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Abstract 
 
Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles BaFe12-2xCoxTixO19 

with ( 10  x ) and BaFe12-2xRuxTixO19 with ( 6.00  x ) were prepared by ball milling 

method, and their magnetic properties and their temperature dependencies were 

studied. The zero-field-cooled (ZFC) and field-cooled (FC) processes were recorded at 

low magnetic fields and the ZFC curves displayed a broad peak at a temperature TM. In 

all samples under investigation, a clear irreversibility between the ZFC and FC curves 

was observed below room temperature, and this irreversibility disappeared above room 

temperature. These results were discussed within the framework of random particle 

assembly model and associated with the magnetic domain wall motion. The resistivity 

data show some kind of a transition from insulator to perfect insulator around 
M

T . At 2 

K, the saturation magnetization slightly decreased and the coercivity dropped 

dramatically with increasing the Co-Ti concentration x. With Ru-Ti substitution, the 
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saturation magnetization showed small variations, while the coercivity decreased 

monotonically, recording a reduction of about 73% at x = 0.6. These results were 

discussed in light of the single ion anisotropy model and the cationic distributions based 

on previously reported neutron diffraction data for the CoTi substituted system, and the 

results of our Mössbauer spectroscopy data for the RuTi substituted system.   

 

 

Keywords: Ball milling, Barium hexaferrite, ZFC and FC curves, Coercive field, 

Magnetization, resistivity, dielectric constant.  

 
 
1. Introduction  
 

M-type barium hexaferrites (BaFe12O19) with magnetoplumbite structure have 

been intensively investigated in the past years as a material for permanent magnets, 

high-density recording, future multiferroic and high frequency applications [1, 2, 3, 4]. In 

general, these materials have large saturation magnetization, high coercivity, high Curie 

temperature, large uniaxial magnetic anisotropy and good chemical stability [5, 6, 7, 8]. 

Several techniques have been used to prepare M-type hexaferrites such as co-

precipitation method [9], sol-gel auto-combustion method [10], hydrothermal process 

[11], ammonium nitrate melt method [12], microwave-induced combustion [13], 

mechano-combustion route [14], and ball milling method [15,16]. Ball milling is user-

friendly and simple method suitable for the production of powders composed of fine 

particles smaller than the single domain size. In Barium hexaferrites, the preparation 

method was found to have significant influence on their magnetic properties. 

 

In order to improve the fundamental magnetic properties of barium hexaferrites, 

many studies have been concerned with cationic substitutions. Different cations such as 
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Al [17], Ga, Sc, In [18, 19], and various cationic combination such as, Ni-Ti [20], Co-Zr 

[21], Co-Sn [22], Zr-Zn [23], Co-Gd [24], Mn-Ti [25], Ni-Ru, Zn-Ru [26], Ti-Ru [27], and 

Co-Ti [28, 29], were substituted for Fe in Barium hexaferrites. These substitutions were 

found to cause modifications of the magnetic properties and induce significant changes 

in several substituted systems. 

 
Co-Ti substituted barium hexaferrites exhibit suitable properties in a wide range 

of industrial application [28, 29, 30]. It was found that small amounts of Co2+ and Ti4+ 

substituting for Fe3+ in BaFe12-2xCoxTixO19, can substantially reduce the coercive field, 

HC, with only a littlie change in saturation magnetization [28, 29, 30, 31, 32, 33, 34]. On 

the other hand, with Ru-Ti substitution, the saturation magnetization at room 

temperature was found to increase up to x = 0.2, and then to decrease for higher x 

values, while the coercivity decreases monotonically, recording a reduction of about 55% 

at x = 0.4 [27]. These properties, in addition to the large saturation magnetization, good 

chemical stability, and low switching field distribution make these compounds useful in 

high density and perpendicular recording. It has, therefore, become important to 

understand the origin of the property changes when these substitutions are made. Most 

of the previous investigations on these systems were done at room temperature, where 

most of the industrial applications take place. However, studying these materials at low 

temperatures and investigate the dependence of their electrical and magnetic properties 

on temperature will shed more light onto their magnetic behaviors. 

 
In this contribution, we study the effect of Co-Ti and Ru-Ti substation for Fe on 

the magnetic properties of barium hexaferrites in BaFe12O19 synthesized by ball milling 

method. The temperature dependence of the magnetic and electrical properties of two 

barium hexaferrites systems: BaFe12-2xCoxTixO19 with ( 10  x ) and BaFe12-2xRuxTixO19 
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with ( 6.00  x ) are investigated in a wide range of temperature and magnetic fields in 

an attempt to understand the magnetic behavior of these hexaferrites.  

 
 

2. Experimental Procedures  
 

All samples were prepared by ball milling and extracted from the same batch we 

used in our previous studies [27, 33]. The starting materials for synthesis of BaFe12-

2xCoxTixO19 with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were high purity metallic oxides 

(Fe2O3, TiO and CoO) and barium carbonate (BaCO3). In addition to the above 

materials, high purity metallic oxide RuO2 were used for BaFe12-2xRuxTixO19 system and 

samples were prepared with x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. All samples were 

prepared in a planetary ball-mill (Fritsch Pulverisette-7) with balls and vials of hardened 

steel. The milling experiment was carried out at 250 rmp for 16 h and the ball to powder 

ratio was 8:1. The as-milled powders were annealed in air atmosphere at 1100 ºC for 2 

h. Further detailed explanation of this treatment is given in references [27, 33]. The 

phase purity and crystallite sizes in the synthesized samples were checked by x-ray 

diffraction, and the particle size was determined from the scanning electron microscopy 

(SEM) imaging.  

 
The magnetization measurements were performed using a Quantum Design 

superconducting quantum interference device (SQUID). The zero-field-cooled (ZFC) and 

field-cooled (FC) processes were recorded at low magnetic fields in temperature range 

from 2 to 300 K. Before each run, samples were demagnetized at 300 K by applying an 

oscillatory magnetic field, and then cooled down in zero fields to 2 K. At 2 K, a small 

magnetic field of the order of 100 Oe is applied, and then recording of the magnetization 

is started as we heat the sample to 300 K. This procedure we denote as the zero-field 

cooled (ZFC) measurements. At 300 K, the small-applied magnetic field is kept as is and 
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then samples are cooled again to 2 K, with subsequent recording the magnetization as 

we heat the sample to 300 K. Such a measurement we denote as a field-cooled (FC) 

measurements. Some other magnetic and electrical resistivity measurements were 

carried out using the Quantum Design 14T Physical Properties Measurements System 

(PPMS).  

 

3. Results and Discussion 
 
 3.1 Co-Ti substitutions 

X-ray diffractions patterns for BaFe12-2xCoxTixO19 are shown in Figure 1. This 

figure demonstrates that all samples show a hexagonal structure, which matches the 

standard pattern for hexagonal barium ferrite BaFe12O19 with space group P63/mmc and 

lattice parameters a = 5.89 Å and c = 23.20 Å. In addition, small amounts of hematite 

(less than 5%) were detected in this system. The average crystallite size was calculated 

using the well-known Scherrer formula, and was found to decrease from about 76 nm for 

pure sample to 60 nm for the sample with x = 1.0. 

 

Figure 2 shows representative SEM images for the CoTi substituted hexaferrites. 

The images show relatively narrow particle size distributions for all samples with the 

average grain size tending to decrease with increasing the substitution level. The 

average grain size was found to be ~ 330 nm for the pure sample, and ~ 170 nm for the 

sample with x = 0.8.    

 

Figures 3(a)-3(c) show the ZFC and FC magnetization curves of BaFe12-

2xCoxTixO19, with x = 0.2, x = 0.8, and x = 1 as a function of temperature measured at 

1000 Oe. Similar measurements were done also for the other samples with different 

concentrations x. For each sample the ZFC magnetization rises from almost the same 
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value of 4 – 5 emu/g at 2 K to a maximum value at TM, and then drops exhibiting a broad 

peak at TM. Both the maximum magnetization and the temperature at peak value 

increases with increasing x. The occurrence of the peak can be associated with the 

magnetic domain wall motion. In zero applied field the magnetic domains are blocked 

along the corresponding randomly oriented easy directions leading to zero net 

magnetization in the virgin sample. When the field is switched on at 2K, net 

magnetization is established in the sample as a consequence of the 180° domain wall 

flip into the direction of the applied field. However, some domain walls remain pinned 

due to microstructure in the sample, and can be unpinned by thermal activation [35]. If 

the field required to unpin the domains (Hcp) decreases with increasing temperature as 

reported for other magnetic systems [36], then as the temperature increases at constant 

applied field, two effects can occur: First, the usual drop in magnetization due to thermal 

agitation. Second, the increase in magnetization arising from thermal unpinning of the 

domain walls and the subsequent domain wall motion induced by the constant 

magnetizing field at higher temperatures. The competition between these two effects is 

expected to result in a peak (at TM), where at temperatures higher than this value, the 

reduction in magnetization due to thermal effects is dominant, resulting in the observed 

drop in magnetization. The shift of the peak position to higher temperatures (TM ~143, 

179, and 215 K for x = 0.2, 0.8, and 1 respectively) can be associated with a stronger 

domain walls pinning as x increases. This is consistent with the observed decrease in 

crystallite size with increasing x, resulting from the increased level of crystal 

imperfections which impede the crystal growth on one hand, and increase the domain 

wall interactions with the crystal imperfections, which are responsible for the wall 

pinning, on the other hand. The increase in magnetization as x increases is consistent 

with the reduction in magnetic anisotropy. The observed behavior of magnetization is 

consistent with the results of previous studies on BaFe12-2xTixCox with x = 0.8 [11, 37, 
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38]. In these investigations the occurrence of the peak was attributed to ferromagnetic-

superparamagnetic transition in the nano-sized particles. However, in a recent study [39] 

it was shown that such transition occurs near the Curie temperature of the hexaferrite 

which was ~ 700 K for the Ga substituted hexaferrites, resulting in a large Hopkinson 

peak just below TC. At lower temperatures the particle moments are blocked and no 

superparamagnetic behavior is anticipated.   

 
Figures 3(a)-3(c) also show a clear irreversibility between the ZFC and FC 

measurements. The FC magnetization is always above the ZFC up to temperatures 

even above room temperature for lower Co-Ti concentrations and up to about room 

temperature for x = 0.8. This could be attributed to easier unpinning of the domain walls 

by the constant field at higher temperatures. For all different concentrations, the FC 

magnetization reaches almost a constant value below a given temperature *
T , below 

which the domain wall motion is saturated and no further increase in magnetization 

occurs at lower temperatures. The small drop in magnetization below T* for the sample 

with x = 1.0 is associated with different distributions of pinning fields resulting in the 

double peak structure for this sample, where a second peak seems to occur around 130 

K. This could also indicate a presence of some degree of reversibility in domain wall 

pinning in this sample at low temperatures.  

 
Figure 4(a) shows magnetization hysteresis curves of the BaFe12-2xCoxTixO19 

series for x = 0.0, 0.4 and 0.8, measured at 2 K. Similar measurements were done using 

the other samples with different concentrations, both at 2 K and at room temperature. 

The coercive field strength for the non-substituted sample is about 3.2 kOe. This value is 

in good agreement with the reported value for a similar sample grown by ball milling 

method [15] but smaller than the reported values for similar samples grown by different 
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techniques [12, 30, 40]. The saturation magnetization at 2 K is obtained from the law of 

approach to saturation [41]: 

 
M = Ms(1 – A/H  – B/H2) + χH                      (1) 

 
where Ms is the spontaneous magnetization of the domains, χH term is associated with 

the field-induced increase in the spontaneous magnetization of the domains, the material 

constant A arises from sample inhomogeneities, and B represents the 

magnetocrystalline anisotropy contribution. The magnetization data in the field range 

between about 8 kOe and 12 kOe were plotted against 1/H2, and straight lines were 

obtained indicating that in this range the both A and the last term in equation (1) are 

negligible. The intercepts of the straight lines gave the saturation magnetizations for the 

samples. The slopes of the lines were used to determine the anisotropy field from the 

relation: 

 

B = Ha
2/15                                                    (2) 

 

The first anisotropy constant is then evaluated using the relation [ 41]: 

 
Ha = 2K1/Ms                                                    (3) 

 
The saturation magnetization obtained from the linear fit, and the coercivity determined 

from the hysteresis loops are shown in Fig. 2(b). The saturation magnetization and the 

coercivity exhibits a behavior similar to that reported at room temperature [33]. The 

saturation magnetization at 2 K ranges from 93 emu/g for the non-substituted sample to 

77.4 emu/g for the sample with x = 1.0. The value for the non-substituted sample at 5 K 

is only 7% smaller than the theoretically predicted value at zero temperature 

corresponding to a net magnetic moment of 20 μB per formula unit [41]. This reduction 

could be partially associated with the small amount of hematite observed by XRD. The 



 9 

reduction in saturation magnetization for x = 1.0 down to about 83% of the value for the 

non-substituted sample is associated with preferential site occupation of Co2+ and Ti4+ 

ions at spin-up and spin-down sites. The value of Ms = 77.4 emu/g corresponds to a net 

magnetic moment of 16.6 μB at T = 0.  

 
In the hexaferrite lattice there are three spin-up (2a, 2b and 12k) magnetic sites 

occupied by 8 metallic ions per formula, and two spin-down (4f1, 4f2) sites occupied by 4 

ions. Previously reported results based on careful analysis of the neutron diffraction and 

Mössbauer data indicated that Co2+ ions preferred tetrahedral 4f1 spin-down sites, where 

Ti4+ ions distribute themselves at both spin-up (12k, 2a) sites as well as at spin-down 4f2 

site [42, 43]. Based on this cationic preferential site occupation, and assuming a 

magnetic moment of 3 μB per Co2+ ion in the tetrahedral site, 5 μB per Fe3+ ion, and 0 μB 

per Ti4+ ion, the fraction (denoted as z) of Ti4+ ions at spin-up sites can be calculated 

from the observed magnetic moment per formula (μ) as follows: 

  

μ = 5 μB. [8 – z]  – 3 μB.[x]  – 5 μB. [4 – x – (x – z)] = (20 + 7x – 10z) μB           (4) 

 

Based on this equation and the magnetic moments per formula unit for the substituted 

hexaferrites the z fraction was calculated and the results are summarized in Table 1. 

 

Table 1: Magnetic moment (in μB per formula) and the z fraction of Ti4+ ions at spin-up 

sites. 

 
x μ z 

0.2 19.4 0.20 
0.4 19.2 0.36 
0.6 18.8 0.54 
0.8 18.0 0.76 
1.0 16.6 1.04 

 

Formatted: English (U.S.)

Formatted: English (U.S.)
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It is evident that the fraction of Ti4+ ions in the spin-up sublattices is nearly equal to the 

value of x, indicating that Ti4+ ions in our samples occupy spin-up sites, with no 

preference for spin-down sites. 

 

 While the saturation magnetization, MS, slightly decreased with Co-Ti 

substitutions, the coercivity, HC, dropped dramatically from about 3.2 kOe to 1.02 kOe as 

x increases from 0.0 to 1.0. This indicates that this system has potential for magnetic 

recording applications since one can easily control HC to meet the requirements of 

different magnetic recording systems, while still maintaining a relatively high value of MS. 

The behavior of the coercivity is consistent with the general behavior of the anisotropy 

field and saturation magnetization shown in Fig. 4(c). Fig. 4(c) also shows the variation 

of the first anisotropy constant with x. The fast drop in Ha and K1 for x > 0.4 could be 

associated with the onset of a transition from uniaxial anisotropy to planar anisotropy as 

a consequence of the increased level of Co2+ ions in the lattice.  

 
3.2 Ru-Ti substitutions 
 

X-ray diffraction patterns (Figure 5) for the RuTi substituted hexaferrites indicated 

the presence of a single hexaferrite phase consistent with the standard pattern JCPDS: 

043-0002. The variation in lattice parameters was less than 0.2%, and the cell volume 

was found to be almost constant (0.698 nm3) for all samples. The X-ray density for the 

samples was then evaluated and found to range from 5.3 g/cm3 to 5.41 g/cm3 as x 

changes from 0.0 to 0.6. The average crystallite size was calculated and found to 

change from 69 nm for x = 0.1 to 77 nm for x = 0.4.  

 

Transmission electron microscopy (TEM) images obtained for all samples 

indicated that the average grain sizes of all RuTi substituted hexaferrite were larger than 
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that for the un-substituted sample. Figure 6 shows the images for the representative 

samples with x = 0.0 and 0.4. The average particle size increases from about 45 nm for 

pure sample up to about 180 nm with increasing substitution. These small particle sizes 

indicate that all samples above room temperature consist of single magnetic domain 

particles with sizes smaller than the critical single domain size of 460 nm [44]. 

 

Figure 7 shows room temperature Mössbauer spectra for the samples with x up 

to 0.4. Each spectrum consists of five magnetic sextets corresponding to the five 

crystallographic sites of the hexaferrite lattice. This indicates that all hexaferrites are 

magnetically ordered at room temperature. The spectra were fitted with four sextets due 

to the similarity of the hyperfine parameters of the 2a and 4f1 components. The sub-

spectral intensities were found to fluctuate by 1 – 2% with increasing x, which is within 

the experimental uncertainty. Thus the intensities could not give a clear picture of the 

site preference of the various cations. As a consequence, we used the variations in the 

hyperfine parameters to make a conclusion regarding the cationic distributions over the 

sites. Our results indicated that the Ti2+ ions  prefer 4f2 and/or 2a sites, while Ru4+ ions 

prefer 4f1 sites up to x = 0.2, and then starts to partially substitute Fe3+ ions at 2b sites 

for higher Ru concentrations [26, 27].   

 

Figures 8(a)-8(c) show the ZFC and FC magnetization curves of BaFe12-

2xRuxTixO19, with x = 0.0, 0.3, and x = 0.6 as a function of temperature measured at small 

magnetic field of 100 Oe. We observed similar magnetization behavior even in a smaller 

magnetic field of 40 Oe. The data show a clear irreversibility between the ZFC and FC 

measurements, even at room temperature for higher Ru-Ti concentrations. The ZFC 

curves show wide maxima at 
M

T  ~ 29, 80, 62, 50 and 57 K for x = 0.1, 0.2, 0.3, 0.4 and 
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0.6, respectively. Clearly, no systematic changes were observed in the value of 
M

T  as a 

function of the Ru-Ti concentrations. This can be understood by considering that the 

TEM images for the samples indicated that while the average particle size of the non-

substituted samples is about 45 nm, the substituted samples contain much larger 

particles. However, the crystallinity improves slightly with the increased level of 

substitution. This explains the absence of a peak in the ZFC curves for the x = 0 sample, 

which consist of small single domain particles. The peaks in the ZFC curves for the 

substituted samples are consistent with the presence of multidomain particles at low 

temperatures with similar sources of pinning mechanisms.    

 
In order to get more information on the nature of the transition at 

M
T , we 

extended our study to electrical resistivity measurements using the Quantum Design 14T 

Physical Properties Measurements System (PPMS). We started to measure the 

electrical resistivity with the standard four-point AC method. However, for temperatures 

below 270 K, the samples show a very high resistance, which is above the resistance 

bridge limits. In this temperature range, the resistivity was measured using the capacitive 

(conductivity) method. For this method, the sample was prepared as a small disc 

(diameter of 2mm, and a thickness of 0.8 mm) and then inserted between the plates of a 

capacitor. Simultaneous measurements of both the capacitance and the loss tangent in 

the circuit were recorded as a function of temperature at constant frequency of 1000Hz. 

From the capacitance data, the dielectric constant was determined. On the other hand, 

the loss in the circuit is directly proportional to the resistance of the sample. The 

electrical resistivity measurements taken from this method were then normalized to the 

resistivity values taken with the standard four-point AC method. In Figure 9, the 

temperature dependence of the electrical resistivity BaFe12-2xRuxTixO19 with x = 0.5, 

measured at various magnetic fields is shown. Similar behavior was observed in other 
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samples with different Ru-Ti and Co-Ti concentrations. The resistivity data show some 

kind of a transition from insulator to perfect insulator below 
M

T . No significant magnetic 

filed effects were observed on the resistivity behavior even in field of 4 T. While this 

observation indicates that there are no magnetoresistance effects in the system under 

investigation, the resistivity behavior could be associated with a perfectly insulating 

ferroelectric state below about 40 K, which is destroyed as the conductivity rises above 

this temperature.  

 
Figure 10(a) shows the magnetization hysteresis curves of the BaFe12-

2xRuxTixO19 for x = 0.0, 0.1, 0.3 and 0.6, measured at 5 K. Similar measurements were 

done also for the other samples with different Ru-Ti substitutions, both at 5 K and at 

room temperature. The magnetization curves for the non-substituted sample belong to 

hard magnetic materials with coercive field strength of 3.750 kOe at 5K. This value is 

slightly lower than that of 4.0 kOe observed at room temperature, which is a further 

indication of the multidomain structure at low temperatures. The saturation 

magnetization at 5 K obtained from the linear fit of eq. (1), and the coercivity determined 

from the hysteresis loops are shown in Fig. 10(b). This figure demonstrates that the 

saturation magnetization exhibits a behavior similar to that reported at room temperature 

[27], with saturation magnetization ranging from 88.0 emu/g to 81.3 emu/g. The 

coercivity, HC, drops dramatically from about 3.75 kOe to 0.7 kOe as x increases from 

0.0 to 0.6. The increase in saturation magnetization in the range of x between 0.0 and 

0.2 is a consequence of the substitution of Ti2+ and Ru4+ ions at 4f2 and 4f1 spin-down 

sites, respectively, as indicated by the results of Mössbauer spectroscopy. However, the 

decrease in saturation magnetization at higher concentrations is associated with the 

progressive substitution at 2a and 2b spin-up sites. The behavior of the coercivity is 

consistent with the general behavior of the anisotropy field and saturation magnetization 
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shown in Fig. 10(c). The initial large drop in coercivity in the concentration region 

between 0.0 and 0.2 is associated with the decrease in anisotropy field and increase in 

saturation magnetization according to the relation: 

 

Hc = C(Ha – NdMs)                       (5) 

 

where C is a constant which depends on the nature and degree of alignment of the 

magnetic particles, and Nd is the demagnetization factor which depends on the shape of 

the particles. For x > 0.2, the decrease in saturation magnetization reduces the rate of 

the drop in coercivity.  

 
Fig. 10(c) also shows the variation of the first anisotropy constant with x. The 

value of 3.33 x 106 erg/cm3 is in excellent agreement with the reported value for pure 

BaM hexaferrite [41]. 

 
Figure 11 shows the isothermal magnetization hysteresis curves of the BaFe12-

2xRuxTixO19 with x = 0.1, measured at several temperatures. The saturation 

magnetization decreases from 94.6 emu/g at 5 K to 50.8 emu/g at 400 K. On the other 

hand, the coercivity, HC, increases from 1.75 kOe at 5 K to 4.5 kOe at 400 K. The 

appreciable increase in coercivity at 400 K is a consequence of the thermally assisted 

domain wall de-pinning and the transition to single domain particles at temperatures 

above TM.   

  
 

4. Conclusion 
 

In conclusion, Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline 

particles: BaFe12-2xCoxTixO19 with ( 10  x ) and BaFe12-2xRuxTixO19 with ( 6.00  x ) 
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have been prepared by ball milling method. The static magnetic properties of the 

powders and their temperature dependencies were studied. The ZFC and FC curves of 

all samples below room temperature display behavior consistent with the thermally aided 

unpinning of domain walls and the subsequent domain wall motion. The position of the 

observed peak in ZFC curves at a temperature TM seems to be sensitive to the 

microstructure of the prepared samples. We also observed a clear irreversibility between 

the ZFC and FC curves, which disappears as we approach the room temperature region. 

The resistivity data show some kind of a transition from insulator to perfect insulator 

below
M

T . This is associated with a transition to a ferroelectric state below TM. TM shifts 

to higher values by increasing the Co-Ti concentration x due to the increased level of 

crystal imperfections, while no systematic changes were observed in 
M

T  with Ru-Ti 

concentrations due to similarity of the microstructure in the samples of this system. At 2 

K, doping barium ferrite particles with Co-Ti results in a significant decrease in their 

magnetic coercivity with a small decrease of their saturation magnetization. In addition, 

doping barium ferrite with Ru-Ti results in small variations in their saturation 

magnetization and a significant drop in their coercivity, recording a reduction of about 

73% at x = 0.6. 
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FIGURES CAPTIONS 

 
Figure 1. X-ray diffraction patterns for BaFe12-2xCoxTixO19 hexaferrites. 

 

Figure 2. SEM images for representative samples of BaFe12-2xCoxTixO19 hexaferrites 

with a) x = 0.0, b) x = 0.4, and c) x = 0.8. 

 

Figure 3. (Color online) Zero-field-cooled and field-cooled magnetizations of BaFe12-

2xCoxTixO19 as a function of temperature measured at 1000 Oe for a) x = 0.2, b) x = 0.8, 

and c) x = 1. 

 

Figure 4. (Color online) (a) SQUID Magnetization loops of the BaFe12-2xCoxTixO19 

samples with x = 0.0, 0.4 and 0.8 as a function of the applied magnetic field measured at 

2 K. (b) Saturation magnetization and coercivity of BaFe12-2xCoxTixO19 as a function of 

Co-Ti concentration (x). (c) Anisotropy field and the first anisotropy constant of BaFe12-

2xRuxTixO19 as a function of Co-Ti concentration (x).  

 

Figure 5. X-ray diffraction patterns for BaFe12-2xRuxTixO19 hexaferrites. 

 

Figure 6. TEM images for representative samples of BaFe12-2xRuxTixO19 hexaferrites 

with a) x = 0.0 and b) x = 0.4. 

 

Figure 7. (Color online) Room temperature Mössbauer spectra for BaFe12-2xRuxTixO19 

hexaferrites. 
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Figure 8. (Color online) Zero-field-cooled and field-cooled magnetizations of BaFe12-

2xRuxTixO19 as a function of temperature measured at 100 Oe for a) x = 0.0, b) x = 0.3, 

and c) x = 0.6. 

 

Figure 9. (Color online)  Electrical resistivity of the BaFe12-2xCoxTixO19 sample with x = 

0.5 as a function of temperature measured at different applied magnetic fields.  

 

Figure 10. (Color online) (a) SQUID Magnetization loops of the BaFe12-2xRuxTixO19 

samples with x = 0.0, 0.1, 0.3 and 0.6 as a function of the applied magnetic field 

measured at 5 K. (b) Saturation magnetization and coercivity of BaFe12-2xRuxTixO19 as a 

function of Ru-Ti concentration (x). (c) Anisotropy field and the first anisotropy constant 

of BaFe12-2xRuxTixO19 as a function of Ru-Ti concentration (x).  

  

Figure 11. (Color online)  SQUID magnetization loops of the BaFe12-2xCoxTixO19 sample 

with x = 0.1 as a function of the applied magnetic field measured at different 

temperatures. 
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