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Abstract: The magnetic properties of a set of LaFe13-x-yCoySix compounds (x = 1.6-2.6; y = 0, 

y = 1.0) have been investigated using magnetic measurements, thermal expansion, 57Fe 

Mössbauer spectroscopy and high resolution neutron powder diffraction methods over the 

temperature range 10 – 300 K. The natures of the magnetic transitions in these LaFe13-x-

yCoySix compounds have been determined. The Curie temperatures of LaFe13-xSix were found 

to increase with Si content from TC=219(5) K for Si content x=1.6 to TC=250(5) K for x=2.6. 

Substitution of Co for Fe in LaFe10.4Si2.6 resulted in a further enhancement of the magnetic 

ordering temperature to TC=281(5) K for the LaFe9.4CoSi2.6 compound. The nature of the 

magnetic transition at the Curie temperature changes from first order for LaFe11.4Si1.6 to 

second order for LaFe10.4Si2.6 and LaFe9.4CoSi2.6. The temperature dependences of the mean 

magnetic hyperfine field values lead to TC values in good agreement with analyses of the 

magnetic measurements.  The magnetic entropy change, -∆SM, has been determined from the 

magnetization curves as functions of temperature and magnetic field (∆B = 0-5 T) by 

applying the standard Maxwell relation. In the case of LaFe12.4Si1.6 for example, the magnetic 

entropy change around TC is determined to be -∆SM ~ 14.5 J kg-1 K-1 for a magnetic field 

change ∆B=0 -5 T. 

 

  



2 

 

1. Introduction 

Magnetic refrigeration (MR) technologies based upon the magnetocaloric effect (MCE) 

offer scope for environmentally friendly cooling methods of higher cooling efficiency 

compared with conventional methods. Technologies based on MR [1, 2] have been considered 

as viable alternatives to several other solid-sate cooling methods [3] such as optical 

refrigeration [4], thermoelectric refrigeration [5] and electric refrigeration [6] . Since the 

incisive discoveries related to magnetic entropy changes at ferromagnetic transitions in the 

Gd5Si4-xGex series first reported by Pecharsky and Gschneidner in 1997 [7], materials with a 

large magnetocaloric effect have attracted significant attention with magnetic cooling 

applications in mind. Particular interest has focussed on the isothermal entropy changes at 

first-order magnetic transitions [3].  

 

LaFe13-xSix compounds (x≤1.6) of the NaZn13-type exhibit a large magnetic entropy change in 

the vicinity of Curie temperature TC [8] and are typical of relatively low cost materials with 

potential as operational magnetic refrigerants around room temperature. The large entropy 

changes in LaFe13-xSix compounds are associated with the negative lattice expansion around 

TC and the first-order field-induced paramagnetic (PM) to ferromagnetic (FM) itinerant 

electron metamagnetic transition above TC [9]. Given that the Curie temperature of LaFe13-

xSix is usually lower than 210 K, significant efforts have been made in order to enhance TC 

and retain the larger MCE performance. Among the approaches taken are: (1) introduction of 

interstitial atoms (hydrogen or carbon) [10, 11]; (2) elemental substitution (substituting La [12, 

13] and Fe [14, 15] by another rare-earth or transition metal), (3) modification of synthesis 

methods (arc-melting or induction-melting with various heat treatments [16], melt-spinning 

[17] and ball-milling [18]).  

 

In this study, we report the findings of an investigation of the nature of the magnetic 

transitions in a set of LaFe13-x-yCoySix compounds (x = 1.6-2.6; y = 0, 1.0) by magnetic, 57Fe 

Mössbauer spectroscopy, thermal expansion and neutron diffraction measurements. In 

agreement with previous studies [19, 20], the magnetic ordering temperature of LaFe13-xSix is 

found to increase steadily with Si content from TC=219 K for x=1.6 to TC=250 K for x=2.6. 

Pronounced enhancement to TC=281 K is obtained on substitution of Co in the LaFe9.4CoSi2.6 

compound. 
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2. Experimental  

The LaFe13-x-yCoySix samples (x = 1.6, y = 0; x = 2.6, y = 0 and x = 2.6, y = 1.0) were 

prepared by standard arc melting and the ingots annealed in Ar atmosphere at 1000°C for 15 

days, followed by quenching in water. The quality of the compounds was checked by both X-

ray diffraction (XRD) analysis and thermomagnetic analysis (TMA). The magnetic properties 

of the compounds were measured in a superconducting quantum interference device (SQUID) 

and a Quantum Design Physical Property Measurement System (PPMS) over the temperature 

range 10 – 300 K for magnetic fields B = 0-5 T. Thermal expansion measurements were 

performed using a “push-rod” linear differential transformer method [21].  The Mössbauer 

spectra were obtained between 5 K and 300 K using a standard constant acceleration 

spectrometer and a 57CoRh source. The spectrometer was calibrated at room temperature with 

an α-iron foil. Neutron diffraction experiments were carried out over the temperature range 

10–300 K using the High-Resolution Powder Diffractometer Echidna (λ = 1.622 Å) at the 

OPAL reactor, Australia. The diffraction patterns were refined using the FULLPROF program 

package. 

 

3. Results and Discussion 

X-ray diffraction confirmed that all samples crystallize in the cubic NaZn13-type 

structures with small amounts (~2% each) of the impurity phases (α-Fe and LaFeSi) being 

detected. The lattice parameters of the 1:13 phase are found to decrease from 11.468(5) Å to 

11.443(5) Å as the Si content increases from x=1.6 to x=2.6 for LaFe13-xSix. Substitution of 

Co atoms for the Fe atoms in the LaFe10.4Si2.6 compound leads to a further decrease in lattice 

parameter to 11.430(5) Å for LaFe9.4CoSi2.6. These results are very close to the values 

reported by Liu et al. [19].   

 

For this structure there are two Fe sites: FeI - 8b site at (¼, ¼, ¼) and FeII - 96i site at (0, y, z) 

- and one La site 8a. Previous neutron studies [10] confirmed that the Si atoms are almost 

randomly distributed on the two Fe sites (8b and 96i), in contrast to the Al preferential 

occupation of the 96i site in La(Fe1−xAlx)13.  The reduction of the unit cell will directly 

influence the bonding distance between magnetic atoms. It is known that in Fe-based rare 

earth-transition metal compounds, the exchange interaction (and therefore the Curie 



4 

 

temperature) is mainly determined by the Fe–Fe exchange interaction which is sensitive to the 

Fe–Fe distance [19].  

 

The temperature dependences of the ac susceptibility and dc magnetization for the three 

LaFe13-x-yCoySix samples (x = 1.6, y = 0; x = 2.6, y = 0 and x = 2.6, y = 1.0) are shown in 

Figures 1(a) and 1(b) for a measuring field of B =0.05 T. The magnetic ordering temperatures 

were determined from dχ/dT and dM/dT curves leading to the values TC=219(5) K, 

TC=250(5) K and TC=281(5) K for LaFe11.4Si1.6, LaFe10.4Si2.6 and LaFe9.4CoSi2.6 respectively. 

The magnetization behaviours of LaFe11.4Si1.6, LaFe10.4Si2.6 and LaFe9.4CoSi2.6 were measured 

for fields in the range B =0-5 T around the regions of the magnetic ordering temperatures with 

analyses of these data leading to the related Arrott-plots of M2 versus µ0H/M as shown in 

Figures 2(a), (b) and (c), respectively.  

 

The first order character of the LaFe11.4Si1.6 compound is indicated by the pronounced 

negative slopes and characteristic “S-bend” in the Arrott-plot of Figure 2(a). On the other 

hand the absence of either inflections or negative slopes in the Arrott plots of LaFe10.4Si2.6 and 

LaFe9.4CoSi2.6 indicates second-order magnetic transitions in these two compounds. These 

analyses of the Arrott plots for LaFe13-xSix (Figures 2(a), (b), (c)) demonstrate that the nature 

of the magnetic transitions transforms with increasing Si content from first order (TC=219(5) 

K; x=1.6) to second order (TC=250(5) K; x=2.6) in full agreement with previous studies ([19]; 

see [20] for a review of LaFe13-xSix-based alloys). The increasing Si content in LaFe13-xSix 

compounds causes two main effects: (1) lattice contraction and (2) hybridization between the 

electronic orbital of Si and Fe (the cause of the reduction in the Fe magnetic moment). Even 

though both the La–Fe inter-atomic distances and the lattice constants decrease with 

increasing Si content, the average Fe–Fe distance increases; this behaviour may be 

responsible for the increase of TC [19]. The substitution of Co for Fe leads to a further 

enhancement in the Curie temperature for LaFe9.4CoSi2.6 up to TC=281(5) K compared with 

TC=250(5) K for the Co-free compound LaFe10.4Si2.6. 

 

According to the conventional static scaling law (see e.g. [21, 22] and references therein), the 

critical properties of a second-order magnetic transition can be described by the critical 

exponents β, γ and δ as derived from magnetization measurements around the transition 

temperature. The Kouvel-Fisher method offers an accurate and relatively straightforward way 

of determining the critical exponents [23]. We have applied the Kouvel-Fisher method and 
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related analyses (see [24] for a full outline of the analytical procedures) to derive the values of 

β = 0.52, γ = 0.76 and δ=2.46 for LaFe10.4Si2.6. The mean field interaction model for long 

range ordering has theoretical critical exponents of β = 0.5, γ = 1.0 and δ = 3.0, while 

theoretical values based on the three dimensional Heisenberg model corresponding to short 

range interactions are β = 0.365, γ = 1.386 and δ = 4.80 [e.g. 25]. The values we have derived 

for β, γ and δ for LaFe10.4Si2.6 are generally similar to the mean-field model values. 

 

The magnetic entropy values, -∆SM, for LaFe11.4Si1.6 around the first order ferromagnetic 

ordering temperature for fields up to B = 5 T are shown in Fig. 2(d). The changes in magnetic 

entropy were derived from the magnetisation measurements using the standard Maxwell 

relationship as applied, for example, in the case of NdMn2Ge0.4Si1.6 [26]. The maximum value 

of -∆SM ~ 14.5 J kg-1 K-1 was obtained centred around ~ 195 K with a half-width spread of ∆T 

~ 20 K for a magnetic field change ∆B = 0-5 T.  This corresponds to a refrigerant capacity, 

RC, (product of the maximum value of -∆SM and the full width at half maximum of the -∆SM 

curve) of RC ~ 290 J kg-1
 for field changes ∆B = 0–5 T, which is lower than the values 

reported previously for both bulk (RC ~ 467 J/kg) [27] and ball milled (RC ~ 439 J/kg) [28] 

samples of LaFe11.4Si1.6. This may be due to variations in the sample compositions.  

 

Thermal expansion measurements have been obtained around the Curie temperatures for the 

LaFe11.4Si1.6, LaFe10.4Si2.6 and LaFe9.4CoSi2.6 samples along with a further LaFe11Si2 sample 

using the push-rod method [29, 30]. The temperature dependences of the linear thermal 

expansions (LTE) are shown in Figure 3 with pronounced magneto-volume effects detected 

around TC for all compounds (the LTE coefficient for LaFe11.4Si1.6 is shown as an inset).  In 

agreement with the first order character of the magnetic transition of LaFe11.4Si1.6, the LTE 

changes are found to be sharper than those observed for the second order transitions of 

LaFe10.4Si2.6 and LaFe9.4CoSi2.6.  The dashed lines in Figure 3 represent the contributions to 

the total expansion due to the linear lattice thermal expansion (∆l/l)lat. Subtraction of the 

phonon contribution to the thermal expansion enables the net effect due to the spontaneous 

magnetostriction to be estimated. This lattice contribution has been extrapolated from the 

paramagnetic regime where only the phonon anharmonic contribution is expected. The 

extrapolation was performed using the Grüneisen-Debye model, with a Debye temperature θD 

= 300 K [31] (differences in the values of θD do not in practice affect the physical analysis of 

the magneto-volume origin, but only lead to a shift in the value of the spontaneous 
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magnetostriction, which is outside the scope of our interest here). It is well known that the 

magnetovolume effect in R-Fe based compounds is related to the weak ferromagnetic 

character of 3d magnetic moments. It is interesting to note that, for the LaFe10.4Si2.6 

compound, the thermal expansion is very close to zero below ~155 K (see Figure 3). This is 

demonstrated by the extrapolation of the thermal expansion data towards absolute zero (dotted 

horizontal line in Figure 3) and indicates the potential of this sample for zero thermal 

expansion materials applications. 

 

The magnetostructural behaviour of the LaFe11.4Si1.6 compound has been investigated further 

by variable temperature powder neutron diffraction measurements (λ = 1.622 Å) over the 

temperature range 10–300 K in applied magnetic fields B=0 T, 1 T, 6 T. Examples of the 

neutron diffraction patterns for LaFe11.4Si1.6 are shown in Figure 4(a) with the refinement of 

the 10 K pattern shown as an example.  As shown by the variation of the a0 lattice parameter 

with temperature in Figure 4(b), the refinement results confirm that for ambient conditions 

below TC in zero magnetic field, the unit cell experiences a large expansion of ∆a0/a0 ~ 0.27%, 

corresponding to ~ 0.81% increase in the unit cell volume.  It is well accepted that the 

magneto-volume effect is caused by the expansion resulting from the spontaneous 

magnetostriction which cancels the normal thermal contraction.  While data for applied fields 

of B = 1 T and B = 6 T were only available to 250 K compared with up to 300 K for B = 0 T, 

it is evident from the shift in the lattice parameter values to 250 K of Figure 4(b), that the 

applied magnetic field shifts the TC values of the Curie temperature to higher temperatures.   

 

The Mössbauer spectra for LaFe9.4CoSi2.6 in Figure 5(a) are shown as representative examples 

for the set of LaFe13-x-yCoySix compounds. Similar to references [15, 19], the magnetic spectra 

were fitted using a distribution model of hyperfine fields with the paramagnetic spectra being 

fitted with doublets. The resultant fits are shown by the dashed lines through the data of 

Figure 5(a) with the field distributions providing values of, <Bhf>, the mean magnetic 

hyperfine field for all samples.  The local magnetic behaviours of the Fe atoms of the LaFe13-

x-yCoySix compounds is reflected by the graphs of <Bhf> versus temperature for the 

LaFe11.4Si1.6, LaFe10.4Si2.6 and LaFe9.4CoSi2.6 samples as shown in Figure 5(b).  Consistent 

with the outcomes from the Arrott plot analyses of the magnetisation data, the LaFe11.4Si1.6 

sample is found to exhibit a relatively sharp decrease in hyperfine field at the first order 

transition TC=219(5) K compared with the rate of change of hyperfine field with temperature 
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for the second order transitions at TC=250(5) K and TC=281(5) K of the LaFe10.4Si2.6 and 

LaFe9.4CoSi2.6 samples respectively, in good agreement with previous studies [15].  

 

4. Conclusions 

Analyses of the magnetisation data of a set of LaFe13-x-yCoySix compounds (x = 1.6, y = 0; x = 

2.6, y = 0 and x = 2.6, y = 1.0) have confirmed that the natures of the magnetic transitions 

change from first order for LaFe11.4Si1.6 to second order for LaFe10.4Si2.6 and LaFe9.4CoSi2.6. 

The behaviour of these samples as investigated by thermal expansion and Mössbauer 

spectroscopy agrees well with the bulk magnetic properties.  Pronounced positive 

spontaneous volume magnetostriction has been observed below TC which can be attributed to 

volume dependence of the magnetic energy.  The LaFe13-x-yCoySix compounds are shown to 

exhibit pronounced values of negative thermal expansion around the Curie temperatures in 

good agreement with recent reports of giant negative thermal expansion in La(Fe,Si)13-based 

compounds with the NaZn13-type structure [32].  In addition the LaFe10.4Si2.6 compound is 

found to exhibit close to zero thermal expansion below ~155 K. 
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Figure 1 Temperature dependence of the (a) ac susceptibility and (b) DC magnetization for 

the set of LaFe13-x-yCoySix samples (x = 1.6, y = 0; x = 2.6, y = 0; and x = 2.6, y = 1.0). 

Measurements were made in a field of B = 0.05 T; the dashed and full lines act as guides to 

the eye.   
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Figure 2 Arrott plot analyses (M2 versus µ0H/M curves) around the magnetic transition region 

for (a) LaFe11.4Si1.6, (b) LaFe10.4Si2.6 and (c) LaFe10.4CoSi2.6.  

(d) The magnetic entropy changes, -∆SM, for LaFe11.4Si1.6 around the first order ferromagnetic 

ordering temperature. The magnetic entropy values were calculated using decreasing fields.   
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Figure 3 The variation of the linear thermal expansion of LaFe11.4Si1.6, LaFe11Si2, LaFe10.4Si2.6 

and LaFe9.4CoSi2.6 samples in the region of their Curie temperatures.  The LTE coefficient for 

LaFe11.4Si1.6 is shown in the inset. As discussed in the text, the dashed lines represent the 

phonon contribution to the thermal expansion. Also as discussed, the thermal expansion is 

close to zero for LaFe10.4Si2.6 below ~155 K (indicated by the arrow). 
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Figure 4 (a) Neutron diffraction patterns (λ = 1.622 Å) of the LaFe11.4Si1.6 sample at the 

temperatures indicated. The Rietveld refinement of the 10 K pattern is shown as an example.  

(b) A graph of the lattice parameters for LaFe11.4Si1.6  as a function of temperature as 

determined for the set of neutron diffraction patterns measured in applied magnetic fields (B = 

0 T, 1 T, 6 T).  The full and dashed lines act as guides to the eye.  
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Figure 5(a) Mössbauer spectra of the LaFe9.4CoSi2.6 sample at room temperature, 259 K and 5 

K. The dashed lines represent fits to the spectra as described in the text.  

(b) The temperature dependence of, <Bhf>, the mean magnetic hyperfine field values for the 

LaFe11.4Si1.6, LaFe10.4Si2.6 and LaFe9.4CoSi2.6 samples as determined from the fits to the 

spectra. The full lines act as guides to the eye. 
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