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Purpose

Mutation of the Kirsten Ras (KRAS) oncogene is present in 30%-40% of colorectal cancers

and has prognostic significance in rectal cancer. In this study, we examined the ability of

radiomics features extracted from T2-weighted magnetic resonance (MR) images to differ-

entiate between tumors with mutant KRAS and wild-type KRAS.

Materials and Methods

Sixty patients with primary rectal cancer (25 with mutant KRAS, 35 with wild-type KRAS)

were retrospectively enrolled. Texture analysis was performed in all regions of interest on

MR images, which were manually segmented by two independent radiologists. We identified

potentially useful imaging features using the two-tailed t test and used them to build a dis-

criminant model with a decision tree to estimate whether KRAS mutation had occurred. 

Results

Three radiomic features were significantly associated with KRAS mutational status (p < 0.05).

The mean (and standard deviation) skewness with gradient filter value was significantly

higher in the mutant KRAS group than in the wild-type group (2.04±0.94 vs. 1.59±0.69).

Higher standard deviations for medium texture (SSF3 and SSF4) were able to differentiate

mutant KRAS (139.81±44.19 and 267.12±89.75, respectively) and wild-type KRAS

(114.55±29.30 and 224.78±62.20). The final decision tree comprised three decision

nodes and four terminal nodes, two of which designated KRAS mutation. The sensitivity,

specificity, and accuracy of the decision tree was 84%, 80%, and 81.7%, respectively. 

Conclusion

Using MR-based texture analysis, we identified three imaging features that could differen-

tiate mutant from wild-type KRAS. T2-weighted images could be used to predict KRAS

mutation status preoperatively in patients with rectal cancer.
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Introduction

Molecular classification plays a very important role in deci-
sion-making regarding treatment of colorectal cancer and in
prediction of the prognosis. However, identification of these
mutations is usually possible by postoperative testing of tis-
sues removed at the time of surgery. Therefore, the oppor-
tunity to confirm the presence of genetic mutations preo-

peratively is limited. Chemotherapy and radiotherapy are
widely used preoperatively in the treatment of rectal cancer,
and sometimes no tumor cells are found in surgical tissue
specimens. Therefore, it would be helpful to be able to con-
firm genetic mutation on imaging without the need for
histopathologic examination when making decisions regard-
ing treatment. The Kirsten Ras (KRAS) gene mutation is one
of several common mutations in colorectal cancer and is
found in 30%-50% of cases. Several studies have indicated
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that the presence of mutant KRAS in colorectal cancer corre-
lates with a poor response to epidermal growth factor recep-
tor inhibitors in a metastatic setting [1,2].

Radiomics involves high-throughput extraction of large
amounts of imaging features from radiologic images and has
recently emerged as a promising tool for predicting the prog-
nosis and guidance of therapy [3-5]. Moreover, imaging fea-
tures identified by magnetic resonance (MR)–based radio-
mics analysis were demonstrated to effectively predict the
response of rectal cancer to chemoradiotherapy [4,6-10]. 
Radiogenomics is an emerging field that integrates imaging
and genomics data to identify imaging correlates of a specific
tumor genotype or molecular phenotype for precision med-
icine [5]. Several studies have assessed the associations of
positron emission tomography (PET)–based or computed 
tomography (CT)–based texture features with KRAS muta-
tions in colorectal cancer and rectal cancer [11-13]. To the best
of our knowledge, there have been no studies on whether or
not the T2-weighted MR-based radiomics signature is specif-
ically associated with KRASmutation status in rectal cancer.
In recent years, biomarkers detected on MR imaging have
shown potential for identifying tumor characteristics and 
improving our ability to diagnose certain tumors, including
rectal cancer [14]. The aim of this study was to investigate
the potential of T2-weighted MR imaging features to identify
KRAS mutation status in rectal cancer. 

Materials and Methods

1. Study population 

The study population initially comprised samples from 82

patients that were collected retrospectively from the tumor
bank for a molecular genomics study between December
2008 and January 2010 (n=52) or collected prospectively from
patients with mid to lower rectal cancer for a radiogenomics
study between September 2017 and March 2018 (n=30).
Twenty-two of the 82 patients were subsequently excluded,
leaving data for 60 patients for inclusion in the analyses. The
study inclusion and exclusion criteria and the flow of pati-
ents through the study are shown in Fig. 1.

The mean patient age was 61.2 years and the mean body
mass index was 24.2. An MR imaging examination was per-
formed in all cases before treatment for rectal cancer was
started. Eighteen patients (30%) received preoperative che-
moradiation. Samples collected retrospectively from the
tumor bank were obtained at the time of surgery whereas the

Cancer Res Treat. 2020;52(1):51-59

Excluded (n=20)
  No MR images available (n=14)
  No tissues available (n=6)

Assessed for eligibility
(n=82)

Included in the study
(n=62)

Excluded (n=2)
  Did not meet the quality control
  standard for genetic testing (n=2)

Analyzed (n=60)

Fig. 1. Diagram showing the flow of patients through the
study. MR, magnetic resonance.

Table 1.  Demographic and clinical characteristics of the study population (n=60)

SD, standard deviation.

Characteristic Value

Sex (male/female) 34/26

Age, mean±SD (yr) 61.2±9.9

Body mass index, mean±SD 24.2±2.9

Clinical T category (T1/T2/T3/T4) 3/12/39/6

Clinical N positivity (positive/negative) 37/23

Metastatic status (M0/M1) 53/7

Preoperative chemoradiation, n (%) 18 (30.0)

Surgery (radical resection/local excision/none) 51/6/3

Pathologic T category (T1/T2/T3/T4/unknown) 9/15/28/5/3

Pathologic N category (N0/N1/N2/unknown) 29/13/9/9

KRAS mutation, n (%) 25 (41.7)
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prospectively collected tissue samples were obtained by 
endoscopic biopsy using large-cup jumbo forceps before
starting treatment in patients who received preoperative
chemoradiation. Two of 24 tissue samples obtained by endo-
scopic biopsy did not meet the quality control standard for
genetic testing (Fig. 1). The demographic and clinical char-
acteristics of the 60 patients are shown in Table 1.

2. DNA test

DNA for detection of KRAS mutation status was isolated
from fresh frozen tissue using an Automated Nucleic Acid
Extractor (Roche Molecular Biochemicals, Mannheim, Ger-
many). The purified genomic DNA from the samples was 
amplified by polymerase chain reaction. MassArray with 
matrix-assisted laser desorption/ionization-time of flight
mass spectrometry and an iPLEX ADME PGx panel (Agena
Bioscience, San Diego, CA) modified by the Omics Core Lab-
oratory at the National Cancer Center were used for detection
of mutations. Eleven mutations in the KRAS gene (A59T,
G12A, G12C, G12D, G12F, G12R, G12S, G12V, G13D, G61H,
and Q61L) were detected in this panel. Twenty-five patients
were found to have mutant KRAS and 35 to have wild-type
KRAS.

3. MR imaging

MR imaging was performed using a 3-T scanner (Achieva
3.0T, Philips Healthcare, Amsterdam, The Netherlands;
n=39; Achieva Tx 3.0T, Philips Healthcare, Best, The Nether-
lands; n=13; Ingenia Cx 3.0T, Philips Healthcare, Best, The
Netherlands; n=8) and a 32-channel phased array body coil
(USA Instruments Inc., Aurora, OH) using the standard 
imaging protocol. One hour before the MR imaging exami-
nation, one bisacodyl suppository (Dulcolax, Boehringer 
Ingelheim, Ingelheim am Rhein, Germany) was administered
for bowel preparation. Thirty minutes before MR imaging,
20 mg of scopolamine butylbromide (Buscopan, Boehringer

Ingelheim) was injected intravenously to reduce colonic
motility, unless contraindicated. Standard T2-weighted, fast
spin-echo MR sequences were obtained in the sagittal, axial,
and coronal planes using the following parameters: echo
time/repetition time, 80-110/2,500-8,600 msec; slice thick-
ness, 3-5 mm; echo train length, 16-32; matrix, 224!224 to
800!538; and field of view, 150!150 to 360!360. Axial, T1-
weighted, three-dimensional spoiled-gradient-echo sequ-
ences and diffusion-weighted images were also obtained. 

We selected the slice with the largest cross-sectional area
of the tumor as the representative slice. A region of interest
(ROI) indicating the tumor boundaries was manually drawn
by two experienced radiologists on each representative slice,
as shown in Fig. 2. On T2-weighted MR images, tumors were
defined as areas that were isointense to hyperintense in com-
parison with the relatively hypointense adjacent normal
muscular rectal wall. Texture analysis was performed on all
ROIs (manually segmented by two experienced radiologists)
in T2-weighted MR images for 60 patients. The ground truth
tumor region was defined by the overlapping areas of two
ROIs that were drawn independently by two radiologists, as
shown in Fig. 2. If there was uncertainty regarding the region
of the tumor, the area was not included in the segmentation.

4. Image preprocessing

Preprocessing of the proposed algorithm can be divided
into two major steps, i.e., normalization of the image inten-
sity range and histogram equalization (Fig. 3). To normalize
the image intensity range, all images were converted from
12-bit to 8-bit grayscale using the maximum and minimum
pixel value over the body region of each patient. Contrast-
limited adaptive histogram equalization was also applied to
enhance the contrast in the rectum and reduce the effect of
magnetic bias [15-17].

Ji Eun Oh, MR-Based Differentiation of KRAS Status in Rectal Cancer

Fig. 2.  Example of segmentation of rectal cancer in T2-weighted magnetic resonance images. (A) Original image. (B, C) Seg-
mentation by two experienced radiologists. (D) Ground truth tumor image showing the area of overlap between the two
readers.
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5. Texture analysis

For the quantitative analysis, we extracted five groups of
texture features with tumor ROIs using the MATLAB pro-
gram (MathWorks Inc., Natick, MA). The five groups con-
sisted of histogram (n=4), gradient (n=4), gray-level co-occur-
rence matrix (GLCM; n=5), gray-level run length matrix
(n=7), and Laplacian of Gaussian (LoG) filtered features (n=4
for each filter size). The most common histogram features are
simply the statistical parameters of the histogram distribu-
tion and consist of the mean (average brightness), standard
deviation (SD), kurtosis (a measure of peakedness and tailed-
ness), and skewness (a measure of asymmetry of the histo-
gram). The image gradient feature of the histogram is com-
puted for the 3!3-pixel neighborhood and the parameters of
such a histogram distribution are determined [18,19]. These
gradient features are Gmean, G_SD, Gkurtosis, and Gskew-
ness. 

The LoG band-pass filtration technique enhanced and 
extracted features of different sizes based on a spatial scale
filter (SSF) value, which varies from fine texture (SSF1 and
SSF2, 1 mm and 2 mm in radius, respectively), to medium
texture (SSF3 and SSF4, 3 mm and 4 mm), to coarse texture
(SSF5 and SSF6, 5 mm and 6 mm). Next, the filtered texture
maps were quantified using the histogram parameters, i.e.,
the mean, kurtosis, skewness, and SD [20,21]. These histo-
gram parameters were also quantified using the conven-
tional MR image without filtration (i.e., SSF0). 

GLCM is an efficient texture analysis method that uses sec-

ond-order statistics to characterize two adjacent pixel values
at specific locations. The GLCM features used in this study
were correlation, angular second moment, homogeneity, and
entropy [22-24]. 

A gray-level run length matrix (GLRLM) is a texture rep-
resentation model that extracts the spatial plane features of
each pixel. Each element in this matrix gives the total number
of occurrences of the gray level in a given direction. In this
study, we selected seven GLRLM features, i.e., short run 
emphasis, long run emphasis, gray-level nonuniformity, run
length nonuniformity, run percentage, low gray-level run
emphasis, and high gray-level run emphasis [25-28]. 

6. Statistical analysis

We selected the prospective features from T2-weighted
MR images using the two-tailed t test method. The features
selected were used to build a discriminant model using the
decision tree method to estimate whether the KRASmutation
was present. The decision tree was developed using the clas-
sification and regression tree method, which is an empirical,
statistical technique based on recursive partitioning analysis
[29] and generates binary decision trees. Using the decision
tree method, diagnostic threshold values were determined
iteratively to maximize the diagnostic accuracy while mini-
mizing false-positive KRAS mutations. The tree does not 
expand its node unless the Gini index does not improve by
more than 0.001. To restrict overfitting, minimum numbers
of cases for nodes are set to 20 for the parent node and five

Cancer Res Treat. 2020;52(1):51-59

Table 2.  Comparison of tumor texture analysis parameters between mutant KRAS and wild-type KRAS

Values are presented as the mean±standard deviation.

Imaging feature Wild-type KRAS (n=35) Mutant KRAS (n=25) p-value

Gskewness 1.59±0.69 2.04±0.94 0.039

SD_ssf_3 114.55±29.30 139.81±44.19 0.010

SD_ssf_4 224.78±62.20 267.12±89.75 0.035

Fig. 3.  Examples of preprocessing images. (A) An original image. (B) A preprocessed image.

A B
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for the child node. Therefore, no further separations of the
tree were used if an output arm of the decision node con-
tained five or fewer patients within either diagnostic cate-
gory, i.e., mutant KRAS and wild-type KRAS. We evaluated
the performance of the final decision tree by receiver-oper-
ating characteristic curve analysis and the sensitivity, speci-
ficity, and accuracy values. The sensitivity value indicates
the ability of the decision tree to identify the KRASmutation
correctly. All statistical analyses were performed using SPSS
software ver. 14.0 (SPSS Inc., Chicago, IL). A p-value of 
< 0.05 was considered statistically significant.

7. Ethical statement

Both study protocols were approved by the institutional
review board at our institution (NCC2017-0104 and NCC-
2017-0201) and conducted according to the principles of the
Declaration of Helsinki. Written informed consent was obtai-
ned for all patients.
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Fig. 5.  Decision tree for identification of KRASmutations in patients with rectal cancer using T2-weighted magnetic resonance
imaging features. M, number of tumors with mutant KRAS; WT, number of tumors with wild-type KRAS; SD, standard 
deviation; ssf, spatial scale factor.
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Results

We extracted the texture features from the T2-weighted
MR images (S1 Table). Only three radiomics features were
significantly associated with KRASmutation status (p < 0.05).
The selected imaging features are summarized in Table 2.
This table also compares the distribution of the three imaging
features according to KRASmutation status. There was a sta-
tistically significant difference in three imaging features bet-
ween patients with mutant KRAS and those with wild-type
KRAS (p < 0.05). The mean (and SD) value for skewness with
gradient filter (Gskewness) was significantly higher in the
KRASmutation group than in the wild-type group (2.04±0.94
vs. 1.59±0.69). A higher SD at medium texture (SSF3 and
SSF4) had a significant ability to differentiate mutant KRAS
(139.81± 44.19 and 267.12±89.75, respectively) from wild-type
KRAS (114.55±29.30 and 224.78±62.20). The box plot in Fig. 4
shows the differences in the three imaging features. 

The final decision tree comprised four nodes as shown in
Fig. 5. The first node of the decision tree used the SD at
medium texture with a threshold value of 118.05. The SD at
medium texture was assessed second and the Gskewness of
the gradient feature was assessed last. Therefore, the final
decision tree comprised three decision nodes and four termi-
nal nodes (of which two identified KRAS mutation and the
remaining two identified wild-type status). The sensitivity,
specificity, and accuracy values of the decision tree for the
whole dataset were 84%, 80%, and 81.7%, respectively.

The receiver-operating characteristic curves for the deci-
sion tree model are shown in Fig. 6. The area under the curve
was 0.884. 

Discussion

In this study, we used a decision tree model for identifica-
tion of KRASmutations using T2-weighted MR imaging fea-
tures to decide on the treatment method and predict the
prognosis of rectal cancer. In general, invasive biopsy or sur-
gical procedures are needed to identify the mutation status
of KRAS. T2-weighted MR imaging-based texture analysis
could be used as an alternative noninvasive strategy to over-
come these limitations. 

Several studies have attempted to investigate the relation-
ship between imaging characteristics and KRAS mutation.
Miles et al. [11] showed that a combination of PET and CT
imaging features can potentially provide an imaging signa-
ture for KRAS mutation in colorectal cancer. In that study,
the true-positive rate, false-positive rate, and accuracy of the
proposed decision tree model was 82.4%, 0%, and 90.1%, 
respectively [11]. Yang et al. [12] found significant associa-
tions between a CT-based radiomics signature and KRAS/
NRAS/BRAFmutations. The sensitivity, specificity, and area
under the curve for prediction of KRAS/NRAS/BRAF muta-
tions were 0.757, 0.833, and 0.869, respectively, in their pri-
mary cohort. However, there was no association of back-
ground clinical characteristics, tumor stage, or histological
differentiation with KRAS/NRAS/BRAF mutation status.
Kawada et al. [13] found that 18F-fluorodeoxyglucose PET/
CT was useful for prediction of KRAS status in metastatic col-
orectal cancer with a sensitivity, specificity, and accuracy of
68%, 74%, and 71.4%, respectively. Meng et al. [30] showed
that the radio-mics signatures based on multiparametric MR
imaging predicted the KRAS gene mutation with an area
under the curve (AUC) of 0.651. Cui et al. [31] found that dif-
fusion kurtosis imaging-derived histogram metrics from
whole tumor volumes were associated with KRAS muta-
tions. Most of the K parameters showed moderate diagnostic
significance for KRAS mutations. The 75th percentile pixel
value of K showed the highest AUC of 0.871 and the sensi-
tivity, specificity, positive predictive value, and negative pre-
dictive value were 81.43%, 78.21%, 77.03%, and 82.43%,
respectively [31]. Similarly, Xu et al. [32] showed that diffu-
sion-weighted MR imaging-derived para-meters can predict
KRAS mutation in rectal cancer. They found that the mean
apparent diffusion coefficient and D* (pseudo-diffusion 
coefficient) had moderate diagnostic significance, with 
respective AUCs of 0.756 and 0.710 [32]. Yeo et al. [33] repor-
ted that the perfusion parameters from dynamic contrast-
enhanced MR imaging were significantly associated with
KRAS mutation. The mean and mode Ktrans parameters
demonstrated high diagnostic performance for KRAS gene
mutation with respective AUCs of 0.788 and 0.793 [33]. To
our knowledge, this is the first report on the relationship 

Cancer Res Treat. 2020;52(1):51-59

S
e

n
si

ti
vi

ty
1.0

0

0.2

0.4

0.6

0

1-Specificity

ROC curve

0.40.2 1.00.80.6

0.8

Fig. 6.  Receiver-operating characteristic (ROC) curve show-
ing the performance of the decision tree model. The area
under the curve is 0.884.

56 CANCER  RESEARCH  AND  TREATMENT



Ji Eun Oh, MR-Based Differentiation of KRAS Status in Rectal Cancer

between T2-weighted MR-based texture features and KRAS
mutation. MR imaging can reduce the impact of image noise,
which can affect texture analysis because of the higher con-
trast resolution and contrast-to-noise ratio when compared
with CT [7]. However, previous studies have shown that pre-
treatment T2-weighted MR imaging radiomics has the poten-
tial to characterize the histopathologic features of rectal
cancer and predict the response to chemoradiotherapy, 
except for KRAS mutation [4,9,14,34]. Therefore, in this pre-
liminary study, we investigated the potential association 
between T2-weighted MR imaging features and KRASmuta-
tion status. 

Several studies have suggested that texture features may
be related to the tumor microenvironment and the presence
of hypoxia or angiogenesis [11,35-37]. A hypoxic status leads
to an increase in the aggressiveness of the tumor and resist-
ance to treatment [38]. Ganeshan et al. [36] found greater
spread in hypoxic tissues and more variation in voxel values
on contrast-enhanced CT. We found that KRAS mutations
were associated with higher Gskewness and larger SD values
for medium texture. Gskewness and SDs are associated with
variation in intensity. Consequently, higher Gskewness and
larger SD values indicate that the group with KRASmutation
is more heterogeneous than the group with wild-type KRAS.
For the prediction of KRASmutation status, we used a deci-
sion tree model that can deal with large, complicated datasets
efficiently without imposing a complicated parametric struc-
ture. This decision tree is also easy to understand and imple-
ment. Using decision tree analysis based on these imaging
features, we were able to identify MR-based imaging features
that identified KRAS mutations. The sensitivity, specificity,
and accuracy of the decision tree for differentiating tumors
with mutant KRAS from those with wild-type KRAS were
84%, 80%, and 81.7%, respectively. The model used in the
present study has better performance in predicting KRAS
mutation status than that used in previous research [11-13].

This study has several limitations. First, the proposed

model needs to be externally validated by a prospective
study in the future using patients whose data are not used
to construct the model. Second, the number of cases included
in this study was relatively small, so the reliability of the pro-
posed model needs to be determined in a future study that
includes more cases. Third, radiomics was performed only
on T2-weighted MR images. Radiomics analysis may be 
improved with inclusion of other MR imaging sequences,
such as diffusion-weighted imaging and dynamic contrast-
enhanced MR imaging. In this study, KRASmutation in rec-
tal cancer was confirmed on MR images. Arguably, this
study is of limited value because it is relatively easy to per-
form endoscopic biopsy in rectal cancer. However, our find-
ings indicate that post-histologic examination is helpful in
confirming serial gene mutation changes during treatment
for rectal cancer.

In conclusion, our study shows that T2-weighted MR 
imaging has potential as a noninvasive imaging modality to
predict KRAS mutation status in patients with rectal cancer
before surgery. The proposed model may also help to deter-
mine the best treatment strategy for individual patients with
rectal cancer.
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