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Magnetic topological quantum chemistry
Luis Elcoro 1,9, Benjamin J. Wieder 2,3,4,9✉, Zhida Song 4, Yuanfeng Xu 5, Barry Bradlyn 6 &

B. Andrei Bernevig 4,7,8,10✉

For over 100 years, the group-theoretic characterization of crystalline solids has provided the

foundational language for diverse problems in physics and chemistry. However, the group

theory of crystals with commensurate magnetic order has remained incomplete for the past

70 years, due to the complicated symmetries of magnetic crystals. In this work, we complete

the 100-year-old problem of crystalline group theory by deriving the small corepresentations,

momentum stars, compatibility relations, and magnetic elementary band corepresentations

of the 1,421 magnetic space groups (MSGs), which we have made freely accessible through

tools on the Bilbao Crystallographic Server. We extend Topological Quantum Chemistry to

the MSGs to form a complete, real-space theory of band topology in magnetic and non-

magnetic crystalline solids – Magnetic Topological Quantum Chemistry (MTQC). Using

MTQC, we derive the complete set of symmetry-based indicators of electronic band topol-

ogy, for which we identify symmetry-respecting bulk and anomalous surface and hinge states.
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A
crystal is defined by its discrete translation symmetry.
Over the past 140 years1,2, a tremendous number of
physical phenomena have been shown to arise from the

complicated mathematical structures implied by this otherwise
simple definition of a crystal. For example, the symmetry and
group theory of crystalline solids have been used to characterize
phase transitions3, identify biological structures like the DNA
double helix4, and, most recently, to elucidate the position-space
origin of topological bands through the theories of Topological
Quantum Chemistry (TQC)5,6 and equivalent works7–9.

In time-reversal- (T -) symmetric, periodic systems – which
most familiarly include nonmagnetic crystalline solids – the
energy (Bloch) eigenstates respect the symmetries of the non-
magnetic (Type-II) Shubnikov space group (SSGs)10–12 [see Fig. 1
and Supplementary Note (SN) 2]. Though there are 230 Type-II
SSGs, including SSGs with complicated combinations of glide and
screw symmetries, the group theory of nonmagnetic crystalline
solids has been largely solved for over 40 years11. In particular, the
enumeration of the irreducible momentum-space [small] cor-
epresentations [coreps, see SN 13], and a partial enumeration of
the space group (elementary band) coreps [EBRs, see SN 17] of the
Type-II SSGs were completed prior to the advent of personal and

distributed computing11,13–16. In recent years, the group theory of
Type-II SSGs has facilitated a revolution in the search for topo-
logical insulators (TIs)17–22 and topological crystalline insulators
(TCIs)23–26, including the recent discovery of higher-order TCIs
(HOTIs)27–29 through TQC and related methods30–34.

However, the 230 Type-II SSGs represent only a fraction of the
1,651 (magnetic and nonmagnetic) SSGs (MSGs and SGs,
respectively, see Fig. 1 and SN 2). Specifically, while Type-II SGs
contain unitary symmetries and T about any point (fT j0g), there
are also Type-I MSGs with only unitary symmetries, Type-III
MSGs that contain combinations of T and rotation or reflection
(e.g. fC2z ´ T j0g, in which Cni is a rotation by 2π/n about the i
axis), and Type-IV MSGs that contain the combination of T and
fractional lattice translation (fT ja=2g, in which a is an odd-integer
linear combination of lattice vectors). The small (co)reps and
magnetic EBRs [MEBRs] of the MSGs are necessary for a wide
range of physical applications, including characterizing magnetic
topological semimetals (SMs)35–38, TIs39,40, and TCIs41,42. Beyond
topological materials, the magnetic small (co)reps are also required
to construct theories of magnetic phase transitions with nonzero q
vectors from magnetic structure data obtained through neutron
diffraction experiments43,44, and to characterize T -breaking
superconducting phases45 with nonzero Cooper-pair momenta,
such as Fulde-Ferrell-Larkin-Ovchinnikov states46–49. Never-
theless, due to the relative complexity of the MSGs, and despite a
number of significant partial tabulations50,51, progress towards
completing the group theory of magnetic crystals has largely stalled
for the past 70 years10,11.

In this work, we use a combination of computational and
analytic methods to derive the small (co)reps and MEBRs of the
MSGs, completing the 100-year-old problem of crystalline group
theory. Using the small (co)reps and MEBRs, we construct a
complete position-space theory of mean-field band topology in
the 1,651 single (spinless) and double (spinful) SSGs – Magnetic
Topological Quantum Chemistry (MTQC) – that subsumes the
earlier theory of TQC5,6 [see Fig. 2]. The completeness of MTQC
stems from the completeness of our tabulation of the MEBRs.
Specifically, even in MSGs in which trivial and topological states
cannot be distinguished by symmetry eigenvalue labels, the
MEBRs provide a complete basis for constructing and analyzing
all possible lattice models of trivial, gapless, and stable and fragile
topological insulating phases (for specific examples of non-
symmetry-indicated topological phases analyzed using EBRs, see
refs. 34,52–55). To access the data generated for this work, we have
implemented several programs on the Bilbao Crystallographic
Server (BCS)56,57, which are listed in Table 1. Each of the pro-
grams listed in Table 1 contains data for both the magnetic and
nonmagnetic SSGs, and therefore replaces an existing tool on the
BCS. In the Results section below, we will first describe the
underlying machinery of MTQC through which band (co)reps in
momentum space are induced from magnetic atomic (Wannier)
orbitals in position space. Next, we will detail the topological
information that can be inferred from the MEBRs, which include
lattice models for magnetic exceptions to fermion doubling
theorems26,58, and symmetry-based indicators (SIs)7,30–32,51 for
magnetic SMs, TIs, and TCIs (see SN 26). In particular, in this
work, going beyond the earlier tabulation of the magnetic SI
groups in ref. 51, we have for the first time generated the complete
double SI formulas, as well as symmetry-respecting topological
bulk and boundary states for all 1,651 double SSGs, which
characterize spinful electronic states in solid-state materials.
Through this calculation, we have obtained the complete set of
symmetry-indicated 3D spinful (fermionic) topological phases.

We find that many of the symmetry-indicated spinful magnetic
topological phases consist of familiar Weyl SMs with surface
Fermi arcs59–61, 3D quantum anomalous Hall (QAH) phases

Fig. 1 Summary of results. In this work, we have derived the complete sets

of trivial bands [elementary band (co)representations (EBRs), see SN 17]

and symmetry-indicated, spinful, stable topological bands in the 1,651

Shubnikov space groups [SSGs]. The EBRs subdivide into the physical EBRs

of the 230 Type-II nonmagnetic space groups [SGs] and the magnetic EBRs

[MEBRs] of the 1,421 Type-I, III, and IV magnetic SGs [MSGs, see SN

2]10–12. We have additionally performed the first complete calculation of

the small (co)representations [(co)reps] and compatibility relations [see

SN 11] for all 1,651 single and double SSGs, which we have made accessible

through the tools listed in Table 1. These results comprise the theories of

Magnetic Topological Quantum Chemistry (MTQC) and fermionic

symmetry-based indicators (double SIs)7,30–32,51, which apply to all

possible 3D magnetic and nonmagnetic crystals with mean-field

Hamiltonians. We have also determined the physical bases of all double

(spinful) symmetry-based indicators (SIs), and symmetry-indicated

topological bulk and anomalous boundary states for all 1,651 double SSGs

(SN 26). Lastly, the MEBRs of the Type-III and Type-IV MSGs computed in

this work also facilitates the complete enumeration of symmetry-enforced

magnetic topological semimetals (SMs) – examples are provided in Fig. 4c

and in SN 15. In this figure, we have used red checks to indicate areas of

magnetic topological band theory completed in this work, and we have used

red stars to indicate areas in which we have solved complete subareas

(such as the double SIs of the 1,651 double SSGs), but in which there remain

topological features outside of the scope of this work, such as non-

symmetry-indicated stable topological bands25,26,34,55 and bosonic

(spinless) topological crystalline insulators (TCIs).
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constructed from layered integer quantum Hall states (2D Chern
insulators)39,62, and axion insulators (AXIs), which are equivalent
to 3D TIs with magnetically gapped surface states on particular
crystal facets21,55,63. However, we also in this work discover the
existence of previously unidentified non-axionic magnetic HOTIs
with mirror-protected helical hinge states (see SN 33). We con-
clude by briefly discussing future directions in magnetic group

theory, including the prediction of spinless (bosonic) TCIs, and
applications of magnetic crystal symmetry beyond mean-field
theory. We have also included extensive Supplementary Notes
containing additional details of our methodology, historical
commentary, references, documentation for the BCS programs
introduced in this work, and data for the EBRs and double SIs
(see SN 1 and 36).

Results
MEBRs from magnetic atomic orbitals. To construct the theory
of MTQC, we first tabulate the EBRs of the 1,651 SSGs, which
include the MEBRs of the MSGs [Fig. 3b and SN 17]. In each SSG,
the EBRs correspond to the independent topologically trivial
bands. Specifically, each EBR corresponds to a (set of) band(s) that
can be inverse-Fourier-transformed into exponentially localized,
symmetric Wannier orbitals, and the set of EBRs in each SSG
forms the basis for all energetically isolated sets of trivial bands (i.e.
bands without stable or fragile topology)5–9,15,16,30–34,52–55,64–67.

We begin by considering a nonmagnetic crystal that is
furnished with atomic orbitals that are sufficiently weakly coupled
as to not invert bands at any k point in the Brillouin zone (BZ).
Each atomic orbital occupies a site in a Wyckoff position of a
Type-II SG. Crucially, the atomic orbitals on each site transform
in direct sums of the irreducible coreps of the site-symmetry
group (SN 7 and 18), which is necessarily isomorphic to one of
the 32 nonmagnetic point groups (PGs, see SN 8).

We next consider the case in which the crystal undergoes a
transition into a phase with lattice-commensurate magnetic order
[Fig. 3a]. The onset of magnetism lowers the crystal symmetry
from a Type-II SG into either a Type-I, III, or IV MSG (see

Fig. 2 Magnetic Topological Quantum Chemistry in the scheme of topological band theory. The complete scheme of topological band theory for 3D

crystals, following the framework and notation established in refs. 5,6,31,66,67. Through crystal symmetry eigenvalues [small (co)reps] in momentum space

(SN 13), the compatibility relations (SN 16) indicate whether a set of bands is allowed by symmetry to be energetically isolated from other bands in the

energy spectrum. If the bands are energetically isolated, then there exists a wide range of methods for diagnosing whether the bands exhibit the stable

topology of topological insulators (TIs) and TCIs17–20,23–34,54, fragile topology52,54,55,64–67, or the polarization-nontrivial topology of obstructed atomic

limits5,54,84. For example, as detailed in refs. 7,30–32,51,66,67, the small (co)reps of a set of isolated bands comprise momentum-space symmetry data that

can be mapped to position-space topology and boundary states through stable and fragile SIs and real-space invariants. If the bands are instead required by

symmetry to cross, then the bands characterize a topological SM, which may exhibit surface38 or hinge34,54 states. In this figure, the pink boxes indicate

areas of topological band theory completed in this work.

Table 1 Applications on the Bilbao Crystallographic Server

implemented for MTQC.

BCS Applications Implemented for MTQC

Application Contents Description

MKVEC Momentum stars of the MSGs SN 12

Corepresentations Small and full magnetic (co)reps SN 13

MCOMPREL Compatibility relations in

the MSGs

SN 16

CorepresentationsPG Magnetic site-symmetry group

(co)reps

SN 18

MSITESYM Magnetic small (co)reps at one k

point induced from a site q

SN 22

MBANDREP MEBRs of the MSGs SN 23

For this work, we have implemented the Bilbao Crystallographic Server (BCS) programs listed in

this table to access group-theoretic properties of the MSGs that we have computed to complete

the theory of MTQC. In order, this table contains the name of the program, the data accessible

through the program, and the Supplementary Note in which the program is detailed. In addition

to the properties of the MSGs listed in this table, each tool contains the analogous properties of

the 230 Type-II (nonmagnetic) SGs. Therefore, as respectively detailed in each

listed Supplementary Note, each program in this table subsumes the content of an existing

program on the BCS.
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refs. 10–12 and SN 3, 5, and 6, respectively). Specifically, in the
limit in which the magnetic moments are taken to be decoupled
from the underlying lattice, the crystal of moments may appear to
exhibit additional symmetries, such as global and local spin
rotation. However, when the coupling between the spins and the
underlying lattice is not ignored, the magnetic phase transition
strictly lowers the system symmetry to that of a magnetic
Shubnikov subgroup M of the Type-II SG G of the parent
nonmagnetic crystal11.

Hence, the magnetic order also lowers the symmetry at each site
in the crystal. This can be seen by recognizing that fT j0g is an
element of every site-symmetry group in a nonmagnetic crystal,
but cannot be an element of any site-symmetry group in a
magnetic crystal (SN 9). For example, in a solid-state material with
magnetic atoms, the orbitals of nonmagnetic atoms elsewhere in
the unit cell are necessarily subject to a background magnetic
potential (see SN 10). While the energy scale of the magnetic
potential is detail-dependent, the magnetic potential on the atoms
considered to be nonmagnetic is only exactly zero in a fine-tuned
limit. This statement remains valid whether individual atoms in
the magnetic crystal are taken to host localized magnetic dipole
moments, or whether the magnetic crystal is taken to consist of
multi-atom clusters with higher magnetic multipole moments68,69.
Consequently, independent of the phenomenological microscopic
treatment of the magnetic order, each site-symmetry group in the
magnetic crystal is isomorphic to one of the 90 crystallographic
magnetic point groups (MPGs, see SN 8). In a solid-state material
in which the effects of magnetism can be approximated through
mean-field theory, the atomic orbitals of the original crystal [e.g., s
and px,y] split into magnetic atomic orbitals [e.g., s and px ± ipy]
that transform in (co)reps of the MPGs [see SN 19, 20, and 21].
For this work, we have implemented the CorepresentationsPG
tool (http://www.cryst.ehu.es/cryst/corepresentationsPG, detailed
in SN 18), through which users can access the (co)reps of all
122 single and double PGs and MPGs.

Next, the magnetic site-symmetry (co)reps in each Wyckoff
position in the crystal induce a band (co)rep intoM [Fig. 3(b)]. The
set of all possible band (co)reps in each MSG is spanned by the
MEBRs of M. In this work, we have for the first time computed the
22,611 MEBRs of all 1,191 single and double Type-III and Type-IV
MSGs, which – along with the 5,641 MEBRs of the 230 Type-I
MSGs and the 4,757 EBRs of the 230 Type-II SGs previously
calculated for TQC5,15,16,53 [Fig. 1] – can be accessed through the
MBANDREP tool on the BCS (http://www.cryst.ehu.es/cryst/
mbandrep, further detailed in SN 23). To enumerate the MEBRs
of each MSG M, we begin by inducing band (co)reps from each
irreducible (co)rep of one site-symmetry group within each of the
highest-symmetry [i.e. maximal, see SN 9] Wyckoff positions in M.

We next exclude the exceptional cases in which the induced band
(co)reps are equivalent to direct sums of other bands (co)reps [SN
24 and 37]. The remaining band (co)reps are defined as elementary
[i.e. MEBRs]; statistics and further details for the MEBRs are
provided in SN 25 and 38.

Importantly, just as each MEBR is the Fourier-transformed
description of a crystal of site-symmetry (co)reps, the Wannieriz-
able bands that transform in each MEBR are the Bloch eigenstates
of the Fourier-transformed electronic Hamiltonian of weakly
coupled magnetic atomic orbitals [Fig. 3c and SN 22]. Conse-
quently, in each momentum star of each MSG – which are
accessible through the MKVEC tool (http://www.cryst.ehu.es/cryst/
mkvec, see SN 12) – each MEBR contains a set of full (co)reps that
is specified by the Wyckoff position from which the MEBR is
induced. Each full (co)rep can be reduced through subduction to a
set of irreducible small (co)reps at each k point that are known as
the symmetry data [Fig. 3b]. The complete set of small and full (co)
reps of each MSG and direct dependencies between the site-
symmetry (co)reps at q and the induced symmetry data at k are
respectively accessible through the Corepresentations (http://
www.cryst.ehu.es/cryst/corepresentations, detailed in SN 13) and
MSITESYM (http://www.cryst.ehu.es/cryst/msitesym, detailed in
SN 22) tools. Lastly, to determine whether the bands that
transform in the induced symmetry data are required by symmetry
to be degenerate or cross along high-symmetry paths in the BZ, we
have computed the magnetic small (co)rep compatibility relations,
which are accessible through the MCOMPREL tool introduced in
this work (https://www.cryst.ehu.es/cryst/mcomprel, detailed in
SN 16).

Before discussing topological applications of the MEBRs and
the small and full (co)reps of each MSG, we will first briefly
discuss the advances made in this work in the context of previous
studies of magnetic symmetry and group theory. First, in the
1960’s, Miller and Love in ref. 50 performed the largest tabulation
of magnetic small (co)reps prior to this work. Specifically, in
ref. 50, Miller and Love computed the single- and double-valued
irreducible small (co)reps of the little groups of each MSG at
high-symmetry points and along high-symmetry lines, but not
along high-symmetry planes or in the BZ interior, which are
required to complete the insulating compatibility relations for
each MSG (SN 16) and to compute the MEBRs (SN 17).
Additionally, the magnetic small (co)reps computed in ref. 50 are
displayed in difficult-to-read tables outputted directly from
computer code, and are hence difficult to verify. For this work,
we have implemented the Corepresentations tool on the BCS [SN
13], which represents the first complete and publicly available
online tabulation of the magnetic small (co)reps. Through
Corepresentations, users may obtain the matrix representatives

Fig. 3 Magnetic band (co)reps from magnetic atomic orbitals. a A crystal with lattice-commensurate magnetic order. In the mean-field, the basis states of

the electronic Hamiltonian of the crystal in (a) are magnetic atomic orbitals (SN 18). When weakly coupled, the magnetic atomic orbitals in (a) continue to

form a set of exponentially localized, symmetric Wannier orbitals5,15,16,53 that transform in the (co)reps of magnetic site-symmetry groups [SN 7]. b The

magnetic site-symmetry (co)reps in (a) induce a band (co)rep in momentum [k] space. c Correspondingly, the Bloch eigenstates of the Fourier-

transformed electronic Hamiltonian of the magnetic crystal in (a) transform in the band (co)rep in (b) [see SN 22].
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in each magnetic small (co)rep of the generating symmetries of
the magnetic little group at each k point in each MSG in an
accessible format readily suited towards analyzing the output of
tight-binding and first-principles calculations [see SN 14 and 15
for representative examples of the output of Corepresentations].
We additionally note that prior to this work, Evarestov Smirnov,
and Egorov in ref. 16 introduced a method for obtaining the
MEBRs of the MSGs and computed representative examples, but
did not perform a large-scale tabulation of MEBRs or establish a
connection to magnetic band topology. In this work, we have
employed a method equivalent to the procedure in ref. 16 to
perform the first complete tabulation of the single- and double-
valued MEBRs of the 1,421 MSGs (see SN 23), which we have
additionally made publicly accessible through the MBANDREP
tool on the BCS.

Having computed the MEBRs of the single and double MSGs
and established the theory of MTQC, we will next describe two
applications of the MEBRs and MTQC to the discovery and
characterization of novel topological phases of matter: elucidating
the relationship between topological SMs and TCIs through
symmetry-enhanced fermion doubling theorems, and extending
the SIs of stable band topology7,30–32,34 to the MSGs.

Symmetry-enhanced fermion doubling theorems. The surface
states of each d-dimensional [d-D] TI and TCI are termed
anomalous because the surface states cannot be stabilized in a
(d− 1)-D lattice model with the symmetries of the TI or TCI
surface. In 3D TIs, AXIs, and Chern (QAH) insulators, the
boundary anomaly and bulk response can be understood from the
perspective of well-known high-energy field theories21,62,63. For
example, the bulk of a 3D TI is characterized by a quantized
axionic magnetoelectric response governed by a Lagrangian
density LEM / θE � B in which the axion angle θ is pinned to the
nontrivial value θ mod 2π= π by fT j0g symmetry21,63. As a
consequence of the bulk axionic topology, each surface of a 3D TI
exhibits an odd number of twofold-degenerate Dirac cones,
representing an exception to the 2D parity anomaly – a fermion
doubling theorem that mandates the existence of an even number
of symmetry-stabilized twofold Dirac cones in any 2D system
with a lattice (-regularized) description19–21,26,63. However, in
other gapped topological phases, such as 3D helical TCIs and
HOTIs, the boundary anomalies and bulk response theories have
not yet been elucidated in the language of high-energy field
theory26,28,29,32,34,55. Nevertheless, as shown in refs. 26,29,32, the
anomalous surface states of d-D TIs and TCIs may be classified
through a comparison to the complete set of (d− 1)-D lattice
models of symmetry-stabilized topological SMs.

It is possible to evade a fermion doubling theorem by either
stabilizing the anomalous nodal point[s] on the (d− 1)-D
boundary of a d-D topological [crystalline] insulator [i.e. through
spectral flow], or by modifying one of the system symmetries so
that the symmetry is represented differently at low and high
energies. For example, the matrix representatives of fT j0g and
fT ja=2g are the same near k= 0, but differ at larger k (see SN
15). In effect, systems with fT j0g symmetry and integer lattice
translations are nonmagnetic (see SN 4) and constrained by
fermion doubling theorems that derive from fT j0g symmetry26,
whereas systems generated by fT ja=2g and integer lattice
translations are antiferromagnetic (see SN 6), and are not
constrained by the same doubling theorems58. As discussed in
ref. 70, it is desirable to identify lattice-regularizable systems that
circumvent fermion doubling theorems, because correlation
effects in these systems can be modeled without also incorporat-
ing complicated and numerically intensive bulk degrees of
freedom. Many of the symmetry-enhanced fermion doubling

theorems exceptions discovered to date rely on emergent unitary
particle-hole symmetries that act nonlocally70,71, and relate to the
anomalous surface states of particle-hole-symmetric TCIs in Class
AIII in the nomenclature of ref. 72. However, emergent unitary
particle-hole is typically only a valid symmetry in a handful of
solid-state materials, and only then at low energies. As we will
discuss below, by considering nodal degeneracies stabilized by
MSG symmetries – which are conversely valid in solid-state
magnetic materials at all energies without fine-tuning – it is
possible to systematically enumerate symmetry-enhanced, single-
particle fermion doubling theorems, as well as materials-relevant
models that circumvent symmetry-enhanced fermion doubling.

The elucidation of a (symmetry-enhanced) fermion doubling
theorem and an example of its evasion has historically required a
significant theoretical effort. For example, in ref. 73, it was shown
that unpaired fourfold-degenerate Dirac fermions cannot be
stabilized in lattice models of 2D, T -symmetric SMs. Through an
exhaustive analysis of the symmetry-enforced spectral flow in 3D
crystals, a 3D T -symmetric TCI with an unpaired (anomalous),
symmetry-stabilized, fourfold surface Dirac fermion was identi-
fied in ref. 26. Crucially, using the fourfold Dirac fermion
doubling theorem established in ref. 73, the authors of ref. 26

were able to diagnose the surface fourfold Dirac fermion as
anomalous without establishing a bulk or boundary field theory.
Lastly, it was subsequently shown in ref. 58 that fourfold Dirac
fermion doubling can also be evaded in lattice models of 2D
magnetic SMs with the symmetry fT ja=2g common to Type-IV
2D symmetry (wallpaper or layer) groups (see SN 15). Hence, one
may infer the existence of novel quantized response effects and
condensed-matter realizations of high-energy anomalies by
exploiting the restrictions imposed by crystal symmetries on
lattice models of SMs, TIs, and TCIs.

Because a complete tabulation of the magnetic small (co)reps
was previously unavailable, then earlier theoretical searches for
magnetic exceptions to fermion doubling theorems, such as
ref. 58, were performed ad hoc. However, the magnetic small (co)
reps, the magnetic compatibility relations, and the MEBRs
computed in this work allow, for the first time, the immediate
enumeration of the complete set of lattice models of symmetry-
stabilized magnetic SMs in three or fewer dimensions. Below, we
will outline the method for enumerating the complete set of stable
magnetic SMs using the data generated in this work. We will then
detail the simplest possible magnetic fermion doubling exception
that can be obtained by considering the set of lattice models of 1D
magnetic SMs inferred from the 1D MEBRs. Despite the
simplicity of the example below, we find that it has not been
addressed from the intuitive picture of mean-field magnetic band
theory in previous literature. In SN 34, we also introduce a
doubling theorem for twofold Dirac fermions in magnetic 2D
symmetry groups, which we find to be evaded on the surfaces of
the non-axionic magnetic HOTIs discovered in this work (see
SN 35).

To begin, by occupying the bands that transform in each
connected branch of each MEBR with integer-valued numbers of
electrons increasing from one to one less than the dimension of
the MEBR (see refs. 5,6 and SN 16, 25, and 38), we have obtained
the exhaustive list of connectivity-enforced 3D magnetic SMs.
The remaining stable 3D SMs can then be obtained through band
inversion in lattice models constructed from sums of MEBRs (or
branches of decomposable MEBRs, see SN 25) using the magnetic
compatibility relations, as well as previously established topolo-
gical invariants for nodal fermions at low-symmetry k points.
Specifically, in each MSG, the minimal multiplicity of stable nodal
points may be obtained by considering the small (co)reps along
all high-symmetry BZ lines and planes [which are accessible
through Corepresentations, see SN 13], in addition to the nodal
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points stabilized by topological invariants evaluated along with
closed manifolds in the BZ (e.g. Weyl points, see refs. 29,55,59–61).
Lastly, the complete set of 2D and 1D lattice models of magnetic
SMs may be obtained by restricting the above procedure to MSGs
that are isomorphic modulo integer lattice translations to layer
and rod groups, respectively (see SN 2 and refs. 26,54,58).

In Fig. 4, we show the simplest example of a fermion doubling
exception obtained using the MEBRs. First, in Fig. 4(a), we show
a pair of spinful bands in a nonmagnetic 1D crystal that
transform in the double-valued EBR of the Type-II 1D double
symmetry (line) group generated by fT j0g and lattice translation.
At half-filling, the band structure in Fig. 4(a) exhibits two,
twofold Dirac fermions per 1D BZ. Additionally, in the absence of
chiral symmetry – which is not generically a symmetry of
crystalline solids – unpaired nodal points away from Γ and X in
Fig. 4a cannot be stabilized. Specifically, even if a nodal point
stabilized by reflection or rotation symmetry is present at a point
kx, fT j0g symmetry mandates the existence of a second stable
nodal point at− kx. By further investigating the symmetry-
allowed band connectivities in all Type-II 1D (line and rod)
supergroups of the line group in Fig. 4(a) (which can be inferred
from the Corepresentations, MCOMPREL, and MBANDREP
tools in Table 1), we conclude that an odd number of twofold
Dirac fermions cannot be stabilized in 1D nonmagnetic, spinful
lattice models.

However, it is well established that twofold Dirac fermion
doubling in 1D is evaded on the edge of a 2D TI through spectral
flow17,18,21 [Fig. 4(b)]. Recently, in ref. 74, the author performed
an intensive, high-energy field-theory calculation demonstrating
that a 1D lattice model with an unpaired twofold Dirac fermion
could be formulated by invoking an exotic, non-on-site T -like
symmetry. However, in this work, we recognize that a simpler,
alternative interpretation of a non-on-site T symmetry is the
antiferromagnetic (AFM) symmetry fT j1=2g common to all
Type-IV magnetic line groups (SN 6). Correspondingly, in
Fig. 4(c), we show a pair of spinful bands that transform in the
double-valued MEBR of a Type-IV magnetic double line group
generated by fT j1=2g. When the bands in Fig. 4c are half-filled,
the band structure features an unpaired twofold Dirac fermion
with the same k ⋅ p Hamiltonian as the anomalous twofold Dirac
fermion on the edge of a 2D TI [Fig. 4b]. Hence, the crystal in
Fig. 4c represents a magnetic exception to twofold Dirac fermion
doubling in 1D, analogous to the magnetic exception to fourfold
Dirac fermion doubling in 2D demonstrated in ref. 58.

Symmetry-based indicators of stable band topology in the
1,651 double SSGs. If a set of bands in a crystal is energetically
isolated along all high-symmetry BZ lines and planes, then a

subset of the topological properties of the bands may be inferred
through the eigenvalues of unitary crystal symmetries. Restricting
focus to symmetry-indicated stable topological bands, which do
not transform in integer-valued linear combinations of EBRs [see
SN 27], the crystal symmetry eigenvalues that indicate stable
topology [encoded in the small (co)reps of the isolated bands, see
SN 13] form the symmetry-based indicators (SIs) of stable band
topology [see SN 28 and refs. 7,30–32,34]. In each SSG, the SIs
consist of an SI group (e.g. Z4 ´Z

3
2) and an SI formula (e.g. the

Fu-Kane parity criterion for 3D TIs20, see SN 29 for an additional
detailed example). The complete SIs of spinful band topology in
nonmagnetic 3D crystals – which we term the double SIs of the
230 Type-II double SGs – were previously computed in
refs. 7,31,32. Following those works, the single and double SI
groups in the 1,421 MSGs were computed in ref. 51, but the
authors of that work did not compute the SI formulas or deter-
mine the physical interpretation (i.e. the bulk topology and
anomalous boundary states) of the magnetic bands with non-
trivial SIs [see Fig. 1].

In this work, we have computed the complete set of double SI
groups and formulas for spinful band topology in all 1,651 double
SSGs. We have further determined symmetry-respecting bulk and
anomalous surface and hinge states for all nontrivial values of the
double SIs. The SI formulas introduced in this work (see SN 31
and 32) have been unified into a consistent basis in which all
previously identified nonmagnetic double SI formulas correspond
to established nonmagnetic SM, TI, and TCI phases, and in which
the SIs of symmetry-indicated TIs and TCIs with the same bulk
topology (e.g. 3D TIs and AXIs with the common nontrivial
axion angle θ= π) are related by intuitive SI subduction relations.
To summarize our calculation of the double SIs, we begin by
considering a set of bands that is energetically isolated along all
high-symmetry lines and planes, such that the Bloch states across
all k points transform in small (co)reps that satisfy the insulating
compatibility relations [see SN 16]. If the bands exhibit nontrivial
SIs, then the bands cannot be inverse-Fourier-transformed into
exponentially localized, symmetric Wannier orbitals. This can be
seen by recognizing that the set of bands does not transform in an
integer-valued linear combination of EBRs. Consequently, the set
of bands either forms a topological semimetal with nodal points
in the BZ interior – which we term a Smith-index SM (SISM), or
corresponds to a stable TI or TCI phase with anomalous 2D
surface or 1D hinge states7,17–20,23–34,54.

Because there are 1,651 double SSGs, then individually
calculating the bulk and anomalous surface and hinge states
and physical basis for each nontrivial SI in each double SSG is a
practically intractable task. However, in this work, we have
reduced the size of the calculation by recognizing that the double

Fig. 4 Dirac fermion doubling from elementary band (co)representations. a A pair of spinful bands that transform in the double-valued EBR of a Type-II

line group generated by fT j0g and lattice translation [isomorphic to Type-II double SG 1.2 P110 modulo lattice translations]. At half-filling, there are two,

twofold Dirac fermions in (a), representing an example of twofold Dirac fermion doubling in 1D. b The edge spectrum of a 2D TI features an unpaired

twofold Dirac fermion that circumvents the doubling theorem in (a)17,18,21. (c) A pair of spinful bands that transform in the double-valued MEBR of a Type-

IV magnetic line group generated by fT j1=2g [isomorphic to Type-IV double MSG 1.3 PS1 modulo lattice translations]. At half-filling, the spectrum in (c)

consists of an unpaired twofold Dirac fermion with the same k ⋅ p Hamiltonian as the Dirac points at Γ and X in (a) and the 2D TI edge in (b), representing a

magnetic exception to twofold Dirac fermion doubling in 1D.
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SIs in each double SSG G continue to exhibit unique, nontrivial
values – termed the minimal double SIs – when the SI topological
bands in G are subduced onto a double SSG M from the
considerably smaller subset of 34 minimal double SSGs. In SN 30,
we rigorously detail the procedure for obtaining the minimal
double SIs, and in SN 39, we list the minimal double SSG
associated to each double SSG. Across all of the minimal double
SIs, we have implemented a consistent physical basis for the SI
formulas, determined symmetry-respecting topological bulk and
boundary states, and formulated layer constructions of the stable
TI and TCI phases – the minimal double SIs are summarized in
Table 2 and the details of our SI calculations are provided in
SN 26.

Using the subduction relations and layer constructions
contained in SN 31, we have determined by direct computation
that, for spinful bands in 3D crystals, all symmetry-indicated
topological phases are either strong topological Weyl SISMs,
AXIs, 3D TIs, helical TCIs or HOTIs, or can be deformed into
weak stacks of 2D TIs, mirror TCIs, or Chern insulators with
nonzero net Chern numbers in each unit cell [termed QAH
states]. Curiously, we find that there are no Type-IV minimal
double SSGs (SN 39). This implies that symmetry-indicated
spinful SISM, TI, and TCI phases in Type-IV MSGs are actually
protected by the symmetries of Type-I or Type-III double MSGs,
as opposed to the symmetry fT ja=2g common to Type-IV MSGs
[though, as shown in Fig. 4c and in ref. 58, there exist topological
SM phases unique to Type-IV MSGs]. For example, in ref. 75, the
authors introduced I-symmetric AFM TCIs in which θ= π was
enforced by the symmetry fT ja=2g common to all Type-IV
MSGs. However, we have shown that the spinful, symmetry-
indicated TCI phases in Type-IV MSGs can be subduced onto
Type-I or Type-III MSGs without closing a gap or changing the
bulk topology. Hence, the symmetry-indicated AFM TCIs
introduced in ref. 75 can more simply be understood as
I-symmetry-enforced AXIs that remain topological when

subduced onto the minimal Type-I double MSG 2.4 P�1. Through
the layer constructions and double SI dependencies in SN 31 and
39, we have also demonstrated that all of the 3D symmetry-
indicated spinful magnetic TCIs with odd numbers of chiral
modes on crystal hinges (edges) in the 1,421 double MSGs exhibit
the nontrivial axion angle θ= π, and are therefore AXIs21,55,63.
Specifically, we find that all of the symmetry-indicated, spinful
magnetic TCIs with chiral hinge states are AXIs in which θ= π is
either quantized by I , or by one of the rotoinversion symmetries
C4z ´ I or C6z ´ I (see Table 2). This result is not necessarily
intuitive – for example, when cut into a rod with the same point
group symmetry as the bulk MSG, an I-symmetric AXI in Type-I
double MSG 2.4 P�1 exhibits two chiral hinge states, whereas a
C4z ´ T -symmetric AXI in Type-III double MSG 83.45 P40=m
exhibits four chiral hinge states; nevertheless, as shown in SN 31,
both AXI phases exhibit θ= π. We additionally note that there do
not exist symmetry-indicated, spinful magnetic TCIs with even
numbers of intrinsic copropagating chiral hinge states (though
magnetic TCIs with mirror symmetry may in principle exhibit
copropagating chiral hinge modes, depending on the bulk mirror
Chern numbers and boundary termination details).

Overall, across the 1,651 double SSGs, we find that there are
only five families of 3D symmetry-indicated, spinful, strong
topological phases [Fig. 5]: Weyl SISMs, AXIs and 3D TIs, and
helical TCIs and HOTIs with twofold, fourfold, and sixfold
symmetries. We note that helical TCIs and HOTIs in particular
exhibit trivial axion angles θ mod 2π= 0, and are therefore non-
axionic. In this work, we have discovered three novel variants of
non-axionic magnetic HOTIs, which are shown in Fig. 5(c-e).
Further details for the non-axionic HOTIs in Fig. 5(c-e),
including symmetry-enhanced fermion doubling theorems26,29

and tight-binding models, are provided in SN 33. When cut into
the finite nanorod geometries shown in Fig. 5(c-e), the non-
axionic magnetic HOTIs exhibit helical, mirror-protected hinge
states. We note that, if the mirror-symmetric HOTI hinges in

Table 2 The minimal double SIs of spinful band topology in all 1,651 double SSGs.

Minimal Double SIs of Spinful Band Topology the 1,651 Magnetic and Nonmagnetic Double SSGs

SI Minimal Double SSG(s) Bulk Topology SI Minimal Double SSG(s) Bulk Topology

η4I 2.4 P�1 WSM/QAH/AXI z±4m;π 83.43 P4/m weak TI/weak TCI

z2I,i 2.4 P�1 QAH zþ4m;0 84.51 P42/m QAH/weak TI/weak TCI

η02I 2.4 P�1 AXI z8 83.44 P4=m10, 123.339 P4/mmm AXI/TCI/HOTI

z2R 3.1 P2, 41.215 Ab0a02 QAH z3R 147.13 P�3 QAH

δ2m 10.42 P2/m QAH/AXI/TCI z6R 168.109 P6 QAH

z±2m;π 10.42 P2/m QAH/weak TI/weak TCI δ3m 174.133 P�6 QAH/AXI/TCI

z4 2.5 P�110, 47.249 Pmmm, AXI/TCI/HOTI z±3m;π 174.133 P�6 weak TI/weak TCI

83.45 P40=m
z04 135.487 P40

2=mbc
0 AXI/TCI δ6m 175.137 P6/m QAH/AXI/TCI

z2w,i 2.5 P�110, 47.249 Pmmm, weak TI/weak TCI z±6m;π 175.137 P6/m weak TI/weak TCI

83.45 P40=m
z4R 75.1 P4 QAH zþ6m;0 176.143 P63/m QAH/weak TI/weak TCI

z02R, 27.81 Pc0c02, 54.342 Pc0c0a, QAH z12 175.138 P6=m10 , 191.233 P6/mmm AXI/TCI/HOTI

z
00

2R 56.369 Pc0c0n, 60.424 Pb0cn0,

77.13 P42, 110.249 I41c
0d0

z4S 81.33 P�4 QAH z012 176.144 P63=m10 AXI/TCI/HOTI

δ2S 81.33 P�4 WSM z04R 103.199 P4c0c0 QAH

z2 81.33 P�4 AXI z06R 184.195 P6c0c0 QAH

δ4m 83.43 P4/m QAH/AXI

In order, this table contains the symbol of each double SI, the minimal double SSG(s) [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial band topology, see SN 30 and 39], and

the bulk topological phase(s) associated to nontrivial values of the double SI. All symmetry-indicated spinful SISM (specifically symmetry-indicated WSM), quantum anomalous Hall (QAH), TI, and TCI

phases in magnetic and nonmagnetic crystalline solids necessarily exhibit nontrivial values of at least one of the double SIs listed in this table. We note that, in this table, the symbol AXI refers to both

magnetic AXIs and T -symmetric 3D TIs, because AXI and 3D TI phases are both defined by the nontrivial bulk axion angle θ= π [Fig. 5b and refs. 21,55,63]. Additionally, the symbols TCI and HOTI

respectively indicate helical (i.e. non-axionic) mirror Chern insulators24 and HOTIs26,28,29,31,32, which include the magnetic HOTIs in Fig. 5(c–e) introduced in this work, as well as the nonmagnetic helical

HOTI phases previously identified in bismuth33 and MoTe2
34. Specific details of our SI calculations – including explicit SI formulas, TI and TCI layer constructions, tight-binding models, and the minimal

double SSG associated to each double SSG – are provided in SN 26 and 39.
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Fig. 5(c-e) were sanded to expose mirror-symmetric 2D surfaces,
each surface would exhibit two anomalous, mirror-protected,
twofold Dirac cones, analogous to the mirror-protected helical
hinge states of SnTe discussed in ref. 28. Lastly, we emphasize that
the magnetic HOTIs in Fig. 5(c,e) exhibit the same nontrivial
double SI z4= 2 as T -symmetric helical HOTI phases in
supergroups of Type-II double SG 2.5 P�110 (see Table 2 and
refs. 6,8,9,33,34). Unlike for AXIs and 3D TIs19–21,63, the bulk
response theories of helical HOTIs have not yet been elucidated.
In light of recent experiments demonstrating incipient signatures
of helical higher-order topology in bismuth crystals33 and
MoTe276, the absence of a response theory for helical HOTIs
analogous to axion electrodynamics21,63 has become an urgent
issue. The discovery in this work of helical magnetic HOTI phases
whose bulk topology is solely enforced by the combination of
unitary (spinful) mirror and rotation symmetries should provide
crucial insight towards the elucidation of quantized response
effects in helical HOTIs.

Discussion
The theory of MTQC can also be applied to a wide variety of
problems beyond the topological applications highlighted in this
work. Most notably, while we have enumerated the spinful stable
topological phases with nontrivial double SIs, the analogous
enumeration of spinless magnetic SISMs and TCIs with nontrivial
single SIs remains an open problem. In particular, whereas
bosonic, symmetry-indicated AXI phases protected by I and
SU(2) spin-rotation symmetry have been demonstrated in pre-
vious works34,51, it remains an open question whether there exist
symmetry-indicated, non-axionic spinless (bosonic) TCIs. Addi-
tionally, while we have restricted consideration to single-particle
topological phases, the magnetic (co)reps computed in this work
can also be used to characterize correlated systems, including spin
(-orbital) liquids77 and multipole tensor gauge theories78. For
example, if a correlated magnetic insulator admits a mean-field
slave-rotor description79, then the effective Hamiltonian of each
quasiparticle species, such as spinon and chargeon on degrees of
freedom80, can separately be analyzed with MTQC.

Data availability
The data supporting the findings of this study are available within the paper and through
the BCS applications listed in Table 1. Additional information regarding the data
generated for this study is available from the corresponding authors upon reasonable
request.
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