Magnetic-resonance imaging techniques for detection of elasticity variation
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The relative success of manual palpation in the detection of breast cancer would suggest that a
method for remote palpation resulting in a measurement of tissue elasticity could provide a diag-
nostic tool for detecting cancerous lesions deeper within the breast. This presumption is based in
part on the excellent contrast between neoplastic and normal tissue due to the large (orders of
magnitude) relative variation in the shear elastic modulus. By comparison, the bulk deformational
modulus maintains the same value to within 20% for most soft tissues. A specific method of
magnetic-resonance imaging (MRI) which measures tissue displacements has been used in experi-
ments with a phantom containing regions of increased Young’s modulus as a demonstration. The
spatial modulation of magnetization technique uses the displacement of a spatial grid pattern caused
by spin saturation to track regional motion. Mathematical reconstruction of the distribution of
elastic moduli is shown for select examples. Any modality, e.g., MRI, ultrasound, etc., which can
detect local tissue motion with sufficient spatial resolution can be used and therefore the results
presented here should give an indication of the utility of such motion tracking techniques to future

measurement of tissue elasticity.

I. INTRODUCTION

The evaluation of the elastic properties of tissues has the
potential for being an important diagnostic tool in the detec-
tion of cancer as well as other injuries and diseases. The
success of breast self-examination in conjunction with mam-
mography for detection and continuous monitoring of lesions
has resulted in early diagnosis and institution of therapy."?
Self-examination is based on the manually palpable texture
difference of the lesion relative to adjacent tissue and, as
such, is limited to lesions located relatively near the skin
surface and increased lesion hardness with respect to the sur-
rounding tissue. Measurement of tissue ‘“‘hardness” should
allow more sensitive detection of abnormal structures deeper
within tissue. Tissue hardness can actually be quantified in
terms of the tissue elastic moduli and may provide excellent
contrast between normal and abnormal tissues based on the
large (orders of magnitude) relative variation in shear (or
Young’s) elastic modulus.

All of the commonly used medical imaging modalities
can provide useful information about various tissue proper-
ties. Ultrasound relies primarily on the heterogeneity of
acoustical impedance, which is a combination of the bulk
modulus and the tissue density, CT scans depict the spatial
distribution of x-ray attenuation, basically electron density
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which generally correlates with the physical density distribu-
tion. The tissue properties which provide contrast in MRI are
better described microscopically and this contrast is very
sensitive to water and fat content. However, the tissue prop-
erties which are being measured by most conventional imag-
ing techniques, such as MRI, do not directly include the
elasticity, which corresponds closely to the property of hard-
ness obtained by the manual palpation.

The information which can be provided by developing an
elasticity imaging technique is therefore complementary to
that from other imaging modalities. The ability o take ad-
vantage of the additional data provided by tissue elastic
properties is dictated by the tissue properties themselves and
the spatial variation of these properties with respect to the
inherent resolution of the imaging modality. However, pro-
cessing of preimage information, such as the phase of the rf
signal used in ultrasound imaging, may provide deformation
measurements with better spatial resolution than that of the
images normally produced.

In general, there are two approaches to remote measure-
ments of tissue elasticity from standard imaging modalities.
First, the elastic modulus can be determined for an internal
tissue structure having boundaries detectable by an imaging
modality. The motion of these boundaries is measured under
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internal or external mechanical stress to evaluate the elastic
properties of these structures.” The second approach is to
evaluate the relative motion of tissue elements which are not
separately resolvable by an imaging technique. Again the
reconstruction of the elastic properties of tissue is based on
an analysis of a motion pattern induced by internal or exter-
nal stress.

There have been a number of experiments using ultra-
sonic techniques to measure tissue elasticity using both first
and second approaches. For example, the presence of hard
lesions can be detected using the measurement of Doppler-
shift signals for tissue being mechanically vibrated using an
external source.*”’ Similarly, a number of other examples of
tissue motion evaluation by Doppler measurements have
been made.®"'® Cross-correlation techniques have also been
applied to both raw and envelope-detected rf data for the
determination of tissue motion. Tristam et al.!' were able to
discriminate normal liver parenchyma from hepatic metasta-
sis using a multidimensional evaluation of Fourier coeffi-
cients associated with the cross correlation. O’Donnell
et al.'” have also developed Fourier-based algorithms for the
tracking of the arterial wall motion which demonstrate a tis-
sue motion variation in the vicinity of harder plaques. This
technique has been later used for accurate measurements of
internal strain and displacement'*!* with subsequent recon-
struction of relative elastic Young’s modulus'® and others
have used similar ultrasonic techniques to measure tissue
displacements.'® The imaging of tissue elastic properties us-
ing cross-correlation techniques has now developed to the
point where 1D evaluation of tissue motion has been effec-
tively demonstrated to produce 2D strain images related to
elasticity distribution, so-called elastography.'”'® The spatial
variation in tissue elastic properties has also been evaluated
using cardiac motion as a naturally occurring motion source
in the prediction of fetal lung maturity’g‘20 and in
echocardiography.?! In the former, M-mode images were
analyzed to track the motion of specular reflectors during the
cardiac cycle and the latter utilizes optical flow techniques.”

Finally, there have been independent methods for measur-
ing the shear modulus which used actual shear wave propa-
gation. These include work by Sarvazyan et al.? where a
device is described which uses the propagation of a vibratory
pulse to characterize tissue elasticity.

The measurement of tissue deformation using MRI has
only recently been addressed in the literature, although sev-
eral techniques for measuring bulk motion exist. Perhaps the
most standard techniques involve the addition of a magnetic-
field gradient to standard imaging sequences. This “motion
sensitive gradient” is the cause of an additional phase shift in
the MR signal of a voxel which is proportional to the motion
of that voxel in the direction of the applied gradient field.
With simple assumptions about the motion (e.g., constant
velocity), the degree of motion is easily extracted from the
phase information and the sequence parameters. In order to
avoid aliasing (i.e., phase shifts >2), the gradient strength
must be chosen according to the velocity range being inves-
tigated. In addition, motion artifacts due to nonsystematic
motion are likely to be enhanced in these methods. Some
researchers®>?® have demonstrated an extension of this tech-
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F1G. 1. A depiction of the phantom before and after deformation during both
MRI experiments. The x and y axes indicate the spatial dimension along
which the displacement is measured. W, is the absolute displacement of the
deformation plate from its original position.

nique designed to give the Fourier components of motion.
Decorps and Bourgeois?” have developed a different tech-
nique which correlates the actual MR signal intensity to mo-
tion. The nonlinear relationship between signal intensity and
motion requires the setting of sequence parameters to target a
specific range of motion. A recent method for measuring mo-
tion introduced by Zerhouni et al® and extended by Axel
and Dougherty? involves “tagging” tissue by selectively
saturating the NMR signal available in that tissue. This satu-
ration pulse can be applied in a variety of patterns which
result in the appearance of radial or parallel lines or rectan-
gular grids of low (saturated) signal intensity over an entire
imaging slice. Tissue displacement after the application of
this saturation pattern and before the acquisition of MRI data
will result in a geometric distortion of that pattern, which can
then be measured in the MR image. It is a specific imple-
mentation of this saturation pattern technique® which is used
in the MRI experiments presented here. Finally, Young
et al.’! have applied signal saturation techniques to the ma-
terials testing problem by evaluation of the motion under
specific application of shear stress.

Il. MATERIALS AND METHODS

MRI experiments were performed using cylindrical phan-
toms containing inclusions which had shear moduli which
differed from that of the surrounding material (see Fig. 1).
The phantom was a silicone composite cylinder measuring
90 mm in length with an 85-mm diameter. Within the phan-
tom were three smaller cylinders (9-mm diameter), referred
to as inclusions, all having a shear modulus approximately
10X greater than the background. Two of these cylinders
were parallel to the central axis of the phantom and the other
was positioned diagonally from one end of the phantom
through approximately one-half of the length. A true 3D
spin-echo pulse sequence on a 2-T GE Omega MRI system
was employed to obtain the image of the phantom shown in
Fig. 2 where the cylinders described above as within the
phantom are shown brighter than the surrounding material.
The elastic properties of the phantom materials were evalu-
ated on an MTS model 810 Materials Test System (MTS
Systems Corp., Minneapolis, MN) using a constant
deformation—displacement test. The test was performed on a
separate cylindrical piece of the inclusion material and on the
phantom as a whole where the contributions from the two
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FIG. 2. An image of the test phantom used in deformation experiments. The
image is reconstructed from a true 3D spin-echo pulse sequence. The phan-
tom is composed of a large cylinder (85 mm in diameter and 90 mm in
length) which surrounds three smaller cylinders (9 mm in diameter) termed
“inclusions” and appearing as lighter outlines within the larger cylinder.
Two of the smaller cylinders run the length of the phantom and the other
runs at an angle from near one end of the phantom to a point halfway along
one side. MR images during deformation studies were sagittal slices taken
approximately 20 mm from the end of the phantom which is at the bottom of
this figure and therefore away from the diagonal inclusion.

inclusions parallel to the central axis of the phantom were
eliminated. The moduli ratio between the inclusion and its
surrounding material was estimated to be 10.5+ 1.5 for up to
a 30% deformation of both materials.

Figure 3 is a diagram of the experimental deformation
apparatus used to obtain MR images of the local displace-
ments within the silicone phantom. For these deformation
studies, the phantom was placed in the hydraulic device con-
sisting of two plates whose vertical separation could be
changed within 0.5 s under remote manual control. The
phantom/deformation device was placed in a bird-cage coil
and these together in the bore of the 2-T GE Omega MRI
system. A uniform grid of coronal and sagital planes of NMR
signal saturation was applied prior to an axial spin-echo im-
age. The grid of saturation planes, applied using a spatial
modulation of magnetization or SPAMM technique,”**® ap-
pears in the image as a grid of dark lines which has been
predictably distorted by the deformation. The resulting defor-
mation field contains local perturbations at the locations of
the hard inclusions. Based on the pixel resolution (130-mm
FOV and 256 X256 image matrix), the grid spacing of 4 mm
used in these experiments was within the guideline of greater
than 5 pixels between tag lines suggested by other
investigators.>> The phantom was deformed vertically be-
tween application of the saturation planes and collection of
the image data which were separated by 1 s. This time delay
was sufficient for the deformation of the phantom to be com-
plete (0.5 s) but short compared to the decay time for the
saturation grid. The decay of the grid is exponential with a
time constant of #/¢t; where ¢, spin-lattice relaxation time of
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FiG. 3. A schematic of the deformation device used in the MRI experiments
for detecting the inclusions numbered 1 and 2 in the figure. The phantom is
placed between two plates where the top plate moves vertically along four
rigid posts attached to the bottom plate. The motion is controlled by a
hydraulic system composed of two syringes attached at either end of the top
plate. The top of the syringe plungers contact the inside of the coil to force
the top plate down to preset positions on mechanical stops. The restoring
force of the phantom returns the top plate to its predeformation position. The
syringes are filled manually using a single large syringe outside the magnet.

the material which we empirically determined to be approxi-
mately 1 s. Therefore, for a 1-s delay, the grid would still be
at l/e of the initial differential between saturated and unsat-
urated material. As will be seen in Sec. I, the grid lines are
still clearly visible in the SPAMM images. Tissue which
might be of interest for this technique would include breast
tissue which has #, values in the range of 800 ms for paren-
chymal tissue and carcinoma and significantly faster (~200—
250 ms) for fat.3* Although the t, for fat is short, the grid
pattern would be retained in the other tissues for the time
required for this SPAMM technique, particularly in denser
{lower fat content) breasts which are the more problematic in
mammography.

The SPAMM technique, as implemented here, involves
the placement of a grid of saturation planes on the object
prior to deformation and imaging. These saturation planes
are applied in much the same way as a single slice is selected
in conventional MR imaging. If one applies a magnetic-field
gradient in a particular direction, a pulse of rf irradiation
excites a slice profile similar to the Fourier transform of the
tf pulse wave form. If only discrete samples of this rf wave
form are used, then by basic sampling theory this slice pro-
file is aliased into uniformly spaced repetitions of itself. In
this manner two series of repetitive planes are placed or-
thogonally to each other and the imaging plane to produce an
apparent grid of dark lines in the SPAMM image. If no mo-
tion occurs between the application of the saturation grid and
image acquisition, the grid lines will be appear as uniform
rectangles. If motion does occur, there will be a correspond-
ing displacement of the grid lines which in turn reflects local
displacements in the object. Note that this grid can be used to
track in-plane motion only, but that through-plane motion
will not appear to move the grid at all, and hence cannot be
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detected with this original SPAMM technigue. It is important
to note that this technique does provide a full 2D deforma-
tion map similar to what might be expected for 2D displace-
ment measurements for ultrasound imaging perhaps using a
speckle tracking or monitoring of phase shifts in the ultra-
sound rf. However, a recent extension to SPAMM has been
developed which allows the measurement of this third direc-
tion of motion,* giving a complete three-dimensional mea-
sure of displacement.

The mathematical formulation corresponding to the MRI
experiments is given in the Appendix. The phantom is as-
sumed to extend infinitely in the longitudinal direction so
that the only nonzero components of the displacement are in
the cross-sectional plane of the phantom. The inclusions
were simulated as homogeneous cylinders with Young’s
moduli equal to 10X that of the surrounding material. The
relative modulus values selected were based on the previ-
ously described deformation—displacement test of the elastic
moduli for the phantom and inclusion materials. To analyze
deformations of the phantom, the system of partial differen-
tial equations (A8) with proper boundary conditions (A7) has
to be solved. Equations (A7) and (A8) represent a boundary-
value problem and, because an analytical expression of the
solution cannot be obtained for any given distribution of
shear modulus G, numerical methods must be used. The sys-
tem of equations (A7) and (A8) is solved using a method of
finite differences with a second-order approximation to spa-
tial derivatives. Another complication in the numerical com-
putation is a boundary condition which cannot be predicted
and must be also computed numerically. An iterative scheme
is used to obtain the solution when the changing size of the
loaded boundary, i.e., the deformation—dependent boundary
condition (see Fig. 1) is taken into account in a step-wise
fashion. '

In this study, a uniform, Cartesian discretization of 1.0
mm was used for the 85-mm-diameter cylindrical phantom.
This size of a grid was chosen to properly represent all varia-
tions in the Young’s modulus so that any further decrease in
the grid itself will not change computed displacement fields.
In the numerical scheme the iterations were continued until
the mean-squared value of the relative displacements and
pressure error was less than 1076,

Iil. RESULTS AND DISCUSSION

Figures 4(a) and 4(b) show the actual experimental results
obtained in the MRI experiment where the first SPAMM im-
age is prior to a forced surface displacement and the second
is the deformed phantom. The slightly flatiened appearance
of the top and bottom of the phantom in Fig. 4(a) is due to
gravity and initial preloading which was present prior to the
plate displacement and application of the SPAMM grid when
making displacement measurements. In Fig. 4(b), the top
plate of the deformation system (Fig. 3) was displaced
25 mm with respect to the bottom plate (referred to as a 30%
deformation) immediately prior to the SPAMM readout. Two
regions of low signal intensity appear corresponding to the
position of the inclusions. The inclusions have an increased
cross linking in the silicone which may reduce the spin mo-
bility within those regions and cause the inclusions to appear

Medical Physics, Vol. 22, No. 11, Pt. 1, November 1995

1774

LETTILEE
3 AL

FPERIsIRIES
EERey

<¥-,, o

. [
wY
W RREE b

«erxy
HERy

)

L -
-

FiG. 4. MRI image of the 85-mm-diameter phantom with two 9-mm-
diameter inclusions each with a shear modulus approximately 10X larger
than that of the surrounding material. The inclusions appear as the low
signal intensity circles in the image. (a) Before the deformation is applied
the grid is rectangular and undistorted. (b) The grid lines reflect the defor-
mation of the material when the phaniom is deformed by 30%. (¢} Math-
ematical simulation of the displacements for the central portion of the phan-
tom in (b) near the inclusions.

as low signal intensity circles in the image. The low signal
intensity also reduces the ability to detect any shift of satu-
ration lines within the inclusion. However, the deformation
of the material surrounding the inclusion is sufficient to in-
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dicate the presence of the local change of shear properties. It
is also important to note that the inclusions deep within the
phantom were not detected using manual palpation per-
formed by several physicians familiar with the technique as
applied in breast patients.

The theoretically predicted displacement pattern corre-
sponding to the experimental results of Fig. 4(b) is presented
in Fig. 4(c). A qualitative comparison of these figures shows
a good agreement between theory and experiment. To quan-
titatively compare the experimental and theoretical results,
the percent deformation was evaluated along vertical and
horizontal lines passing through the center of each inclusion
in the phantom. A selected group of these results is given in
Figs. 5(a)-5(c). In each case the presence of the inclusion is
indicated by a sudden decrease in the deformation at the
position of the inclusion. The experimental measurements
are consistent with the theoretical predictions for the posi-
tions of the inclusions and the magnitude of the percent de-
formation generally matches the theory quite well. In re-
sponse to the localized reduction in deformation, the
deformation for other portions of the phantom would in-
crease. The evaluation along a line through the inclusion
would be the equivalent to an ultrasound A-mode line mea-
surement only with a spatial resolution of 4 mm in the case
of MRIL ,

The effects of various parameters on inclusion detection
are shown in Fig. 6. Consider the case of the cross-sectional
(sagittal) view of the MRI phantom after deformation. Figure
6 is a theoretical prediction of the deformation expected for
the case of an 18-mm-diameter circular inclusion within an
85-mm-diameter infinitely long cylinder being deformed in
the fashion described in Fig. 1. In this way, the problem is
reduced to a 2D geometry, ignoring the out-of-plane motion
in the phantom (motion parallel to the longitudinal central
axis of the cylinder). Note that for the 30% deformation of
the phantom [Fig. 6(a)], the abnormal deformation about the
inclusion is rather apparent. However, as indicated in Fig.
6(b), reducing the inclusion diameter by a factor of 2 results
in a decreased deviation of the deformation making the in-
clusion more difficult to see. There are two ways to improve
the detection of the smaller inclusion. First, the deformation
of the material can be increased but, in some cases, increas-
ing the deformation may not be possible because of the po-
tential for the material to fail or for a transition to a highly
nonlinear material response. In the case of medical applica-
tions, the deformation could also be limited by patient dis-
comfort or other physical limitations. Therefore, the second
option is to increase the grid resolution. The MR experiments
presented here use a grid spacing of 4 mm as in the previous
theoretical calculations. In Fig. 6(c), the resolution has been
increased to 2 mm and two inclusions have been placed
along the midline of the phantom to demonstrate the detec-
tion of multiple sites of varying moduli. There is an improve-
ment in the visual detection of the inclusions as a result of
the increased spatial resolution.

IV. SUMMARY

The MRI experiments presented here indicate that the
SPAMM technique can be used to measure spatial variations
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Fi6. 5. Comparison of the percent deformation measured experimentally
(points) and predicted theoretically (solid line), The comparison includes the
deformation measured (a) perpendicular to a horizontal line through the
center of inclusion 1 and plotted as a function of the paosition along this line;
{b) and (c) parallel to a vertical line through the center of inclusion 1 and 2,
respectively; and plotted as a function of the position along this line (see
Fig. 3).
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FiG. 6. Theoretical prediction of the displacement for the 85-mm-diameter
phantom with an (a) 18 or (b) 9-mm-diameter circular inclusion, positioned
in the center of phantom. The shear modulus of the inclusion is ~10X that
of the surround material. The phantom is deformed by 30%, i.e., to 70% of
its original diameter along the vertical direction. (c) Two 9-mm-diameter
circular inclusions are distributed vertically along the central axis and the
phantom is deformed by 30%. The spatial resolution here has also been
increased by a factor of 2.

in deformation which result from the presence of localized
regions of varying elastic moduli. The use of such measure-
ment techniques in tissue could lead to the detection of hard-
ness differences in tissue such as those used in detection of
manually palpable masses in the breast. The possible advan-
tages of this technique, however, may be access to deep,
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nonpalpable structures, quantitative estimation of the differ-
ences in tissue elasticity, resolution, and sensitivity of the
proposed method, etc.

MRI elasticity imaging, in general, includes the following
sequential procedures: measurement of the internal displace-
ment field produced by internaily or externally applied force,
computation of all components of the strain tensor, and, fi-
nally, reconstruction of the tissue elasticity distribution based
on these measurements. Therefore, sensitivity and resolution
on the final elasticity distribution maps are not only imaging
system dependent but also rely on mathematical models used
to reconstruct the elasticity distribution, tissue properties,
and type of external or internal deformation. These include
specific characteristics of the mathematical model, shape,
and relaftive size of the lesion compared to the spatial reso-
lution of the imaging system, relative elasticity of the lesion
compared to the “background” tissue, magnitude of the in-
ternal deformation, etc.

The mathematical model is an important consideration for
elasticity imaging. The mathematical model based on linear
elasticity and used in this study shows both qualitative and
quantitative agreement with the experimental deformational
data collected using MRI/SPAMM techniques. Even with a
limited localization of a region differing in elastic properties,
theoretical predictions indicate that the deformation of a tis-
sue region surrounding a suspected lesion is sufficient for
determining that the region contains abnormal tissue.

Using the same model, the resolution in elasticity imaging
compared to the actual imaging system resolution can be
illustrated by the following example. As it is shown
elsewhere,3 if a lesion only 3X “harder” than the surround-
ing tissue is isolated to a region with a radius 40% larger
than its own, theory predicts that a 5% local deformation
would be sufficient for lesion detection. Therefore, a 1-mm-
diameter lesion measured within an imaging grid of 1.4 mm
should be detectable using deformation techniques described
here. Detection of lesions in this size range could greatly
improve the early diagnosis of breast cancer. Note, also, that
the required resolution of the imaging system can be even
larger compared to that on the final elasticity images if the
deformation magnitudes are increased, as illustrated in Fig.
6.

Finally, the mathematical techniques are applicable to any
imaging modality which can produce a static or quasistatic
deformation profile of the tissue and so measure a local de-
viation in deformation with sufficient resolution.
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APPENDIX: DESCRIPTION OF THEORETICAL
MODEL

A theoretical model has been used for predicting strain
patterns in a stressed material with spatially varying elastic
properties and for solving the inverse problem of recon-
structing the mechanical structure of an object from measure-
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ments of the strain pattern. The theory is given in more detail
elsewhere* ¢ and follows the work of Skovoroda.!* Addi-
tionally, theoretical evaluations include potential optimiza-
tion of parameters such as deformation techniques and mea-
surement resolution. The model is formulated as a boundary-
value problem with applied displacements on a piece of base
material which contains inclusions having different elastic
properties (henceforth called a phantom). The displacement
field is taken to result from a known static surface deforma-
tion of the base material.
The equations of equilibrium of a body have the form

3

> i.ﬁ+fi:0, i=

1,2,3, (A1)
n=1 an

where f; is the force per unit volume acting in the x; direc-
tion, u; is the particular displacement in the x; direction, and
0;; are the components of the stress tensor. In the general
case of the linear elastic model of a compressible media, the
stress—strain relations are described by the equation

ij (A2)

0,;=(K—3G)96,+2Ge
where K and G are bulk and shear moduli, respectively, §;; is
Kronecker’s delta symbol, ¢;; and © are the components and
the trace of strain tensor, respectively, defined in the linear

approach as

1 [du; du;

€5=73 (c?_xj+<9_x1) (A3)
3

O=2 ;=€ +enten. (A4)

i=1

Since most of soft tissues are incompressible,’ i.e., Poisson’s
ratio is very close to 0.5, the relations between stress and
strain take the form'

011=p511+2G611’ (A5)

where p is the static pressure. Incompressibility then yields
the additional condition that

611+€22+ 63320, (Aé)

Therefore, a closed set of coupled differential equations can
be generated by combining Eqs. (Al) and (A3)-(A6) and
eliminating stress and strain components. This system, how-
ever, has an infinite number of solutions, where the unique
solution is determined by the boundary condition.
Generally the boundary conditions take the form

(2 aijnj—F,») 5(u,-—u?)=0, (A7)
j

where n; is the jth component of a unit normal vector at the
body surface, F; is the force per unit area of the surface
acting in the x; direction, and & is a symbol of the variation.
If there are any known external forces F; applied to part of
the surface of the body, Eq. (A7) is satisfied for this part of
the surface by means of the first term. If there are any known
displacements u? of part of the body surface, Eq. (A7) is
satisfied there by means of the second term.
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In the present study 2D approximation has been used for a
given geometry of the phantom and deformation load. With
this assumption the closed set of coupled differential equa-
tions (A1) and (A3)—(A6) will take a form

ap ) 7] G&u, N a G 0u1+z9u2 -0
«9x,+ ox, dx,|  xy dx,  oxy)l
ap a du, d duy  du,
— -— — |+ — —+—| |+ pg=0,
o"x2 aX2 aX2 (9x1 6x2 (7x1
(A8)
ouy  du,
—+ —=0,
é‘x; 8x2

where p is density of the phantom material and g is the
gravitational acceleration. In system (A8) the first two equa-
tions are the equations of equilibrium (A1) written in terms
of the displacement u(x,,x,), pressure p(x;,x,), and shear
modulus G(x;,x,), and the last equation is the condition of
incompressibility (A6).

Finally, Egs. (A8) with boundary condition (A7) represent
a boundary-value problem and, in general, have no analytical
solution for any given distribution of the shear modulus G,
and therefore numerical methods must be used.
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