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We analyze the repulsive fermionic Hubbard model on square and cubic lattices with spin imbalance and in the

presence of a parabolic confinement. We analyze the magnetic structure as a function of the repulsive interaction

strength and polarization. In the first part of the article, we perform unrestricted Hartree-Fock calculations for the

two-dimensional (2D) case and find that above a critical interaction strength Uc the system turns ferromagnetic

at the edge of the trap, which is in agreement with the ferromagnetic Stoner instability of a homogeneous

system away from half-filling. For U < Uc, we find a canted antiferromagnetic structure in the Mott region

in the center and a partially polarized compressible edge. The antiferromagnetic order in the Mott plateau is

perpendicular to the direction of the imbalance. In this regime, the same qualitative behavior is expected for 2D

and three-dimensional (3D) systems. In the second part of the article, we give a general discussion of magnetic

structures above Uc. We argue that spin conservation leads to nontrivial textures, both in the ferromagnetic

polarization at the edge and for the Néel order in the Mott plateau. We discuss differences in magnetic structures

for 2D and 3D cases.

DOI: 10.1103/PhysRevA.81.013616 PACS number(s): 03.75.Ss, 67.85.−d, 71.10.Fd

I. INTRODUCTION

Cold atoms constitute a promising route to simulate model

Hamiltonians of strongly correlated many-body physics with

accurate control of system parameters [1,2]. After major

experimental breakthroughs with ultracold bosonic atoms

like the Bose-Einstein condensation (BEC) of alkali metal

gases [3,4] or the observation of the superfluid–Mott-insulator

transition in a bosonic Hubbard model [5], the field of ultracold

atoms is currently addressing problems of strongly correlated

fermionic systems [6–9]. Arguably, the most prominent goal

is the understanding of the phase diagram of the fermionic

Hubbard model, which is believed to be of major importance

for high-temperature superconductivity [6,10–15]. A two-

component Fermi gas in an optical lattice is well described

by the single-band Hubbard model whenever the energy

gap to higher bands is much larger than on-site interaction,

temperature, and chemical potential [1,2,11]. Only recently

the fermionic Mott transition has been realized experimentally

[16,17]. The major challenge for studying the magnetism

of the fermionic Hubbard model is to reach temperatures

below the Néel temperature [18,19]. In addition to the

preparation of the antiferromagnetic state, characterization

tools have to be developed to allow a clear identification

of the magnetic structure. Possible experimental techniques

include Bragg spectroscopy [20,21], local measurements of

the magnetization [22,23], noise correlations [24,25], or the

recently realized quantum-gas microscope [26].

The experimental control of spin imbalance in Fermi gases

offered a unique way to study pairing phenomena beyond

the standard BCS picture for attractive interactions [27,28].

Motivated by these results, we address in this work the effect

of spin imbalance on the repulsive fermionic Hubbard model

[29,30]. While we study strong optical lattices, where a single-

band Hubbard model is realized, the magnetic structure of

*bwunsch@physics.harvard.edu

weak-to-intermediate lattice strength including multiple bands

has also been discussed [31]. We find rich physics arising

from the interplay between antiferromagnetic and Stoner

ferromagnetic instabilities and spin imbalance.

The magnetic order of the two-dimensional (2D) repulsive

Hubbard model has been extensively studied in the past

(see Ref. [14]). Cold atoms in optical lattices differ in

several ways from typical condensed-matter systems. First,

there is a superposed external confinement potential, which

divides the system in an incompressible Mott state in the

center of the trap and in a compressible region at the edge.

Second, the total spin is conserved, which means that we

need to minimize the energy of the system given a global

magnetization rather than a finite Zeeman field. One interesting

problem concerns the spatial distribution of the imbalance

between Mott plateau and edge, and it turns out that the

solution strongly depends on the interaction strength. The

constraint of spin conservation affects the ferromagnetic

instability at the edge by enforcing nontrivial spin textures

[32,33] which also affects the Néel order in the Mott plateau

in the center, as we will discuss in Sec. IV.

In this work we study the repulsive fermionic Hubbard

model including a parabolic confinement potential. In the

first part of this work, we perform unrestricted Hartree-Fock

calculations for the 2D case. Relevant physics for this system

can be identified based on the mean-field phase diagram for

the repulsive 2D homogeneous Hubbard model [34]. Up to a

critical interaction strength Uc, it predicts antiferromagnetic

order close to half -filling and paramagnetic order elsewhere.

In the spirit of a local density approximation, one might

then expect that cold fermionic atoms in an optical lattice

have antiferromagnetic correlations in spatial regions with

one atom per site and are paramagnetic elsewhere. In order

to account for a finite imbalance, the system has to change

its magnetic structure. Using an unrestricted Hartree-Fock

approach for the 2D system, we find a canted antiferromagnet

in the Mott plateau in the trap center and a partially polarized

edge. We note that canted antiferromagnetic order close to
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half-filling has been reported previously in Ref. [35]. With spin

polarization along the z direction, the canted antiferromagnet

accommodates the imbalance forming a constant z component

of the local magnetization, and simultaneously it benefits from

the superexchange interaction by building up an alternating

magnetic order perpendicular to the z direction. Fixing the

global imbalance and increasing the interaction strength results

in more imbalance flowing to the edge.

Above a critical interaction strength Uc, the unrestricted

Hartree-Fock calculation predicts that the system turns fer-

romagnetic at the edge of the trap, in agreement with the

ferromagnetic Stoner instability of a homogeneous system

away from half-filling. Furthermore, the orientation of the

antiferromagnetic order in the Mott plateau is perpendicular to

the direction of the ferromagnet in the edge. Spin conservation

has again a strong impact on the magnetic structure of

the system since a uniformly polarized ferromagnetic edge

together with an antiferromagnetic Mott plateau are generally

not allowed. We will discuss spin textures in 2D and three-

dimensional (3D) lattices for U > Uc, which fulfill spin

conservation and which show the two prominent features

predicted by the mean-field calculation, namely a) mag-

netic instabilities toward ferromagnetism in the compressible

edge and antiferromagnetism in the Mott plateau and b) at

the interface between Mott plateau and compressible edge,

the orientation of the antiferromagnet and the ferromagnet

are perpendicular to each other.

We are aware that the chosen mean-field approach gen-

erally overestimates symmetry breaking, and therefore the

critical on-site interaction strength, Uc, corresponding to

the appearance of an intrinsic ferromagnetic edge, will

presumably be higher than the one predicted here. However,

intrinsic ferromagnetism away from half-filling is expected

for sufficiently large interaction strength [32,36], and in fact,

experimental indications for itinerant ferromagnetism in a

Fermi gas of ultracold atoms have been reported recently in

Ref. [37]. Given the tunability of the ratio between on-site

interaction and nearest-neighbor hopping, U/t , the interaction

strength required for the presented phase separation should be

accessible in experiment (U/t = 150 have been reported in

Ref. [16]).

This article is organized as follows. In Sec. II, we introduce

the model, and in Sec. III, we calculate the magnetic structure

for U < Uc within an unrestricted Hartree-Fock approach.

The topology of the intrinsically ferromagnetic edge arising for

U > Uc is addressed in Sec IV and in the Appendix. Finally

in Sec. V, we summarize our findings and comment on the

experimental significance of our results.

II. MODEL

We consider the fermionic single-band Hubbard model on

a 2D and 3D cubic lattice with an external parabolic confining

potential. The Hamiltonian is

H = −t
∑

〈i,j〉,σ

c
†
iσ cjσ + U

∑

i

ni↑ni↓ + α
∑

i

r2
i ni, (1)

where σ ∈ {↑,↓} labels the two fermionic components, which

are the eigenstates of the z component of a spin algebra.

These two components can either be the hyperfine state of

the trapped fermions or even correspond to different atomic

species. ciσ denotes the annihilation operator for a particle with

spin σ at site i, whereas niσ = c
†
iσ ciσ and ni =

∑

σ niσ are the

spin resolved and total occupation of site i. U is the on-site

interaction, and t is the nearest-neighbor hopping. Finally ri

denotes the distance of site i from the trap center measured in

units of the lattice spacing a and α = mω2a2/2 characterizes

the strength of the external confinement. The associated energy

scale is the confinement strength at the edge of the atom cloud

with one atom per site, denoted by Vt . In 2D, Vt = Nα/π ,

where N is the particle number.

III. UNRESTRICTED HARTREE-FOCK APPROACH IN 2D

We now apply a Hartree-Fock mean-field decoupling in the

spin and the density channel. Since the trap breaks translational

invariance, the mean-field parameters will be site-dependent.

Allowing for arbitrary spin and density at each site, we obtain

the following mean-field Hamiltonian [38]:

H = H0 + Hint,

H0 = −t
∑

〈i,j〉,σ

c
†
iσ cjσ + α

∑

i

r2
i ni, (2)

Hint = U
∑

i

(

1

2
ni〈ni〉 − 2'Si · 'Mi

)

,

where 'Si = (
∑

α,β c
†
iα 'σα,βciβ)/2 denotes the spin operator at

site i ('σ is the vector of Pauli matrices) and 'Mi = 〈'Si〉 is the

local magnetization. Magnetization and density are determined

self-consistently for fixed total particle number N . In the

following, we assume zero temperature. The energy of the

self-consistent solution is given by the sum over the lowest

N single-particle energies of the Hamiltonian (2) plus the

constant energy E0 = U
∑

i(
'M2

i − 〈ni〉
2/4).

An important subclass of self-consistent solutions are the

ones with collinear magnetization where My(i) = Mx(i) = 0

on all sites. In particular, the generic phases of the homoge-

neous Hubbard model [34] have a collinear magnetization;

either ferromagnetic Mz(i) = M , antiferromagnetic Mz(i) =

(−1)iM , or paramagnetic Mz(i) = 0. However, we will show

that generally the combination of trapping potential and

imbalance will lead to a non-collinear-magnetization profile.

We are interested in the ground state for a given imbalance,

characterized by the polarization P = (N↑ − N↓)/(N↑ + N↓),

which is an experimentally controllable parameter [27]. The

imbalance is conserved since the two components correspond

to different internal states of the atoms (typically different

hyperfine states) and transitions between these states are

energetically forbidden unless they are driven by additional

lasers. The single-particle eigenstates of the Hamiltonian in

Eq. (2) only have well-defined spin if the magnetization is

collinear. Generally, an expectation 〈Sz〉 (= 0 can be tuned

by spin-dependent chemical potentials or equivalently by a

fictitious magnetic field in z direction Hz = −BSz.

The parabolic confinement will decrease the density away

from the trap center. In a local density approximation, a cross

section through the trap corresponds to a cut through the

(n,U ) phase diagram at constant interaction U . Polarization

can most easily be accommodated by ferromagnetism, but also

013616-2



MAGNETIC STRUCTURE OF AN IMBALANCED FERMI GAS . . . PHYSICAL REVIEW A 81, 013616 (2010)

antiferromagnetic and paramagnetic regions can account for

finite imbalance. As discussed in the Introduction, in a canted

antiferromaget, a spatially constant component aligned with

the field is added to the alternating component perpendicular

to the imbalance. The paramagnetic region can be partially

polarized in the spirit of Pauli paramagnetism, where the po-

larization is proportional to the applied field. In the following,

we show that canted antiferromagnetic order is realized at

half-filling, and we study how the imbalance is distributed

between Mott plateau and edge as a function of interaction

and imbalance. Self-consistent solutions of the Hubbard model

on the two-dimensional square lattice (2) have either a

collinear or coplanar magnetization [35,38], and we can set

My = 0 without loss of generality. However, we note that

enforcing vanishing global in-plane magnetization can lead

to nontrivial three-dimensional topologies for the intrinsic

ferromagnet [32,33], which will be discussed in Sec. IV.

A. The homogeneous system at half-filling

Figure 1 shows the mean-field energies of canted and

collinear solutions as a function of increasing imbalance for

the homogeneous system at half-filling. A rough explanation

of why the canted antiferromagnetic order is favored can

be given within the mean-field Heisenberg model. Here the

energy increases only quadratically with polarization for

the canted order but linearly with polarization for collinear

magnetization. Since the solutions are the same at the extreme

values P = 0 and P = 1, the ground state is always a canted

antiferromagnet.

B. Magnetization profile in the trap

Figure 2 shows an example of a typical magnetization pro-

file of a self-consistent solution at an intermediate interaction

strength U = 5t . For the chosen parameters, the interaction

is strong enough to form a Mott plateau with 〈n(i)〉 = 1 in

the center. Furthermore, the trap strength, α = 0.02t , and the

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8  1
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  U=10t,  Mz

  U=7.5t, CAF

  U=7.5t,  Mz

  U=5t, CAF

  U=5t,  Mz

FIG. 1. (Color online) Energy per particle as a function of

polarization for the homogeneous Hubbard model at half-filling for

various interaction strengths. Solutions with collinear magnetization

(Mz) have higher energy than solutions with canted antiferromagnetic

(CAF) order. Results obtained on a 20 × 20 lattice with periodic

boundary conditions. For the canted antiferromagnet, the imbalance

is fixed by a fictitious magnetic field in the z direction; however, the

Zeeman energy is not included in the plotted energies.
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(a) Local Magnetization
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FIG. 2. (Color online) Magnetic structure for U = 5t , P = 0.5,

N = 540, and α = 0.02 (Vt = 3.4t). (a) Local magnetization at the

lattice sites. Vertical (horizontal) component of arrows encodes Mz

(Mx). Dark corresponds to negative values of Mx and light to positive

values of Mx . x and y denote spatial coordinates. (b) Spin-resolved

densities along the cross section at x = 0.5. (c) Spin components

along cross section at x = 0.5. The lattice size is 40 × 40.

particle number, N = 540, correspond to Vt = 3.4t which is

smaller than the on-site interaction so that double occupancies

are absent.

Within the Mott plateau, we find canted antiferromagnetic

order, as expected from the analysis of the homogeneous

system. The cross sections of the spin resolved densities

and the local magnetization in panels (b) and (c) of Fig. 2

show that the edge is partially polarized and does not have

antiferromagnetic order, although the x component of the

magnetization extends into the edge.

We now consider the distribution of a fixed imbalance for

various on-site repulsions. Figure 3 illustrates that increasing

interaction moves the imbalance to the edge. (We define

the Mott plateau through |ni − 1| < 0.05.) Above a critical

interaction strength (of order Uc ≈ 10t), the edge is fully

polarized and the Mott plateau is a pure antiferromagnet. The
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(c) U = 7t
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FIG. 3. (Color online) (a) Spatial distribution of imbalance as a

function of interaction strength for constant global imbalance P =

0.5. Increasing interaction increases polarization at the edge (P01)

and decreases polarization in the center (P1). The fictitious magnetic

field applied to fix the imbalance is shown with stars. (b)–(e) Cross

sections at x = 0.5 of spin-resolved densities and Mx . Labeling is

shown in (e).

maximum in the majority density at the border of the Mott

plateau can be understood by recalling that in the homogeneous

system for strong interactions, there is a first-order phase

transition between an antiferromagnet close to half-filling and

a ferromagnet at finite doping [34]. By decreasing interactions

below Uc, the canting in the Mott plateau increases and the

polarization at the edge decreases.

Next we describe the magnetic structure as a function of

the global polarization, P , keeping the other parameters fixed.

For U = 5t , the upper panel of Fig. 4 shows that both the

polarization in the center with canted antiferromagnetic order

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1.

P01

P1

N1/N

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1.P

P

(a)   U = 5t

(b)   U = 12t

FIG. 4. (Color online) Spatial dependence of imbalance as a

function of global imbalance. P01 denotes polarization at the edge.

P1 (N1) denotes polarization (number of atoms) in the Mott plateau

for (a) U = 5t and (b) U = 10t . The dashed lines are explained in

the text. All other parameters are as in Fig. 2.

and in the partially polarized edge increases linearly with the

global polarization. The polarization at the edge is always

larger than in the center until the Mott plateau disappears

close to full polarization.

We now discuss the case of strong interaction (i.e., U >

Uc). Here the edge is intrinsically ferromagnetic. As shown in

Fig. 3, at U = 12t , the edge is already fully ferromagnetic in

the absence of any fictitious magnetic field that is otherwise

used to fix a certain global imbalance. Given the total number

of atoms in the trap, N , and the number of atoms in the edge,

N01, this defines a critical polarization Pc = N01/N , which is

Pc ≈ 0.5 in Figs. 3 and 4. Our mean-field approach predicts

for P < Pc and U > Uc a spatially uniform ferromagnetic

edge with a direction other than the z direction. This implies a

finite global in-plane magnetization. However, as we discuss

in detail in the next section, such a solution which is forbidden

by spin conservation and the preferred ferromagnetic order

in the edge will have nontrivial spin textures for P < Pc and

U > Uc. For now we restrict our discussion to P > Pc and

U > Uc. Then the ferromagnetic order at the edge points in

the z direction and the antiferromagnet in the Mott plateau is

canted as shown in the lower panel of Fig 4.

We now increase the number of particles so that the

center of the trap is more than half-filled. In agreement with

the symmetry of the homogeneous Hubbard model around

half-filling, we find that the edge between the Mott plateau and

double-occupied sites shows similar features as the outer edge

discussed above. Figure 5 shows the magnetization profile and

the spin-resolved densities. Here Vt = 15.7 which is larger

than the chosen on-site interaction. The Mott plateau is formed

on a ring and has canted antiferromagnetic order. Moving

away from the Mott ring, the antiferromagnetic order rapidly

vanishes and the edge is strongly polarized. In fact, for this

rather large value of U , we see a small maximum of the

majority component at the outer edge and a minimum in the

minority component at the inner edge.
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FIG. 5. (Color online) Same as Fig. 2 but for U = 10t , N = 2472,

α = 0.02, and P = 0.37. The lattice size is 64 × 64.

IV. NONTRIVIAL SPIN TEXTURES FOR U > Uc

The Hartree-Fock calculation predicts that above a critical

interaction strength Uc, the edge of the atom cloud turns

ferromagnetic, even in absence of any imbalance or fictitious

magnetic field. In the previous section, we defined a critical

polarization, Pc, corresponding to a fully polarized ferromag-

netic edge along the z direction and an antiferromagnetic Mott

plateau. In this section, we discuss qualitatively the magnetic

structure for U > Uc and P < Pc.

A cold atom experiment is prepared from a paramagnetic

state with no optical lattice. Controlling the imbalance between

the two fermion species, the initial state is characterized by

〈Mz〉 = PN/2 ; 〈Mx〉 = 0 = 〈My〉, (3)

where P is the polarization and N the number of atoms. Since

there is no coupling between the effective spin degree of

freedom and the rest of the experimental system, the same

constraints apply in the presence of an optical lattice and

with strong on-site interaction U [32,33]. This additional

constraint is always fulfilled in our mean-field treatment

except for U > Uc and P < Pc, where a spatially uniform

ferromagnetic edge is predicted with a direction other than the

z direction. However, such a solution leads to a finite global

in-plane magnetization, which is forbidden by the boundary

condition. In order to fulfill Eq. (3), itinerant ferromagnetism

in cold atom systems can have nontrivial topology as shown

recently for balanced systems with filling factor less than unity

everywhere [32,33].

In the following, we discuss the magnetic structure for

U > Uc and P < Pc, both for 2D and 3D systems. We look for

magnetic structures that fulfill spin conservation (3) and which

show the two prominent features predicted by the mean-field

calculation, namely a) magnetic instabilities toward ferromag-

netism in the compressible edge and antiferromagnetism in

the Mott plateau and b) at the interface between Mott plateau

and compressible edge, the orientation of the antiferromagnet

and the ferromagnet should be perpendicular to each other. Our

qualitative analysis is based on the Ginzburg-Landau-type free

energy functional (see Refs. [32] and [33]):

E =

∫

d2r
ρ

2
|∇ 'M|2 +

β

4
(| 'M|2 − | 'M0|

2)2 , (4)

where ρ is the positive stiffness constant, M0 is the magnitude

of the favored magnetization, and β > 0 determines the cost

of amplitude fluctuations. The favored spin texture for strong

interactions, U > Uc, is determined by minimizing the total

energy under the constraint of Eq. (3). In our qualitative

analysis, we neglect that at the edge, the system parameters

in Eq. (4) depend on the radius. This allows us to write

the total energy of a spin structure, as a sum of three

contributions: the energies of the spin structures at the edge,

inside the Mott plateau, and at the interface of both regions.

We note that the energy scale related with the spin structure of

the ferromagnetic edge is of the order t and thus much bigger

than the small superexchange t2/U that determines the spin

structure in the Mott plateau. Therefore, we first minimize

the free energy of the intrinsically ferromagnetic edge. The

remaining two energy terms describe the interface between

ferromagnetic and antiferromagnetic order at the edge of

the Mott plateau and the energy of the spin structure in

the Mott plateau. Based on the different scaling with the

system size, we argue that the interface term dominates for

large systems. While the interface term scales with rD−1
M ,

where rM is the radius of the Mott plateau and D denotes

the dimension, the antiferromagnet scales like ln rM in 2D

and like rM ln rM in 3D, as we will show. We minimize the

interface term by choosing the orientation of the ferromagnetic

and the antiferromagnetic order to be perpendicular to each

other at the interface between Mott plateau and compressible

edge. In the following, we discuss solutions, where the Mott

plateau has no net imbalance. In fact, in the limit of large

interactions U → ∞, the superexchange t2/U vanishes, so

that one could allow for a strong polarization of the edge, by

polarizing the Mott plateau in the opposite way. As estimated

in Appendix B, such a solution is however higher in energy

for realistic interaction strengths.

A. 2D lattice

We argue that (i) in presence of the Mott plateau a vortex

structure for the ferromagnetic edge should be energetically
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(a)

(b)

(c)

FIG. 6. (Color online) Illustration of possible magnetic structures

at U > Uc for balanced 2D systems with vanishing global magnetiza-

tion. Dark arrows indicate the spin texture of the ferromagnetic edge.

Light arrows illustrate the magnetization in the antiferromagnetic

Mott plateau. Black dots indicate the regular 2D lattice. As discussed

in the text, the energetically favored solution is depicted in (a) and

consists of a vortex structure at the ferromagnetic edge (here in the xy

plane) that is perpendicular to the antiferromagnetic ordering in the

Mott plateau (here in the z direction). (b) and (c) illustrate a Skyrmion

and domain wall structure in the ferromagnetic edge.

favored as depicted in Fig. 6(a), and (ii) a finite imbalance

should result in a vortex structure of the ferromagnetic order

parameter in the xy plane together with a small z component

(see Fig. 7). An important experimental consequence is a

strong z component of the antiferromagnetic order in the

center, which is aligned perpendicular to the ferromagnetic

FIG. 7. (Color online) Illustration of magnetic structures in 2D

for an imbalanced system with U > Uc and 0 < P < Pc. Outer

arrows indicate the spin texture of the ferromagnetic edge which

consists of a vortex in the xy plane tilted toward the z axis. Inner

arrows illustrate the orientation of the staggered magnetization in

the antiferromagnetic Mott plateau which is perpendicular to the

ferromagnetic order.

order in the edge. In Appendix A, we derive the energy of the

different topological orders of the ferromagnetic edge: vortex,

domain wall, or Skyrmion. These structures are illustrated in

Fig. 6. It turns out that for realistic parameters, the vortex

is lowest in energy. For finite imbalance, the edge will then

be described by a ferromagnetic vortex in the xy plane

and a constant z component. The energetically preferred

direction of the antiferromagnetic order in the Mott plateau

is perpendicular to that of the ferromagnet at the edge. The

antiferromagnet in the Mott plateau will therefore have a small

in-plane magnetization forming a vortex, which grows with

increasing imbalance, and a strong z component as illustrated

in Fig. 7.

B. 3D lattice

Similar arguments can be applied to a 3D system. Taking

into account the boundary condition of vanishing global

magnetization in balanced systems and by applying Eq. (4),

one finds that the preferred structure of the ferromagnetic

edge in a balanced system is a hedgehog [32,33]. As shown

in Appendix A, the energetically preferred antiferromag-

netic order in the center should then be either a planar

vortex structure with 'MAF = ±M0'eφ or a 3D spherical

vortex 'MAF = M0'eθ , where 'eφ = (− sin φ, cos φ, 0) and 'eθ =

(cos θ cos φ, cos θ sin φ,− sin θ ) are spherical unit vectors.

Both solutions are illustrated in Fig. 8. They guarantee

that at the edge of the Mott plateau, where the antiferromag-

netic order of the center of the trap has an interface with

the ferromagnet order at the edge, the orientations of the

antiferromagnet and the ferromagnet are perpendicular to each

other. A violation of this requirement would cost an energy that

scales with the area of the interface r2
M . Deformations of the

perfect Néel order in the center of the trap, either in amplitude

or phase, are minimized and the corresponding energy scales as

rM ln(rM/a). For perfectly balanced systems, the vortex within

the Mott plateau could lie in any plane. Imbalance will deform

the hedgehog leading to a net z component (see Fig. 9). While

this does not affect the energy of a vortex in the xy plane,
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(a)

(b)

FIG. 8. (Color online) Illustration of possible magnetic structures

in 3D for a balanced system with U > Uc. Outer arrows indicate the

magnetization at the ferromagnetic edge, and inner arrows illustrate

the staggered magnetization in the antiferromagnetic Mott plateau.

While the ferromagnetic edge always has a hedgehog structure, the

Mott plateau has either a planar vortex structure (a) or a 3D “spherical”

vortex structure (b). While both structures have the same energy for

the balanced system, the planar vortex is favored by finite imbalance

(see Fig. 9).

FIG. 9. (Color online) Illustration of magnetic structures in 3D

for an imbalanced system with U > Uc and 0 < P < Pc. Outer

arrows indicate the magnetization at the ferromagnetic edge. Inner

arrows illustrate the staggered magnetization in the antiferromagnetic

Mott plateau. Note that finite imbalance only deforms the hedgehog

structure of the ferromagnet edge, while the antiferromagnetic order

in the Mott plateau is unchanged [see Fig. 8(a)].

it increases the energy for the vortices in other planes or for

the spherical vortex. Therefore, we expect that for imbalanced

systems in 3D with U > Uc, the antiferromagnetic order in

the Mott plateau will form a planar vortex structure in the xy

plane as in Fig. 9. In contrast to the 2D case where we expect a

strong z component of the antiferromagnetic order for U > Uc

and P < Pc, we expect a vanishing z component in 3D.

V. DISCUSSION

In this work, we studied an interacting two-component

Fermi gas on a 2D and 3D cubic lattice subject to a parabolic

external confinement. We analyzed the magnetic structure

as a function of the repulsive interaction strength and spin

imbalance. Applying an unrestricted Hartree-Fock calculation

for a 2D system, we identified the critical interaction strength

Uc where the edge turns ferromagnetic and analyzed the

spatial distribution of a finite imbalance between the two

Fermi components for U < Uc. We found that the system

has canted antiferromagnetic structure at half-filling with

antiferromagnetic ordering in the plane perpendicular to the

imbalance and is partially polarized elsewhere. Fixing the

global imbalance and increasing the interaction strength results

in more imbalance flowing to the edge. We expect the same

qualitative behavior for 3D in that regime.

In the second part of the work, we gave a general discussion

of the magnetic structure above Uc both for 2D and 3D. We

showed that spin conservation generally leads to nontrivial

spin textures, both in the Mott plateau and at the edge. We

predict that the edge has non-vanishing in-plane magnetization

with a vortex structure in 2D and a hedgehog structure in 3D.

We furthermore expect that for U > Uc and small imbalance,

the antiferromagnetic order in the Mott plateau has a finite z

component in 2D, while in 3D a vanishing z component of the

antiferromagnetic order in the Mott plateau is predicted.

We expect our findings to have clear experimental sig-

natures if temperatures below the Néel temperature can be

reached. A phase-contrast image [27] showing the density

of each component separately can test our predictions of a

Mott plateau with ferromagnetic borders. Detection of a canted

antiferromagnet in the Mott plateau requires direct access to

the order parameter. This can be achieved for instance through

noise correlations [24] or by measuring the local magnetization

[22,23,26]. Additionally, one can use Bragg spectroscopy

[20,21] where the double-unit cell of the antiferromagnet

results in additional Bragg peaks. Furthermore, the intensity

of the additional Bragg peaks can then be used to measure the

strength of the z component of the antiferromagnet.
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APPENDIX A: GINZBURG-LANDAU THEORY

Following Ref. [32], we apply a Ginzburg-Landau-type

description of the magnetism based on Eq. (4) to analyze the

magnetic structure for U > Uc, where the edge is intrinsically

ferromagnetic. By enforcing a vanishing global in-plane

magnetization, the ferromagnetic edge acquires nontrivial

topology. For the energy estimate, we consider three energy

contributions. The most relevant contribution is the free

energy of the intrinsically ferromagnetic edge. Thereafter

the contribution of the interface between ferromagnetic and

antiferromagnetic order at the edge of the Mott plateau has

to be taken into account, which is minimized by choosing the

orientation of the ferromagnet and the antiferromagnetic to

be perpendicular to each other. Finally the free energy of the

antiferromagnetic Mott plateau has to be minimized.

We simplify our calculation by assuming constant parame-

ters ρ, β, and M0 in Eq. (4), thus neglecting a radial dependence

of these parameters due to the trapping potential [33]. We

denote the radius of the atom cloud by Rc and the radius of the

Mott plateau by rM .

A. 2D lattice

In a 2D system we expect the magnetization at the

edge to form a vortex-like structure. Furthermore, we claim

that for a small imbalance, the vortex will lie in the xy

plane with a uniform magnetization component pointing in

the z direction. The energetically preferred direction of the

antiferromagnetic order in the Mott plateau is perpendicular

to that of the ferromagnet at the edge. At the interface, the

antiferromagnet in the Mott plateau will have an in-plane

magnetization forming a vortex and a z component. The lowest

energy corresponds to the maximally allowed z component of

the antiferromagnetic order parameter, thus minimizing the

in-plane vortex.

We now give quantitative arguments for the physics

described in the preceding discussion based on a comparison of

the energies of a ferromagnetic edge with different topologies:

either a vortex, a domain wall, or a Skyrmion as depicted

in Figs. 6 and 10. First we discuss the balanced system.

For the vortex, the direction of magnetization is independent

of radius, but it rotates by 2π on each circumference. A

particular realization of a vortex is 'MV = M0'er . However, for

the balanced system, there is global rotation invariance and the

plane of the vortex is arbitrary. Using Eq. (4), the energy cost

of a vortex is given by EV = πρM2
0 ln(Rc/rM ). Even in the

absence of a Mott plateau, the lattice spacing, a0, gives a natural

cutoff for the core energy leading to EV < πρM2
0 ln(Rc/a0).

A vortex naturally fulfills the requirement of vanishing global

magnetization in all three spatial directions.

Another possibility is the formation of a domain wall. In

the inner ring rM < r < r0, there is a uniform polarization

(e.g., 'M = M0'ez), and within a finite region, r0 < r < r0 + L,

the sign of the magnetization is inverted [e.g., 'M = M0(1 −
2(r − r0)/L)'ez]. In the outer ring, r0 + L < r < Rc, the

magnetization points in opposite direction (e.g., 'M = −M0'ez).

While the inner and outer rings have a perfect uniform

ferromagnetic order, the domain wall is energetically costly

due to the suppression of the amplitude of the order parameter.

Domain Wall

Skyrmion

Vortex

r

Rcr + L
00

rM
r

FIG. 10. Radial cross section through the ferromagnetic edge.

Ferromagnetic edge starts at the border of the Mott plateau at r = rM

and ends at r = Rc. While for the vortex the magnetization does not

change in radial direction, both Skyrmion and Domain wall do change

in radial direction within a ring defined by r0 < r < r0 + L. Note that

the radial component of the magnetization changes by 2π around the

circumference while the z direction is fixed.

The energy cost is given by ED = πρM2
0 (r0/L + 1/2)[4 +

4L2/(15ξ 2)], with ξ =
√

ρ/(βM2
0 ) denoting the coherence

length. r0 and L are not independent of each other but related

by the condition of vanishing global magnetization. In absence

of any Mott plateau, rM = 0, the smallest allowed value is

r0/L ≈ 0.6 which increases with rM . Neglecting the term

containing the coherence length, we therefore obtain a lower

bound for the energy of the domain wall: ED > πρM2
0 4.

Finally, we estimate the energy of a Skyrmion. The

magnetization is uniform (e.g., 'M = M0'ez) in the inner ring,

rM < r < r0, and then it rotates by an angle aπ around

a local axis in a ring of width L, r0 < r < r0 + L [e.g.,
'M = M0 cos( r−r0

L
aπ )'ez + M0 sin( r−r0

L
aπ)'er ]. For a = 1, the

magnetization in the outer ring is inverted, while for other

angles, it has a vortex structure [e.g., 'M = M0 cos(aπ )'ez +

M0 sin(aπ)'er ]. The Skyrmion interpolates between the inner

and outer rings by tilting the order parameter, keeping the

amplitude of the magnetization fixed in constrast to the

domain wall where the amplitude is suppressed. In the region,

r0 < r < r0 + L, the magnetization of the Skyrmion changes

in the radial direction and along the circumference. The

radial dependence of the magnetization gives rise to an

energy contribution given by ES = πρM2
0 (r0/L + 1/2)(aπ2).

Again the variables r0, L, and a are not independent of

each other but related by the condition of vanishing global

magnetization. By minimizing this energy only, and neglecting

the energy cost of the change of magnetization along the

circumference, we get a lower bound for the Skyrmion energy:

ES > πρM2
0 [rM/(Rc − rM ) + 1/2]π2.

According to these estimates, the lower bound of the

energy for the domain wall is larger than the total energy

of the vortex for rM > exp(−4)Rc ≈ Rc/50, and the lower

bound for the Skyrmion is larger than the vortex energy for

rM > exp(−5)Rc ≈ Rc/150. In fact, the real minima for both

Skyrmion and domain wall will be larger. Since the radius of

the whole atomic cloud is about 50 lattice sites [16,17], our

conservative estimate shows that the vortex should be favored

for practically any size of the Mott plateau. We note that for the
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results shown in the main part of this article, rM/Rc ≈ 1/2.

For the balanced system there is global rotation invariance

and the plane of the vortex structure is arbitrary. However, in

the presence of a finite imbalance, the energetically preferred

magnetization will be a vortex in the xy plane with a uniform

ferromagnetic z component. Assuming that the directions

of the ferromagnetic edge and the antiferromagnet in the

Mott plateau are perpendicular, we expect the direction of

antiferromagnet to have a large z component.

B. 3D lattice

Minimizing the free energy in Eq. (4), one finds that the

preferred structure of the ferromagnetic edge in a balanced

3D system is a hedgehog [32,33]. We now explain why we

expect the antiferromagnetic order in the center to have a

planar vortex structure for U > Uc and P < Pc. First, at

the edge of the Mott plateau, the preferred direction of the

antiferromagnetic order is perpendicular to the orientation

of the ferromagnet order in the edge. A violation of this

requirement will cost an energy that scales with the area of

the interface r2
M . In order to fulfill the boundary condition

at the edge of the Mott plateau, the antiferromagnetic order

in the trap center can neither have perfect Néel order nor a

hedgehog configuration, since the latter needs to be oriented

in the radial direction. One possibility is to build up the 3D

magnetization from the preferred 2D solution for each plane z,

which is given by 'MAF = M0{z/rM 'eρ − [1 − (z/rM )2]1/2'ez},

where 'ez = (0, 0, 1) and 'eρ = [cos φ, sin φ, 0] are cylindrical

unit vectors. However, this solution is not realized in 3D,

since the change in the z component of the magnetization

between different planes costs a large energy that scales

with the volume of the Mott plateau EAF ∝ r3
M/a2. In fact,

the preferred magnetic orders in the Mott plateau are either

planar vortex structures like 'MAF = M0'eφ or 3D solutions

like 'MAF = M0'eθ , where 'eφ = (− sin φ, cos φ, 0) and 'eθ =

(cos θ cos φ, cos θ sin φ,− sin θ ) are spherical unit vectors.

For the balanced system, these solutions have the same energy

given by EAF ≈ 4πM2
0 ρrM ln(rM/a). However, imbalance

will deform the hedgehog at the edge of the trap leading to

a net z component. Such a deformation increases the energy

of these solutions except for a vortex in xy plane. Therefore,

we expect the magnetization profile in 3D for U > Uc and

small imbalance to be given by a (slightly deformed) hedgehog

ferromagnet at the edge of the trap and an antiferromagnetic

order with a vortex structure in the xy plane in the center

of the trap. In contrast with the 2D case, where we expect a

strong z component in the antiferromagnetic order for U > Uc

and P < Pc, we expect a vanishing z component of the

antiferromagnetic order in the Mott plateau in 3D.

APPENDIX B: POLARIZING THE MOTT PLATEAU

In Sec. IV, we propose spin structures for U > Uc and

P < Pc that minimize the total energy while fulfilling the spin

conservation (3). The constraints (3) prohibit the formation of

a uniform ferromagnet at the edge of the trap if simultaneously

the Mott plateau has an antiferromagnetic structure with zero

net imbalance. However, since the constraints (3) apply to the

whole system, one could imagine a system consisting of a fully

polarized ferromagnetic edge and a Mott plateau strongly po-

larized in the opposite direction, such that the global imbalance

is small or even zero. We now justify why such solutions are

energetically more costly than the ones proposed in Sec. IV.

We therefore discuss the magnetic structure of a balanced

Fermi gas in a 3D trap. The system can be divided into a Mott

plateau for radius r < rM and an edge for radius rM < r < Rc.

In Sec. IV, we claimed that the ferromagnetic structure at the

edge forms a hedgehog. Applying the Ginzburg-Landau-type

free energy in Eq. (4), the energy of a hedgehog can be

estimated. We strongly simplify our calculation by assuming

a constant density at the edge [32]. The magnitude M0 of

the ferromagnetic magnetization is therefore constant along

with the stiffness, ρ, in Eq. (4). We now estimate the energy

of the ferromagnetic hedgehog as EF = 8πρM2
0 (Rc − rM ).

The stiffness of a homogeneous Fermi gas is given by

ρ = 1/(12k2
F χ0) = h̄2/(36m n), where kF is the Fermi wave

vector, χ0 the magnetic susceptibility, m the mass of the

fermions, and n is the density (see Ref. [33]). For sufficiently

small densities, the mass of a particle hopping between nearest

neighbors in a 3D cubic lattice is given by m = h̄2/(ta2),

where a is the lattice constant and t the hopping matrix

element between nearest-neighbor sites. The stiffness on a

3D cubic lattice is therefore given by ρ ≈ ta2/(36n), and the

energy of the balanced hedgehog becomes E ≈ (2π/9)t(Rc −

rM )/(a4n) / tN
1/3

E , where NE is the number of atoms at the

edge of the trap. This energy could be gained by uniformly

polarizing the edge. However, due to the conservation of the

total imbalance, the Mott plateau would then also be polarized

by PM = NE/NM , where NM denotes the number of atoms

in the Mott plateau. The corresponding cost in energy can be

estimated as EAF ≈ P 2
M2NM4t2/U = 8t2N2

E/(UNM ), where

2NM is the number of nearest neighbors in the Mott plateau

and 4t2/U is the superexchange. The energy cost of polarizing

the Mott plateau is smaller than the energy gain of forming a

uniform ferromagnetic edge if U/t > 36N
5/3

E /(πNM ). This is

not satisfied for realistic particle numbers NE, NM > 103 and

NE/NM / 1. We thus conclude that in 3D for U > UC and

P < Pc, the Mott plateau is not significantly polarized. The

magnetic structures that minimize the total energy and fulfill

Eq. (3) are therefore the ones presented in Sec. IV. We expect

similar arguments to hold in 2D.
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