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Abstract

Neurological disorders are one of the most important public health concerns in developed countries. Es-

tablished brain imaging techniques such as Magnetic Resonance Imaging (MRI) and X-ray Computerised

Tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, al-

though usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior

to the onset of clinical symptoms - at a time when prognosis for treatment is more favourable. The mechan-

ical properties of biological tissue provide information related to the strength and integrity of the cellular

microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-

invasively with Magnetic Resonance Elastography (MRE), a particularly sensitive medical imaging technique

that may increase the potential for early diagnosis. This review begins with an introduction to the various

methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted

to identify studies that have specifically utilised MRE to investigate the human brain. Through the conver-

sion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a

summary of results for global brain tissue and grey and white matter across studies is provided for healthy

participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to

which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed

and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future

MRE research and applications in neuroscience.

Subject areas: Physics, Imaging sciences, Medicine.

Keywords: Magnetic Resonance Elastography (MRE), Elasticity imaging techniques, Brain,

viscoelasticity, Human, Magnetic Resonance Imaging (MRI).
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1 Introduction

1.1 Background

Over the centuries in clinical medicine, a wide range of pathologies have been detected and characterised by

manually probing soft tissue in the human body through touch. This technique, known as palpation, has been

used to identify lesions through the detection of mechanical changes in tissue composition when compared to

surrounding healthy tissue. As an example, clinicians differentiate between subcutaneous masses that are hard

and more likely to be malignant and those that are soft and likely to be benign, such as lipomas.

Elastography describes the use of medical imaging for the quantitative measurement of soft tissue mechanical

properties (Ophir et al 1999). A mechanical stimulus of some kind must be propagated into the tissue, as tissue

mechanics cannot be measured directly. Sources to detect the resulting tissue displacements must be available,

and have included Ultrasound, Magnetic Resonance Imaging (MRI) and other diagnostic imaging modalities

(Doyley and Parker 2014, Parker et al 2011). Numerous studies have applied ultrasonic techniques to study the

mechanical properties of the human brain, such as freehand quasistatic ultrasound elastography (Chakraborty et

al 2012) and acoustic radiation force impulse imaging (ARFI) (Su et al 2015), with potential applications within

neurosurgery and the study of the neonatal brain, respectively. Nevertheless, elastography with MRI, known as

Magnetic Resonance Elastography (MRE), has a distinct advantage over ultrasonic methods as it benefits from

being both non-invasive, and capable of generating images with a high spatial resolution. As such, MRE has

the potential to study a wide-range of neurological disorders, and forms the focus of this review.

MRE is a phase-contrast MRI technique that involves imaging the propagation of applied acoustic waves using

a modified MRI pulse sequence (Muthupillai et al 1995, Muthupillai and Ehman 1996). An MRE investigation

involves a conventional MRI scanner, the modified pulse sequence incorporating motion-encoding gradients

(MEG), and a source of harmonic motion to generate shear waves in to the tissue of interest. The degree

of tissue displacement is determined by measuring the wavelength to ultimately infer the inherent material

property. Data processing typically involves the application of a mathematical inversion algorithm that relates

tissue displacement to the physics of motion, or through the use of sophisticated image processing algorithms.

Displacement information can then be transformed into stiffness maps, i.e. “elastograms”. Waves travel faster

and exhibit a longer wavelength in stiffer materials. More complex models such as viscoelasticity also calculate

the attenuation of the wave amplitude, providing an additional measure of tissue viscosity.

The application of MRE to the study of patients with liver disease has proven to be successful in measuring

the degree of fibrosis (Loomba et al 2014), which presents with an increase in tissue stiffness. Importantly, MRE

parameters have been corroborated with histological samples (Venkatesh et al 2013), biopsy-proven liver fibrosis

(Asbach et al 2010), and displays high diagnostic accurary and inter-reader agreement (Rustogi et al 2012).

This has resulted in MRE increasingly being used as a diagnostic tool in clinical practice as an alternative to

liver biopsy, which has known complications. Other organs to have been investigated include heart (Elgeti et al

2010, Kolipaka et al 2009), breast (Sinkus et al 2000, 2007, Siegmann et al 2010) skeletal muscle (Bensamoun

et al 2007, Chen et al 2008), lungs (Mariappan et al 2014, Goss et al 2006), kidney (Bensamoun et al 2011,

Streitberger et al 2014a), and prostate (Arani et al 2013, Brock et al 2015), highlighting the capability for MRE

to investigate a wide range of organs and associated pathologies.

The mechanical properties of soft tissue vary over a dynamic range much greater than other physical proper-

ties such as MR relaxation time - the measurement of which provides the foundation for conventional structural

images (Mariappan et al 2010). Due to the intrinsically high dynamic range, MRE offers the prospect of an

imaging technique with high sensitivity. Further, due to the difference in methodology, it would be conceivable

that MRE could detect pathological changes to soft tissue occult to other forms of medical imaging.

There has recently been significant interest to investigate the mechanical properties of the human brain,

especially given that direct clinical palpation is not possible outside of neurosurgery. Neurosurgeons routinely use

palpation through surgical instruments to assist in identifying the brain-tumour interface. In particular, there is

demand for more sensitive neuroimaging techniques to detect the early signs of neurodegeneration (i.e. preclinical
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Alzheimer’s disease). Conventional radiological scans are used primarily to monitor the degree of atrophy -

an increase of which is indicative of irreversible neuronal loss. Investigations that have combined MRE and

histology with murine models of disease have suggested that inflammation (Riek et al 2012), toxic demyelination

(Schregel et al 2012), and transient ischemic insult (Freimann et al 2013), all directly alter mechanical property

measurements. These findings support the notion that mechanical imaging may be able to detect changes to

the interactions and integrity of neurons, glial cells, and the vascular network prior to volumetric changes or

neuronal loss. Identifying the prodromal stages in neurological disorders is essential in order to better understand

the pathophysiological mechanisms for aiding the development of novel pharmaceutical or surgical treatment

strategies.

Initial MRE studies of the brain were of several tissue slices and reported mechanical property values for

global brain tissue. Subsequently, mechanical property values were quoted separately for grey and white matter.

More recently, MRE has developed into a technique that can provide whole brain coverage in 3D, enabling the

measurement of specific neuroanatomical regions such as the corpus callosum (Johnson et al 2013a), hippocampus

(Johnson et al 2016), or corticospinal tract (Romano et al 2012). In addition, healthy ageing (Sack et al 2009,

2011), gender differences (Sack et al 2009, Arani et al 2015), and a wide range of focal and diffuse brain

pathologies have been investigated.

The purpose of this review article is for introducing MRE to clinicians and medical researchers in the

neurosciences, to summarise the results obtained, and review the current clinical applications being pursued.

1.2 Aims of review

This review aims to:

1. Provide a thorough description of the steps involved in performing a brain MRE investigation. This in-

cludes an introduction to the types of vibration source, a description of how cyclic motion is encoded in MRI,

and how the motion encoded wave images can be processed to measure tissue mechanical properties.

2. Systematically review relevant brain MRE articles to summarise the values obtained to date for healthy

participants. All MRE data will be converted to common parameters of shear stiffness (kPa), and loss tangent

(rad), in order to present data on global brain tissue (GBT), grey matter (GM), and white matter (WM), in-

cluding mean values, their variance and factors that may influence these values.

3. Assess the ability of MRE to reveal significant alterations in the mechanical properties of the brain in

patients with neurological disorders, and how MRE findings may relate to pathophysiology.

2 MRE Methodology

Put simply, the MRE technique adds to conventional MR imaging (Figure 1a-b), by using motion-encoding

magnetic field gradients to capture raw phase images, (Figure 1c), that reveal the micron-level displacements

produced by the propagation of applied acoustic waves (Figure 1d-f). Mathematical image analysis techniques

have been developed for the processing of displacement images, to produce maps of tissue stiffness i.e. elastograms

(Figure 1h-i). This general process, together with the alternative acquisition and analysis procedures adopted

by various research groups, are described in detail below.

2.1 Induced tissue deformation

The first stage in the acquisition of MRE data is the generation of a dynamic source of motion. Potential external

sources include electromagnetic (Xu et al 2007b, Braun et al 2014), acousto-mechanical (Sack et al 2008, Lipp

et al 2013) pneumatic (Johnson et al 2014, Huston et al 2015), and piezoelectric (Guo et al 2013) devices, which
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Figure 1: A typical workflow from a brain MRE investigation: a) sagittal T1-weighted brain highlighting the
slice of interest, b) the aforementioned T1 axial slice, c) raw DICOM phase image, d-f) wave images from three
orthogonal directions (x, y, z), indicating the degree of displacement between -5µm and 5µm, g) segmented image
displaying the deep brain structures in the medial temporal lobe, h) map of the complex shear modulus magnitude
|G∗| (kPa) and i) phase angle φ (RAD), produced via the Elastography Software Pipeline (ESP) (Barnhill et al
2016).

transmit vibrations to the head via a passive driver such as a bite-bar, head cradle, or soft pillow. A pneumatic

design is illustrated in Figure 2. In this example, compressed air is transmitted from an active driver, situated

in the MRI control room, to a passive soft pillow-like device placed underneath the head (Resoundant, Mayo

Clinic, Rochester, MN, USA). A recent development has been the use of a soft mat placed on the thorax, coupled

with a piezoeletric driver, so as to induce vibrations to the head indirectly (Fehlner et al 2015). Each set-up

causes the head to experience a gentle nodding motion on the order of microns (typically between 5 - 50 µm).

Alternatively, pilot studies have been performed to investigate whether brain MRE can be performed without

external mechanical hardware. An MRE technique termed intrinsic activation has been developed to measure

the low frequency motion generated by the natural pulsations of the brain’s blood vessels (Weaver et al 2012,

McGarry et al 2015).

2.1.1 Actuation frequency

The frequency at which the brain tissue is vibrated typically ranges between 10-100 Hertz (Hz). Lower frequency

waves attenuate less rapidly than higher frequency waves, enabling the analysis of deeper brain tissue. Displace-

ments below 10Hz, however, are generally too large and thus do not provide acceptable signal. On the other hand,
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Figure 2: a) Schematic diagram of the pneumatic actuator with head-pillow driver (Resoundant, Mayo Clinic,
Rochester, MN, USA), b) Photograph of the head-pillow within the MRI head-coil.

high frequency waves with a shorter wavelength, can theoretically provide higher spatial resolution. Frequencies

above 100Hz are generally not used, however, due to discretisation errors (Papazoglou et al 2008) (i.e. where the

wave cannot be sampled correctly), and for participant comfort, as higher frequencies require greater amplitude

levels to penetrate the skull. A standardised frequency has not been set across different research groups, largely

due to the use of alternative MRE acquisition sequences and analysis protocols. Generally speaking, the majority

of brain MRE studies have used a frequency of 50Hz-60Hz, and requires balancing the trade-off between depth

of penetration, resolving power and noise levels. Nevertheless, the amplitudes of vibration at the prescribed

frequencies are well within the safety margins permitted by the European Union whole-body vibration standard

- designed to limit chronic occupational exposure (Ehman et al 2008). In addition, within this limited frequency

range (i.e. 10 - 100Hz), brain mechanical properties have appeared to follow a power-law frequency dependence

(Szabo and Wu 2000). Some studies have therefore utilised a range of vibration frequencies to enable rheological

modelling of the frequency-dependent material properties, providing an opportunity to enhance tissue charac-

terisation (Klatt et al 2007, Sack et al 2009). Alternatively, data from multiple frequencies have been combined

to improve image resolution (Papazoglou et al 2012, Barnhill et al 2016), more details of which are provided in

section 2.4.3.

2.2 Motion encoding

Conventional MRI applies a sequence of radiofrequency (RF) excitation pulses and phase and frequency encoding

gradients to produce an image by encoding the spatial position of hydrogen nuclei (spins) in voxels within a tissue

(Edelman and Warach 1993). For MRE, an additional cyclic motion-encoding gradient (MEG) is incorporated

into an MRI sequence in order to spatially map and measure the displacement patterns created by the wave
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propagation.

In the presence of a magnetic field gradient, ~Gr(t), the application of the MEGs will encode the spins with

trajectory, ~r(t), into the phase image, providing a single shot measure of the total amount of accrued phase φ.

φ(τ) = γ

∫
τ

0

~Gr(t) · ~r(t) dt, (1)

where γ is the gyromagnetic ratio characteristic of the nuclear isochromat under investigation (· represents scalar

product relationship between vector functions). From the phase accumulation calculated at a single time point,

it is possible to infer the amount of tissue displacement at each voxel; the phase of harmonically vibrating tissue

is directly proportional to its displacement.

Synchronisation of the externally applied motion with the MEG, is a critical step in the MRE acquisition

process. Protons moving in synchronisation with the switching of the MEG, from one polarity to the other, will

continually accumulate phase. Importantly, stationary protons, or tissue movement unrelated to the shear wave

frequency will not accumulate phase, due to the balanced nature of the gradient. Manipulation of the synchrony

between the MEG and the external vibration can be created by the trigger pulse, causing a small delay, known

as a phase offset θ. Four or eight phase offset images are usually sampled throughout the wave cycle, in order

to capture the propagating wave over the vibration period.

Accurate determination of tissue mechanical properties requires the capture of the full vector displacement

field in 3D (Hamhaber et al 2007), with the MEG in turn imposed along all three orthogonal directions. Early

MRE studies analysed two-dimensional (2D) wave propagation while assuming plane wave propagation during

inversion, to enable clinical investigations to be performed in a short scan time. However, assumptions associated

with 2D inversion degraded elastogram quality and the reliability of values. With advances in acquisition

protocols, recent MRE studies have encoded the full 3D wave field using MEG encoding in the read-out (x),

phase-encode (y) and through-plane (z) direction, either within a volumetric slab of brain tissue (Guo et al 2013,

Lipp et al 2013) or throughout the entire brain (Murphy et al 2013b, Johnson et al 2014).

2.2.1 MRE pulse sequences

MEGs have been incorporated into a number of MRI imaging sequences, including gradient-recalled echo (GRE)

(Xu et al 2007a, Kruse et al 2008) single-shot spin-echo Echo Planar Imaging (EPI) (Murphy et al 2011, Braun

et al 2014, Zhang et al 2011), multi-shot, variable density spiral (Johnson et al 2013b) and 3D multi-shot

multi-slab spiral EPI (Johnson et al 2014). Producing reliable estimates of brain mechanical properties relies on

MRE sequences to obtain images with adequate resolution and signal-to-noise ratio (SNR). Low resolutions do

not allow regional estimates of mechanical properties, whereas noise will warrant excessive filtering, limiting the

ability to detect fine scale features. The most common sequence for brain MRE has been a single-shot spin-echo

EPI sequence, which is capable of acquiring 3D displacement data within a short imaging time in comparison

to the original GRE sequences adapted for MRE. However, the main disadvantage is that EPI sequences are

susceptible to significant distortions; the entire range of phase encoding steps are acquired in one TR (repetition

time), thus leading to a long readout time. A recent development is the so-called multi-shot multi-slab spiral

sequence that can capture MRE displacement data in a shorter scan time by using multiple 3D volumes, or

slabs, that cover the entire brain (Johnson et al 2014). Due to spiral filling of k-space, read out time is reduced,

leading to high SNR efficiency and less distortion from field inhomogeneities.

2.3 Pre-processing of phase images

Raw phase images undergo a number of processes prior to analysis, in order to remove unwanted noise contri-

butions. The amplitude of vibration must be sufficient to produce waves deep within the brain (Manduca et al

2001). However, too great an amplitude can create heavy phase wrap, particularly near the edges of the brain

due to the phase of the wave shifting by more than 2π, see Figure 3 (a-c). Several unwrapping algorithms have
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been developed each with their own strengths and weaknesses relating to delivery of the exact solution, robust-

ness to high noise, or full automation (Schofield and Zhu 2003, Herráez et al 2002, Barnhill et al 2015). Next,

the phase images are temporally Fourier transformed, to obtain the frequency domain complex displacement

field and to isolate the harmonic motion of interest. Removal of longitudinal waves is necessary as they may

also contribute to the total measured displacement field. High-pass filtering or calculating the vector curl of the

measured wave field (Sinkus et al 2005), are two common approaches to remove low-frequency bulk waves, and

leave only the remaining high-frequency shear wave contribution. Figure 3 (d-e) shows the sinusoidal change in

phase over time after phase unwrapping and high-pass filtering.

Figure 3: Phase unwrapping is a pre-requisite for all MRE phase images: a) EPI Magnitude; b) EPI raw phase
(wrapped) image; and c) Unwrapped phase image obtained using the Laplacian-Based Estimate (LBE) Algorithm
(available within PhaseTools software (Barnhill et al 2015), d) Image stack of eight phase offsets for a single
brain slice. Phase images have been unwrapped. The blue crosses show the voxel where the phase displacement
can be visualised in the corresponding graph, e) the change in phase over the eight time-steps, caused by the
applied wave propagation.

2.4 Calculating tissue mechanical properties

A number of parameters are used to characterise the mechanical properties of materials, such as the Young’s

modulus (E ), and bulk modulus (K ). The shear mechanical properties are typically measured in MRE, and

describe the strain of a material along an axis, when stressed perpendicular to that axis. Passive drivers, such

as the head-pillow actuator, are utilised to induce vibrations into the targeted tissue, causing deformation and

shear waves as a result of mode conversion and complex phenomena at boundaries and interfaces. Numerous

analysis techniques have been developed for calculating the shear mechanical properties including: Wavelength

Estimation, Direct Inversion (DI), and Non-Linear Inversion (NLI). Further processing has been performed

by utilising the DI equation across multiple frequencies to enable Rheological Modelling or Multi-Parameter

Elasto-Visco Inversion (MDEV), as described below.
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2.4.1 Wavelength Estimation

The earliest approach for analysing MRE data was the measurement of the wavelength and represents a simple

and intuitive approach to identify the elastic shear modulus G. The shear wave speed (νs) is a function of

the applied mechanical frequency (f) and the wavelength (λ), and is related to an approximated density ρ

(∼1000kg/m3) (Burlew et al 1980), and elastic shear modulus G by the following relationship:

G = ρν2
s
= ρ(λf)2 (2)

Manual measurements of the wavelength were initially made using calipers (Bensamoun et al 2006), before the

subsequent development of an automatic algorithm known as the Local Frequency Estimation (LFE) (Knutsson

et al 1994, Manduca et al 1996). The LFE algorithm uses a series of multiscale filters in order to estimate

the spatial frequency (f sp), thereby applying an image processing approach to MRE analysis: G = f2/f2
sp

.

Wavelength estimates can, however, be corrupted by the effect of dilatational waves, rigid body motion and

boundary reflections, limiting the validity of both the caliper and LFE methods.

More recently, both the elastic and viscous (i.e. viscoelastic) tissue properties have been determined by

calculating the complex shear modulus G∗, where the complex quantity G∗ can be decomposed into real and

imaginary components:

G∗ = G′ + iG′′, (3)

with G′ the real part of the shear modulus being a measure of the mechanical energy stored in the system, and

the imagninary component G′′ providing a measure of the energy dissipated. The energy lost in the material is

represented by the wave attenuation; a greater loss in wave amplitude indicating greater material viscosity (Guo

et al 2012, Posnansky et al 2012). Note that for purely elastic materials, there is no phase lag or dissipation, as

expected, and the imaginary component will be zero.

Alternatively, the magnitude |G∗| and phase angle φ of the complex modulus, or loss tangent, can be reported,

where |G∗| =
√

G′2 + G′′2 and φ = arctan (G′′/G′), respectively. The magnitude of the tissue response is the

parameter most similar to the information afforded by manual palpation (Sack et al 2013), as the total response

includes both the displacement (elasticity) and rate of displacement (viscosity). The phase angle φ is a common

measure of relative tissue viscosity, with a higher value indicating greater dissipative behaviour and a more

complex tissue network structure (Riek et al 2012). The phase angle φ is usually reported as a measure of tissue

viscosity due to the loss moduli being an order of magnitude smaller than the storage moduli, and therefore

susceptible to error and lower relative sensitivity. For a summary of MRE parameters, see Table 1.

In a visocelastic material, the shear wavespeed is affected by both elastic and viscous properties, through the

equation (Manduca et al 2001):

Gs = ρν2
s
=

2(G′2 +G′′2)

G′ +
√
(G′2 +G′′2)

(4)

In this case, the wavespeed is the undamped shear modulus, and is typically known as the shear stiffness Gs.

i.e. the effective stiffness at the actuation frequency. In order to calculate the shear stiffness, it is necessary to

obtain the complex shear measurements via the direct inversion algorithm, see section 2.4.2.

2.4.2 Single frequency Direct Inversion (DI)

An advance in MRE processing involves calculating tissue mechanical properties through the equations of mo-

tion that describe wave propagation within a medium (Oliphant et al 2001). Direct inversion (DI) involves

directly inserting the measured displacements into the appropriate wave equation governing the material, and

importantly, can include viscous, anisotropic and geometric effects. The inversion problem is complex and a

number of assumptions are required in order to reach a solution; assumptions are often employed to create a
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simple mathematical model of a tissue system. The constitutive equation of motion for a homogeneous, linear,

anisotropic, viscoelastic material relates an applied stress to the resulting strain through the expression of a rank

4 tensor with 21 independent complex quantities (Mariappan et al 2010). Making the assumption of isotropy

(i.e. tissue does not exhibit direction-dependant properties), reduces the number of independent quantities to

two: the Lamé constants λ and G. G is the proportionality constant between shear stress and shear strain and

is known as the shear modulus, and λ is a parameter related to the compressibility of the material, λ → ∞ as

a material approaches the incompressible limit. With these assumptions, the equation for harmonic motion is:

G∗∇2
u((f) + (λ+G∗)∇(∇ · u(f) = −ρω2

u(f) (5)

where u is the vector displacement field, ρ tissue density (∼1000kg/m3), ∇2 the Laplace operator, and ω the

angular frequency, ω = 2πf, where f is the applied mechanical frequency (Hz).The first Lamé parameter λ is

approximately six orders of magnitude greater than G, making the simultaneous calculation of both parameters

impractical and unnecessary - which warrant the removal of λ, as previously discussed in section 2.3. Conse-

quently, Eq 5 can be simplified to the Helmholtz equation by assuming tissue incompressibility (∇ · u(f) = 0)

- a reasonable assumption for the brain due to the large water content.

G∗∇2
u(f) = −ρω2

u(f) (6)

This equation directly relates the measured displacements to the complex shear modulus G∗ by the angular

frequency ω and the material density ρ.

The greatest practical limitation of single-frequency DI is the use of the Laplacian (2nd order derivatives),

resulting in high noise sensitivity. In addition, single frequency DI is susceptible to wave nodes, (regions without

deformation), resulting in the inability to recover elastographic signal. More generally, DI techniques assume

tissue mechanical properties are locally constant in order to simplify the equation (the so-called homogeneity

approximation), despite the brain being a heterogeneous structure with different constituents likely to possess

diverse non-linear, viscoelastic, and anisotropic mechanical properties. Attempts have been made to take first

order spatial derivatives into account in order to overcome this assumption although this approach has yet to

be applied to the brain (Sinkus et al 2010). Other studies have corrected for the isotropic assumption during

the inversion procedure after the determination of nerve fibre orientation supplied from diffusion-tensor imaging

(DTI) (Romano et al 2012, 2014).

2.4.3 Non-linear inversion using Finite-Element Models (NLI)

Finite element modelling (FEM) is a numerical method of achieving approximate solutions to problems in solid

mechanics using partial differential equations. FEM methods are known as the "forward problem", as prior

knowledge of tissue geometry, boundary conditions, and mechanical properties are needed to initially build

a model simulation (Van Houten et al 1999, McGarry et al 2012). Elastograms are generated by iteratively

updating a heterogeneous property distribution in a model of the tissue to minimise the difference between

experimentally measured and theoretically predicted data. An initially complex system is subdivided into a

collection of small overlapping subzones to reduce the computational cost. Once these subzones have been

estimated, an approximation of the overall system can be obtained from the union of all subzone solutions. The

process is complete once the calculated displacements predicted by solution of the forward problem agree suitably

with the measured displacements. FEM-based approaches have the advantage of being able to incorporate the

full equations of motion, and mechanical models such as Rayleigh damping (McGarry and Van Houten 2008,

Van Houten 2014, Van Houten et al 2011) or poroelasticity (McGarry et al 2015, Perrinez et al 2010), which

go beyond the assumptions of linear elasticity and viscoelasticity. The major limitation with NLI is the speed

of processing, which is on the order of hours. In contrast, DI can be performed within seconds and thus more
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suited to fit within a clinical radiological workflow.

Table 1: Summary of MRE parameters

MRE parameter Description

Wavelength parameters
Elastic shear modulus G Measure of tissue stiffness in an elastic material obtained

by directly measuring wavelength. Defined as the product
of wave speed squared times density. Units of kPa.

Shear stiffness Gs Determines the wavelength in a viscoelastic material. Nec-
essary to compute the complex shear modulus prior to the
shear stiffness calculation, see Eq 4. Units of kPa.

Complex shear modulus
Storage modulus G′ Real component of the complex shear modulus and a mea-

sure of the restoration of mechanical energy due to the elas-
tic properties of the material. Related to the inherent me-
chanical rigidity of the tissue matrix. Units of kPa.

Loss modulus G′′ Imaginary component of the complex shear modulus and a
measure of the energy dissipated in tissue as a result of the
mechanical friction inherent to the material. In some cases
is used as a viscosity parameter. Units of kPa.

Magnitude |G∗| Magnitude of the complex shear modulus and a measure of
the total response of tissue to harmonic vibration. Includes
both elastic and viscous information and thus may relate
to haptic distinction between stiff and soft materials. Units
of kPa.

Phase angle φ (loss tangent) Phase angle of the complex shear modulus is used to de-
scribe the dissipative behaviour of tissue determined by the
cellular network. The higher the ratio, the more viscous and
complex the tissue structure. φ is determined from arctan
G′′/G′. Units of radians.

Modelling parameters
Spring pot parameter µ Parameter of the spring-pot model reflecting both elastic

and viscous frequency-independent information. Related
to the solid-fluid behaviour of tissue, which in turn reflects
cellular strength and connectivity. Units of kPa.

Spring pot powerlaw exponent α Parameter of the spring-pot model reflecting brain tissue
geometry or structure. Has been found to correlate with the
fractal dimension (complexity) of the tissue network and
corresponds to the alignment of structural building blocks.
A dimensionless quantity.

2.4.4 Additional processing - Multi-frequency MRE

Rheological modelling

Mechanical properties derived from single wave frequency studies are a function of frequency, and therefore

bound to specific experimental conditions. An alternative analysis technique has utilised the DI equation over
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multiple vibration frequencies in order to acquire the dispersion function of the complex shear modulus in order

to improve the physical significance of MRE data (Klatt et al 2007, Sack et al 2009). Multifrequency acquisitions

have been acquired at, for example, 25, 37.5, 50 and 62.5Hz, and the dispersion of waves across this frequency

range are analysed for the ability to fit a prescribed rheological viscoelastic model. Viscoelastic models include

the Maxwell model, Kelvin-Voigt model, and the Zener model, among others (Schiessel et al 1995, Asbach et al

2008). The spring-dashpot parameter model has been determined to be the most suitable viscoelastic model for

biological tissue, in which tissue is characterised by an hierarchical arrangement of elastic springs µ and viscous

dashpots η (Sack et al 2009). While linear models do not show a power-law frequency dependence, shear moduli

data can be fitted to a fractional spring-dashpot model:

G∗ = κ(i · 2π · f)α (7)

with κ = µ(1−α)ηα yielding frequency independent elasticity µ, frequency independent viscosity η and a tissue

characterisation constant α. As µ and η are co-dependent, η is assumed constant and assigned a value of 3.7 Pa -

previously calculated as an approximate value of viscosity in human brain tissue (Klatt et al 2007). Ultimately,

two frequency-independent material parameters are reported. µ combines elasticity (stiffness) and viscosity

(friction) in one parameter to describe the solid-fluid behaviour of the tissue, and is thus a measure of adhesion

and soft tissue connectivity. The slope of the modulus dispersion is analysed to provide parameter α, which

characterises the alignment of mechanical structure-building elements in the tissue. α is known as the geometry

parameter due its correlation with the fractal dimension, indicating the sensitivity of α to material complexity

(Guo et al 2012). As a side note, α is not comparable to the loss tangent φ, which in general is frequency

dependent. However, in some complex and irregular materials, φ becomes less sensitive to frequency and thus φ

= α × π/2, may hold true (Urayama et al 2009).

Multi-frequency dual parameter Elasto-Visco Inversion (MDEV)

Another alternative and innovative MRE analysis approach is to utilise the Helmholtz equation over several

actuation frequencies and include a summation within a single inversion using an algebraic least-squares solution

related to the spring-pot model (Papazoglou et al 2012). In contrast to the above-mentioned modelling studies,

MDEV assumes, for convenience, that tissue does not exhibit frequency dependence over a small range of

frequencies. Benefits of this approach include compensation for amplitude nulls and noise by averaging the

magnitude displacements in each voxel, providing better-conditioned wave patterns for inversion (Fehlner et al

2016). MDEV reveals details of brain anatomy in a pixel-wise resolution (Guo et al 2013, Braun et al 2014),

that clearly outperforms the resolution of single-frequency DI (Sack et al 2011). MDEV, like single-frequency

based DI, however, assumes local homogeneity, and thus the quantitative performance in heterogeneous tissue is

expected to be limited. Further, since the parameters provided by MDEV are based on measurements obtained

at multiple frequencies and combined to two purportedly frequency-independent parameters, |G∗| and φ, values

are not directly comparable to those predicted by single-frequency based MRE.

2.5 Standardising results across the literature

Within and across MRE research groups, numerous parameters are used to describe the mechanical properties of

the brain. In order to provide a summary of results, it is necessary to standardise results according to a similar

parameter, which will represent the same underlying mechanical response. Shear stiffness describes the resistance

of a material to a harmonic shear stress at the given actuation frequency, and is related to the wavespeed in

a viscoelastic material with density of 1000kg/m3 (Manduca et al 2001, Johnson et al 2016). The relationship

between shear stiffness and the complex shear modulus, is defined in Eq 4, and allows for the mathematical

conversion between the two parameters. For studies that have reported modelling parameters µ and α, shear

stiffness can be calculated from the complex shear modulus data obtained at any frequency (for the purpose
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of this review, we will choose 50Hz). We have chosen to convert values to the shear stiffness, as opposed to

the magnitude of the complex modulus |G∗|, as this affords us with the most data to summarise and review.

Studies that report the shear stiffness do not usually report values for the storage and loss modulus, rendering

it impossible to calculate |G∗|. In addition, the shear stiffness describes the effective stiffness in a viscoelastic

material, and is thus comparable to data that report the elastic shear modulus G. Ultimately, the shear stiffness

and elastic shear modulus can collectively be referred to as "stiffness", and is a concept more readily understood.

Where possible, the loss tangent will also be calculated which is equal to arctan(G′′/G′), with a great angle

indicating more dissipative (i.e viscous) behaviour. These equations will later form a key part of this review,

enabling the standardisation of results obtained across the literature. After searching for the relevant literature,

we will use this concept to standardise results obtained for global brain tissue, grey and white matter.

3 Searching the literature

Relevant publications were found by searching three electronic databases. Inclusion and exclusion criteria were

applied to identify studies with insufficient relevance to the review question before full texts were read and

labelled. Our full strategy for identifying the relevant literature can be found in Appendix 1.

3.1 Studies identified

Forty-one studies referring to MRE investigations performed in a total of 914 subjects met the inclusion criteria.

The corresponding authors represented MRE research groups in four different countries: USA, Germany, Aus-

tralia, and China. All studies that have been identified in this review are listed in Table 2. Twenty-four studies

utilised MRE in the study of healthy participants (page 1), and seventeen studies investigated neurological dis-

orders in patient populations (page 2). Ten of the seventeen clinical studies included a control group of healthy

participants.
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Table 2: The forty-one studies identified which have investigated the mechanical properties of the human brain using MRE.

Author Brain structure Population N Age range

Klatt et al (2007) GBT Controls 5 25-46
Sack et al (2008) GBT Controls 6 34.5*
Sack et al (2009) GBT Controls 55 18-88
Weaver et al (2012) GBT Controls 6 22-55
Hatt et al (2015) GBT Controls 9 32.6*
Dittmann et al (2015) GBT Controls 8 25-54
Sack et al (2011) GBT & inner, cortical, frontal, dorsal regions Controls 66 18-72
Murphy et al (2013b) GBT & frontal, occipital, parietal, temporal lobes,

cerebellum, deep GM/WM
Controls 10 23-55

Arani et al (2015) GBT & frontal, occipital, parietal, temporal lobes,
cerebellum, deep GM/WM

Controls 45 56-89

McCracken et al (2005) GM & WM Controls 6 n/a
Xu et al (2007b) GM & WM Controls 3 28-32
Green et al (2008) GM & WM Controls 5 23-61
Kruse et al (2008) GM & WM Controls 25 23-79
Clayton et al (2012) GM & WM Controls 6 19-42
Johnson et al (2013b) GM & WM Controls 3 24-52
Braun et al (2014) GM & WM Controls 5 26-55
Zhang et al (2011) GM & WM & cerebellum Controls 8 22-43
Johnson et al (2013a) GM & WM, corpus callosum, corona radiata Controls 6 24-52
Johnson et al (2014) GM & WM, brain stem, cerebellum Controls 3 26-38
Romano et al (2012) Corticospinal tract Controls 5 25-50
Guo et al (2013) WM, thalamus, corpus callosum genu, caudate nu-

cleus
Controls 23 22-72

Fehlner et al (2015) Crus cerebri, capsula interna, pons Controls 12 27-54
Johnson et al (2016) Amygdala, hippocampus, putamen, caudate, pal-

lidum, thalamus
Controls 28 18-33

Schwarb et al (2016) Hippocampus, parahippocampal gyrus, entorhinal
cortex

Controls 20 18-33

GBT= Global Brain Tissue, WM = White Matter, GM= Grey Matter, TR= Tumour Region, HRT = Healthy Reference Tissue. *Mean age of subjects.
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Author Disorder Brain structure Population N Age range

Xu et al (2007a) Intracranial tumours (various) GBT Patients 6 16-63
Murphy et al (2013a) Meningioma TR Patients 12 n/a
Simon et al (2013) Intracranical tumours (various) TR, HRT Patients 16 26-78
Reiss-Zimmermann et al (2014) Intracranical tumours (various) TR, HRT Patients 27 36-86
Streitberger et al (2014b) Glioblastoma Multiforme TR, HRT Patients 22 64.5*
Hughes et al (2015) Meningioma TR Patients 14 59*

Wuerfel et al (2010) Multiple sclerosis (Relapse-Remitting) GBT Patients 45 21-51
Controls 34 18-59

Murphy et al (2011) Alzheimer’s disease GBT Patients 7 76-94
Controls 14 75-89

Streitberger et al (2010) Normal Pressure Hydrocephalus GBT Patients 20 69.1*
Controls 25 62.1*

Freimann et al (2012) Normal Pressure Hydrocephalus GBT Patients 20 51-85
(pre/post shunt)

Streitberger et al (2012) Multiple sclerosis (Chronic-Progressive) GBT Patients 23 51.5*
Controls 38 48*

Lipp et al (2013) Parkinson’s disease & Progressive GBT, basal ganglia PD Patients 18 63*
Supra-nuclear Palsy PSP Patients 16 70*

Controls 18 64*

Romano et al (2014) Amyotropic lateral sclerosis Corticospinal tract Patients 14 46-70
Controls 14 45-69

Huston et al (2015) Fronto-temporal dementia GBT, frontal, occipital, parietal Patients 5 53-65
temporal lobes, cerebellum, deep
GM/WM, sensory/motor strip

Controls 9 55-66

Fattahi et al (2015) Normal Pressure Hydrocephalus GBT, frontal, occipital, parietal Patients 10 67-79
temporal lobes, cerebellum, deep
GM/WM

Controls 21 67-80

Fehlner et al (2016) Clinically Isolated Syndrome GBT, WM Patients 17 22-47
Controls 33 18-53

Murphy et al (2016) Alzheimer’s disease & GBT, frontal, occipital, parietal AD patients 8 n/a
Mild Cognitive Impairment (MCI) temporal lobes, cerebellum, deep MCI patients 8 n/a

GM/WM, sensory/motor, FPT CN + controls 16 n/a
CN - controls 16 n/a

15



4 Results of MRE studies of the Brain in Healthy Subjects

This section of the review focuses on the results obtained from MRE studies of the human brain in healthy

participants. We will report brain mechanical properties using common parameters of shear stiffness and loss

tangent, representing tissue stiffness and relative viscosity, respectively, to standardise results among different

research groups. We will first review studies that have reported the mechanical properties of the brain as a

whole, henceforth referred to as global brain tissue (GBT). Second, we will report the findings from studies that

have measured both grey matter (GM) and white matter (WM) as separate compartments. Finally, we will

review the results from studies to have provided stiffness measurements for a range of neuroanatomical regions.

4.1 MRE results for Global Brain Tissue (GBT)

MRE values for GBT in healthy subjects have been reported in 13 studies, and converted to shear stiffness

(kPa) and loss tangent (rad), where possible, see Table 3. Values for the shear stiffness range between 0.62kPa -

2.99kPa, see Figure 4(a), and loss tangent varies between 0.09 rad - 0.70 rad, see Figure 4(b). For the 5 studies

conducted using a actuation frequency of 50Hz, mean shear stiffness and loss tangent is 2.07kPa ± 0.42kPa and

0.41 rad ± 0.06 rad, respectively, representing data from 198 participants.

To investigate the effect of frequency on shear stiffness, the mean values from all studies was averaged at each

frequency, and calculated from spring-pot studies at all four frequencies (25, 37.5, 50 and 62.5Hz). A simple

linear regression analysis was performed to determine the relationship between shear stiffness and actuation fre-

quency for GBT in healthy participants. A significant regression equation was found (F(1, 4) = 15.31, p = 0.02,

with an R2 of 0.793. Participants’ predicted shear stiffness is equal to 0.443 + 0.035 (frequency) (kPa) when fre-

quency is measured in Hz, equating to an increase in brain stiffness of 0.4kPa for each 10Hz increase in frequency.

Table 3: MRE results for GBT in healthy participants.

Author N Inversion f in Hz Shear stiffness
(kPa)

Loss tangent
(rad)

Dittmann et al (2015) 8 MDEV 10, 15, 20 0.62 ± 0.08 0.09 ± 0.17
10, 20, 30, 40, 50 1.38 ± 0.20 0.24 ± 0.10

Fehlner et al (2016) 33 MDEV 30, 35, 40, 45,
50, 55, 60 1.62 ± 0.18 0.61 ± 0.04

Hatt et al (2015) 9 DI 30 1.03 ± 0.09 0.70 ± 0.21
Sack et al (2009) 55 MF-SP 50 1.69 ± 0.26 0.38 ± 0.06
*Wuerfel et al (2010) 34 MF-SP 50 1.82 ± 0.22 0.38 ± 0.08
*Streitberger et al (2010) 25 MF-SP 50 2.30 ± 0.30 0.47 ± 0.12
Sack et al (2011) 66 MF-SP 50 2.52 ± 0.32 0.47 ± 0.07
*Lipp et al (2013) 18 DI 50 2.05 ± 0.19 0.26 ± 0.04
Murphy et al (2013b) 10 DI 60 2.99 ± 0.02 n/a
Arani et al (2015) 45 DI 60 2.59 ± 0.10 n/a
*Huston et al (2015) 9 DI 60 2.76 ± 0.08 n/a
*Fattahi et al (2015) 21 DI 60 2.55 ± 0.11 n/a
*Murphy et al (2016) 32 DI 60 2.51 ± 0.09 n/a

Values show mean ± standard deviation (SD). *Control data from clinical studies. n/a = not available.
Published values can be found in Appendix 2 - Table 1

4.2 Grey and white matter results

A total of 10 studies have reported the mechanical properties of both GM and WM. We will report quantitative

data from 8 of the 10 studies, see Table 4. Exclusion for two studies is due to one study providing a qualitative
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Figure 4: a) Shear
stiffness (kPa) and
b) loss tangent (rad)
of global brain tissue
(GBT) in healthy
participants. Val-
ues show mean and
standard deviation
(SD). First x-axis
displays the actuation
frequency f, secondary
axis displays study
reference

analysis of wave propagation (Xu et al 2007b), whereas data from only 1 subject is provided in the other (Johnson

et al 2014).

Nine out of the 10 studies reported WM to be stiffer than GM, with 6 of these studies finding a statistically

significant difference. One study reported that GM was stiffer than WM (Green et al 2008). Shear stiffness

values for GM range between GM 1.13kPa - 5.30kPa, and for WM 1.43kPa - 13.60kPa, see Figure 5(a). WM

was found to be more viscous than GM in all studies, as demonstrated by the loss tangent, see Figure 5(b). The

loss tangent for GM range between 0.37 rad - 0.95 rad, and 0.47 rad - 1.03 rad for WM.
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Table 4: MRE studies investigating grey matter (GM) and white matter (WM) in healthy participants.

Author N Approach f in Hz GM WM
Shear stiffness
(kPa)

Loss tangent
(rad)

Shear stiffness
(kPa)

Loss tangent
(rad)

Braun et al (2014) 5 MDEV 30, 40,
50, 60

0.98 ± 0.25 0.95 ± 0.03 1.16 ± 0.29 1.03 ± 0.04

Johnson et al (2013a) 3 NLI 50 2.01 ± 0.08 0.37 ± 0.18 2.86 ± 0.13 0.46 ± 0.15
Johnson et al (2013b) 7 NLI 50 2.41 ± 0.19 0.48 ± 0.17 3.30 ± 0.35 0.52 ± 0.20
Clayton et al (2012) 5 LFE 60 3.77 ± 0.50 0.50 ± 0.27 4.16 ± 0.17 0.54 ± 0.08
McCracken et al (2005) 6 DI 80 5.30 ± 1.30 n/a 10.70 ± 1.40 n/a
Zhang et al (2011) 8 DI 80 2.72 ± 0.22 0.44 ± 0.14 2.85 ± 0.36 0.47 ± 0.28
Green et al (2008) 5 DI 90 4.48 ± 0.31 0.68 ± 0.10 4.24 ± 0.31 0.75 ± 0.10
Kruse et al (2008) 25 LFE 100 5.22 ± 1.15 n/a 13.60 ± 3.19 n/a

Values show mean ± standard deviation (SD). n/a = not available.
Published values for each study can be found in Appendix 2 - Table 2.

Figure 5: a) Shear
stiffness (kPa), and
b) loss tangent (rad),
of GM and WM in
healthy participants,
showing mean ±
standard deviation
(SD). First x-axis
displays the actuation
frequency f, secondary
axis displays study
reference.
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4.3 Towards a measure of regional neuroanatomy

The mechanical properties of various brain regions have been investigated in a number of recent studies (Guo

et al 2013, Murphy et al 2013b, Arani et al 2015, Huston et al 2015, Johnson et al 2013a, 2016). In studies

characterising lobes of the brain, all were in agreement that the stiffest region of the brain was the deep GM/WM

- categorised by the authors as a composite region containing structures such as the thalamus, hypothalamus,

and subthalamus (Murphy et al 2013b, Arani et al 2015, Huston et al 2015, Murphy et al 2016), see Table 5.

and Figure 6. This agrees with findings by Johnson et al. that showed deep WM tracts (Johnson et al 2013a),

and subcortical GM structures (Johnson et al 2016) were stiffer than general cerebral tissue. In contrast, the

cerebellum was found to be the softest region investigated, supporting findings from (Zhang et al 2011) who

found both GM and WM of the cerebellum to be softer than the corresponding compartments of the cerebrum.

Table 5: MRE studies investigating brain regions in healthy participants

Study Author Murphy et al (2013b) Huston et al (2015) Arani et al (2015) Murphy et al (2016)

N 10 9 45 32
Mean age 23-55 61 74 n/a
Frontal Lobe 3.15 ± 0.04 2.95 ± 0.10 2.70 ± 0.02 2.65 ± 0.15
Temporal Lobe 3.17 ± 0.04 3.00 ± 0.13 2.80 ± 0.02 2.69 ± 0.11
Occipital Lobe 3.21 ± 0.04 2.92 ± 0.09 2.80 ± 0.03 2.65 ± 0.13
Parietal Lobe 2.87 ± 0.03 2.70 ± 0.08 2.60 ± 0.02 2.42 ± 0.10
Deep GM/WM 3.41 ± 0.07 3.12 ± 0.33 3.00 ± 0.02 2.79 ± 0.25
Cerebellum 2.38 ± 0.03 2.36 ± 0.16 2.20 ± 0.02 2.15 ± 0.11
Sensory-motor n/a 2.99 ± 0.18 2.80 ± 0.03 2.82 ± 0.29

Values show mean shear stiffness (kPa) ± standard deviation (SD). n/a = not available.

Figure 6: Regional shear stiffness (kPa) values in healthy participants.

Mechanical properties of a number of neuroanatomical structures have been measured, a full summary of

which goes beyond the scope of this review. Using multifrequency MRE and MDEV inversion, Guo et al (2013)

found decreasing |G∗| values in the order of WM, corpus callosum genu, thalamus, and the head of the caudate

nucleus. Johnson et al (2013a) used their multi-shot multi slab sequence with non-linear FEM, and found WM

to be softer, as determined by G′, than either the corpus callosum or the corona radiata, whereas the corpus
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callosum exhibited a higher stiffness and lower viscous damping, represented by G′′, compared to the corona

radiata. Using waveguide elastography, the corticospinal tract (CST) was found to be approximately twice as

stiff as WM (Romano et al 2012). The development of a new remote driver was tested by Fehlner et al (2015),

using MDEV between the frequency range 25-45Hz. An increase in |G∗| was revealed within the CST in the the

cranial-caudal direction from the capsula interna (CI) to the crus cerebri (CC), whereas the pons was softer than

both the CI and CC. The fibres in the superior region of the CST (CC) showed greater dissipative behaviour,

as determined by φ, followed by the CI and pons, respectively. Johnson et al (2014) reported higher values for

the storage modulus G′ within the brainstem, compared to cerebral or cerebellar tissue. Finally, Johnson et al

(2016) found the putamen to be the stiffest and out of seven subcortical GM structures investigated, whereas

the hippocampus was the softest - albeit still stiffer than general brain tissue.

5 MRE Results from Clinical Studies

MRE has been used to investigate brain mechanical properties in a wide range of neurological disorders. These

include focal intracranial tumours (ICT), as well as diffuse diseases such as Alzheimer’s disease (AD) and

Multiple Sclerosis (MS). In the previous section, output parameters for GBT, GM and WM were converted,

where possible, to measures of shear stiffness and loss tangent φ. In the following review of findings from clinical

studies, the original MRE parameters will be maintained in order to report consistent changes according to the

published findings. Although not directly comparable, shear stiffness, |G∗| and µ are all similar in meaning,

referring to stiffness or cellular strength, whereas both φ and α relate to the dissipative behaviour of tissue, or

complexity of the tissue network.

5.1 Focal diseases

MRE has been used as an investigative tool to study the mechanical properties of various intracranial tumours

that span the full spectrum of gradings determined by the World Health Organization (WHO), such as menin-

gioma and glioblastoma multiforme (GBM). MRE investigations into brain tumours can be generally grouped

into two categories, (i) studies of the concordance between MRE results and in vivo surgical manual palpation,

or (ii) studies of the sensitivity or specificity of MRE for the differential diagnosis of intracranial tumours.

5.1.1 (i) Concordance between MRE results and manual palpation

Knowledge of the consistency of brain tumours prior to surgical resection, could assist surgeons in preoperative

planning, improving both patient care and work-flow optimisation. Differentiation of brain tumours from healthy

tissue, during surgical resection is, for the most part, based on their differing mechanical properties. Dissection

of stiff, fibrous tumours are typically more difficult and present an increased risk to the patient, whereas soft

tumours are usually more easily removed with minimally invasive procedure (Murphy et al 2013a). Three studies

have obtained MRE measurements in patients prior to surgery, and have subsequently compared results with

the surgeon’s manual assessment, in order to assess the ability of MRE to accurately predict tumour stiffness,

and hence procedural difficulty (Xu et al 2007a, Murphy et al 2013a, Hughes et al 2015).

The relationship between MRE results and brain palpation was first assessed by Xu et al (2007a) in 6

patients with diverse tumour classifications. A visual inspection of the wave propagation was correlated with the

intraoperative assessment of tumour consistency determined by the neurosurgeon during the tumour resection.

Blinded to the MRE results, the surgeon evaluated the tumour consistency as either soft (softer than white

matter), intermediate (similar to white matter), or hard (stiffer than white matter). MRE was 100% accurate

at predicting tumour stiffness as decided by the surgeon. Similarly, Murphy et al (2013a). assessed 12 patients

with Meningioma, typically a benign lesion that arises from the meninges. A quantitative analysis of tumour

shear stiffness was used to determine statistical significance. Tumour stiffness determined with MRE significantly
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correlated with the surgeon’s assessment, however an even greater correlation was found when the ratio of tumour

stiffness to the surrounding brain tissue was measured (p = 0.0032).

Furthermore, a higher resolution MRE protocol was developed and used to assess whether MRE could

preoperatively detect intratumoural heterogeneity present within Meningiomas (Hughes et al 2015). Data were

obtained and analysed to measure heterogeneity for a ROI within the tumour mass. Intraoperative observations

regarding softness or hardness were graded on a 5-point scale based on the degree of suction, ultrasonic aspiration,

or scissors and cautery. In 15 patients, MRE measurements and intraoperative findings correlated in 67% of

tumours (p = 0.02), with the correlation perhaps greater if highly vascular or smaller lesions had been excluded.

5.1.2 (ii) MRE for the differential diagnosis of intracranial tumours

MRE has also been investigated as a technique to diagnose the type, grade and malignancy of tumours, as a

possible alternative to routine biopsy procedures used for histological classification. Simon et al (2013) analysed

a broad range of tumours in 16 patients, including those with meningioma, malignant glioma, anaplastic astro-

cytoma, and glioblastoma multiforme, among other tumour entities. Using multifrequency MRE and MDEV

inversion, malignant tumours presented with a loss of |G∗|, when compared to a selected contralateral region of

normal appearing white matter (NAWM). Primary brain tumours of the highest malignancy (WHO IV) were

more likely to yield soft tissue results, presenting between 33.6 - 52% softer than NAWM. In addition, the

majority of tumours displayed a reduction in the loss tangent φ.

A further pilot study which incorporated MDEV inversion, allowed for high-resolution imaging of the vis-

coelastic properties of a range of tumours in 27 patients (Reiss-Zimmermann et al 2014). Supporting findings

from Simon et al (2013), high grade tumours (WHO Grade IV) were more likely to be softer, as determined by

|G∗|, and less viscous than those identified as Grade I, II or III. Furthermore, meningioma tumours (Grade I),

were on average much stiffer and displayed higher dissipative behaviour than other tumour entities. See Figure

7 for example elastograms of a low grade meningioma (Grade I), and high grade Glioma (Grade IV).

The same protocol was used to assess the mechanical properties of Glioblastoma Multiforme (GBM), a WHO

Grade IV tumour (Streitberger et al 2014b). Results from 22 subjects are provided in Table 6, for both tumour

region and normal appearing white matter (NAWM). GBM was generally softer than healthy tissue, however,

23% of tumours were found to be stiffer than healthy tissue, supporting evidence of high intratumoural variability

(Patel et al 2014). There was a significant reduction in φ in all patients.

Table 6: MRE results for Glioblastoma Multiforme (GBM) and normal appearing white matter (NAWM).

NAWM GBM ROI % difference p value

|G∗| (kPa) 1.54 ± 0.27 1.32 ± 0.26 -14.29% <.001
φ (rad) 0.58 ± 0.07 0.37 ± 0.08 -36.21% <.001

Study by Streitberger et al (2014b). Values show means ± standard deviation.

5.2 Diffuse diseases

i) Multiple Sclerosis (MS) - MS is a demyelinating disease in which the insulating covers (myelin) of nerve cells

in the brain and spinal cord become damaged, with symptoms determined by the location of lesions within white

matter. Two studies have used multifrequency MRE and rheological modelling to investigate whether MRE is

sensitive to detect known microstructural alterations to the brain in MS. First, Wuerfel et al (2010) reported that

patients with relapsing-remitting MS (MS-RR) displayed a 13% decrease in µ, (p < .001), with no significant

changes to α. Second, Streitberger et al (2012) found patients with primary or secondary chronic progressive

MS (MS-CP), to exhibit a more pronounced reduction in µ (20%) in addition to a significant reduction in α

(6%), both (p < .001), as shown in Table 7.
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Figure 7: (a-d) MRI and MRE data from 59 year old female with meningioma. a) Axial T2-weighted, and
b) T1-weighted image demonstrating the tumour and associated edema, c) wave image shows longer wavelength
throughout the tumour, d) elastogram shows the tumour to be substantially stiffer, whereas edema is softer, in
relation to unaffected tissue. (e-h) Data from 39 year old male with a glioma (grade IV). e) T2-weighted and,
f) T1 weighted MRI showing the tumour mass, g) wave image displays shorter wavelengths in the tumour, f)
elastogram showing the tumour to be softer compared to unaffected brain tissue. Note: elastograms were produced
using a direct inversion algorithm at 60Hz.

Table 7: MRE results for Global Brain Tissue (GBT) in MS patients and control participants.

Subtype MS-RR MS-CP
Author Wuerfel et al (2010) Streitberger et al (2012)

Patients Controls % difference Patients Controls % difference

N 45 23 - 34 38 -
µ 1.87 ± 0.25 2.14 ± 0.31 -12.7% 2.61 ± 0.48 3.28 ± 0.31 -20.5%
α 0.27 ± 0.01 0.27 ± 0.01 0.3% 0.28 ± 0.01 0.29 ± 0.01 -6.1%

Values represent mean ± standard deviation (SD).

Clinically Isolated Syndrome (CIS) is an individual’s first episode of neurological symptoms, and may be

seen as the precursor to MS due to conversion in 60% of all cases (Alroughani et al 2012). CIS diagnosis requires

symptoms to last at least 24 hours and to be caused by inflammation or demyelination in the central nervous

system (CNS). Commonly affected brain regions include the optic nerve, spinal cord, brainstem, cerebellum and

the cerebral hemispheres. Recent research using higher-resolution MDEV-inversion-based multifrequency MRE,

reported a 14% reduction in WM stiffness, as characterised by |G∗|, in 17 patients compared to 33 healthy control

participants (p < .001) (Fehlner et al 2015). No significant differences in any MRE parameter were found in

retrospective analyses between patients who developed MS and those who remained CIS.

22



ii) Alzheimer’s disease (AD) - AD is a progressive impairment of cognitive function, typically beginning with

episodic memory, and is characterised pathologically by extracellular amyloid plaques and intracellular neurofib-

rillary tangles (McKhann et al 1984). Murphy et al (2011) found that the stiffness of global brain tissue was

decreased in patients with AD compared to age-matched healthy control subjects both with (HC+) and without

(HC-) significant brain amyloid load, see Table 8. More recently, Murphy et al (2016) measured the relationship

between brain stiffness and severity of AD pathophysiology with 4 groups of subjects including HC-, HC+,

MCI (Mild Cognitive Impairment (MCI) and AD. Using the regional MRE processing pipeline, as described in

Murphy et al (2013b),brain stiffness decreased with increasing AD severity, as determined by existing imaging

biomarkers such as hippocampal volume and amyloid load (PIB-SUVR). An optimised meta-region of interest

including the frontal, parietal and temporal (FPT) lobes; regions known to be affected by the disease, outper-

formed all other regions for discriminating between AD patients and healthy control subjects.

iii) Fronto-temporal dementia (FTD) - The behavioural-variant of FTD, (bvFTD), is characterized by prominent

changes in personality, interpersonal relationships and conduct, and predominantly involves progressive neuronal

loss in the frontal and/or temporal lobes. Specific regions of interest (ROIs) were investigated with MRE due to

the well-known localised origin of pathology (Huston et al 2015). Using the regional MRE processing pipeline, a

specific pattern of brain softening was found in patients with bvFTD in comparison to age matched cognitively

healthy participants. A 6.5% decrease was detected in global brain tissue, (p < .01), in addition to a 8.5% and

9% decrease in both the frontal lobe (p < .001), and temporal lobes (p < .005), respectively. No significant

differences were found between groups for either the occipital or parietal lobes, deep grey/white matter, cere-

bellum or the sensory/motor region.

Table 8: MRE results for Global Brain Tissue (GBT) in patients with AD, FTD, and control participants.

Author Population N Mean age Shear stiffness (kPa) % difference

Murphy et al (2011) AD patients 7 85 2.20 ± 0.13 - 7.20%
HC- 14 81.5 2.37 ± 0.12 -
HC+ 7 83 2.32 ± 0.13 - 5.50%

Huston et al (2015) bvFTD patients 5 60 2.59 ± 0.17 - 6.50%
HC 9 61 2.76 ± 0.08 -

% difference refers to differences between groups of patients and healthy controls in the same study. Values show mean
± standard deviation (SD).

iv) Normal Pressure Hydrocephalus (NPH) - NPH is a reversible neurological disorder that presents with a triad

of clinical symptoms namely, an unusual gait, symptomatic dementia and urinary incontinence. Typical MRI

findings are enlargement of the ventricles, while the onset has been attributed to transient intracranial pressure

peaks, causing chronic mechanical stress on the ventricular wall. Streitberger et al (2010) were the first to study

NPH patients with MRE, in order to elucidate whether mechanical changes to brain tissue may play a potential

role in the aetiology of the disorder. Assessment of a 2cm slab of brain tissue, centred through the ventricular

region, found µ to be 25% lower in NPH patients, compared to healthy control participants. There was also a

significant reduction in α, on the order of 10%, (both p < .001), see Table 9.

A surgical procedure to relieve some of the symptoms of NPH includes the placement of a ventriculoperitoneal

(VP) shunt within the ventricles to drain excess cerebrospinal fluid (CSF). MRE was performed on NPH patients

before and after shunt placement to determine the efficacy of treatment and assess mechanical alternations as

a result of the intervention (Freimann et al 2012). Prior to surgery, a reduction in both µ and α was found by

27% and 10%, respectively, compared to healthy control data taken from Streitberger et al (2010), (both p <

.001). Post-shunt surgery, patients did not exhibit any changes to µ, with data collected on average 3 months

later. However, results for α normalised and returned within 3% of values found for healthy control subjects, (p
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Table 9: MRE results for Global Brain Tissue (GBT) in NPH patients and control participants.

N µ % difference α % difference

Streitberger et al (2010)
Healthy Controls 25 2.84 ± 0.088 - 0.287 ± 0.002 -
NPH Patients 20 2.27 ± 0.054 -25.1% 0.262 ± 0.002 -9.5%

Freimann et al (2012)
NPH Patients pre-shunt 20 2.24 ± 0.085 -26.8% 0.258 ± 0.003 -10%
NPH Patients post-shunt 20 2.26 ± 0.092 -25.7% 0.279 ± 0.002 -3%

% difference refers to differences between both groups of patients and healthy controls. Values show mean ± standard
error (SE).

< .001). More recently, Fattahi et al (2015) have investigated specific regions of interest (ROIs) in the brain of

NPH patients. In contrast to findings from Streitberger et al (2010) and Freimann et al (2012), patients with

NPH were found to exhibit an increase to the brain’s shear stiffness, when compared to data collected from

age-and-gender-matched controls. An increase in stiffness was apparent in GBT (3.9%), occipital lobe (12%),

partietal lobe (12.6%) and temporal lobe (2.6%). No significant differences were found in either the frontal lobe,

cerebellum, or deep grey and white matter.

v) Parkinson’s disease (PD) and Progressive Supranuclear Palsy (PSP) - PD is characterised by death of

dopaminergic neurons in the substantia nigra, which forms part of the basal ganglia, causing tremor, gait

difficulty and rigidity. Patients with PSP also display a progressive deterioration in motor function, but pathol-

ogy instead involves the widespread degeneration of specific axons, particularly in the brainstem, cerebral cortex

and basal ganglia. PSP is frequently misdiagnosed as PD because of the shared clinical manifestations, and

so therefore MRE was used to to eludicate alternative mechanical profiles to aid in differential diagnosis (Lipp

et al 2013). Both a 3D direct inversion approach of a volumetric slab of brain tissue, and 2D multi-frequency

springpot analysis to model a single image slice, offered enhanced sensitivity to assess regional brain changes in

addition to modelling the frequency-independent material properties. Results for GBT are given in Table 10,

with no significant differences found between PD patients and healthy control participants. In PSP, |G∗|, φ,

µ, α were all reduced for GBT, with µ in particular, undergoing the most statistically significant change, (p <

.001). Regional analysis of the basal ganglia region in patients with PD detected a significant loss of |G∗| and α

in the lentiform nucleus by 6.9% and -7.4%, respectively, (p < .05), with PSP patients displaying even greater

losses in all four assessed parameters.

Table 10: MRE results for GBT in patients with PD, PSP and control participants.

Subtype PD PSP

Controls Patients % difference Patients % difference

N 18 18 - 16 -
|G∗| 1.97 ± 0.042 1.88 ± 0.061 n.s 1.68 ± 0.043 -10.6%
φ 0.26 ± 0.009 0.22 ± 0.016 n.s 0.17 ± 0.018 -34.6%
µ 2.79 ± 0.071 3.04 ± 0.191 n.s 1.98 ± 0.126 -28.8%
α 0.30 ± 0.002 0.30 ± 0.005 n.s 0.29 ± 0.003 -4.9%

% difference refers to differences between both groups of patients and healthy controls. Values represent mean and
standard deviation (SD) (Lipp et al 2013).
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vi) Amyotrophic Lateral Sclerosis (ALS) - The corticospinal tract (CST) consists of nerve fibres that travel from

the cerebral cortex and terminate in the spinal cord. Degeneration of the CST has been implicated in ALS,

causing progressive and irreversible loss of motor function. Due to the highly anisotropic properties of these

fibres, an innovative approach for measuring the mechanical properties of this structure combines the use of MRE

with Diffusion Tensor Imaging (DTI), and anisotropic equations of motion (Romano et al 2012) - a technique

known as Waveguide Elastography (WGE). In particular, DTI was used to locate fibre pathways, before the

application of spatial-spectral filtering to identify waves that are travelling in a specific direction relative to the

fibre orientation. Clinically, this method has been used to assess the stiffness of the CST in 14 patients with

ALS in comparison to 14 age-matched healthy controls (Romano et al 2014). Analysis of shear waves identified

propagating parallel to the principal direction of nerve fibres in the CST, revealed a 5.3% decrease in the shear

stiffness in the patient cohort, indicating a significant softening along this tract, (p < .01).

6 Discussion

In this review article, we have provided a comprehensive description of the acquisition and analysis methods

used in a brain MRE investigation. Second, results for Global Brain Tissue (GBT), Grey Matter (GM) and

White Matter (WM) have been standardised and summarised for healthy volunteers. Significantly, we show the

ability of MRE to detect changes to the brain in patients with a wide range of focal and diffuse neurological

disorders. In the following section, we will describe how these findings relate to neuroanatomy, and suggest

explanations for anomalies found within the literature. In addition, we will review the implications of clinical

findings and how MRE results may relate to pathophysiology. Finally, we will discuss the research that is ongoing

to further develop the MRE acquisition and analysis technique and discuss the potential applications of MRE

within neuroscience.

Summary of results from healthy participants

Comparing mechanical property measurements across different studies and research groups is often cumbersome,

due to the reporting of a wide-range of MRE-derived variables. Conducting a systematic literature search allowed

us to obtain a comprehensive list of brain MRE results. Through the conversion of values to common parameters

of shear stiffness and loss tangent, we have standardised the mean values obtained for healthy volunteers, in

order to provide reference values for GBT, GM and WM, see Table 3 and Table 4, respectively. We should,

however, mention that subject age is also likely to contribute to variations to mechanical properties, as reported

in a number of studies (Sack et al 2009, 2011, Arani et al 2015). For the purpose of this review, we have instead

focused on the effect of mechanical frequency on MRE measurements, as frequency is likely to be more influential

on the variation in results apparent across the literature.

Shear stiffness values for GBT range between 0.62 - 3.70kPa, with a mean value of 2.07kPa at 50Hz. Lower

stiffness values are apparent at lower frequencies, which can be attributed to the fact that biological tissue

exhibits a frequency-dependent response (Szabo and Wu 2000). We have therefore quantified the change in

brain stiffness due to the mechanical frequency. On average, we find that with every 10Hz increase in frequency,

there is a 0.4kPa increase in shear stiffness. Studies that employ alternative frequencies should bear this in mind

when making comparisons with other research groups.

Calculation of the loss tangent φ for GBT was possible in 6 studies, where values range between 0.09rad

- 0.70rad. At 50Hz, the mean value is 0.41rad. There is clearly a wide disparity in values, which may be

attributed to variation in frequency and MRE methodology. For example, Dittmann et al (2015) used low

frequencies for MDEV inversion (10-20Hz) and a revised calculation of φ to account for systemic noise bias and

tissue heterogeneities. The new calculation of φ was 0.09rad, and the authors suggest that previous work from

their group may have provided values that were overestimated (Braun et al 2014, Guo et al 2012).

Nine out of 10 studies report that WM is stiffer than GM. This difference is interpreted to be due to the
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fact that WM primarily consists of tightly aligned myelinated highly orientated axons, whereas grey matter is

largely composed of cell bodies, unmyelinated axons and neuroglia (Holland et al 2015). Green et al (2008)

was the sole study to report that GM is stiffer than WM. Potential explanations for this anomaly include the

utilisation of a bite-bar actuator, which may not be effective at transmitting waves into the very centre of the

brain, with low motion affecting SNR and resulting measurements. Interestingly, it has been suggested that cell

body density has a larger impact on local tissue stiffness than cell stiffness itself (Koser et al 2015). The fact

that MRE reports greater WM stiffness is not surprising as WM fibres are dense and compact. In contrast, GM

has been found to be stiffer than WM on an individual cell level (Lu et al 2006). GM contains more (stiffer)

neuronal cell bodies that WM, whereas WM is dominated by softer neuronal and glial cell processes; thus on

alternative scales, mechanical properties of tissue may vary.

We find the shear stiffness of GM to range between 1.03kPa - 5.30kPa, and between 1.27kPa - 13.60kPa for

WM. At 50Hz, mean GM stiffness is 2.29kPa and WM stiffness is 3.21kPa, equating to WM being approximately

40% stiffer than GM. Appreciably higher shear stiffness values were obtained by Kruse et al (2008) compared to

all other studies, even when taking into consideration the higher mechanical frequency of 100Hz. Stiffness of GM

was 5.22kPa and 13.60kPa for WM. The higher measurements have been attributed to the 2D LFE inversion

technique, which may not have been optimised to minimize through-plane wave propagation. Through-plane

propagating waves can appear in 2D data as waves with longer wavelengths, thus overestimating tissue stiffness

(Murphy et al 2011). Furthermore, lower shear stiffness values are notable in a study by Braun et al (2014), who

utilised multifrequency MRE and MDEV inversion. Stiffness of GM was 0.98kPa and 1.16kPa for WM. Direct

comparison of values with the shear stiffness reported by other groups is not possible because of the inherent

frequency averaging implied by MDEV inversion, and greater contribution of the lower frequency images due to

naturally higher amplitudes (Guo et al 2013). This study also utilised an MRI scanner at 7T. Field-strength per

se is not expected to influence MRE measurements (Hamhaber et al 2007), however, improved image resolution

may improve the ability for MRE to detect fine features and thus alter the sinusoidal wave profile.

Storage and loss moduli were provided for GM and WM in 6 out of the 10 studies, enabling the calculation

of the loss tangent. GM was less viscous than WM in all of the studies identified, with GM results ranging

between 0.37rad - 0.95rad, and WM values ranging between 0.46rad - 1.03rad. Higher WM viscosity, relative

to GM, indicates that the microstructure of WM has a highly complex structure and supports recent in vitro

findings that measured both stress relaxation and relaxation times in both types of tissue (Budday et al 2015).

In addition, higher WM viscosity is also consistent with the microstructural architecture of GM and WM, and

found to reflect the network properties of WM found at the macromolecular level (Franceschini et al 2006).

Particularly high values for the loss tangent are evident in Braun et al (2014), with 0.95rad for GM and 1.03rad

for WM. As previously mentioned, these values are likely to have been overestimated due to systemic noise

bias; subsequent work has focused on the recalculation of φ* (Dittmann et al 2015). Nonetheless, the original

parameter was reported as sensitive to a variety of pathological processes, as described in both Streitberger et

al (2014b) and Reiss-Zimmermann et al (2014).

An increasing number of studies have investigated regional mechanical properties, including anatomical brain

structures. Comparison of all four lobes of the brain found the parietal lobe to be the softest lobe, with conflicting

information finding either the temporal and occipital lobes to be the stiffest lobar region. Whether lobar variation

in stiffness is explained by fundamental brain architectural differences has not yet been determined, and is the

subject of future investigations. Interesting to note is the consistent relationship between values for each lobar

region across studies that followed the same protocol, see Table 5. Variation in the values seen across studies may

be attributed to the mean age of subjects, lending support to studies that suggest increasing age may contribute

to a loss of brain stiffness (Sack et al 2009, 2011, Arani et al 2015). Softer GM and WM of the cerebellum relative

to the corresponding compartments of the cerebrum may be attributed to the cerebellar surface being comprised

of thin layers of tissue with finely spaced parallel grooves, thus displaying a finer microstructure compared to the

broad irregular convolutions of the cerebral cortex. Finally, the corticospinal tract was determined to be twice

as stiff as general brain tissue, which may be attributed to the fact that the majority of axons are myelinated.
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Summary of clinical findings

MRE has shown great promise as a non-invasive imaging modality to assess the mechanical properties of in-

tracranial tumours. Highly consistent results were found relating shear stiffness measurements with the manual

palpation experience of the neurosurgeon during surgery. Importantly, tumour stiffness measured by MRE out-

performed predictions from conventional MRI using T1 and T2-weighted images (Murphy et al 2013a). MRI

has previously found soft tumours to be hyperintense and less likely to be associated with edema on T2 im-

ages (Hoover et al 2011). However, conventional MRI could only accurately predict the softest and hardest

meningiomas prior to surgical resection, with little success determining the tumour consistency between the two

extremes. Furthermore, the importance of using a high-resolution MRE protocol becomes apparent when seeking

to obtain a full and more accurate understanding of the internal variation in stiffness within tumours (Hughes et

al 2015). Future studies should aim to assess specific regions within the tumour mass to more accurately define

intrinsic mechanical heterogeneity to enhance the potential utility of MRE as a pre-surgical tool. Measurement

of tumour stiffness should also be normalised to surrounding brain tissue, as a result of intrasubject variability

in presumably unaffected brain tissue (Murphy et al 2013a).

Investigations into the use of MRE as a technique for the differential diagnosis of brain tumours, suggest

that more malignant tumours, determined by WHO classification, are more likely to be less stiff, as determined

by |G∗|, and display a reduction in the loss tangent φ. While a uniform reduction in |G∗| is interpreted as a

weakening or softening of the mechanical rigidity of tissue, an alteration of the loss tangent φ is interpreted as

a more severe degradation of the tissue structure due to a change in the complexity of the tissue architecture

(Sack et al 2013). In contrast, Meningioma tumours were the only tumour entity to display increased stiffness,

|G∗|, and a highly cross-linked architecture φ. This may be attributed to the initial development of pathology

in the meninges, which is comprised of a thick layer of dura mater, arachnoid mater, and pia mater, in addition

to their propensity to calcify.

The majority of neurodegenerative diseases are accompanied by significant and widespread softening of brain

tissue. This is contradictory to what was initially hypothesised in patients with Alzheimer’s disease (AD),

with the aggregation of stiff amyloid protein expected to lead to an increase in tissue stiffness (Murphy et al

2011). On reflection, patients recruited into this study had a clinical diagnosis of AD, at which stage significant

neurodegeneration is likely. Interestingly, a recent study has found the relationship between brain stiffness

and AD severity to be non-linear and non-monotonic (Murphy et al 2016), suggesting that brain stiffness

spikes at the onset of MCI, before falling to levels observed in AD during the later stages of MCI. This would

appear to support the theory that the initial development of amyloid protein is associated with increased brain

stiffness, before a decrease in brain stiffness due to wide-spread cell death and a loss of tissue integrity. Further

investigations are warranted to corroborate that other aspects of the AD pathological cascade follow the same

trajectory and to link MRE results with histological samples. Complementing these findings, patients with

frontal-temporal dementia (FTD) also exhibited a significant loss in brain stiffness in the frontal and temporal

lobes, where neurodegeneration is known to originate (Seelaar et al 2011). As the same MRE protocol was used,

the difference in brain stiffness between the AD and FTD healthy control subjects, as shown in Table 8, is most

likely due to subject age with the AD control group approximately 20 years senior.

Patients with early or chronic MS has shown how disease severity can influence mechanical property mea-

surements. In the early stages of MS (MS-RR), the strength of the brain is degraded, as indicated by µ, while the

geometrical arrangement α remains intact. To complement these findings, the underlying cellular and molecular

mechanisms behind these changes were examined in two mouse models of MS. In the first study, mice were fed

copper chelator cuprizone to induce reversible demyelination (Schregel et al 2012). Histopathological analyses

were correlated with MRE measurements, and found that the magnitude of the complex shear modulus |G∗|
decreased with extensive demyelination and extracellular matrix degradation (Schregel et al 2012). In addition,

Experimental Autoimmune Encephaomyelitus (EAE) was induced in mice to further investigate the relationship

between viscoelasticity and inflammation (Riek et al 2012). A reduction in both the storage and loss moduli was

found at the peak of the disease, and attributed to the amount of focal inflammation during EAE. There was

27



no significant change to the loss tangent φ indicating that inflammation affects the stiffness µ independently of

alterations in tissue architecture - supporting human patient findings from Wuerfel et al (2010). On the other

hand, patients with chronic MS (MS-CP), were found to exhibit even softer brains than patients with MS-RR, as

determined by µ, as well as a less complex geometrical arrangement indicated by a significant loss to α. Deficits

due to MS-CP are considered irreversible due to progressive neurodegeneration, and thus may explain the more

drastic changes to the alignment of the tissue network, although to date, animal models of MS-CP have not

been combined with MRE and histopathology. The need for standardisation across and within research groups

becomes apparent when comparing the mechanical properties between MS-RR and MS-CP directly. Changes

in the protocol between studies and in particular, the limits of bandpass filtering, have resulted in different

base-line values for healthy control subjects. Nevertheless, the application of MRE to investigate patients with

early or chronic MS, has shown how disease severity can differentially effect mechanical property measurements,

thereby showing potential as a unique marker of disease progression.

Patients with NPH has shown how MRE is sensitive for detecting alterations to the brain as a result of

surgical intervention. In the first instance, Streitberger et al (2010) and Freimann et al (2012) found patients

with NPH to display a decrease in both µ and α parameters. However, with shunt intervention, α values were

found to normalise and return within the range obtained for the comparison group of healthy control subjects.

The fact that µ remained unchanged supports the notion that spring-pot parameters represent two independent

processes. Shunt placement was associated with reordering the geometry alignment of the mechanical scaffold

of the brain, creating a more complex network, without influencing cellular strength or connectivity. On the

contrary, Fattahi et al (2015) reported an increase to the shear stiffness in the cerebrum (GBT), and in a number

of lobar regions in NPH patients. An increase in brain stiffness may be caused by the dilation of the ventricles,

leading to brain tissue compression. Resulting cellular alterations are likely to create a higher tissue-to-fluid ratio

within the cerebrum. Importantly, the discrepancy in findings between studies has been attributed to the use

of alternative protocols (Fattahi et al 2015). One example is that Streitberger et al (2010) and Freimann et al

(2012) utilised modelling to specifically assess a small slab of tissue near the ventricular region. On the contary,

Fattahi et al (2015) obtained full brain-coverage to assess specific and larger regions of interest; however, it is

possible that alternative brain regions will undergo disparate changes throughout the NPH process.

MRE may also assist in differential diagnosis, as was evident in the study of PD and PSP patients. Misdi-

agnosis is common, due to similar and overlapping symptoms, however MRE results indicate that PD and PSP

have distinct mechanical profiles. PD patients displayed significant changes to |G∗| and α during an assessment

of the basal ganglia region; no significiant changes were detected in GBT. PD pathology involves presynaptic

accumulation of α-synuclein which starts focally and affects axonal integrity only later in the process of degen-

eration (Schulz-Schaeffer 2010), and thus may explain why changes to GBT were not detected. In contrast, PSP

patients displayed pronounced changes in |G∗|, φ, µ and α, both globally and in the basal ganglia. PSP typically

involves an early loss of neuronal axons, which are essential in maintaining brain tissue integrity. This study

highlights the importance of investigating a specific brain structure associated with a particular disorder. If the

basal ganglia hadn’t been investigated, PD patients would not have been differentiated from healthy control

participants.

Finally, the use of wave-guide elastography (WGE) found a significant softening of the corticospinal tract

(CST) in patients with amyotrophic lateral sclerosis (ALS). This technique may prove to be valuable in the

diagnosis of ALS, although further clinical trials are required. The combination of histological analyses with

MRE measurements will be imperative in order to relate pathological cellular changes to MRE constants. The

use of WGE is unlikely to be useful for the assessment of tissue stiffness among other brain regions. WGE

analysis is reliant on knowledge of the pathways along which the propagating waves will travel, however, most

brain structures or regions do not possess anisotropic properties on the same scale as the CTS.
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Summary of the Brain MRE technique

There has been enormous growth in the abilities to perform brain MRE, but significant advances are necessary.

Future work to enhance the clinical utility of brain MRE include identifying the preferred mechanical actuator

for patients, with recent work concluding that a remote device was preferable to the head-cradle (Fehlner et

al 2015). Calculation of the strain-based signal-to-noise ratio (i.e. OSS-SNR) (McGarry et al 2011) from a

number of actuators, while assessing patient comfort and operator convenience, will assist in the determination

of the optimal arrangement. A reduction in acquisition time would also be an important clinical advance and

could potentially increase patient acceptance. A multidirectional motion encoding scheme, known as sample

interval modulation (SLIM), was found to produce nearly identical elastograms compared with a conventional

MRE encoding scheme, albeit 2.5 times faster (Klatt et al 2015). This technical development may also provide

an opportunity to capture additional displacement data, and could increase repeatability due to the lower risk

of subject motion.

Since the majority of brain disorders have localised regions of origin, it is critical to further develop the spatial

resolution of MRE in order to more accurately measure the mechanical properties of smaller brain structures that

correspond to differences in anatomy. This can be made possible either through data acquisiton or data analysis

procedures. For example, the development of the multi-shot multi-slab spiral sequence has enabled MRE data

to be obtained at resolution of 1.6mm, allowing the reliable measurement of subcortical grey matter structures

(Johnson et al 2016). In addition, for the first time, MRE has been combined with the Stationary Super-

Resolution (SSR) technique, in which multiple lower-resolution images from the same scene are interpolated and

fused to create a single higher-resolution image (Elad and Feuer 1997). The Elastography Software Pipeline

(ESP) is a new analysis tool that combines SSR with multifrequency MRE to spatially resolve sub-voxel features,

resulting in a new level of radiological detail (Barnhill et al 2016). Example elastograms from this pipeline are

provided in Figure 1.

Beyond the scope of currently available techniques, it is important to consider that the frequency-dependence

of tissue may provide useful diagnostic information in itself. Gathering information over a range of frequencies

to assess how tissue is differentially affected under varying forces/strains, is likely to be of clinical interest. In

addition, further advances in NLI techniques to fully validate the use of more sophisticated tissue models such as

poroelasticity is also likely to provide further clinically relevant information (Perrinez et al 2010, McGarry et al

2015). Methodological developments targeting the reconstruction of anisotropic mechanical properties will also

be welcomed given recent findings that alternative displacement fields reveal significantly different mechanical

values, particularly in highly aligned white matter regions (Anderson et al 2016). With the application of more

elaborate mechanical models, it may also be possible to improve the specificity of MRE to discriminate between

specific pathologies such as inflammation, degeneration and edema.

Whether brain MRE can provide accurate quantitative values for mechanical properties will be difficult

to determine. Indentation methods can reliably record the stiffness of, for example, grey and white matter

(Budday et al 2015), but it remains an ex vivo technique that cannot predict the mechanical characteristics of

living brain tissue in situ. Nevertheless, it is promising that brain MRE values have converged to the same order

of magnitude as those seen in conventional mechanical testing. In fact, recent work with low frequency MRE

has seen remarkably agreement with data obtained with shear-oscillatory rheometry, and may be seen as the

missing link between static test methods and conventional in vivo MRE (Dittmann et al 2015).

On the other hand, accurate mechanical values per se may be less important than the determination of

the most clinically sensitive and reliable protocol. More studies have been reporting repeatability values, with

promising results (Murphy et al 2013b, Johnson et al 2013a, 2016, Anderson et al 2016). For example, Murphy et

al (2013b) report that their MRE processing pipeline possesses a typical coefficient of variation of < 1% for global

brain stiffness, and < 2% for regional lobe stiffness measurements. At a higher 1.6 mm spatial resolution, Johnson

et al (2016) report a coefficient of variation of 1-2% for global measures, and 3-7% for measures of subcortical

grey matter structures. Future work should continue to provide repeatability and SNR measurements to enable

cross-centre comparisons.
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As illustrated by this review, providing standardised baseline values for brain is currently very challenging,

and values provided for a clinical cohort will only be relevant to those who follow the same methodology.

Determination of a standardised protocol and agreement in baseline values for healthy subjects, as seen in liver

MRE and in the staging of fibrosis, is required. Only in this case can the true sensitivity of brain MRE be

realised.

Applications in Neuroscience

Recent research in the clinical brain sciences has shifted towards disease prevention, and the development of

techniques for early diagnosis. With further advances in the MRE technique, brain MRE has the potential to

make an impact in this specialty. Most obvious is the application of MRE for the detection of early pathological

changes to specific brain structures in individuals who may be asymptomatic, but in the prodromal stages of

a range of organic brain disorders. Mechanical alterations to the hippocampus, for example, may be useful

in detecting the early stages of Alzheimer’s disease. This is supported, in particular, by a recent study by

Schwarb et al (2016), who reported a high correlation between MRE hippocampal damping ratio and memory

performance in healthy young adults. There is also the possibility of assessing regions that are initially affected

in a range of other dementias such as dementia with Lewy bodies, and Creutzfeldt-Jakob disease, to aid in

differential diagnosis and determine the most appropriate medical intervention. To our knowledge, MRE has not

been applied to the study of psychiatric disorders, and therefore the potential utility remains unknown. Further

research should also bridge the disciplines within neuroscience and create developmental models of diseases that

link mechanical properties to genetic, cellular and biochemical observations.

7 Conclusion

An increasing body of research has now investigated the use of MRE to study the mechanical properties of the

human brain in vivo. Recent advances in image acquisition and analysis have allowed study of the biomechanics

of the brain in unprecedented detail. The development of a standardised brain MRE protocol, and thus estab-

lishing normative values of brain stiffness, is now necessary before large-scale clinical investigations. MRE holds

promise to be a valuable imaging tool to diagnose, monitor and evaluate pharmaceutical strategies in a host of

neurological disorders.

*While MRE packages for examining the liver are currently available from all major MRI vendors, EPI-based

sequences for brain MRE should be available in the near future.
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