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Magnetic wallpaper Dirac fermions and topological magnetic
Dirac insulators
Yoonseok Hwang 1,2,3,4, Yuting Qian1,2,4, Junha Kang1,2,3, Jehyun Lee1,2,3, Dongchoon Ryu1,2,3, Hong Chul Choi1,2✉ and
Bohm-Jung Yang 1,2,3✉

Topological crystalline insulators (TCIs) can host anomalous surface states which inherits the characteristics of crystalline symmetry
that protects the bulk topology. Especially, the diversity of magnetic crystalline symmetries indicates the potential for novel
magnetic TCIs with distinct surface characteristics. Here, we propose a topological magnetic Dirac insulator (TMDI), whose two-
dimensional surface hosts fourfold-degenerate Dirac fermions protected by either the p0c4mm or p40g0m magnetic wallpaper group.
The bulk topology of TMDIs is protected by diagonal mirror symmetries, which give chiral dispersion of surface Dirac fermions and
mirror-protected hinge modes. We propose candidate materials for TMDIs including Nd4Te8Cl4O20 and DyB4 based on first-
principles calculations, and construct a general scheme for searching TMDIs using the space group of paramagnetic parent states.
Our theoretical discovery of TMDIs will facilitate future research on magnetic TCIs and illustrate a distinct way to achieve anomalous
surface states in magnetic crystals.
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INTRODUCTION
The surface states of topological insulators (TIs) have anomalous
characteristics that are unachievable in ordinary periodic systems1.
A representative example is the twofold-degenerate gapless
fermion on the surface of three-dimensional (3D) TIs protected
by time-reversal symmetry (TRS)2–5. Contrary to the case of
ordinary two-dimensional (2D) crystals with TRS in which gapless
fermions appear in pairs, a single gapless fermion can exist on the
surface of TIs through its coupling to the bulk bands. Such a
violation of fermion number doubling6–8 is a representative way in
which the anomalous characteristics of surface states are
manifested at the boundary of TIs.
In topological crystalline insulators (TCIs)9,10, crystalline symme-

tries enrich the ways in which anomalous surface states are
realized. For example, in systems with rotation symmetry and TRS,
variants of the fermion doubling theorem enabled by symmetries
can be anomalously violated on the surface of TCIs11. Additionally,
in the case of mirror-protected TCIs12, although the number of
surface gapless fermions can be even, the surface band structure
exhibits a chiral dispersion along mirror-invariant lines such that
anomalous chiral fermions appear in the one-dimensional (1D)
mirror-resolved subspace of the 2D surface Brillouin zone (BZ).
More recently, studies showed that in crystals with glide mirrors,
the anomalous surface states can have an hourglass-type band
connection13. Moreover, when the surface preserves two ortho-
gonal glide mirrors, a single fourfold-degenerate Dirac fermion14

was shown to be achievable as an anomalous surface state15.
In magnetic crystals, there is great potential to achieve a new

type of magnetic TCI with distinct anomalous surface states16–22

because there are abundant magnetic crystalline symmetries
described by 63 magnetic wallpaper groups (MWGs) and 1421
magnetic space groups (MSGs)23,24, which are overwhelmingly
larger than the 17 wallpaper groups and 230 space groups of
nonmagnetic crystals25–29. Very recently, exhaustive studies of

magnetic topological phases and their classification have been
performed16–18, and various novel magnetic topological phases
have been systematically categorized. However, as far as we can
tell, all the surface states of magnetic TCIs reported up to now
appear in the form of twofold-degenerate gapless fermions,
whose detailed band connection depends on the surface
symmetry.
Here, we propose a magnetic TCI with fourfold-degenerate

gapless fermions on the surface, coined the topological magnetic
Dirac insulator (TMDI). A fourfold-degenerate gapless fermion, a
Dirac fermion for short hereafter, can appear on the surface of a
magnetic insulator when the MWG of the surface is one of the
three MWGs p40g0m, p0cmm, and p0c4mm, among 63 possible
MWGs. Contrary to the surface Dirac fermion in nonmagnetic
crystals protected by two orthogonal glides, our surface Dirac
fermion is protected by symmorphic symmetries combined with
either an antiunitary translation symmetry or an antiunitary glide
mirror.
In particular, in magnetic crystals whose (001)-surface MWG is

either p40g0m or p0c4mm, the bulk topology is characterized by the
mirror Chern number (MCN) Cxym about the diagonal mirror planes
normal to either the [110] or ½110� direction. Because of this, in
TMDIs, the way in which the surface anomaly is realized is
different from the case of the nonmagnetic Dirac insulator15 and
more similar to the case of mirror-protected nonmagnetic TCIs12.
Namely, along the mirror-invariant line on the surface BZ, the
Dirac fermion develops a chiral dispersion relevant to the MCN.
Moreover, the MCN of TMDIs also induces hinge modes at open
boundaries along the x and y directions, which respect diagonal
mirrors.
Using first-principles calculations, we propose candidate mate-

rials for TMDIs, including Nd4Te8Cl4O20 and DyB4. Since the
database for magnetic materials only has a limited number of
materials, we construct a systematic way to find candidate
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magnetic materials for TMDIs using the space group of
paramagnetic parent compounds.

RESULTS
Dirac fermions and magnetic wallpaper groups
In 2D magnetic crystals, Dirac fermions with fourfold-degeneracy
can be symmetry-protected at the BZ corner, M= (π, π), by three
MWGs, i.e., Type-III MWG p40g0m and Type-IV MWGs p0cmm and
p0c4mm [see Fig. 1a–c]. Here, we use the notation of Belov and
Tarkhova (BT)23 for denoting MWGs and the notation of Belov,
Neronova, and Smirnova (BNS)30 for denoting MSGs. Note that
Type-III MWGs have antiunitary spatial symmetries combining TRS
T with spatial symmetries, while Type-IV MWGs have antiunitary
translation symmetries combining T and fractional lattice transla-
tions. All three MWGs have mirror-invariant lines, whose normal
directions are x̂, ŷ, or x̂ ± ŷ.
In 2D systems belonging to the Type-III MWG p40g0m described

in Fig. 1c, a Dirac fermion is protected at M by twofold rotation
about the z-axis C2z, antiunitary glide mirror TGy � Tfmy j 12 ; 12g, and
off-centered diagonal mirror eMxy ¼ fmxy j 12 ;� 1

2g. Here, the nota-
tion {g∣t} denotes the point group symmetry g followed by a
partial lattice translation t. mxy;y are mirror symmetries that act on
real-space coordinates as mxy : ðx; y; zÞ ! ðy; x; zÞ and my: (x, y,
z)→ (x,− y, z). [See the conventions in Supplementary Note
(SN) 1.] As detailed in SN 3, the fourfold degeneracy is formed
by four states ψ±, TGyψ±, eMxyψ± , and TGy eMxyψ± , where ψ± is an
energy eigenstate with C2z eigenvalue ±i.
In contrast, 2D systems belonging to the Type-IV MWGs p0cmm

and p0c4mm, described in Fig. 1a, b, respectively, have common
symmetry elements, i.e., antiunitary translation TG ¼ fT j 12 ; 12g
and two mirrors Mx= {mx∣0} and My= {my∣0}, where mx: (x, y, z)→
(− x, y, z). At M, these symmetry elements anticommute with each
other, and T2

G ¼ �1. These relations protect the fourfold
degeneracy formed by ψ±, TGψ±, Myψ±, and TGMyψ±, where ψ±

has Mx eigenvalue ± i (see SN3). Note that the same symmetry
representation was also studied in ref. 31.
A typical band structure supported by MWG p40g0m is shown in

Fig. 1d. Since MWG p40g0m has diagonal mirror eMxy , the energy
bands can be divided into two different mirror eigensectors along
the ΓMΓ0 direction. Here, Γ= (0, 0), and Γ0 ¼ ð2π; 2πÞ. Focusing on
the band structures in each mirror sector, we find that the
numbers of upward (chiral) and downward (antichiral) bands
crossing the Fermi level [E= 0 in Fig. 1d] at M are the same.
Otherwise, the mirror-resolved band structure cannot be periodic
along ΓMΓ0. Hence, a Dirac fermion in 2D crystals belonging to
MWG p40g0m is nonchiral in each mirror sector. Similar phenom-
ena also occur in MWGs p0cmm and p0c4mm. In general, the mirror-
resolved dispersion of Dirac fermion in 2D crystals protected by

MWGs is nonchiral. Although the local dispersion near the Dirac
point may exhibit either chiral or nonchiral dispersion, the full
band dispersion along the mirror invariant line is always nonchiral
in 2D crystals.

Chiral surface Dirac fermions
A 2D Dirac fermion, which is nonchiral in 2D systems, can be chiral
on the surface of 3D magnetic TCIs, as illustrated in Fig. 1e. Here, we
systematically search for 3D magnetic insulators that can host a
Dirac fermion on the (001) surface. As a 2D fourfold-degenerate
Dirac fermion can be protected by one of the three MWGs p40g0m,
p0cmm, and p0c4mm, we focus on the MSGs whose (001) surface has
one of these three MWGs. By studying the MSG symbols and the
detailed surface symmetries, we find that there are at least 31 MSGs
that can be generated from such MWGs and additional generators
compatible with the MWGs. (See Supplementary Table 1.)
All 31 MSGs have mirror planes whose normal vectors are

orthogonal to the (001) direction. Thus, the corresponding MCNs
can give chiral dispersions along the mirror-invariant lines on the
(001) surface. First, MWG p40g0m has off-centered diagonal
mirrors32eMxy ¼ fmxyj 12 ;� 1

2g and eMxy ¼ fmxy j 12 ; 12g [see Fig. 1c].
For the 11 MSGs relevant to MWG p40g0m, we define four MCNs

Ckx¼ky± and Ckx¼�ky± , which are defined in the kx= ky and kx=− ky
planes, respectively. Here, the ± sign denotes the mirror
eigenvalues of occupied bands. All the MCNs are equivalent up
to sign because of the symmetry relations among eMxy , eMxy , and
TC4z. Hence, the bulk topology can be classified by

Cxym � Ckx¼kyþ ¼ �Ckx¼ky� . Similarly, we can define MCNs for the 5
MSGs related to MWG p0c4mm, which have four mirrors, Mx, My,
Mxy , and Mxy. Among them, only two MCNs, Cxym and

Cym � Cky¼0þ ¼ �Cky¼0� , are independent, and serve as bulk
topological invariants. Finally, for the 15 MSGs related to MWG
p0cmm, the relevant MCNs are Cxm � Ckx¼0þ ¼ �Ckx¼0� and

Cy
m � Cky¼0þ ¼ �Cky¼0� . For more detailed discussions on the MCNs,

see SN4.
Now, we classify the Wilson loop spectra33–37 according to the

MCNs. We consider the kz-directed Wilson loop Wzðk?Þ,

Wzðk?Þnm ¼ unðk?; πÞ
Y

π �π

kz

Poccðk?; kzÞ
�

�

�

�

�

�

�

�

�

�

umðk?;�πÞ
* +

; (1)

where PoccðkÞ �
Pnocc

n¼1 unðkÞj i unðkÞh j is a projection operator
for occupied bands unðkÞj i and k⊥= (kx, ky). Since the Wilson
loop is unitary, its eigenvalue can be collectively
denoted as feiθðk?Þg ¼ feiθaðk?Þjθaðk?Þ 2 ð�π; π�; a ¼ 1; ¼ ; noccg.
Then, {θ(k⊥)} defines the Wilson loop spectrum, or equivalently,
the Wilson bands. Wilson loop spectra and surface band structures
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Fig. 1 MWGs and fourfold-degenerate Dirac fermions. a–c MWGs that protect fourfold degeneracy. Type-IV MWGs a p0cmm and b p0c4mm,
and c Type-III MWG p40g0m. Black arrows represent spin configurations located at generic positions. The styles of lines indicate the types of
symmetry elements: glides (blue dashed lines), antiunitary glides (red dashed lines), mirrors (blue solid lines), and antiunitary mirrors (red solid
lines). d Typical band structure of 2D crystals belonging to MWG p40g0m. Γ= (0, 0), X= (π, 0), M= (π, π), and Γ0 ¼ ð2π; 2πÞ denote high-
symmetry points. A fourfold-degenerate Dirac fermion appears at M near E= 0 (green arrow). Red (blue) lines denote states with eigenvalue
+i (− i) of the diagonal mirror. Along Γ-M-Γ0, each mirror eigenvalue sector of the Dirac fermion has a nonchiral dispersion. e Left: a Dirac
fermion appearing as an anomalous surface state of a topological magnetic Dirac insulator (TMDI) with a chiral dispersion in each mirror
sector. Right: schematic depiction of a TMDI, which hosts a fourfold-degenerate Dirac fermion on the (001) surface, and mirror-protected
hinge modes on the sides invariant under diagonal mirrors.
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have the same spectral features35,38. Thus, the band structure on
the (001) surface can be systematically classified based on Wilson
loop analysis. (The details on tight-binding notation and Wilson
loop is provided in SN2 and SN5.)
First, let us consider the MSGs related to MWG p40g0m [see

Fig. 2a–e]. At M ¼ ðπ; πÞ, four Wilson bands form a fourfold
degeneracy, which can be identified as a Dirac fermion on the
(001) surface. The connectivity of Wilson bands is classified by the
MCN Cxym , which is encoded in the slope of Wilson bands in each
mirror-sector crossing a horizontal reference line [a green dashed
line in Fig. 2b] along the Γ-M direction. In Fig. 2d, for example, as
two Wilson bands with mirror eigenvalue− i intersect the
reference line with a negative slope, we obtain Cxym ¼ 2. See SN5
for the details on the counting rules for Cxym .
Now, we compare the Wilson loop spectra of topological phases

with nonzero Cxym and the trivial phase with zero Cxym by focusing on
the region near the fourfold degeneracy at M. Along the Γ-M-Γ0

line, the four bands are divided into two different mirror sectors.
When Cxym ¼ 0, as in Fig. 2b, the dispersion in each mirror sector is
nonchiral, similar to that of Dirac fermions in 2D crystals in Fig. 1d.
In Fig. 2b, chiral and antichiral modes in the same mirror sector
(e.g., the +i sector) cross the green dashed reference line with
opposite signs of the group velocity. In contrast, their numbers are
not equal in Fig. 2d, where Cxym ¼ 2.
The Dirac fermions in Fig. 2c, e, which correspond to Cxym ¼ 1

and 4, respectively, appear with additional surface states (black
arrows). When Cxym ¼ 1, the dispersion is chiral along the entire Γ-
M-Γ0 line but locally looks nonchiral near the Dirac point. However,
if the dispersion along Γ-M-Γ0 is deformed such that the additional
surface states near Γ are pushed away from the Fermi level (which
corresponds to θ= 0 in Wilson loop spectra), the Dirac fermion in
Fig. 2c becomes chiral, as in Fig. 2h. In contrast, such a
deformation is impossible in Fig. 2e, where Cxym ¼ 4. In general,
one can show that a nonzero MCN jCxym j � 2 manifests as a chiral
dispersion of the surface Dirac fermion along Γ-M-Γ0, provided that
there is no additional surface state other than the Dirac fermion at

the Fermi level. In contrast, when jCxym j> 2, additional surface

states always appear along Γ-M-Γ0. Hence, the chiral dispersion of
the Dirac fermion when jCxym j � 2 and the coexistence of

additional surface states when jCxym j> 2 are signatures of the

nontrivial bulk topology of 3D TMDIs with nonzero Cxym . An exact
formulation of the relation among the chiral dispersion of the
Dirac fermion, MCN Cxym , and number of additional surface states is
given in SN6.
Similarly, one can analyze the Wilson loop spectra of the MSGs

related to MWG p0c4mm [see Fig. 2f–j]. The MCN Cxym (Cym) can be
determined by examining the Mxy (My) eigenvalues and the slopes
of Wilson bands crossing a reference line along Γ-M (Γ-X). The
relation between Cxym and the chiral dispersion of the Dirac fermion
is identical to the case of the MSGs with MWG p40g0m. The only
additional feature is that Cxym and Cym must be equivalent up to
modulo 2, i.e., Cxym ¼ Cym (mod 2), in insulating phases.
Finally, in the 15 MSGs related to MWG p0cmm, the Wilson loop

spectra can be classified by the MCNs on the kx,y= 0 planes, Cxmð0Þ
and Cymð0Þ, related to Mx,y mirrors. The MCNs on the kx,y= π planes,
CxmðπÞ and CymðπÞ, are always trivial, while surface Dirac fermions
can be chiral only for nonzero Cx;ym ðπÞ. Thus, the surface Dirac
fermion in the MSGs with MWG p0cmm is nonchiral and trivial.

Topological magnetic Dirac insulators
According to the Wilson loop analysis, the bulk band topology of
the 11 MSGs with Type-III MWG p40g0m and the 5 MSGs with Type-
IV MWG p0c4mm can be characterized by Cxym and ðCxym ; CymÞ,
respectively. In these 16 MSGs, when Cxym ≠ 0, a Dirac fermion
whose mirror-resolved dispersion is chiral can appear on the (001)
surface. Based on this, we define TMDIs as 3D magnetic TCIs with
nonzero Cxym hosting a 2D chiral Dirac fermion on the (001) surface.
Additionally, according to the (001)-surface MWG, TMDIs can be
divided into Type-III and Type-IV TMDIs such that Type-III (Type-IV)
TMDIs have (001)-surface MWG p40g0m (p0c4mm).
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with MWG p0c4mm on the (001) surface. f (001)-surface BZ. g–j Wilson loop spectra corresponding to g ðCxym ; CymÞ ¼ ð0; 0Þ, h ðCxym ; CymÞ ¼ ð1;�1Þ,
i ðCxym ; CymÞ ¼ ð2; 0Þ, and j ðCxym ; CymÞ ¼ ð0; 2Þ. Note that Cxym ¼ Cym (mod 2) holds for insulators.
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Interestingly, TMDIs also exhibit higher-order topology11,29,39–46

with hinge modes at open boundaries along the x and y directions
when the entire finite-size systems respect the diagonal mirror
symmetries. The MCN for the diagonal mirror Cxym follows the
higher-order bulk-boundary correspondence41,42,45. The disper-
sion of hinge modes can be both chiral and helical depending on
the details of the systems. Note that the number of chiral and
antichiral hinge modes at each hinge can be changed by a mirror-
symmetric and bulk-gap-preserving perturbation because such a
perturbation can close and reopen a surface gap42,44,47. However,
the MCN Cxym protects at least jCxym j hinge modes at each mirror-

invariant hinge. (See SN7 for more details.) We provide a tight-
binding model for a Type-III TMDI in SN10, which confirms the
bulk-boundary correspondence described above.

Candidate materials
Using first-principles calculations, we propose DyB4 and Nd4Te8-
Cl4O20 as candidate materials for a Type-III TMDI and a Type-IV
TMDI, respectively, whose electronic and topological properties
are summarized in Figs. 3 and 4, respectively. Although their band
structure are metallic, as the systems have nonzero direct gap at
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all momenta, their mirror Chern numbers are well defined. We
note that the two candidate materials, DyB4 and Nd4Te8Cl4O20, are
not available in the existing material databases20,48–55. In general,
searching for candidate magnetic materials is more challenging
than searching for nonmagnetic materials because the number of
available materials in magnetic material databases20,54 is limited
to approximately 160054, which is much smaller than the number
of nonmagnetic materials. To overcome this limitation, we will also
propose a general scheme to systematically search for candidate
materials for TMDIs, whose magnetic structures and MSGs are
derived from their parent paramagnetic states.
Let us first consider DyB4, a member of the rare-earth

tetraborides family, whose crystal structure is shown in Fig. 3a.
The paramagnetic parent phase of DyB4 has space group 127 P4/
mbm. In experiments56, this material was reported to have two
competing spin configurations that correspond to the Γ2 (with
MSG 127.395 P4=m0b0m0) and Γ4 (with MSG 127.392 P40=m0b0m)
magnetic states, as shown in Fig. 3b, c. Between them, the Γ2 state
was reported to be more favored56. Note that the Γ4 phase can
support a Type-III TMDI with (001)-surface MWG P40g0m. Here, we
investigate the conditions in which the Γ4 state becomes the
magnetic ground state in DyB4 based on DFT+U(where U is the
onsite Coulomb interaction) calculations. We examine the total
energies of the Γ2 and Γ4 states as a function of U with fixed

Hund’s coupling J = 1 eV. As shown in Fig. 3d, DyB4 undergoes a
magnetic phase transition from the Γ4 to Γ2 state when U > 6.5 eV.
An indirect gap near the Fermi level EF=0.0 eV exists in the DFT

+ U result (U= 6.5 eV, J=1.0 eV), as shown in Fig. 3e. Because the
gap along the Γ-Z line is tiny, as shown in Fig. 3f, a topological
phase transition between phases with different MCNs Cxym can be
easily induced by a small perturbation. (See SN9 for the band
structures between U=6.0 eV and 6.5 eV and SN12 for a detailed
analysis of this topological phase transition.) Fig. 3g, h show the kz-
directed Wilson loop spectra for U= 6.5 eV and 6.0 eV,
respectively. Because of gap closing and reopening at Z, a
topological phase transition from the Cxym ¼ �1 state to the Cxym ¼
�2 state occurs as U increases from 6.0 eV to 6.5 eV. Hence, we
identify DyB4 at U= 6.5 eV (6.0 eV) as a Type-III TMDI with Cxym ¼
�2 (− 1).
More specifically, let us consider DyB4 at U= 6.5 eV. Figure 3i–j

show the surface Green’s function calculations for the top (B-
terminated) and bottom (Dy-terminated) surfaces. A surface Dirac
fermion with fourfold degeneracy is clearly identified near
E=− 0.35 eV on the bottom surface [Fig. 3j, l]. In contrast, the
top surface state is buried in the bulk conduction band and thus
not visible in the gap. However, the hidden surface state can be
brought into the gap by applying a surface potential Esurf=− 0.2
eV, as shown in Fig. 3k.
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The second material Nd4Te8Cl4O20 is a candidate for a Type-IV
TMDI with ðCxym ; CymÞ ¼ ð�1; 1Þ. Since its magnetic properties are
unknown, this material is found by using our general scheme to
search for candidate materials, as briefly explained below. MSG
129.421 PC4/nmm (123.16.1014 PP4=m0mm in the OG setting) is
one of the MSGs that can host Type-IV TMDIs, which is derived
from nonmagnetic space group (SG) 123 P4/mmm. The crystal
structure of NdTe2ClO5

57 in the paramagnetic phase has SG 123
P4/mmm, as shown in Fig. 4a. Introducing a 2 × 2 × 1 supercell, Nd
atoms can form a spin configuration compatible with MSG
129.421 PC4/nmm, as shown in Fig. 4b, c. Assuming the magnetic
ordering corresponding to MSG 129.421 PC4/nmm, we study the
electronic and topological properties of Nd4Te8Cl4O20. The bulk
band structure in Fig. 4d shows a semimetallic state with an
indirect gap between− 0.5 eV and 0.0 eV. For the bands below
this gap, we compute the kz-directed Wilson loop spectrum, which
exhibits a nonzero MCN, Cxym ¼ �1, as shown in Fig. 4g. Hence, we
identify Nd4Te8Cl4O20 as a candidate for a Type-IV TMDI with
(001)-surface MWG p0c4mm.
The surface Green’s function calculations for the top (O-

terminated) and bottom (Nd-terminated) surfaces are shown in Fig.
4e, f. Within a gap with a magnitude of 1.5 eV at M, a surface Dirac
fermion with fourfold degeneracy is clearly identified near E= 1 eV
on the top surface. As shown in Fig. 4h, the four states of the surface
Dirac fermion are split into two nondegenerate bands and
accidentally nearly degenerate bands, in a similar way as in Fig. 2h.
Although bottom surface states buried in bulk states are not visible in
the gap [Fig. 4f], the hidden surface state can be pushed into the gap
by applying a surface potential of− 0.544 eV, as shown in Fig. 4i.
Our material search scheme used to find Nd4Te8Cl4O20 can

generally be applied to all 16 MSGs (11 Type-III and 5 Type-IV
MSGs) that can host TMDIs, as follows. For each MSG, (i) determine
the SG of paramagnetic phases, (ii) obtain the transformation
matrix of basis vectors between the magnetic unit cell and crystal
unit cell, and (iii) build up the magnetic unit cell from the
paramagnetic unit cell according to the transformation matrix as
well as restrict the spin configuration of magnetic atoms. (See SN8
for details.) Additionally, using this material search scheme, we
studied other candidate materials including two TMDI candidates
with nonzero Cxym (Ce2Pd2Pb, Ce2Ge2Mg) and four materials with
Cxym ¼ 0 (HoB4, FeSe, FeTe, AlGeMn, N3TaTh). (See SN9 for details.)

DISCUSSION
Let us discuss the symmetry-breaking effect on the 2D Dirac
fermion, either in 2D bulk crystals or on the surface of 3D TMDIs.
When a perturbation that preserves diagonal mirrors in MWGs
p40g0m and p0c4mm is applied, the Dirac fermion in 2D crystals
becomes gapped while that on the surface of 3D TMDIs remains
gapless because of the nonzero MCN. In contrast, a mirror-
breaking perturbation can induce various phase transitions in
both cases because a 2D Dirac fermion corresponds to a
multicritical point in magnetic systems31. For example, MWG
p40g0m is reduced to p2g0g0 when eMxy and TC4z are broken by
tensile strain (see SN13). In this case, a mass term is allowed; thus,
the Dirac fermion can be gapped. The Chern number of the
resulting gapped phase changes by 2 when the sign of the mass is
reversed. This, in turn, indicates the appearance of chiral edge
channels at domain walls between two gapped domains with
opposite signs of the mass.
Finally, we discuss the bulk topological responses of TMDIs.

Since mirror symmetry reverses the spatial orientation, it quantizes
the axion angle θ to 0 or π, which is related to the MCN by
θ=π ¼ Cxym (mod 2)18,58. Hence, TMDIs with odd Cxym correspond to
an axion insulator exhibiting quantized magnetoelectric effects59.
In contrast, TMDIs with an even Cxym have a vanishing axion angle.
However, according to a recent theoretical proposal60, even helical
higher-order topological insulators (HOTIs) with θ= 0 can exhibit

spin-resolved magnetoelectric effects. In the case of 3D TMDIs,
spin-resolved bands are ill-defined because of noncollinear
magnetic orderings inherent in Type-III and Type-IV MSGs.
However, by combining the spin and sublattice degrees of
freedom, the pseudospin-resolved magnetoelectric effect can be
defined in 3D TMDIs with an even Cxym , which is demonstrated
using a tight-binding model in SN11. A more systematic study of
bulk topological responses in magnetic TCIs with noncollinear
magnetic ordering is an important subject for future research.

METHODS
For the ab initio calculation, the Vienna Ab initio Simulation Package
(VASP) is employed with the projector augmented-wave method
(PAW)61. We employ the generalized gradient approximation (PBE-
GGA) for exchange-correlation potential62. The default VASP poten-
tials, an energy cutoff with 400 eV, and a 8 × 8 × 14 Monkhorst-pack
k-point mesh are used. The spin–orbit coupling is considered because
of the presence of the heavy rare-earth atoms in the unit cell. On-site
Coulomb interaction is taken into account with U= 6.5 eV and J
(Hund’s coupling)= 1 eV in DyB4 and U= 6 eV and J= 0 eV in
NdTe2ClO5. Wannier Hamiltonians were constructed by WANNIER9063

and symmetrized by WannSymm code64. The WannierTools pack-
age65 was used to produce the slab band structure and Wilson loop
spectra based on the symmetrized Hamiltonian. The experimental
crystal structure of DyB456 are used without structural relaxation.
Details on the ab-initio calculation can be found in SN S9.
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