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Summary

We compared magnetic

resonance imaging (MRI)-

guided tracking to surrogate-

based tracking in 30 subjects,

relying on MRI cine imaging

and automatic feature

extraction. Results show that

the gain achieved with MRI

guidance compared to that of

surrogate-based tracking is

dependent on the tracking

error tolerance and intrinsic

motion features. The pro-

posed method can provide

spatially distributed and

clinically valuable motion

information which could

Purpose: This study applied automatic feature detection on cineemagnetic resonance

imaging (MRI) liver images in order to provide a prospective comparison between

MRI-guided and surrogate-based tracking methods for motion-compensated liver radi-

ation therapy.

Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2

oblique sagittal slices were acquired across the liver at high temporal resolution. An al-

gorithm based on scale invariant feature transform (SIFT) was used to extract and track

multiple features throughout the image sequence. The position of abdominal markers

was also measured directly from the image series, and the internal motion of each

feature was quantified through multiparametric analysis. Surrogate-based tumor tracking

with a state-of-the-art external/internal correlation model was simulated. The geomet-

rical tracking error was measured, and its correlation with external motion parameters

was also investigated. Finally, the potential gain in tracking accuracy relying on MRI

guidance was quantified as a function of the maximum allowed tracking error.

Results: An average of 45 features was extracted for each subject across the whole liver.

The multi-parametric motion analysis reported relevant inter- and intrasubject vari-

ability, highlighting the value of patient-specific and spatially-distributed measurements.

Surrogate-based tracking errors (relative to the motion amplitude) were were in the

range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion
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support identification of
patient-specific optimal

tracking strategies.
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parameters. The gain of MRI guidance compared to surrogate-based motion tracking
was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error
tolerance.

Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver mo-

tion description to be obtained. Such information was used to quantify the performance

of surrogate-based tracking methods and to provide a prospective comparison with
respect to MRI-guided radiation therapy, which could support the definition of patient-
specific optimal treatment strategies.

Introduction

During the last decades, several developments in image

guided radiation therapy were motivated by the need to
improve treatment conformity for tumors affected by

respiration-induced anatomical changes, which suffer from
poor targeting accuracy (1, 2). For this purpose, different
strategies for motion mitigation were investigated and

implemented on modern treatment units, relying on limiting

(3), monitoring (4), or tracking target motion (5). For all of
these approaches, accurate quantification of res-piratory

motion is important for the overall treatment effectiveness
(6), especially when motion mitigation relies on external
surrogate-driven motion models (7), as imple-mented in
several commercial systems (8, 9). Such a  requirement

applies to both the planning and treatment delivery stages, as
the effects of motion need to be accurately simulated and
consistently verified throughout treatment. Specifically in
radiation therapy applications (10, 11), the current clinical
practice considers 4-dimensional computed tomography

(4DCT) (12) to be the standard imaging modality for time-

resolved acquisition. However, the single average breathing
cycle provided by 4DCT does not properly capture intercycle
variability and respiratory motion irregularities that occur on
a daily basis (7). Fast dynamic magnetic resonance imaging

(MRI) can overcome such limitations, allowing acquisition of
a significant amount of breathing cycles at high temporal

resolution and better soft tissue contrast (2, 13). These unique
features also motivated recent technological de-velopments

toward integration of MRI with radiation therapy treatment

units, aiming at the implementation of fully MRI-guided

treatments (14-17). In terms of guidance during treatment to
account for breathing motion, the use of low latency cine-
MRI images has been proposed (18-20).

Specifically, the use of 2D cine-MRI (21) for organ motion

quantification has been widely reported in published reports.
Different studies (2, 21, 22) verified the capability of cine-MRI

to assess tumor mobility and local motion. In the treatment of
liver lesions, a target displacement in the range of 12 to 26 mm

in the superior-inferior (SI) anatomical axis has been reported
(23), relying on image registration of cine-MRI images.

Alternatively, manual anatomical landmarks (ie features) have
been considered for motion quantification (24-27), with cranio-
caudal liver displacement measured in the ranges of 6.9 to

35.4 mm (26) and 7.8 to 22.8 mm (27). Recently, Dowling et
al (28) proposed a method to track manual points through
multiple cine-MRI slices. Similarly, a single internal

structure (ie vessel) was tracked on cine MRI images by
template matching from a manually selected region of in-
terest in (18, 29). Other studies in lung proposed analogous
solutions for motion tracking of anatomical structures (30,
31). However all these approaches are time consuming and
suffer from interoperator variability. As an alternative,
several algorithms for automatic feature extraction have
been developed, such as the scale invariant feature trans-
form (SIFT). Such a method is widely reported in the
literature for image registration purposes (32, 33) and, as
mainly required in radiation therapy applications, for organ
motion quantification (34, 35).

In this work, we proposed a prospective comparative

study where cine-MRI images were analyzed to quantify
the potential benefit of real-time MRI guidance during
treatment. Multiple spatially distributed features were

extracted and tracked in cine-MRI image series from 30
subjects by means of a SIFT-based method, providing ac-
curate motion quantification as a function of breathing-
related variables. Finally, we compared MRI-guided liver
motion tracking with a state-of-the-art tracking approach
based on external surrogates, aiming at patient stratification
based on the expected accuracy improvement that could be
obtained by applying MRI guidance.

Methods and Materials

Dataset

An MRI protocol was developed to simultaneously capture
liver motion and movement of external fiducial markers (ie
cod liver oil capsules, 13 mm long � 4 mm radius). Sub-
jects were placed in the scanner in the supine position and
external markers were placed on the thoracoabdominal

surface in a 3 � 3 (or 3 � 4) configuration.
We acquired 2D cine-MRI images in 30 subjects (5 vol-

unteers and 25 patients) at the European Istitute of Oncology
(Milano, Italy) with a 1.5-T scanner (Magnetom Avanto;
Siemens Medical System). All subjects participated by
signing informed consent forms (study no. R603-IEO S648/
511). A balanced steady-state free precession sequence
(TrueFISP on the Siemens platform) was used during free
breathing to acquire 2 interleaved oblique sagittal slices of



the liver in 240 frames (ie 120 frames/slice during a period of 
74.4 seconds). We selected and oriented the 2 slices by 
acquiring 2 marker columns, respectively, and including 
liver tumor (when present), as shown in Figure 1A. MRI 
sequence parameters were optimized to ensure satisfactory 
time sampling for the respiratory cycle description and 
adequate spatial resolution for the proper identification of 
internal structures, as follows: repetition time/echo time: 308.59 
msec/1.22 msec; flip angle: 65�; bandwidth: 977 Hz/pixel; scan 
matrix: 256 � 256 pixels, 1.28- � 1.28-mm spacing, 10-
mm slice thickness; acquisition time: 310 msec/slice.

Marker localization

The external marker localization was based on the Hough 
transform for circular shapes (36). We identified the marker 
centers, as follows: manual selection of a region of interest 
(ROI) around each visible marker in the first frame for each 
slice; and application of the Hough transform in the same 
ROI of all frames with the marker radius set in the range 2.56 
to 5.12 mm (to consider the variability of the capsule section 
in the oblique acquisition modality) (Fig. 1B).

We tested the accuracy of the method by using static 
uniformity and linearity phantoms (spatial resolution of 
0.72 � 0.72 � 4 mm) (37), with known distances between 
markers (60 mm).

Internal feature extraction

A SIFT-based method (35) was used to extract and match 
internal features from the image frames, as proposed pre-
viously (34). Specifically, for each slice, we applied SIFT to 
image frame pairs by keeping the first frame as reference. 
Final trajectories resulted from those features actually 
tracked on all frames and reporting less than 20 misses, 
which were replaced by cubic interpolation. Furthermore, 
trajectories with a motion range less than twice the pixel size 
were rejected, whereas outliers in the final trajectories due to 
wrong feature matching were excluded and replaced through 
interpolation. Outliers were identified as data

points with a distance from the trajectory centroid greater

than a threshold, defined as

thresholdZd75th þ 1:5� d75th�25th ð1Þ

where d75th is the 75th percentile of the points-to-centroid 
distance distribution d, whereas d75th�25th is the IQR.

In order to describe the spatial distribution of detected
features, distances between each trajectory centroid and their
overall center of mass were measured. For each subject, the
resulting distance distribution was quantified with median

value, interquartile range (IQR), and 5th and 95th percentiles.

Motion quantification

In order to handle interleaved acquisition of MRI slices,
internal and external motion trajectories were resampled at
3.33 Hz (ie information from the 2 slices was temporally

aligned). Trajectories belonging to different features were
analyzed by considering the following parameters: main

motion direction with respect to the SI axis; average peak-
to-peak amplitude; average respiratory period; and phase
shift with respect to the external abdominal motion.

Distributions of these parameters, computed individually
for each of the detected liver features, were grouped in
subject-specific measurements, where the central tendency
was expressed in terms of median value (subject-specific
average), and the dispersion was expressed as IQR and 95th
percentile (38).

Surrogate-based internal motion tracking

A state-of-the-art motion mitigation strategy based on

surrogate-driven tumor tracking was considered (39). Such
an approach relies on a state-augmented quadratic model to
relate the internal target motion (ie liver features) with the
external surrogates (abdominal markers):

IðsÞZas2 þ bsþ cþ d _s2 þ e _s ð2Þ

where s is the external surrogate and IðsÞ is the estimated target

position. The model parameters ½a; b; c; d; e� were optimized

through a least-squares algorithm applied to a training dataset

Fig. 1. MRI protocol and feature identification. (a) Slice selection and orientation according to markers and tumor position.
(b) External marker localization (green circles with the respective squared ROI) and internal feature detection (light blue 
squares for healthy liver and red crosses for tumor). MRI Z magnetic resonance imaging; ROI Z region of interest; SI Z 
superior-inferior; TR Z transversal. 



consisting of the first 65 samples (20 seconds) of the cine-MRI

signal. The remaining samples (approximately 50 seconds)

were used to measure the tracking accuracy.

The feature tracking error ðTEf Þ was measured as the

Euclidean distance between the estimated and corre-

sponding actual motion samples in the testing dataset.

Subject-specific results were obtained by computing root

mean square ðTEs
rmsÞ, median value ðTEs

medÞ, IQR ðTEs
iqrÞ,

and 95th percentile ðTEs
95Þ of the TE

f distributions. Finally,

tracking error distribution was also expressed as a per-

centage of each feature 2D range of motion: their RMS is

referred to as TEs
%.

Surrogate-based versus MRI-guided tracking

The subject-specific gain in accuracy when using MRI

guidance, with respect to external and internal correlation

models, was quantified through the following index:

MRIgainðTEthÞZ100
NðTE > TEthÞ

Ntot

�

%

�

ð3Þ

where NðTE > TEthÞ is the number of samples whose 
tracking error is larger than a given threshold ðTEth½mm�Þ 
and Ntot is the total number of samples. For each subject,
MRIgain was computed for TEth values in the range

½0; 0:1; .; 5�mm. Specifically, MRIgain Z 0% means that the 
required tracking accuracy ðTEthÞ can be fully achieved by 
using surrogate-based tracking, without any improvement

provided by MRI guidance. Conversely, the higher the
MRIgain value the more relevant the increase is in the 
tracking accuracy that can be expected if direct target
localization through MRI guidance is applied instead of
surrogate-based tracking.

Surrogate-based tracking performance

To further investigate the performance of the surrogate-
based tracking method, the correlation between the per-
centage tracking errors ðTEs

%Þ and the parameters related to 
external motion, which are the absolute phase shift

ðjD4j
s

medÞ, the number of external markers used as surro-
gates (m), and their average correlation with the internal
feature motion ðrÞ, was quantified through the Pearson
correlation coefficient (RjD4j; Rm; and Rr, respectively), 
considering p � value � 0:01 for statistical significance.

Results

Features and markers localization

The use of SIFT in a CT image of a phantom (Rando,
Phantom Laboratories, Salem, NY) has already been re-
ported (33), with an error within the voxel dimension

(1.87 � 1.87 � 3 mm). The number of features localized in

%

each subject was between 5 and 99. On average, the distance
from their center of mass was 25.4 � 34.4 mm 
(median � IQR). The marker localization error, measured on 
the uniformity and linearity phantom, was 0.46 � 0.72 mm 
(mean � SD), ie smaller than the phantom resolution.

Motion quantification

The main motion direction (Fig. 2 A) was oriented �17� 

with respect to the SI anatomical axis (ie mainly cranial
with a small transversal component). Intrasubject vari-
ability, expressed as IQR, was reported from 2.19� up to 
18.80�. Phase shifts (Fig. 2 B) with respect to the external 
abdominal motion showed a relevant intersubject vari-
ability (e80.77�, þ19.96�), and in 4 patients (Fig. 2, p12, 
p13, p17, and p20), high intrasubject variations were also
reported (IQR up to 67.40�).

Median values of peak-to-peak motion amplitude

measured between 3.10 mm and 24.02 mm, with an intra-
subject variability ranging from 0.48 mm to 4.15 mm

(Fig. 2 C). Median motion periods (Fig. 2 D) ranged from
2.61 to 7.48 seconds, with very limited intrasubject vari-
ability (<0.83 second).

Surrogate-based versus MRI-guided tracking

Figure 3 shows the gain of MRI guidance versus external/
in-ternal correlation for the 30 subjects, evaluated for
different error thresholds in the range of 0 to 5 mm.

Relevant inter-subject variability can be observed. For
instance, if the error threshold (ie maximum allowed

error) is set at 1.5 mm, MRIgain ranges between 11.78%
(Fig. 2, p9) and 68.13%(Fig. 2, p21; median Z 29.08%;

IQR Z 17.59%). If the required accuracy is 2 mm, MRIgain 
is larger than 50% in only 2 subjects. However, if better
accuracy is required (ie 1 mm), 17 subjects exhibit a gain
due to MRI guidance >50%.

Surrogate-based tracking performance

Figure 4 shows the tracking errors and their correlations
with external motion parameters. TE showed both inter-
feature and intersubject variability. Interfeature variability
can be observed in the TEs

iqr values, which were measured 
from 0.68 mm up to 2.96 mm.

As an example, Figure 5 shows the TEf
rms map (Fig. 4, 

p14) and motion traces corresponding to the features with
the highest and lowest errors. The time-resolved TE map is
available in Figure E1 (supplementary material can be
found at www.redjournal.org).

The TEs
rms was found between 1.02 and 3.57 mm (sub-

ject population average Z 1.76 mm); TEs
med was lower than 

the image spatial resolution in 23 out of 30 subjects. The
intersubject variability can be observed in the percentage
tracking errors TEs , which ranged between approximately 
7% and 23% (population average Z 13%) of the 2D mo-

tion amplitude (Fig. 4A).

http://www.redjournal.org


The number of external markers used as surrogates (m) was 
between 1 and 7, with an average internal-external 
correlation (r) between 0.40 and 0.90 (Fig. 4B). As ex-
pected, significant (negative) correlations between these 
parameters and the percentage tracking error were measured:

ðRmZ � 0:47; p < 10�3; RrZ � 0:62; p < 10�2Þ.

Finally, phase shifts significantly degraded the tracking
accuracy: RjD4jZ0:52; p < 10�2, as seen in Figure 4B.

Discussion

In this work, an automatic feature extraction method was 
applied to cine-MRI images of the liver, first, to study the 
performance of a surrogate-based tracking method, and

second, to prospectively investigate the improvement in
accuracy that could be obtained by applying MRI guidance
for motion tracking.

Feature extraction

A SIFT-based method (35) was proposed to extract and
track features in liver cine-MRI series. The large number of
features (45 on average) and spatial distribution provided
detailed liver motion information within the selected slices.
Although the interleaved acquisition of two 1-cm-thick

oblique slices provided only 2D motion information, such
imaging modalities were selected to combine adequate in-
plane resolution (1.28 mm) with a slice acquisition fre-
quency (1/620 msec) able to sample respiratory acts as
short as 1.3 seconds. Future developments concerning 3D
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point reconstruction from 2D MRI images should be

considered, as proposed previously (18, 19, 29). However,
unlike landmark tracking methods based on template

matching (18, 29), SIFT is invariant to rigid and nonrigid
transforms (33), thus ensuring robust feature tracking

throughout the cine-MRI sequence even in the presence of
deformations and/or rotations. Moreover, the proposed

approach requires minimal user interaction and limited

imaging and processing time (less than 30 minutes overall,
14 to 20 minutes for feature extraction and 5 to 7 minutes to
reconstruct trajectories), both compatible with the clinical
routine. Finally, differently from a previous study (18), the
external surrogate signal was derived directly from the
image series, not requiring any external monitoring device
and providing technical and procedural simplifications to the
clinical workflow.

Motion quantification

Liver motion parameters were measured in a large subject
population, relying on multiple features, thus obtaining
inter- and intrapatient variability information. In-plane

motion direction was mainly craniocaudal (þ20� < a < 
�30�, with respect to the image SI axis), in agreement with 
previous studies (26, 40). Similarly (41, 42), we measured

the internal-external phase shift, as it can affect surrogate-
driven motion compensation strategies. Specifically, in the
study by Gierga et al (41), fluoroscopic imaging was used to
detect internal and external motion in 4 liver patients in
which phase shifts were not observed, whereas the study of
5 patients by Nishioka et al (42) relied on fluoroscopy
combined with an external monitoring de-vice, measuring

limited phase shifts (up to 0.09
p Z 16.2�). In our work, 11 subjects showed comparable 
results, as their phase shifts were limited in all detected
liver features (25th and 75th percentiles within �8�), 
whereas larger shifts were observed in the remaining

subjects. Such a variability can be due to the different
location of the oblique slices with respect to the liver,
whereas the intrasubject variability can be attributed to the
wide features spatial distribution.

The cine-MRI method allows accurate measurement of
the motion amplitude even in the presence of breathing
irregularities, which can be fully quantified and do not cause
artifacts as in 4DCT (43). Finally, relevant inter- and
intrasubject variations were observed also in motion

amplitude (Fig. 2 C), thus confirming the potential advan-
tages of subject-specific and spatially distributed measure-

ments. Interfractional variability of these measurement

could also be investigated by acquiring multiple sets of cine-
MRI images on different days.

Surrogate-based versus MRI-guided tracking

We quantified the potential gain of MRI guidance versus
that with the use of external and internal correlation models

to estimate the motion of specific liver features (MRIgain).

We therefore derived an experimental curve to correlate the
expected gain of MRI guidance as a function of the required
localization accuracy (ie the tracking error threshold TEth)

(Fig. 3). Such a curve can therefore be used to estimate the
potential improvement in the application of MRI guidance,
once a specific error threshold has been established as a
clinical requirement. On average, the po-tential gain is
limited (below 10%) if the required accuracy is on the order
of 3 mm, with a steep increase when the error threshold is
reduced to 1 to 2 mm (Fig. 3). In addition to average values,
a large variability was observed, thus confirming that the
performance of external/internal cor-relation models is

extremely dependent on specific motion features, as

discussed in the following section. Even if in this work the
MRIgain was computed for each subject considering multiple 
liver features, the same index could be easily measured for a
single feature or for a limited liver
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region (ie the tumor volume), according to specific clinical
requirements.

It is worth considering that the relationship between
MRIgain and error threshold was computed in the time

frame of the reported cine-MRI acquisition (74.4-second
duration), with no retraining of the external/internal cor-
relation model. The performance of such models would
benefit by the application of specific retraining protocols,
as currently applied clinically in commercial systems

implementing model-based motion tracking  (8, 39). Also,
the application of external/internal correlation models

might be useful to complement MRI guidance in terms of

out-of-plane motion estimation. Specifically, motion in the

perpendicular direction with respect to the selected im-

aging plane could be estimated based on a dedicated

model, thus providing full 3D information for motion

tracking.

Surrogate-based tracking performance

Relying on the available cine-MRI dataset, the performance

of external/internal correlation models was measured dur-

ing a period of about 50s and in correspondence to each
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%

liver feature, as shown in the time-resolved TE map

(Fig. E1, available at www.redjournal.org). Tracking errors
were comparable (2D error 90th percentile Z 2.72 mm) to
that reported by Depuydt et al (39) for the same correlation
model applied to liver lesions (2D error 90th

percentile Z 3.14 mm).

We found a statistically significant correlation of per-
formance with different variables: the overall tracking ac-
curacy TEs correlated with phase shifts between external and 
internal motion, as already observed in (44). The  average

marker correlation with the internal motion ðrÞ had a stronger 
positive influence on tracking accuracy than the marker

number (RrZ � 0:62; RmZ � 0:47, respectively), suggesting 
that the accuracy of surrogate-driven motion mitigation

strategies could be more effectively improved with patient-
specific marker configurations, which could be optimized

relying on information provided by cine-MRI patient specific
studies. As a matter of fact, dedicated cine-MRI acquisition
protocols can be envisioned, similarly to what was reported in
the current study, to analyze the best approach for motion

management in a case-specific fashion. As automated feature
detection is available (such as SIFT-based methods), the
detailed study of internal motion and external/internal

correlation is possible and could be part of the treatment

planning routine to select those cases where MRI guidance is
essential to achieve the required accuracy.

Conclusions

The use of cine-MRI in combination with an automatic

feature extraction method can be considered a valuable tool
for motion-compensated liver radiation therapy as it could
support standard 4DCT-based planning by providing

spatially distributed and artifact-free motion measurements.

The proposed method could also provide a decision-making

procedure to prospectively distinguish between patients that

can be effectively treated with surrogate-based tracking

methods and those that will require direct target tracking by

means of in-room MRI guidance.
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