where VR , the reconnection velocity, is the incoming
velocity outside of the layer, where the plasma is tied to the
field lines. δ is the half thickness of the layer. Thus,

VR L = VAδ. (2)

On the other hand, by Ohm’s law the field diffuses up
stream with a velocity ηc/4πδ with respect to the incoming
plasma, with velocity −VR . Thus, in steady state,

VR = ηc/4πδ, (3)

Fig. 2. The Sweet-Parker layer. In a steady state the magnetic diffusion
velocity ηc/4πδ balances the incoming reconnection velocity VR , and
the inflowing mass 4VR L balances the outgoing mass 4δVA .

where η is in emu. From these equations we obtain

VR =
√

VAηc

4π L
= VA√

S
, (4)

and

δ = L√
S
, (5)

where

S = LVA

ηc/4π
. (6)

This is the Sweet-Parker result.
The Petschek theory is indicated in Fig. 3. In this model the

diffusive region, in which the merging actually takes place is
of a much shorter, length L ′, than L . The remaining length
of the boundary is occupied by slow shocks. In the diffusive
layer the behavior is similar to the Sweet-Parker layer, the
main difference being that the acceleration of the velocity up
to the Alfven speed along the layer, is accomplished by mag-
netic tension associated with a transverse field component
By . (In the Sweet-Parker theory this acceleration is produced
mainly by a pressure gradient.) Outside of the Petschek dif-
fusive layer the acceleration up to VA is accomplished almost
instantaneously by the slow shocks. The Sweet-Parker model
for their diffusive layer is replaced by the identical conditions
for the Petschek model, but with L replaced by L ′, leading
to the Petschek reconnection velocity,

VR =
√

VAηc

4π L ′ = VA√
S

√
L

L ′ , (7)

a factor of
√

L/L ′ faster than the Sweet-Parker reconnection
velocity. The shocks in the outer L − L ′ region reduce the
upstream Bx to zero, and accelerate the plasma crossing them
to VA in the x direction to match the plasma flowing out of
the diffusive region with the same Alfven x velocity.

The shocks propagate in the y direction upstream into the
plasma with velocity By/

√
4πρ. Since the plasma is flowing

with the reconnection velocity Vy = −VA we have in steady
state,

By√
4πρ

= VR, (8)

which determines the magnitude of By the transverse field
component. This y component of the field increases linearly
along x in the diffusive region from 0 to this value, and it
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Fig. 3. The Petschek model. The diffusion region of length L ′ < L is the same as Fig. 2, with L taken equal to L ′. Outside the diffusive region shocks
accelerate the plasma and reduce vx to zero. The shocks’ y velocity By/

√
4πρ balances the incoming VR velocity in a steady state. The By field is vital

to this model.

turns out that the tension produced by the jz By force is just
enough to accelerate the plasma in the layer up to the Alfven
speed.

These results are all given in Petschek’s paper and present
a nearly complete, but qualitative, physical picture for mag-
netic reconnection, encompassing the possibility of a diffu-
sive layer much shorter than L . Further, in his theory, L ′

appears to be a free parameter. Petschek then chooses L ′ as
short as possible to get the maximum reconnection velocity.
He determined this minimum to be the lower limit so that the
current in the shocks did not seriously perturb the incoming
magnetic field Bx = B0. This limit was roughly

L ′ >
L

S
(ln S)2, (9)

so that substituting in Eq. (7) he got a very fast limit on the
reconnection velocity

VR <
VA

ln S
. (10)

This latter limiting velocity has been generally quoted in
the literature as the so-called Petschek reconnection veloc-
ity, and it is this velocity that has been compared with the
Sweet-Parker reconnection velocity Eq. (4) in the contro-
versy between the two theories. The disagreement should
more appropriately be between the Sweet-Parker velocity
and Eq. (7).

Now, it turns out that L ′ is not a free parameter in
Petschek’s theory. There is an additional condition associ-
ated with By that Petschek did not include . The all important
By field, which is needed to support the shocks, is embedded
in the rapidly moving plasma and is swept down stream at the
Alfven velocity, VA. This field which is being swept away
so rapidly must be regenerated at the same rate to preserve a
steady state. (See Uzdensky and Kulsrud (2000).)

This regeneration occurs during the merging process. The
external field is nonuniform, being strongest near x = 0,
so the lines of force at the center of the diffusive layer will
move into the diffusive region fastest there. However, the
nonuniformity of the externalfield is on the scale of the length

of the layer L because of the global conditions, so as L ′ gets
smaller, the nonuniformity over the shorter length is also
smaller, and the regeneration process is weaker. A balance
between the nonuniform merging process that creates the
By field, and the down-sweeping which destroys it, must be
reached and this leads to a relation between L ′ and By . Thus,
combining this relation with Eqs. (7) and (8), determines L ′

uniquely.
Let us estimate this balance qualitatively. The equation

for By will be shown to be

d By

dt
= VR

L ′
L ′2

L2
B0 − By

VA

L ′ = 0. (11)

The second term on the right is the down-sweeping term that
destroys By . Its form is obvious.

Thefirst term represents nonuniform merging, and its form
can be derived as follows: (see Fig. 4).

The external field depends on x as

Bx = B0(1 − x2/L2). (12)

We assume that each fresh line that is merging enters the
layer with velocity, V ′

x proportional to Bx (x), so that the line
enters faster at x = 0 than at x = L ′. Thus, after entering
the layer it will turn at the rate

dθ

dt
= V ′

y(0) − V ′
y(L ′)

L ′

= ηc

4πδL ′ [1 − (1 − L ′2/L2)], (13)

or
dθ

dt
= ηc

4πδ

L ′2

L2

1

L ′ . (14)

The turning of a line of strength B0 at the rate dθ/dt produces
a component By at the rate (dθ/dt)B0 = VR(L ′2/L2)B0/L ′,
which gives the first term in Eq. (11).

Now, setting d By/dt = 0, for a steady state, gives from
Eq. (11),

By = VR

VA
(L ′2/L2)B0. (15)
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Fig. 4. Regeneration of the By field by nonuniform merging. This rotates
the Bx field into the y direction.

From Eq. (8) we get

VR = VR

VA
(L ′2/L2)

B0√
4πρ

= VR(L ′2/L2). (16)

or,
L ′ = L . (17)

Thus, L ′ is no smaller than L , and the Petschek rate equa-
tion (7) reduces to the Sweet-Parker rate equation (4).

I believe that this is the reason that the numerical simu-
lations always yield the Sweet-Parker rate, rather than the
faster rate implied by Petschek’s formula.

A more formal derivation of Eq. (11) is given in the ap-
pendix.

4. Anomalous Resistivity in the Sweet-Parker
Model

In the absence of a Bz component (that is no guide field),
there is a strong instability, the lower hybrid instability, that
should be excited, (Davidson, 1975). This is the case if the
current density in the layer is large enough that the difference
in the electron and ion bulk velocities v− and v+ is greater
than the ion acoustic speed. That is, if the drift velocity
vd ≡ v+ − v− satisfies vd > vi with vi the ion thermal
velocity. Note that j = ne(e/c)vd .

There are three well-documented instances where mag-
netic reconnection is definitely taking place, i.e. the solar
flare, the magnetosphere-solar wind interface, and the mag-
netotail. If one examines these three cases, and applies the
Sweet-Parker model to them, one finds in all three cases that
the drift velocity, vd , is much larger than vi . One can express
this as follows: There is a critical current, jc, and critical
layer thickness δc = B0/4π jc such that if δ < δc and there-
fore j is greater than the critical j , then the lower hybrid
mode should be excited. This lower hybrid instability has
the property, that it can generate an almost unlimited amount
of resistive friction between the electrons and the waves.

Now, let us imagine the two plasmas with opposite mag-
netic fields, B0, approach each other. The pressure, between
them, p = B2

0/8π , is dissipated at the rate VA/L by expan-
sion due to flow out the ends, and by force balance, must be
replenished by compression due to dδ/dt < 0. This com-
pression normally continues until the Sweet-Parker thickness
is reached. At this time, the plasma pressure in the layer is re-
plenished by Ohmic heating η j2 ≈ ηB2

0/(4πδ)2 at the same

rate at which it is depleted, (VA/L)p = (VA/L)(B2
0/8π), by

the adiabatic expansion. Therefore at this time the collapse
dδ/dt ceases.

On the other hand, if the critical thickness, δc, is passed
before the Sweet-Parker thickness is reached, the resistivity
rapidly rises to generate an Ohmic heating large enough to
balance the outflow adiabatic expansion at this larger distance
δc, and collapse ceases at this larger distance.

For these conditions, the layer thickness is known, and VR

is determined by the mass conservation equation (2) alone,

VR = δc

L
VA. (18)

Thus, reconnection can become much faster than the Sweet-
Parker rate based on Spitzer resistivity. Under solar flare
conditions, Kulsrud (1998), it can become as much as a factor
of a thousand faster. The resulting reconnection time can be
reduced to a few hours, perhaps an order of magnitude longer
than the observed energy release time in solar flares.

5. Petschek Reconnection with Anomalous Resis-
tivity

In the third section it was shown that for a constant resis-
tivity, Petschek’s L ′ parameter must be equal to L , so that
Petschek’s reconnection rate reduces to that of Sweet-Parker.
However, if η is anomalous, enhanced by wave interactions,
it can be very sensitive to the current density. The original
problem with Petschek reconnection was that the external
field at x = L ′ was only slightly smaller, by a factor of
1 − L ′2/L2, than its strength at x = 0. But even this slight
change in the resulting current density can lead to a finite
and even large change in the resistivity η. Taking this into
account, one finds that Eq. (11) becomes

dθ

dt
= η0c

4πδL ′ − η′c
4πδ′L ′

(
1 − L ′2

L2

)
≈ (η0 − η′)c

4πδL ′ , (19)

in which we have neglected L ′2/L2 and any slight difference
between δ and δ′. η0 is the resistivity at x = 0, and η′ that
at x = L ′. Solving for By = (dθ/dt)B0 as before, with this
different value of dθ/dt , and using it in Petschek’s formula
for the shock velocity, we find that with variable resistivity,

VR = By√
4πρ

= 1

VA

B0√
4πρ

(η0 − η′)c
4πδ

. (20)

Taking δ = δc, we have

VR = c(η0 − η′)
4πδc

. (21)

Now, to estimate the value of this revised reconnection
velocity, we assume that η is linear in j for j > jc, so that

η0 − η′ = ( j0 − j ′)
dη

d j
= 1

4π

(
B0

δ
− B ′

δ′

)
dη

d j

= 1

4π

L ′2

L2

B0

δc

dη

d j
. (22)

Combining this with the mass conservation relation for the
L ′ layer,

VR

VA
= δc

L ′ , (23)
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we obtain
V 3

R

V 3
A

= B0

VA L2

c

(4π)2

dη

d j
. (24)

This result can be written in a more familiar way by assign-
ing a maximum value, η∗ to η and assuming that η = ηspitzer

for j < jc, and η = η∗ at j = 2 jc. Thus,

dη

d j
= η∗

jc
. (25)

From jc = B0/4πδc Eq. (24) reduces to

VR

VA
=

(
δc

L

1

S∗

)1/3

, (26)

where S∗ is the modified Lundqvist number based on η∗

S∗ = VA L

η∗c/4π
. (27)

Numerically, η∗ comes from an electron wave collision
rate equal to the electron plasma frequency ωpe. Under typ-
ical solar flare conditions, Kulsrud (1998), η∗ ≈ 106ηSpitzer,
and

VR

VA
≈ 10−4. (28)

One can carry out similar estimates for the magnetosphere-
solar wind interface and one finds from Eq. (26) that

VR

VA
≈ 100. (29)

6. Conclusions
We have shown or stated that:
(1) In general reconnection situations, L and Bx are deter-

mined globally, while δ and VR are determined locally.
(2) For constant resistivity, the length of Petschek’s diffu-

sive layer is not a free parameter, but is determined by the
condition that By be regenerated at the same rate as it is being
dissipated by down stream flow.

(3) Constant resistivity gives L ′ = L , which makes
Petschek’s reconnection rate equal to that of Sweet and
Parker.

(4) If the Sweet-Parker thickness δ = L/
√

S is thinner
than the critical thickness δc at which anomalous resistivity
sets in, then the Sweet Parker reconnection rate becomes

VR = δc

L
VA, (30)

a rate that can be very much faster than their reconnection
rate based on Spitzer resistivity.

(5) In the case of anomalous resistivity the regeneration
rate of By in Petschek’s theory is much larger, and the
Petschek’s rate becomes faster even than the Sweet-Parker
rate with enhanced resistivity. It is given by

VR

VA
=

(
δc

L

1

S∗

)1/3

(31)

where S∗ = LVA/(η∗c/4π) is the Lundqvist number based
on the maximum possible resistivity η∗. Note that it has
a cube root dependence on this maximum resistivity, rather

than a logarithmic dependence on the Spitzer resistivity
which is the often quoted expression for Petschek recon-
nection. In spite of this, in many cases there is not a large
numerical difference in the two results. Formula (31) gives
an equally fast reconnection rate, and is more in tune with
the true physical processes.

(6) A test for whether the anomalous resistivity rate equa-
tion (18) or (31), rather than the classical Sweet-Parker rate,
Eq. (7), is applicable is: First, compute the Sweet-Parker
thickness δSP, of the reconnection layer δSP = L/

√
S, and

compare it with the critical thickness δc = B0/(4πnevi/c). If
δSP < δc, then use the anomalous equation (31) for Petschek
reconnection, or the anomalous Sweet-Parker equation (18),
whichever is faster.

(7) In nearly all cases on the galactic scale, δSP is larger
than or at least comparable to δc, so the Sweet-Parker result
gives the correct order of magnitude for the reconnection
rate. This is almost always too slow to be of interest, so one
concludes that reconnection on the galactic scale is hardly
ever really important.
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Appendix
In this appendix we justify the intuitively described equa-

tion (11) for the time evolution of By , by a more precise
derivation. In the intuitive derivation, it was assumed that
the lines flowed into the reconnection region, only by re-
sistive merging, and the effect of plasma flow on them was
ignored. Also, the merging velocity was taken proportional
to the external field, through its effect on the current density.
Further, the thickness of the reconnection layer was assumed
constant between x = 0 and x = L ′.

If the Petschek model were correct, then the short layer, of
length L ′ � L , should be somewhat as in Fig. 5. Let it have
an x dependent thickness δ(x), as shown in Fig. 5, where
δ(x) is taken large enough that at y = δ(x), Bx ≈ B(x) =
B0(1 − x2/L2), the value for the external field. Also take
δ(x) to follow a line of force.

The pressure drop in this region is negligible, so that the
acceleration of the plasma from 0, at x = 0, to vA, at x = L ′,
is produced entirely by the magnetic force, − jz By . For this
to happen, Petschek shows that one must have

By = x

L ′ B0
y , (A.1)

and
vx = x

L ′ vA. (A.2)

where B0
y is the magnitude of the downstream By field sup-

porting the shocks.
Consider a point P inside this layer. We have from the y

component of the magnetic differential equation,

∂B
∂t

= ∇ × (v × B) + ηc

4π
∇2B, (A.3)

that

∂ By

∂t
= −v · ∇ By + B · ∇vy + ηc

4π
∇2 By . (A.4)
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Fig. 5. Sketch of the Petschek diffusion layer for the By field derivation. At x = L ′, Bx is zero nearly up to y = δ′. δ(x) is a line of force.

Now, because the layer is thin compared to L ′, we can
write, from ∇ · B = 0,

∇2 By ≈ ∂2 By

∂y2
= − ∂

∂y

(
∂ Bx

∂x

)
. (A.5)

Further, B·∇vy is |B| times the rate of increase of vy along
a line of force. It is negative since, first, vy is negative at y =
δ(x) and goes monotonically to zero at y = 0, and second, it
increases slowly with x along δ(x). [The last fact follow from
the ideal result that along δ(x), vy Bx = vy B0(1 − x2/L2) is
constant.]

The −v · ∇ By term gives the down-sweeping of By . It is
of constant sign, and is, in order of magnitude,

v · ∇ By ≈ −vA B0
y/L ′. (A.6)

With these results we have

∂ By

∂t
< −v · ∇ By − ηc

4π

∂

∂y

(
∂ Bx

∂x

)
. (A.7)

Let us integrate this inequality in y from 0 to δ(x).

δ(x)

〈
∂ By

∂t

〉
< −

∫ δ(x)

0
v · ∇ Bydy

− ηc

4π

∂ Bx

∂x
|y=δ(x). (A.8)

But on δ(x), Bx = B0(1 − x2/L2), so that,

δ(x)

〈
∂ By

∂t

〉
< δ(x)〈v · ∇ By〉 + ηc

4π
B0

x

L2
. (A.9)

Thefirst term on the right is the down-sweeping term in the
text, δ(x)vA B0

y/L ′, and the second term is the nonuniform

merging term. The term we dropped to obtain the inequality,
represents the rotation of the line of force produced by the
plasma motions, and is of such a sign as to reduce the regen-
eration of the By field, i.e. it rotates the line backward in the
wrong direction.

Thus, in steady state, the left hand side vanishes, and we
have in order of magnitude

δ(x)
vA By(x)

L ′ <
ηc

4π

x

L2
, (A.10)

or from Eq. (A.1)

vA B0
y <

ηc

4πδ

L ′2

L2
B0, (A.11)

where δ is a representative value of the thickness δ(x). This is
essentially Eq. (15) of the text but replaced by an inequality.
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