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Abstract  

YBCO tubes of ~ 10 mm diameter closed at one extremity were engineered by a Buffer-Aided Top 

Seeded Melt Growth fabrication process (BA-TSMG). These tubes can act as efficient “dc” magnetic 
shields and are observed to reduce axial flux densities of 1.5 T by a factor of 100 at 20 K. Such 

performances are comparable in magnitude to the record threshold inductions reported for bulk 

MgB2 and Bi-2212 materials at lower temperatures. Magnetic shielding measurements for open and 

closed tubes at 77 K also show that the presence of the cap improves substantially the shielding 

performance at the closed extremity since it reduces the penetration through the open end. This 

fabrication technique is extremely promising for shielding “dc” stray fields generated by HTS magnets 
operated in a temperature range obtained by cryocoolers, liquid hydrogen (20 K) or liquid neon 

(27 K).  

Introduction 

Several high sensitive scientific devices, e.g. superconducting quantum interference devices [1, 2], dc 

current transformers [3], or cryogenic current comparators [4], need to be protected against the 

magnetic field environment and therefore must be shielded. Superconducting materials are certainly 

the best candidates to build passive magnetic shields at low frequency. In a superconductor the 

shielding is provided by macroscopic currents loops flowing in the wall of the sample. The shielding 

effectiveness is characterized by two parameters: (i) the shielding factor (SF), defined here as the 

ratio between the applied magnetic induction and the local magnetic induction measured inside the 

shield, and (ii) the “threshold” or “limit” induction (Blim), i.e. the applied magnetic induction above 

which a given value of the shielding factor cannot be achieved. Unlike ferromagnetic shields for 

which Blim is intrinsically limited by the saturation magnetization (~ 2 teslas), superconductors have a 

priori much higher shielding potential [5], provided they can be manufactured (or assembled) in the 

form of a cavity. The recent increase of the performances of coated conductors used for high-field 

magnets [6, 7] will facilitate the emergence of superconducting devices operating at a few teslas, i.e. 

above the saturation of iron. There is an increasing need, therefore, to shield the considerable stray 

fields that results. In this paper we show that high field magnetic shielding can be achieved efficiently 

with bulk, large grain YBa2Cu3O7 (YBCO) closed tubes when they are cooled in the range 20-40 K. This 

temperature range is accessible easily with closed-cycle coolers, liquid hydrogen (20 K) or liquid neon 

(27 K).  

In a good approximation, the limit field Blim is mainly determined by the product of the critical 

current density Jc and a geometrical dimension which, in most cases, is limited by the wall thickness d 

of the superconducting enclosure [8]. Films deposited on metallic substrates [9, 10] or structures 

made of coated conductors [11-14] have the advantage of being easily scalable but are not currently 

appropriate for shielding high fields because of their small thickness. Bulk cylinders made of high 

temperature superconductors (HTS), on the other hand, have already demonstrated their high-field 

shielding abilities. At T = 4.2 K, fields of the order of 1 T can be shielded with bulk MgB2 [3, 15, 16] 

and efficient shielding up to 2 T was reported for a long MgB2 cylinder [17]. These values are 

comparable to those achieved with using Nb-Ti multifilamentary composite wires at the same 

temperature [18]. At T = 10 K, bulk Bi2Sr2CaCu2O8 (BSCCO-2212) tubes can be used for shielding fields 

up to 1 T [19]. Solenoid magnets made of bulk melt-textured YBCO prepared by various techniques 

[20-26] show significant potential for magnetic shielding. There are very few reports, however, 
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describing their shielding performances. Sasaki et al. gave evidence of magnetic shielding of 0.2 T at 

77 K with samples prepared by a modified Quench and Melt Growth process [20]. Fang et al. 

reported efficient shielding of the ambient noise [21]. Zhang et al. investigated the flux penetration 

through millimetric-size holes or gaps between YBCO bulks [27]. 

1. Experiment 

1.1. Shield Geometry and Fabrication Process 

For a hollow cylinder, it should be kept in mind that the best shielding performance levels are usually 

achieved at the center of the tube and decrease towards both extremities due to the field 

penetration through the open ends. This effect is more important in the case of a short tube. A way 

to solve this problem is to close the tube at one or both extremities by a superconducting cap [28, 

29]. In the present case, our superconducting tube was fabricated by the Buffer-aided Top Seeded 

Melt Growth (BA-TSMG) process [30-32], in the Bulk Superconductivity Group at the University of 

Cambridge. This fabrication process enables the tube to be closed at one extremity by a cap 

containing the seed. Furthermore, as the cap and the tube are naturally welded together, there is no 

air gap between the cap and the tube.  

Commercial powders of Y-123 (99.9 % pure, Toshima), Y-211 (99.9 % pure, Toshima) and CeO2 

(99.9 % pure, Alfa Aesar) were used as initial precursors. 25 wt % Y-211 and 0.5 wt % CeO2 were 

added to the Y-123 powder and mixed together thoroughly using a mechanical mixer for 3 hours. 

CeO2 was added to the precursor to refine the grain size of Y-211 inclusions in the fully processed 

single grain.  

First, the mixed precursor powders of about 50 g were pressed uniaxially into long cylinder of 31 mm 

in diameter. Then, 6 g of the same powder was used to prepare a disc (25 mm in diameter) and was 

arranged on the top of the cylinder. This was further supported with the buffer pellet (of same 

composition, 5 mm diameter, 0.2 g). Finally, NdBCO seed crystal cleaved along (001) was placed on 

the top surface of the buffer pellet assembly as shown in Figure 1 (a). The melting process involved 

heating the samples to 1056 °C, holding for 1 hour to enable complete incongruent melting of the Y-

123 phase into solid Y-211 and a liquid phase. Then, the sample was then cooled down rapidly to 

1015 °C and then slowly cooled down at 0.8 – 0.2 °C/h to 978 °C to ensure heterogeneous nucleation 

and growth of the Y-123 phase. Finally, the sample was cooled to room temperature and the fully 

melt processed sample was annealed in flowing oxygen at 450 °C for 150 hours. Figure 1 (b) shows 

the final sample and Table 1 gives its average dimensions. In a second set of experiments, the cap 

was cut, resulting in a tube open at both ends. 

 

 

Figure 1. (a) The cylinder and the cap with the buffer layer and the NdBCO seed crystal placed on top of the 

arrangement prior to melt processing. (b) Picture of the final YBCO closed tube. 
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Table 1. Geometrical Characteristics of the YBCO Closed Tube. 

Length of the tube l = 30 mm  

Inner radius (average) r1 = 7.4 mm 

Outer radius (average) r2 = 11.8 mm 

Wall thickness  d = r2 - r1 = 4.4 mm 

Aspect ratio l/r2 = 2.54 

 

1.2. Experimental Setups 

Magnetic shielding properties were investigated using two different experimental setups. First, 

experiments were carried out in liquid nitrogen (77 K) using a miniature Arepoc Hall sensor that was 

moved along the axis of the tube. The tube was subjected to a uniform quasi static (“dc”) magnetic 
field slowly ramped up to 60 mT at a constant sweep rate of 1 mT/s. Unlike other works where 

transverse [3, 8] or inhomogeneous fields [33] are investigated, a pure axial field is used in this study. 

Second, we characterized the superconducting shield at different temperatures using a Physical 

Property Measurement System (PPMS) instrumented with a Hall probe placed at the closed extremity 

of the tube. In this case, the tube was subjected to a uniform quasi static (“dc”) magnetic field slowly 
ramped up to about 3 T (at 20 K) at a constant sweep rate of 0.33 mT/s. 

2. Results and discussion 

2.1. Shielding Properties at 77 K in Liquid Nitrogen 

We first examine the experimental results obtained at 77 K. We compare the initial tube, closed at 

one extremity, with the open tube. Figure 2 shows the applied field dependence of the shielding 

factor SF = Bapp/Bz measured at three positions (every 15 mm) along the z axis of the tube, as 

sketched in the inset of Figure 2. For the closed tube, z = 0 corresponds to the closed extremity and 

z = 30 is the open extremity. The plain symbols correspond to the closed tube and the white symbols 

relate to the open tube. 

 

 

Figure 2. Shielding factor SF = Bapp/Bz, as a function of the applied magnetic induction Bapp = µ0Happ, measured 

for three positions along the z axis of the tube. Plain symbols correspond to the closed tube and white symbols 

correspond to the open tube. 
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Figure 2 shows that the shielding factor at the closed extremity (plain circles) lies around 104 in the 

whole magnetic field range investigated (up to 60 mT). For the closed tube, the shielding factor 

decreases towards the open extremity (circles then triangles). For the open tube, the shielding factor 

is at maximum near the center and decreases towards both open extremities due to end effects.  

The relatively small shielding factor at the center of the open tube can be explained by the small 

aspect ratio (l/r2 = 2.54 where l is the length and r2 is the outer radius) of the tube. In this case, the 

shielding factor at the center of the open tube is influenced by two field penetration mechanisms: 

the field penetration through the sample thickness but also by the open ends. This latter mechanism 

is predominant in the present case since simulations and experiments [28, 29] have shown that 

maximum shielding factor levels are reached at the center of a hollow cylinder for aspect ratios 

higher than 6.  

At the center of the tube (z = 15 mm), the shielding factors for both open and closed tubes are 

similar up to 40 mT and then starts to diverge for higher fields. For SF = 10, a threshold induction Blim 

of 39 mT is measured at the center of the open tube whereas for the closed tube, the threshold 

induction is 51 mT. This result gives evidence that the cap still has a beneficial influence at the center 

of the tube.  

The threshold induction Blim at the center of the open tube can be used to estimate the field-

independent critical current density Jc. If we assume a uniform current density flowing on a 

macroscopic scale, the threshold induction for a tube of finite length l, thickness d and mean radius 

ra, can be estimated by [34, 35]: 

 𝐵𝑙𝑖𝑚 = 𝜇0𝐽𝐶𝑑 𝑙4𝑟𝑎 ln(4𝑟𝑎𝑙 + √1 + (4𝑟𝑎𝑙 )2) (1) 

For Blim = 39 mT, we obtain the average critical current density Jc  847 A/cm². The value is smaller 

than that expected for single-grained YBCO samples in the form of disk pellets (of the order of 

104 A/cm²), which can be ascribed to the fact that some parts of the tube are not perfectly textured 

especially those far away from the seed. This Jc value, however, is much higher than that obtained 

previously in polycrystalline YBCO [36] or BSCCO hollow cylinders (of the order of 350 A/cm² at 77 K 

and 20 mT [8, 19]). Knowing Jc, the threshold induction Blim for a four times longer tube is estimated 

to be 47 mT, a value similar to the Blim = 51 mT measured at the center of the closed tube. 

Figure 3 shows the shielding factor SF = Bapp/Bz measured at seven positions (every 5 mm) along the z 

axis of the tube for a given applied magnetic field Bapp = 30 mT, at 77 K. 

 

 

Figure 3. Shielding factor SF distribution measured at 77 K as a function of the position z of the Hall probe along 

the axis of the tube for Bapp = 30 mT. z = 0 corresponds to the closed extremity. 
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For the closed tube, a shielding factor SF exceeding 104 was measured near the closed extremity 

(z = 0). Then the shielding factor decreases from the closed extremity to the open extremity. For the 

open tube, the shielding factor is maximum near the center of the tube and decreases towards both 

open extremities. A slight asymmetry of the shielding factor distribution with respect to the center of 

the tube (z = 15 mm) can be observed. This is consistent with the fact that the growth started from 

the cap (position z = 0). As a consequence, the critical current density can be assumed to be better 

near the closed extremity and within the cap than elsewhere in the tube. If we compare the closed 

and open tube configurations, we can see clearly that the cap increases significantly the shielding 

factor value at the closed extremity. 

2.2. Shielding Properties at Various Temperatures 

We now turn to the shielding behavior of the closed sample at various temperatures. Measurements 

are carried out at the closed extremity, where the best shielding factor levels have been observed at 

T = 77 K. Figure 4 shows the evolution of the shielding factor SF = Bapp/Bz at the closed extremity as a 

function of the applied magnetic induction Bapp = µ0Happ for six different temperatures ranging from 

20 K to 77 K. The inset shows the temperature dependence of the threshold induction Blim at the 

closed extremity, defined for two shielding factors (10 and 100). 

 

 

Figure 4. Shielding factor SF = Bapp/Bz at the closed extremity, as a function of the applied magnetic induction 

Bapp = µ0Happ for temperatures ranging from 20 K to 77 K. Inset: temperature dependence of the threshold 

induction Blim defined either for SF = 10 (triangles) or SF = 100 (circles). 

 

The results plotted in Figure 4 show how the shielding factor increases as temperature decreases. For 

a given shielding factor, all curves are shifted to higher fields for decreasing temperatures. At low 

magnetic fields, the maximum shielding factor levels are found to remain between 103 and 104 for all 

temperatures. The inset of Figure 4 shows the temperature dependence of the threshold induction 

Blim (defined for two shielding factors 10 and 100). The Blim values measured at 77 K (respectively 

155 mT [SF = 100] and 225 mT [SF = 10]) are found to be approximately 10 times higher at 20 K, i.e. 

1.52 T [SF = 100] and 2.4 T [SF = 10]. In comparison, MgB2 tubes were reported to shield axial 

magnetic inductions between 1 T [15] and 2 T [17] at 4.2 K. Additionally, melt casted BSCCO-2212 

hollow cylinders were reported to shield magnetic inductions up to 800 mT at 20 K and 1 T at 10 K 

[19]. It is to be noted that the latter samples used for comparison have sizes similar to the magnetic 

shield investigated in this work, i.e. a useful inner diameter larger than 10 mm. Strictly speaking, 

shielding at higher field was reported in tiny holes or gaps in/between bulk superconductors [27], 

[37] (1-2 mm), but such small bores are clearly out of the scope of the present study.  
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Assuming a uniform Jc, we can expect that the shielding factor distribution at 20 K along the axis of 

the closed tube will have the same behavior as the distribution at 77 K. We can therefore estimate 

the threshold induction at the center of the closed tube at 20 K from the distribution at 77 K and the 

threshold induction measured at the closed end at 20 K. At 77 K, we know the ratio between the 

threshold inductions at the center of the tube and at the closed extremity. Under the previous 

assumption, this ratio should be the same at 20 K and we find a center threshold induction to be 

around 545 mT. Using the same procedure as before (Eq. (1)), the critical current density Jc at 20 K 

can be estimated to be 9×103 A/cm², under an average field in the superconductor approximated as 

half the applied field (~ 1.2 T). 

In the present experiment, we purposefully avoid to submit the material to lower temperatures in 

order to avoid the occurrence of flux jumps which might be destructive [20]. If we consider a 

constant Jc, the maximum dissipated power at 20 K and for a fully penetrated tube is of the order of 

1.2 mW, under the investigated ‘quasi-static’ sweep rate (0.33 mT/s). The associated rate of average 

temperature increase of the sample is of the order of 2×10-4 K/s, meaning that self-heating effects 

are insignificant. Finally, the threshold induction at a given temperature can be estimated by the 

following power-law: 

 𝐵𝑙𝑖𝑚(𝑇) = 𝐵𝑙𝑖𝑚(0) (1 − 𝑇𝑇𝐶)𝛿 (2) 

where Tc = 93.5 K was obtained by a measurement of the trapped field of the cylinder as a function 

of the temperature. By fitting the Blim values shown in the inset of Figure 4 we obtain Blim(0) = 2 T and 

δ = 1.5 for SF = 100 and Blim(0) = 3.2 T and δ = 1.6 for SF = 10. These parameters can be used to 

estimate the shielding threshold when the screen is operated at other temperatures, either 

accessible through closed-cycle coolers or liquid neon (27 K). 

3. Conclusions 

In conclusion, we have fabricated a YBCO tube made by Buffer-aided Top Seeded Melt Growth and 

characterized its high-field magnetic shielding performances. Thanks to the fabrication process, the 

tube is initially closed by a cap. We studied the initial tube, closed at one extremity by a cap 

containing the seed and the tube with the removed cap. The comparison of both configurations at 

77 K showed that cap provides an important improvement of the shielding efficiency. At the center 

of the tube and towards the open extremity, a small difference on the shielding factor levels has 

been observed between both configurations. The characterization of the closed sample at various 

temperatures showed how the shielding efficiency increases for decreasing temperatures. In 

particular, threshold inductions of 1.5 T (for SF = 100) and 2.4 T (for SF = 10) were measured at 20 K, 

which is comparable to the threshold inductions measured for bulk MgB2 and Bi-2212 hollow 

cylinders but at lower temperatures. The general conclusion is that these results give evidence that 

efficient magnetic shields can be obtained with this fabrication technique. 
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